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The metric dimension of a graph is the smallest number of vertices from which the vector of distances
to every vertex in the graph is unique. It may be regarded as a generalization of the concept of trilateration
in the two-dimensional real plane, the idea underpinning the Global Positioning System (GPS).

1 Definition

Let G be a graph with vertex set V and edge set E, and let d(u, v) denote the shortest path or geodesic
distance between two vertices u, v ∈ V . G is not forced to be simple (though all examples in this article
are) and may contain weighted edges, multi-edges, or self loops. A set R ⊆ V is called resolving if
for all u, v ∈ V with u 6= v there is at least one r ∈ R such that d(u, r) 6= d(v, r). In this case r is
said to resolve or distinguish u and v. By definition, if an ordering on the vertices of R = {r1, . . . , rn}
is given, any u ∈ V may be uniquely represented by the vector ΦR(u) := (d(u, r1), . . . , d(u, rn)) (see
Figure 1). The metric dimension of G, denoted β(G), is the smallest size of resolving sets on G; formally,
β(G) = min{|R| : R ⊆ V, R is resolving}. If R is a resolving set on G and |R| = β(G), R is called a
minimal resolving set of G, also called a basis set, or reference set [12, 23].

Intuitively, this concept is closely related to that employed by the Global Positioning System (GPS),
called trilateration, where the location of any object on Earth can be determined by its distances to three
satellites in orbit. More generally, given a point x ∈ R2, we may partition the space into equivalence
classes of points with equal Euclidean distance to x, where y, z ∈ R2 belong to the same class if and only if
d(y, x) = d(z, x) (these classes form circles centered at x). A set of pointsR ⊂ R2 may be used to partition
the space in a similar way. Now y and z belong to the same class if and only if d(y, r) = d(z, r) for all
r ∈ R. When R contains a subset of three affinely independent points, every point in R2 belongs to its own
equivalence class and R may be said to resolve the plane.

2 Brute Force Calculation

Given an arbitrary graph G = (V,E), the brute force method for determining β(G) requires that every
subset of (β(G)− 1) vertices be established as non-resolving and that at least one resolving set of size β(G)

be found. Since β(G) ≤ |V | − 1 [6], starting with sets of size one,
∑|V |−2

k=1

(|V |
k

)
= O(2|V |) subsets must be

examined in the worst case. In order to determine whether or not R ⊆ V is resolving, every pair of vertices
u, v ∈ V must be compared across |R| distances. This requires O(|R||V |2) time, bringing the total time
necessary to find β(G) to |V |2

∑|V |−2
k=1

(|V |
k

)
k = O(|V |32|V |).

The above assumes that all pairwise distances between nodes in G have been precomputed. There are a
host of algorithms for finding shortest path distances in graphs. WhenG is directed and may have positive or
negative edge weights, the Floyd-Warshall algorithm and Johnson’s algorithm are among the most popular
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Figure 1: A graph with metric dimension 2 and minimal resolving set R = {A,C}. Based on this set,
ΦR(A) = (0, 2),ΦR(B) = (1, 1),ΦR(C) = (2, 0),ΦR(D) = (1, 2),ΦR(E) = (2, 2), andΦR(F ) = (3, 1).
This corresponds to the embedding of the graph in R2 on the right.

techniques. These have asymptotic run times O(|V |3) [9] and O(|V ||E| + |V |2 log |V |) [15], respectively.
An algorithm based on a component hierarchy [25] can solve this problem in O(|V ||E|+ |V |2 log log |V |)
time [22]. When G is undirected and edge weights are guaranteed to take integer values, a similar approach
can be used to determine all shortest path lengths in O(|V ||E|) time [25].

3 Complexity and Approximation Algorithms

The brute force approach to computing β(G) is intractable even for small graphs. In fact, this problem is
NP-hard and the associated decision problem, determining whether the metric dimension of a graph is less
than a specified integer, has been shown to be NP-complete via reduction from 3-SAT [16] and 3-dimensional
matching [10]. As a result, a number of algorithms for estimatingmetric dimension exist. Methods employing
genetic algorithms [17] and a variable neighborhood search [21] can find small resolving sets but do not
provide approximation guarantees which bound how far from β(G) the result may be. The Information
Content Heuristic (ICH), on the other hand, ensures an approximation ratio of 1 + (1 + o(1)) · ln(|V |), the
best possible ratio for metric dimension [13].

A brief description of the ICH algorithm follows. Let uR = ΦR(u) be the vector of distances from
u ∈ V to the elements of R ⊆ V . Let SR = {uR|u ∈ V } be the set of all such vectors for a given graph
and BR = [uR|u ∈ V ] be the bag or multiset associated with SR. The ICH algorithm takes an information
theoretic perspective, using H(BR), the discrete entropy over the multiset of vertex representations on V
imposed by R, to measure how far R is from being resolving. Notice H(BR) is maximized precisely
when R is a resolving set, i.e. |SR| = |V | so that every vertex has a unique representation. At its
core, the ICH algorithm is a greedy search for an R achieving this maximum value, H(BR) = log |V |.
Starting with R0 = ∅, Ri is built recursively by finding v∗ = argmaxv∈V \Ri−1

H(Ri−1 ∪ {v}) and setting
Ri = Ri−1 ∪ {v∗}.

With a run time complexity of O(|V |3), ICH is only practical for small and medium-sized graphs.
Nevertheless, using parallel computing, it is possible to reduce the run time of the ICH algorithm further.
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4 Metric Dimension of Specific Graph Families

While determining the exact metric dimension of an arbitrary graph is a computationally difficult problem,
efficient algorithms, exact formulae, and useful bounds have been established for a variety of graphs. This
section presents descriptions of the metric dimension of several common families of graphs. For a list of
results related to the join and cartesian product of graphs, see [4].

Fully Characterized Graphs: Graphs on n vertices with a metric dimension of 1, (n − 1), and (n − 2)
have been fully characterized [6]. The first two cases are simple to describe:

• The metric dimension of a graph is 1 if and only if the graph is a path (see Figure 2).

• The metric dimension of a graph with n nodes is (n− 1) if and only if the graph is the complete graph
on n nodes (see Figure 3).

For the third case, let us introduce notation, following [6]. Let G ∪ H be the disjoint union of two
graphs G and H , i.e. if G = (V1, E1) and H = (V2, E2), G ∪H = (V1 t V2, E1 t E2), where t denotes
disjoint set union [1]. Further, letG+H be the graphG∪H with additional edges joining every node inG
with every node in H . Finally, define Kn to be the complete graph on n nodes, Kn to be the graph with n
nodes and no edges, and Kn,m to be the complete bipartite graph with partitions of size n andm. Then the
metric dimension of a graph with n nodes is (n− 2) if and only if the graph is one of the following:

• Ks,t with s, t ≥ 1, and n = s+ t.

• Ks +Kt with s ≥ 1, t ≥ 2, and n = s+ t.

• Ks + (K1 ∪Kt) with s, t ≥ 1, and n = s+ t+ 1.

Figure 2: The path graph of size 6, P6. R = {1} is a minimal resolving set of this graph. In general, any set
of the form {v}, with v a node of degree 1 in Pn, is a minimal resolving set on Pn.

Trees: The introduction of metric dimension in the mid 1970s also brought a characterization of the metric
dimension of trees, via a simple formula [12,23]. Let T be a tree that is not a path and define `(T ) to be the
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Figure 3: The complete graph of size 4, K4. R = {1, 2, 3} is a minimal resolving set of this graph. In
general, any set of nodes of cardinality (n− 1) is a minimal resolving set ofKn.

number of leaves (nodes of degree 1) in T . Further, define σ(T ) as the number of exterior major vertices
in T , that is vertices with degree at least 3 which are also connected to at least one leaf by a path of vertices
of degree 2. Then the metric dimension of T is β(T ) = `(T ) − σ(T ). A resolving set of this size may be
constructed by taking the set of all leaves and removing exactly one element associated with each exterior
major vertex [6] (see Figure 4). This construction may be carried out using a modified depth first search in
O(|V |+ |E|) time.

Hamming Graphs: For positive integers k and a, the Hamming graph Hk,a consists of ak vertices each
labeled with a unique string of length k using an alphabet of size a. Two vertices in Hk,a are adjacent
when their labels differ in exactly one position; thus, the shortest path distance d(u, v) is the total number of
mismatches between the labels of u and v (i.e. theHamming distance between u and v). While determining
β(Hk,a) exactly is difficult, it has been shown that, in general, β(Ha,k) ≤ β(Ha,k+1) ≤ β(Ha,k) + ba2c.
Furthermore, given a resolving set on Hk,a of size s it is possible to efficiently construct a resolving set
on Hk+1,a of size s + ba2c [26]. This implies that β(Hk,a) grows at most linearly with k and allows small
resolving sets to be generated despite how quickly Hamming graphs grow in size with increasing k.

Connections between coin weighing problems and Qk = Hk,2, or hypercubes, lead to the asymptotic
formula limk→∞ β(Qk) log(k)k = 2 [8, 19]. Even with a binary alphabet, β(Qk) is known exactly only up to
k = 10 (see Table 1).

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
β(Qk) 1 2 3 4 4 5 6 6 7 7 8 8 8 9 9 10 10

Table 1: Exact values of β(Qk) for 1 ≤ k ≤ 10, and upper bounds for 11 ≤ k ≤ 17 [21].

The Hamming graph Hk,a may also be thought of as the Cartesian product of k complete graphs of
size a. That is, Hk,a = K�k

a = Ka�Ka� . . .�Ka, with k copies of Ka. In general, G�H , the Cartesian
product of G = (V1, E1) and H = (V2, E2), has vertex set V = {(u, v)|u ∈ V1, v ∈ V2} and edge set E
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Figure 4: A tree of size 16. The vertices 2, 4, 7, and 9 are exterior major vertices and 6, 8, 10, 11, 12, 13,
14, 15, and 16 are leaves. Note that node 1 is not an exterior major vertex as every path from this vertex to a
leaf includes at least one other vertex of degree greater than two. R = {8, 11, 12, 14, 15} is a resolving set
of minimum size.

defined as follows: {(u, v), (u′, v′)} ∈ E if and only if u = u′ and {v, v′} ∈ E2, or v = v′ and {u, u′} ∈ E1.
Working from this perspective, it has been shown that β(H2,a) = b23(2a−1)c [5]. This approach also allows
a generalization of the asymptotic behavior of β(Qk) to show that limk→∞ β(Hk,a) loga(k)k = 2. A similar
asymptotic result holds for G�n for other graphs G including paths and cycles [14].

Random Graphs: In a study related to the graph isomorphism problem, it was shown that the set of
d3 ln(n)ln(2) e high degree vertices in a graph of size n can be used to differentiate two random graphs with
high probability [2]. Indeed, this set of nodes is highly likely to resolve the Erdös-Rényi random graph
Gn,1/2. This bound has been generalized to encompass arbitrary values of p so that, with high probability,
β(Gn,p) ≤ −3 ln(n)

ln(p2+(1−p)2) as n goes to infinity and any set of nodes of this size resolves the graph with high
probability [27]. Focusing closely on different regimes of p as a function of the graph size, much more
precise bounds on β(Gn,p) have been established [3].

Closely related to Erdös-Rényi random graphs are graphs generated via the Stochastic Block Model
(SBM). This model groups a set of n vertices into communities defined by a partition C of {1, . . . , n}.
Adjacency probabilities for vertices in different communities are defined by a matrix P . By focusing on
this adjacency information, general bounds on G ∼ SBM(n;C,P ) have been established as have several
efficient algorithms for finding small resolving sets onGwhen n is large enough to render the ICH algorithm
impractical [27].

Random trees and forests have also been investigated with respect to metric dimension [20]. The
exact formula and polynomial time algorithm for finding minimal resolving sets on trees allow the limiting
distribution of β(Tn), the metric dimension of a tree or forest chosen uniformly at random from all trees or
forests of size n, to be determined precisely. In particular,

β(Tn)− µn(1 + o(1))√
σ2n(1 + o(1))

→ N(0, 1),
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where the convergence is in distribution as n→∞, and µ ' 0.14076941 and σ2 ' 0.063748151.

5 Applications

Despite the fact that finding minimal resolving sets of general graphs is computationally difficult, the ability
to uniquely identify all vertices in a graph based on distances has proven to be quite useful. Applications
regarding chemical structure [6] and robot navigation [16] have served as inspiration for the theoretical study
of metric dimension. Deep connections between the metric dimension of Hamming graphs and a complete
understanding and analysis of the game Mastermind [7] and various coin weighing problems [8, 19] have
also been established. Resolving sets have proven valuable in a number of other applications as well.

Source Localization: Resolving sets are a natural tool to identify the source of a diffusion across a network.
For instance, the ability to determine where a disease began as it spreads across a community has the
potential to be valuable in a variety of contexts. If the time at which the spread began is known, and
inter-node distances are deterministic and known, resolving sets give a direct solution. In more realistic
settings, however, the notion of resolvability must be augmented to take into account an unknown start time
and random transmission delays between nodes. The former may be addressed using doubly resolving sets.
Whereas for every pair of different nodes u, v ∈ V a resolving setR ⊆ V need only contain a single element
r ∈ R such that d(u, r) 6= d(v, r), a doubly resolving set D ⊆ V must have nodes r1, r2 ∈ D such that
d(u, r1)−d(u, r2) 6= d(v, r1)−d(v, r2). Successfully identifying the source of a spread is highly dependent
on the variance associated with random inter-node distances [24].

Representing Genetic Sequences: Many machine learning algorithms assume numeric vectors as input.
In contrast, sequences of nucleotides or amino acids from biological applications are symbolic in nature; as
such, they must be transformed before they can be analyzed using machine learning techniques. One such
transformation is an embedding based on resolving sets, which can be used to efficiently generate concise
feature vectors for large sequences. In this approach, all possible sequences of length k are encoded as nodes
in a Hamming graphHk,a, where a is a reference alphabet size; given a resolving set R ofHk,a, each vertex
v maps to the point ΦR(v) ∈ R|R| (see Figure 1). For example, considerH8,20, the Hamming graph used to
represent amino acid sequences of length k = 8. This graph has approximately 25.6 billion vertices and 1.9
trillion edges, making many state-of-the-art graph embedding methods like multidimensional scaling [18]
and Node2Vec [11] impractical. On the other hand, a resolving set of size 82 is known for this graph, which
was constructed by augmenting a resolving set for H3,20 using bounds described in Section 4 [26]. This
resolving set gives rise to an embedding into R82, whereas traditional techniques used to embed biological
sequences, like binary vectors, require almost twice as many dimensions.
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