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1 INTRODUCTION 

A natural language interface (NLI) to databases is an interface that 
translates a natural language question to a structured query that 
is executable by database management systems (DBMS). However, 
an NLI that is trained in the general domain is hard to apply in the 
spatial domain due to the idiosyncrasy and expressiveness of the 
spatial questions. Inspired by the machine comprehension model, 
we propose a spatial comprehension model that is able to recognize 
the meaning of spatial entities based on the semantics of the con- 
text. The spatial semantics learned from the spatial comprehension 
model is then injected to the natural language question to ease the 
burden of capturing the spatial-specific semantics. With our spatial 
comprehension model and information injection, our NLI for the 
spatial domain, named SpatialNLI, is able to capture the seman- 
tic structure of the question and translate it to the corresponding 
syntax of an executable query accurately. We also experimentally 

Many business applications rely on relational databases. To facilitate 
the usage of database management systems to the public, NLI to 
databases has been extensively studied [1–10]. Spatial Domain 
NLI to databases has drawn great attention due to the popularity 
of spatial applications [11–14]. An intuitive solution is to adopt 
existing NLI in general databases to the spatial domain. However, 
due to the idiosyncrasy and expressiveness of the spatial semantics, 
it is unfeasible to adopt general NLI for the spatial domain directly. 
The challenge of adopting the existing general domain NLI to spatial 
domain lies to harnessing the expressiveness of spatial semantics. 
The expressiveness of spatial semantics can be justified based on 
the following observations [15]: 

 
 

  The meaning of spatial phrase “Mississippi”  

How many rivers does Mississippi have ? state 
How many cities does Mississippi run through ? river 

 ascertain that SpatialNLI outperforms state-of-the-art methods.    
  The meaning of spatial phrase “over”  
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How many people walked over the bridge ? on 
How many birds flew over the bridge ? above 

 

  The meaning of spatial phrase “at the back of”  

How many trees are at the back of the building ? exterior 
  How many rooms are at the back of the building ? interior  

Figure 1: Three examples show that the spatial semantics is 

encyclopedic. 
The examples as mentioned earlier show that the same spatial 

phrase in different questions embodies divergent senses expressing 
divergent query intentions. In the first two questions, “Mississippi” 
as a name can refer to either a state or a river, depending on the 
context where it is mentioned. In this example, the type of word 
“Mississippi” depends on the verb located after the name (“have” 
or “run through”). In the second two questions, the preposition 
“over” means either a superior position or on the surface. Its spatial 
meaning depends on the verb located before the preposition (“walk” 
or “fly”). In the last two questions, the prepositional phrase “at the 
back of” means either outside the building or inside the building, 
which depends on the noun before the prepositional phrase (“tree” 
or “room”). Such contextually dependent spatial semantics raises 
serious challenges for NLI to spatial domain databases. For instance, 
in the third example, if there are two spatial tables (one for the 
interior architecture of a building and one for the surroundings 
of a building), a wrongly comprehended spatial semantics would 
cause the NLI to query a wrong table. In general, spatial semantic 
understanding relies heavily on its contextual interpretation. 
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Existing works of NLI rely on conventional grammar-based meth- 

ods or neural network-based methods. The former line of existing 
work uses predefined templates or manually designed features, 
which has the lower-transfer ability, thus confined in its specific 
dataset. The latter line of existing work uses grammar embedded 
neural networks. Embedding grammar into a model relies on con- 
verting the process of generating a sequence of tokens to the task 
of generating a sequence of actions that expands a syntax tree. 
Converting word space to action space will inevitably introduce 
transformation error, which can not guarantee overall accuracy. 
To the best of our knowledge, the state-of-the-art Syntax-based 

method TRANX [16] achieves an accuracy of 88.2% which is 2.1% 
lower than our accuracy. 

The aforementioned observations and survey inspired us to pro- 
pose a Spatial Domain NLI that is able to support the idiosyncrasy 
of spatial semantics. Inspired by the NLI in [9], we propose a strat- 
egy to address the ambiguity of spatial meaning (mentioned in 
Figure 1) and data sparsity problem by feeding necessary spatial 
semantics to the deep model. Here ambiguous spatial phrases are 
those that can not be uniquely identified by the schema. By feed- 
ing external spatial semantics, our NLI is able to support various 
spatial questions even when it has not seen similar semantics in 
the training set. The extra spatial semantics is recognized by our 
external spatial comprehension model, whose functionality is to 
recognize pre-defined spatial semantics. 

We propose to capture spatial semantics using an external spatial 
comprehension model, where the interpretation of each word is 
based on the attentive combination of the context. We then complete 
our NLI model using a sequence-to-sequence (seq2seq) translation, 
which is not only able to achieve grammar correctness but also 
robust with data sparsity problem. Our fundamental strategy is to 
separate the tasks of NLI to (1) learning semantic structure of a 
natural language question, and (2) learning the spatial semantics of 
a spatial question. 

The necessity of the external spatial comprehension model is 
due to the seq2seq translation model’s failure to capture all the 
spatial semantics while learning the structure of the question. In 
our design, Task (1) is assigned to the seq2seq model, while an 
external spatial comprehension model is in charge of Task (2). We 
propose our spatial comprehension model as a bi-directional atten- 
tive workflow [17, 18], where the attentive spatial phrases of the 
input are enclosed with special symbols. 

Our strategy is a general-purpose automatic solution that only 
relies on database content, an external model, a seq2seq model, 
and a minimum amount of human knowledge. To the best of our 
knowledge, we are the first to use an external spatial semantic 
understanding model to enhance the performance of the main 
seq2seq model. Our solution not only addresses the problem of 
data sparsity but also introduces minimum error since the spatial 
comprehension model achieves an accuracy of 98% and 100% for 
Geoquery and Restaurant datasets. 

Our contribution is described as follows 

 

We propose a spatial comprehension model that is able to rec- 
ognize the meaning (e.g., POI type) of an ambiguous spatial 
phrase (e.g., POI name) based on contextual interpretation. 

 
After injecting spatial semantics learned from spatial com- 
prehension into the question, our model outperforms the 
state-of-the-art. 
We evaluate our strategies systematically and show that our 
spatial comprehension model and injection format perform 
well as expected. 

 
2 RELATED WORK 

In recent years, a line of works has been focusing on semantic 
parsing, which aims at converting natural language utterances to 
formal meaning representations. ZC05 [19], ZC07 [20], UBL [21] 
and FUBL [22] induce the specific grammars to make the transla- 
tion, which defines the meanings of individual words and phrases. 
KCAZ13 [23] and [7] use ontologies to help form the grammar. 
[24] uses domain-independent facts to make the translation and 
ZH15 [25] builds the grammar based on the specific entity type of 
words. DCS+L [26] and [4] introduce tree structure for input natural 
language to solve this problem. However, most of the conventional 
methods rely on predefined templates or manually designed fea- 
tures to complete the translation, which is not comparable to ours, 
as we avoid using such lexicon mapping and predefined templates 
of prior knowledge in our system. 

Also, some of the work focuses on the Natural Language Inter- 
face to Databases (NLIDB) for users to interact with the database 
without acknowledging the grammar of structured queries executed 
by the database engine. [1] first explores this issue with a specific 
database and concrete examples. [6, 27–30] also work on this issue 
depending on grammars and processes the semantic grammars 
manually for each individual database. [2] and [3] work on the 
NLIDB systems requiring large sets of natural language and SQL 
pairs. [5] and [8] present an interface with the help of the feedback 
from users and PEK03 [6] also defines the coverage of the NLIDB 
system, which is certainly not suitable for all databases. The prob- 
lem is that the NLIDB study mentioned above is all designed for 
the general domain and is hard to apply to spatial natural language 
queries directly without loss of accuracy. 

Now deep neural network models have been applied successfully 
to semantic parsing to exploit the sequential structure on both input 
and output side. One of them is the Encoder-Decoder model [31–33]. 
FKZ18 [34] works on translating the input to SQL queries based on 
the Encoder-Decoder model. TRANX [16] and ASN [35] construct 
Decoder-Encoder models with the tree structure. SQL2TREE [36] 
proposes a seq2seq model based on the Encoder-Decoder architec- 
ture and JL16 [37] enhances the performance of seq2seq by adding 
attention-based copying in the output and implementing data aug- 
mentation. [9, 38] work on an Encoder-Decoder based transfer 
learning for semantic parsing. [39] trains one model that is able to 
parse natural language sentences from multiple different languages 
and [40] exploits the Encoder-Decoder model in different domains. 
[41] introduces a framework with reinforcement learning to gen- 
erate SQL queries. Here, we introduce on seq2seq model in our 
system. Compared with SQL2TREE [36] and JL16 [37], our model 
solves the spatial ambiguity problem for the input natural language 
more efficiently. 

Natural language process for the spatial domain has been ob- 
served in literature. [42] annotates the spatial relation in natural 

• 

• 

• 
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Figure 2: SpatialNLI overview. 

language based on the specific annotation schema. [43] focuses 
on spatial ontologies to process the input spatial natural language 
queries. [44] maps the objects and spatial relations to formal lin- 
guistic terms, which disambiguate the spatial meanings of objects. 
[45] uses a form of symbolic expressions to extract spatial terms 
from natural language descriptions to represent spatial features 
and relations between them. All of them limit the query in the 
fixed form and have difficulty dealing with different kinds of spatial 
complex queries. For [46], it introduces a system that is capable 
of capturing the semantics of spatial relations in natural language 
using the neural network. But none of the above gives users an 
interface to interact with the database. 

3 CHALLENGES OF SPATIAL NLI 

I. Sparse training data. Even though data augmentation is a fea- 
sible solution to sparse training data, it is likely that the deep 
model will be forced to handle unseen questions that are not 
covered by data augmentation, and required to support transfer 
learning. 

II. Spatial semantics ambiguity. A unique feature of spatial ques- 
tions is its expressiveness in the spatial domain, and a spatial 
phrase often has an ambiguous meaning. For example, “Mis- 
sissippi” could be either a state or a river, “New York” could be 
either a city or a state (taking Figure 3 as examples). 

Figure 4: POI type recognition without spatial comprehen- 

sion model 

“Mississippi”, in that case, it is highly possible that stateid will be 
inferred instead of riverid. 

Therefore, we propose another deep model for the purpose of 
spatial semantic understanding; despite the fact that we use the 
same parse training data, an external model targeted on under- 
standing the context is able to infer the correct spatial semantics 
(Challenge II) precisely. With the spatial semantics retrieved from 
the spatial comprehension model, we adopt symbol insertion strat- 
egy [9] to inject external information and help the seq2seq to infer 
an unseen sample correctly (Challenge I). 
Overview To address the aforementioned challenges, we present 
our SpatialNLI overview shown in Figure 2. The workflow of our 
SpatialNLI involves the following steps: 

1. Identify ambiguous spatial semantics in the NL query. 
2. Build a spatial comprehension model that is able to understand 

a spatial-related question semantically. 
3. Injecting spatial semantics retrieved from the spatial compre- 

hension model into the question (q q,). 
4. “Translating” the question into a structured query (Lambda ex- 

pression in our example) (q, l ,). 

5. Replace the symbols injected to their original text (l , 

 

4 SPATIALNLI 

−→ l ). 

Figure 3: Spatial POI ambiguity 

 
Theoretically, a powerful data augmentation should be able to 

address the first challenge; however, such data augmentation strat- 
egy is rare in practice. Moreover, a seq2seq model is designed to 
translate a sentence, it is reasonable that it fails to capture the con- 
text precisely and infer the correct spatial semantics. For example, 
in the question “How many rivers does Mississippi have ?” (shown in 
Figure 4), a seq2seq model should be able to understand the context 
and infer “Mississippi” as a state. However, since the word “rivers” 
appears in the question and precedes the word “Mississippi”, which 
means it has a major impact on the prediction when attentive on 

Since most of the keywords or data elements in spatial queries 
(e.g., lambda expression) are spatial-related, we propose a strategy 
to inject latent spatial semantics into the natural language ques- 
tion to help the seq2seq model to capture the semantic meaning 
of the question. For example, for the question “How many rivers 
does Mississippi have ?”, its correspondence lambda expression is 
“count(B,(river(B), const(C,stateid(Mississippi)), loc(B,C))”, 
which has five keywords “count”, “river”, “const”, “stateid”, “loc”, and 
three of them are spatial-related. We will illustrate the workflow of 
our SpatialNLI with this running example. 

Our SpatialNLI model is composed of the following steps (corre- 
sponding to Algorithm 1) 

Question How many rivers does Mississippi have ? 

Ground 

Truth 
answer(A,count(B,(river(B),const(C,stateid(Mississippi)),loc(B,C)),A)) 

Infer answer(A,count(B,(river(B),const(C,riverid(Mississippi)),loc(B,C)),A)) 

 

 Question 

State 
River 

How many people live in Mississippi? 
How many states does the Mississippi run through? 

City 
State 

Is New York or London bigger? 
What is the capital of New York ? 
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Algorithm 1 SpatialNLI 
 

 

1: function SpatialNLI(q, D, E) 
2: P , V = SpatialMapper(D, q, E); 
3: q,, s2p =SpatialInjection(q, V , P ); 
4: l , = Seq2seq(q,); 

5: l = Recover(l ,, s2p); 

6: Return l ; 
 

 

1. Spatial Semantics Detection. Having access to GeoSpatial 
databases, we detect potential keywords or data elements us- 
ing 1) string match, 2) edit distance, and 3) cosine distance in 
semantic embedding space (e.g., Glove). In the aforementioned 
question, “Mississippi” can be detected by comparing against 
the data in the databases using string match, “river” can be de- 
tected by edit distance since “rivers” is in the table. We will detail 
semantic distance measurement later in Section 4.1. 

2. Spatial Comprehension Model. For ambiguous spatial phrases, 
we propose a spatial comprehension model to resolve the ambigu- 
ity. As we mentioned in Section 3, “Mississippi” is an ambiguous 
POI, and it will be identified as a river type using our spatial 
comprehension model. 

3. Spatial Semantics Injection. With identified keyword “river” 
and data element “Mississippi” (river name), we inject such infor- 
mation into the question by inserting pre-defined symbols “How 

many (k0) rivers (eok) does (k1) stateid (eok) (v0) Mississippi 

eov have 
Seq2seq Translation. We then feed the modified question to 
a seq2seq translation model. In the previous example, the pre- 
dicted output sequence is “answer(A, count(B, ( k0 (B), 

const(C, k1 ( v0 )), loc(B,C)), A))”. 
Query Recovery. The generated sequence of the seq2seq model 
is then recovered to an executable query. Following the previous 
example, we have “answer(A, count(B,(river(B), const(C, 

stateid(Mississippi)), loc(B,C)), A))”. 

 
4.1 Spatial Semantics Detection 

Even though our major contribution is spatial comprehension, we 
formally define our strategy to detect keywords and data elements 
mentioned in the question (denotated as SpatialMapper ) to keep 
our work self-contained. 

P, V = SpatialMapper(D, q, E) 

The inputs are the GeoSpatial database D, a natural language 
question q, and an embedding function E (e.g., Glove). E will change 
a word to a high-dimensional vector, which represents its loca- 
tion in the embedding space. We collect the table names, column 
names, and column values from D, thus D refers to a collection of 
entities in our spatial mapper. The table names (e.g., river) and 

column names (e.g., river length) in D are potential keywords 
of executable queries (e.g., Lambda expression), and column val- 
ues (e.g., Mississippi) are potentially data elements that might be 
mentioned in executable queries. The detail of the algorithm is 
presented in Algorithm 2, in the aforementioned example, P = 

rivers, river , Mississippi, Mississippi  , since “Mississippi” is de- 
tected by exact string match, and “rivers” (in q) and “river” (in D) 

has a small edit distance. We define semantic distance measurement 

 
 

Algorithm 2 Spatial Semantics Mapper 
 

 

1: function SpatialMapper(D, q, E) 

2: P =   ;  1> Spatial semantics matching pairs. 
3: V =   ; 1> Spatial values with its semantic meaning. 
4: for k in K ..1 do 1> Iterating from K-gram to 1-gram 
5:  for all pq k-gram of q do 
6: for all c D do 

7:  if pq == c or semantic_distance pq , c < τsem 

or edit_distance(pq , c) < τed then 1> τed is the threshold for 
edit distance. τsem is the threshold for semantic distance. 

8: P .add( pq , c ); 
9: if c is a column value then 

10: for all table tb that has c do 

11: pq .types.add(tb) 

12: V .add(pq ) 

13: Return P , V ; 
 

 

as 

semantic_distance a, b = 1 
 E(a)· E(b) 

 

||E(a)||2  ||E(b)||2 

The semantic distance is also the spatial distance in the embedding 
space. If any operand is a phrase which comprises multiple tokens, 

for example, A is a list of tokens, we define E A = avga A E a . 
Taking question “Where is the lowest spot in Iowa?” as an example, 
its corresponding logic form is answer(A,lowest(A,(place(A), 

loc(A,B),const(B,stateid(Iowa)))), “spot” in the NL question 
is matched to keyword “place” since semantic_distance place, spot 
< 0.368, which is relatively small. 

We care about the spatial phrases that have semantic ambigui- 
ties (e.g., Mississippi). An intuitive solution is to use pre-collected 
human knowledge. However, to devise an automatic and intelligent 
approach, we propose using Geospatial database; for example, we 
discover that “Mississippi” is an ambiguous value by simply search- 
ing for this phrase in the database, and it appears in two tables River 
and State. In Algorithm 2 Line 9-12, if a phrase appears in multiple 
tables, we collect all the ambiguous information in V . For exam- 
ple, in V , “Mississippi”.types = [River, State], “New York”.types = 
[City, State] and “Alabama”.types = [State]. In other words, for a 
spatial phrase that is a value, we collect the tables it belongs to and 
stored in V . For most of the Geospatial databases, the table names 
are able to represent the meaning of the value. In the question 
“How many rivers does Mississippi have?”, V = [“Mississippi”] and 
“Mississippi”.types = [River, State]. 

It is worth noticing, we use minimum human knowledge to cover 
phrase mapping that is not covered by Glove. For example, in a 

question where “population per km2” refers to “population density”, 
such mapping is not easy to be covered by Glove or a deep model, 
thus human knowledge is necessary. However, such cases are rare 
in practice, and we only require minimum human knowledge. 

 

4.2 Spatial Comprehension 

A critical challenge in understanding the spatial question is the 
meaning of an ambiguous phrase, such as a point of interest (POI). 
For example in Figure 3, where “Mississippi’ could be a river or 
a state, we have to differentiate its meaning by the context and 
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Question POI Type Label 

How many states does the (@) Mississippi (@) run through? 
How many states does the (@) Mississippi (@) run through? State False 

How many states does the (@) Mississippi (@) run through? 
City False 
River True 

     )
d = LSTM [h , 

β  ], di  i−1 

 i−1   

[ ] 

[ ] 

[ ] 

αij h
j
 

 

True/False 

 

 

 

 

 
 

 

LSTM 

 

Word 

Embedding 

 

How many states does the <@>   Mississippi    <@> run through ? River 

 
Natural Language Question POI Type 

Figure 5: Spatial Comprehension Model 

understanding the semantic meaning of the question. In the ques- 
tion “How many people live in Mississippi ?”, we would interpret 
“Mississippi” as a state name, and in the question “How many states 

We build the same structure for both q and t . We denote the 
hidden states of the top stacked LSTM layers as 
Hq

 = LSTM(ϕ(q)) = (hq, ··· , hq

 ) Ht

 = LSTM(ϕ(t )) = (ht

 , ··· , ht

 ) 
does the Mississippi run through ?”, people would understand “Mis- 1 n 1 m 

sissippi” is referring to a river. 
With large training corps, a deep model might be able to cap- 

ture that information; however, existing spatial question answer 
data sets are inadequate and sparse due to the difficulty in collect- 
ing ground truth. To address this challenge, we propose a principle 

Inspired by natural language understanding proposed in [10, 17], 
we build an extra LSTM layer on Hq with attention over Ht as the 
follows 

t 

i 

ei j = vT

 Tanh(W0H t

 + W1hq

 + W2di ) 

method to enable semantic understanding of spatial questions using 
sparse training data, which relieves the burden of collecting large 
training sets. By our definition, Spatial Comprehension is spatial se- 
mantic understanding using machine comprehension. Our strategy 

αi j = ei j / 
j, 

 n 
 

 
 

j 

eij
, 

 
q 

keywords in the question first, then use a seq2seq machine com- 
prehension model to learn the semantic meaning of the question 
(context) without the burden of extracting the spatial relations. 

Model Structure Our spatial comprehension model is designed 
to understand the “meaning” (e.g., type of POI) of an ambiguous 
spatial phrase mentioned in the question based on its context. 

Inspired by the machine comprehension model using an atten- 
tion flow [17], we propose our spatial comprehension model com- 
posed of two stacked LSTM layers on each input with another 
shared attentive LSTM layer. The design of the bi-directional at- 
tentive workflow [17] is to answer a question given a premise – 
i.e., locate the sentences in the premise that is most relevant to the 
answer of the question. The task of the machine comprehension 
is different from ours; however, they do share the same strategy: 
understanding one of them (question and premise) semantically 
based on the context of the other. So we use LSTM to pre-process 
our NL question and the possible meaning of the ambiguous spa- 
tial phrase separately, and conduct an attentive workflow over the 
hidden states of the question (shown in Figure 5). Also inspired 
by [9], we enclose the ambiguous spatial phrase in special sym- 
bols to indicate it has more influence than the other tokens in the 
question. 

We denote a question as q = q1, ..., qn and the meaning of the 
ambiguous spatial phrase (mentioned in the question), such as a POI 
type, as t = t1, ..., tm , both of which are fed to a word embedding 
layer ϕ (initialized with GloVe [47]). On top of that, we use an LSTM 
layer to capture the hidden states of each time step i. 

d0 = 0. W0, W1, W2, v, and U are model parameters. Here i is the 
time step while enumerating t , and j enumerates each token in 
q. The final output dm is fed to a multi-layer perceptron (MLP) 
and then resized to a binary prediction. If t involves a sequence of 
tokens, we use bi-directional attentive flow as in [17] and compute 

bi-directional output di  = 
→
d
−
i , d
←−
i  . 

With the attentive flow on type t while reading the question, 
our spatial comprehension model is able to make the prediction 
based on the memory of the context. However, with the observation 
that, given a question “How many rivers in Mississippi?” and a POI 
type “river”, the machine comprehension model is highly likely 
to produce a positive prediction (false prediction), since “river” is 
mentioned in the question by “rivers”, but the model would fail to 
capture our intention to categorize the type of “Mississippi”. In order 
to feed our intention into the model, we insert special symbols (e.g., 

(@)) to enclose the POI mentioned in the question. 

 
 

Figure 6: Spatial Comprehension Model Training Samples 

The corresponding model structure is shown in Figure 5. For the 
question shown in Figure 5, to address the ambiguity of “Mississippi”, 
we feed three records shown in Figure 6. Our spatial comprehension 
function is defined as follows: 

SpatialComprehension(q, p, t ) 

j =1 

βi = 

MLP 

Attention    
LSTM 

h 
q 

1 h 
q 

2 h 
q q q q q q q 

3 h 4 h 5 h 6 h 7 h 8 h 9 h 
q 

10 h 
q t 

11 h 1 

is to exploit pre-trained Glove embedding to understand spatial 
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where q is the question, p is the ambiguous phrase, and t is the 
meaning of the phrase. If SpatialComprehension returns true, the 
semantic meaning of p is identified as t . 

 
4.3 Spatial Semantics Injection 

Now we are able to understand the context and recognize the mean- 
ing of each ambiguous spatial phrase correctly through the spatial 
comprehension model. The question is how to inject the external 
information to the main seq2seq model. We propose an injection 
strategy shown in Figure 7. The general idea is to insert symbols 
into the question at the locations before and after every spatial 
phrase to emphasize its semantics, then feed the inserted question 

 
 

Algorithm 3 Spatial Semantics Injection 
 

 

1:    function SpatialInjection(q, V , P ) 
2: s2p =   ; 1> Symbol phrase mapping. 

3: indexv = 0; 1> Value Symbol index. 
4: indexk = 0; 1> Keyword symbol index. 
5: q, = q; 

6: for all  pq , c P do 1> Iterate each matched pairs. 
7: if c is a keyword then 

8: sym = ‘k’+indexk ; 
9: else if c is a value then 

10: sym = ‘v’+indexv ; 
11: Search for c.types from V ; 

into a seq2seq model. 
12: 

phrase 
if |c.types|>1 then 1> c is an ambiguous spatial 

The first step is to search for components in the question that 
need a spatial semantics injection–i.e., ambiguous spatial seman- 
tics. For example, in the question “What is the population of San 
Antonio?”, we do not feed extra information for every word, instead, 
we only focus on spatial information or tokens that could be shown 
in the corresponding logic form (e.g., keywords). In other words, 
we only care about the tokens in the NL question that contribute 
to its logic form. The tokens such as question word “what” and 
stop words “is” “the” “of” do not contain the question’s information, 
thus are not annotated. 

For the ambiguity of spatial phrases, we believe it is necessary 
to feed the meaning of the phrase in the question. For example, we 
feed the Type of POI in the question to address the POI ambiguity. 
We present our Information Injection Format With Type Feeding in 
Figure 7. We will validate in the experiment section that our type 
feeding improves the accuracy dramatically. 

We propose a general purpose automatic injection algorithm 
shown in Algorithm 3. For the input natural language question 
q, after we recognize the meaning (e.g., type) ti of each phrase pi 

(e.g., POI) correctly through spatial comprehension model, for each 
pair of <pi , ti >   < P, T  >, we will insert the type ti  before the 
pi in the input question q. Also, for pi P , we store the symbol 
sym of each phrase pi in s2p, which will be used later in the query 
recovery. For example, as Figure 7 shows, the symbol for the phrase 
“san antonio” is v0 . Then the < v0 , san antonio> is stored in s2p 
which will later be used for the recovery of v0 in the output logic 
form query. 

Figure 7 presents our detailed injection format. For a phrase or 
token in the question that is identified as a keyword (e.g., popu- 
lation), that phrase or token will be enclosed with ki and eok . 
For values such as “San Antonio” that appear in the question, we 
enclose them with vi and eov where eok represents “end of 

keyword” and eov represents “end of value”. Note that we use 
the spatial databases and the grammar of executable queries to 
identify keywords and values without referring to the ground truth. 
Here i indicates it is the i-th spatial semantics that is injected. For a 
value v , if ambiguity exists, we predict its spatial meaning using 
spatial comprehension model and feed the spatial semantics into 
the question using the symbol k . 

As shown in Figure 7, since the output of the seq2seq model in- 
volves symbols that are inserted into the question which need to be 
transformed to its original literal form, we propose a query recovery 
model. The detailed algorithm will be presented in Section 5.2. 

13: T = p.types 
14: for all t T do 

15: if SpatialComprehension q, p, t is True 
then 

16: c.type = t ; 

17:  else if |c.types|==1 then 1> c is not an ambiguous 
spatial phrase 

18: c.type = c.types[0]; 

19: Insert c.type to q, (using symbol ‘k’+indexk ) 

20: indexk = indexk + 1; 
21: indexv  = indexv + 1; 
22: s2p.add( sym, c ); 

23: Insert sym to q,; 

24: Return q,, s2p; 
 

 

Following the aforementioned example in spatial comprehension 
q = “How many states does the Mississippi run though?”, if we do 
not address the ambiguity problem and rely on the seq2seq model 
to infer the spatial meaning of “Mississippi”, q, will be “How many 
k0 states eok does the v0 Mississippi eov run through?”. After 
translated by the seq2seq model, the recovered query is likely to be 

 

Question q What is the population of San Antonio ? 

Keyword 
Detection 

What is the population of San Antonio ? 

Symbol q, 

Injection 
what is the (k0) population (eok) of 
(k1) cityid (eok) (v0) San Antonio (eov) ? 

Seq2seq Model 

Output l , answer(A,(k0)(B,A),const(B,(k1)((v0)))) 

Recover l answer(A,population(B,A),const(B,cityid(San Antonio))) 
 

Figure 7: An example of Information Injection Format with 

Type Feeding 
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answer(A, count(B, (state(B), const(C,stateid(mississippi)), 

traverse(C,B)), A)) since “states” is mentioned in the question. 
Our model is fundamentally built upon a seq2seq translation model, 
where the context is transformed into a weighted sum of all the 
tokens, in which “states” will be embedded as part of the context, 
and the model is easy to be confused and outputs “Mississippi” as 
a state name. We will mention in Section 5.1 later that, since the 
output vocabulary size is much smaller than the input vocabulary 
size and most of the tokens in output appear in the input as well, 
we adopt Copying Mechanism [37], where the output token has 
a higher chance to be copied from the input sequence. Copying 
Mechanism makes the ambiguity harder to address, such as in 
the aforementioned question, “river” does not appear in the input 
question, the model has a higher probability of copying “state” from 
the input sequence. Thus we need to insert ‘riverid , before the 
word “Mississippi” in the input sentence to help the model make 
the translation. The final input will be “How many (k0) states (eok) 

does the (k1) riverid (eok) (v0) Mississippi (eov) run through?”. 

5 TRANSLATE & RECOVER 

5.1 Translation Model 

Since seq2seq models have been widely adopted in translation tasks, 
and our NLI task is simpler than a translation task due to small 
vocabulary size. We believe a seq2seq model is able to capture the 
logic and the spatial structure of the question as long as it is able 
to understand the entities that are mentioned in the question. So 
we adopt a seq2seq model with copying mechanism following [9]. 

l , = seq2seq(q,) 

5.2 Query Recovery Model 

We detail our strategy of query recovery through Algorithm 4, 
whose inputs are l ,, the output of translation model, and s2p, the 
symbol-phrase pairs detected by spatial semantics injection model 
(Algorithm 3). Just as Figure 7 shows, the output l , of the seq2seq 
translation model is a sequence of the symbol, for example, k0 , 
k1 and v0 here. Then we need to recover the output logic form 
query. For each pair sym, c s2p, every symbol sym l , needs to 
be replaced by the original phrase c. After replacing all symbols in 
l ,, we finally get the output logic form. In Figure 7, for output l ,, 
we replace the symbols k0 , k1 and v0 by their corresponding 
phrase “population”,“cityid” and “San Antonio” based on the pairs in 
s2p. After recovery, we finally get the right output logic form. 

6 DATA AUGMENTATION BY SHUFFLING 

Just as mentioned before, one of the Challenges right now is the lack 
of training set. The sparsity of training data causes two problems: 
1). The semantic structures of questions are sparse; 2). The data 
entities mentioned in the questions are inadequate. Problem 2 can 

 
 

Algorithm 4 Symbol Recovery  

1: function Recover(l ,, s2p) 

2: l = l ,; 
3: for all  sym, c s2p do 

4: l .replace(sym,c); 

5: Return l ; 
 

 

 
be simply addressed by replacing data entities. However, addressing 
problem 1 is non-trivial. So we propose to shuffle the prepositional 
phrases to augment the semantic structures of the training set. 

We propose our unique augmentation strategy as follows: If 
a question has a prepositional phrase (PP as a POS tag), and the 

question can be decomposed as q = qprefix qPP or q = qPP qsuffix, 

where qprefix are the words placed before the prepositional phrase 

and qsuffix are the words placed after the prepositional phrase, we 
will shuffle the position of the prepositional phrase. Note that we 
only consider the questions that start with a prepositional phrase 
or end with a prepositional phrase. 

Consider the example in Figure 8, for the query "Which states 
does the Mississippi river run through", the format of the question is 

q = qprefix qPP, and qprefix=“Which states does the Mississippi river 

run” and qPP 
=“through”. By exchanging qprefix and qPP, we can get 

a new sentence “Through which states does the Mississippi river run” 
and the meaning of the new query remains the same. Also, for the 

other question “In what state is Mount Mckinley ”, q = qPP qsuffix, 

qPP=“In what state”, and qsuffix=“is Mount Mckinley”. we can shuffle 
the position of the prepositional phrase to get a new sentence. 

 

Which states does the Mississippi river run through ? 
q 

qprefix qPP 

Augment 
Through which states does the Mississippi river run ? 

qPP qprefix 

q 
In what state is Mount Mckinley ? 

qPP qsuffix 

Augment 
Mount Mckinley is in what state ? 

qsuffix qPP 

Figure 8: Two examples of data augmentation 

 

7 EXPERIMENTAL VALIDATION 

7.1 Experimental Settings 

Configuration All our experiments are conducted on a machine 
equipped with 2 Intel CPU E5-2670 v3 running at 2.3GHz with 
256GB of RAM and 2 NVIDIA Tesla K80 GPUs. 
Dataset To evaluate the effectiveness of our system, we performed 
an experimental evaluation on dataset Geoquery and Restaurants. 1 

Geoquery [27] is a collection of 880 natural language ques- 
tions and corresponding executable database query pairs 
about U.S. geography. The answers in this dataset are defined 
in λ-calculus logical form. We follow the standard training- 
test split to that of [19], of which the dataset was divided into 
600 training examples and 280 test examples respectively. 
As [37], [26] and [48], we determine its Acc based on the 
denotation match. 
Restaurant (Rest) [6, 28] is a dataset with 251 question-answer 
pairs about restaurants, their food types, and locations. The 
questions are all human natural language and the answers 
are in λ-calculus logical form. 

7.2 Data Augmentation 

We not only propose our new data augmentation strategy by shuf- 
fling in Section 6, but also adopt a data augmentation strategy that 
is based on the recombination [37] of a sentence itself. 

 
 

1 Our code is publicly available at https://github.com/VV123/SpatialNLI 

• 

• 
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Type 1 
Original 

Augment 

What is the highest point in Florida ? 
What is the highest point in Rhode Island ? 

 

 
Type 2 

Original 

Augment 

What is the highest point in Florida ? 
what state has the smallest population density ? 
What is the highest point in state that has the smallest population density 

 
? 

 
Type 3 

Original 

Augment 

what state has the largest population ? 
what state has no rivers ? 

what state has the largest population and has no rivers ? 

 

Figure 9: Three examples of data augmentation 

For example, as in Figure 9, for the query “What is the highest 
point in Florida?”, we can simply identify that the word “Florida” 
is the name of a state based on the spatial database. Given this 
example, we change it to new questions, in which the word “Florida” 
is replaced by the name of other states in the database. Here, the 
word “Florida” is replaced by “Rhode Island”. For the second example 
in Figure 9, for the query “What is the highest point in Florida?” and 
the query “What state has the smallest population density?”, we can 
infer that the entire expression of the second sentence could map to 
the word “Florida” in the first query since this query is asking about 
one state. Then we can generate one new question by replacing 
the word “Florida” with the second sentence. For the third example, 
the two queries, “What state has the largest population?” and “What 
state has no rivers?”, are both asking about one state, so we combine 
them together to generate a new query. 

 
7.3 Spatial Comprehension Model 

We preprocess the dataset for spatial comprehension model so that 
each record contains (1) A question with each POI phrase enclosed 
with symbols (e.g., @ ) indicating the attentive position; (2) A POI 
type (e.g., River, State, and City.). 

For a question “How many states does the Mississippi run through?” 
with one ambiguous POI “Mississippi”, we have the three records 
as shown in Figure 6. To balance the positive and negative samples 
in the training set, we replicate positive samples. For samples in 
Figure 6, we replicate positive samples by 2 times. 

We run experiments with 200 hidden units and 300-dimensional 
pre-trained Glove embedding. We minimize the cross entropy using 
Adam Optimization Algorithm. We evaluated the performance of 
our spatial comprehension model in Table 1. Accrcd represents 
the percentage of correctly predicted records. Accqu represents 
the percentage of correctly predicted questions where all POIs are 
recognized correctly. For the example in Figure 6, the total number 
of samples for Accrcd is 3, and the total number of samples for Accqu 

is 1. Even the training objective function is to optimize Accrcd . In 
fact Accqu is what we are trying to optimize, and we prove that 
Accrcd and Accqu are optimized simultaneously. 

We evaluate on Geoquery and Rest datasets, respectively (shown 
in Table 1). Test Accqu is 98.1% for Geoquery, and 100.0% for Restau- 
rant data, respectively. All the Accqu is not less than Accrcd . In other 
words, our spatial comprehension model is able to recognize the 
spatial semantics with high confidence. 

 
 

 

Dataset Train Test 

Geoquery 
Accrcd 

Accqu 

97.4% 

98.3% 

91.9% 

98.1% 

Rest(aurant) 
Accrcd 

Accqu 

100.0% 

100.0% 

100.0% 

100.0% 

Table 1: Spatial Comprehension Model evaluation. 

7.4 Evaluation 

For the encoder and the decoder of our seq2seq model, we use one 
layer of Gated Recurrent Unit (GRU) with a hidden size of 800 and 
800 2, respectively. The input and output of both encoder and 
decoder share the same embedding layer, which is initialized with 
300-dimensional pre-trained Glove embedding. Special symbols 
inserted (e.g., k1 and v1) are treated as special tokens; they are 

represented by the concatenation of an embedding of the symbol 
type (e.g., k and v) and an index, where the embedding of the symbol 
type and the index are randomly initialized with 150-dimension (the 
concatenation has a dimension of 300). The other unknown token 
is initialized with a 300-dimension random vector. For training, we 

use gradient clipping with a threshold 5.0, and for inference, we 
use beam search with width 5. 

Table 2 presents our experiment results for (a) Geoquery dataset 
and (b) Rest(aurant) dataset. For Geoquery, compared with the pre- 
vious models, our method outperforms the state-of-the-art. The 
conventional methods are overdependent on predefined templates 
and manually designed features, which have lower accuracy on 
the test set. For neural network-based methods such as ASN [35] 
and TRANX [16], they convert word space to action space, which 
inevitably introduces transformation error. SQL2TREE [36] and 
JL16 [37] use seq2seq model as well, but fail to address spatial 
semantics ambiguity. For Rest, the state-of-the-art achieves 100% 

 

Dataset Geoquery 

 

 
Conventional 

ZC05 [19] 79.3% 

ZC07 [20] 86.1% 

UBL [21] 87.9% 

DCS+L [26] 87.9% 

FUBL [22] 88.6% 

ZH15 [25] 88.9% 

KCAZ13 [23] 89.0% 

 
Deep Model 

ASN [35] 87.1% 

SQL2TREE [36] 87.1% 

TRANX [16] 88.2% 

JL16 [37] 89.3% 

 

 
Ours 

SpatialNLI 90.4% 

– Copy Mechanism 88.9 % 

– Spatial Comprehension    86.4 % 

– Type Feeding 85.0 % 

– Data Augmentation 83.2 % 

– Information Injection 82.9 % 

(a) 
 

Dataset Restaurant 

Conventional 
PEK03 [6] 97.0% 

TM00 [28] 99.6% 

Deep Model FKZ18 [34] 100.0% 

 
 

Ours 

SpatialNLI 100.0% 

– Spatial Comprehension    96.1 % 

– Copy Mechanism 94.1 % 

– Data Augmentation 92.2 % 

– Type Feeding 70.6 % 

– Information Injection 60.8 % 

(b) 

Table 2: “–” means the removal of each component. The ac- 

curacy is measured as denotation match [37] on test set. 
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 q How many states does the Mississippi run through ? 

 
+SC 

q, 

Infer 
Recover 

(k0) How many (eok) (k1) states (eok) does the (k2) riverid (eok) (v0) Mississippi (eov) run (k3) through (eok) ? 

answer(A,(k0)(B,((k1)(B),const(C,(k2)((v0))),(k3)(C,B)),A)) 

answer(A,count(B,(state(B),const(C,riverid(Mississippi)),traverse(C,B)),A)) 

-SC 

q, 

Infer 

Recover 

(k0) How many (eok) (k1) states (eok) does the (k2) stateid (eok) (v0) mississippi (eov) run (k3) through (eok) ? 

answer(A,(k0)(B,((k1)(B),const(C,(k2)((v0))),(k3)(C,B)),A)) 

answer(A,count(B,(state(B),const (C,stateid(Mississippi)),traverse(C,B)),A)) 

Figure 10: Spatial Comprehension Case Study. *+SC means using Spatial Comprehension, -SC means without. 

accuracy, which states the Rest dataset is an easier task than Geo- 
query. Our model exhibits excellent downward compatibility by 
achieving 100% accuracy on Rest dataset. 

To validate the performance of our system, several ablation ex- 
periments were conducted by the removal of (1) Copy Mechanism, 
(2) Spatial Comprehension Model, (3) Data Augmentation, (4) Type 

Feeding, and (5) Information Injection, respectively. By the removal 
of the spatial comprehension model, we random guess the meaning 
(type) of ambiguous POI and inject it to the question. For removing 
information injection, we feed the original content to the model 
without inserting any symbols. By the removal of type feeding, 
we conduct symbol injection but omit to inject the extra spatial 
information (e.g., k1 cityid eok in Figure 11). 

First, we measure the contribution of the spatial comprehension 
mechanism to the overall performance of the model. We train and 
evaluate two models: one with the spatial comprehension model 
and one without. Training is done with data augmentation and in- 
formation injection. In Table 2, for Geoquery and Restaurant, with 
the removal of spatial comprehension model, the denotation match 

accuracy drops 4% for Geo and drops 3.9% for Rest. Since only 

19.3% of the test set for Geoquery and 4% of the test set for Restau- 
rant has POI ambiguity problem, it is obvious that our machine 
comprehension model is able to resolve the majority of them. 

As shown in Figure 10, by comparing against the spatial database, 
“Mississippi” appears in two tables: River table and State table. With- 
out spatial comprehension, if we are using random guess, “river” 
has only 50% chance to be correctly categorized. The ‘+comprehen- 
sion’ in the figure means we use the spatial comprehension model 
and ‘-comprehension’ is for the result without a right understand- 
ing of “Mississippi”. Without the spatial comprehension model, it 
is possible for the system to recognize the “Mississippi” as a state 
name. As the figure shows, once “Mississippi” is recognized as a 
state, it will insert “stateid” in the input question and finally get a 
wrong result after recovery. One interesting thing is that the infer 
for ‘+comprehension’ and ‘-comprehension’ are the same, both 
correct. This is because, for seq2seq model, it just outputs the result 
with ki , not the specific word. Here the “riverid” and “stateid” 
are both replaced by k2 . Thus we get the same infer result from 
seq2seq model. However, after recovery, the result without spatial 
comprehension model is wrong. 

Figure 11: A Case Study using Symbol Inject (Geoquery). * +/- 

SI means with/without Symbol Injection. 

As shown in Table 2, the information injection component im- 

proves test accuracy by 7.5% on Geoquery and 39.2% on Restaurant. 
When we stop injecting information into the natural language ques- 
tion, the seq2seq is not able to capture all the necessary information 
to infer correctly and suffers from a large accuracy decrease. A case 
study of our symbol injection strategy is shown in Figure 11, where 
a seq2seq model generates outputs token by token and a large 
number of entities involve a sequence of tokens. Without symbol 
injection, the seq2seq model has to infer “San Antonio” token by 
token using two steps. On the other hand, with symbol injection, 
the seq2seq model generates v0 as a representation of “San Antonio”, 
which only requires one step. Our symbol injection format is able 
to replace a name entity composed of a sequence of tokens to a 
single symbol, which prevents wrong name entity caused by a long 
sequential generation. 

We also jointly train both datasets in a shared model compared 
with separate training, shown in Table 3. Jointly training achieves 
an accuracy of 90.7%. Our experiment results show that a shared 
model performs better than two separate models. 

 

Training Geoquery Restaurant 
Separately 90.4% 100% 

Jointly 90.7% 100% 

Table 3: Evaluation of jointly training on denotation match. 

 
 

8 CONCLUSION 

In this work, we propose an NLIDB applied for the spatial domain to 
convert natural language queries to structured queries executable 
by database. The main contribution of our work is to recognize 
the meaning of the ambiguous spatial phrases based on contextual 
interpretation and capture the semantic structure of the question by 

Table 2 shows that by removing type feeding, the accuracies drop 
5.4% on Geoquery and 29.4% on Restaurant. The symbol injection the seq2seq model with injecting spatial information. Our extensive 

experimental analysis demonstrates the advantage of our approach 
significantly improves the accuracy of the Restaurant dataset since 
for most samples in the Restaurant dataset, one token in the input 
question always corresponds to multiple tokens/symbols in the 
output sequence, which relationships are hard for the seq2seq model 
to capture. 

over state-of-the-art methods. 
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-SI 
q What is the population of San Antonio ? 

Infer answer(A, population(B,A), const(B,cityid(San Jose))) 

 

+SI 

q What is the population of San Antonio ? 

q, what is the (k0) population (eok) of (k1) cityid (eok) 
(v0) San Antonio (eov) ? 

Infer answer(A, (k0)(B,A), const(B,(k1)((v0)))) 
Recover answer(A, population(B,A), const(B,cityid(San Antonio))) 
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