
Future Generation Computer Systems 105 (2020) 1002–1015

EDOM: Improving energy efficiency of database operations on
multicore servers

Yi Zhou a, Shubbhi Taneja a,∗, Xiao Qin a, Wei-Shinn Ku a, Jifu Zhang b
a Department of Computer Science and Software Engineering, Samuel Ginn College of Engineering, Auburn University, AL 36849-5347, United States
b School of Computer Science and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China

a r t i c l e i n f o

Article history:

Received 16 May 2016

Received in revised form

3 October 2016

Accepted 24 February 2017

Available online 6 March 2017

Keywords:

Energy efficiency

Database operations

Multicore processors

Benchmarks

Data centers

Database applications

a b s t r a c t

In this paper, we propose a toolkit called EDOM facilitating the evaluation and optimization of energy-
efficient multicore-based database systems. The two core components in EDOM are a benchmarking
toolkit and a multicore manager to improve energy efficiency of database systems running on multicore
servers. We start this study by analyzing the energy efficiency of two popular database operations (i.e.,
cross join and outer join) processed on multicore processors. We describe the criteria and challenges of
building an energy efficiency benchmark for databases on multicore servers. We build a benchmarking
toolkit, which is comprised a configuration module, a test driver, and a power monitor. We develop a
multicore manager to optimize the number of cores, thereby making good tradeoff between performance

and energy efficiency in multicore database servers. At the heart of the multicore manager is a memory
usage model that estimates memory utilization from queries and database characteristics. An appropriate
number of cores is determined using the estimated memory usage to avert unnecessary memory
swapping. We make use of the proposed benchmark toolkit to quantitatively evaluate the performance
of our novel multicore manager. Our benchmarking tool of EDOM shows that the multicore and CPU
utilizations have significant impacts on energy efficiency. More importantly, extensive experimental
results show that our multicore manager in EDOM provides a simple yet powerful solution for improving
energy efficiency of database applications running on multicore servers.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Because multicore processors have been widely utilized by

various database applications (see, for example, [1]), evaluating

energy efficiency of database applications running on multicore

systems becomes indispensable and strategic components of

building green data centers.

High energy efficiency is of importance for reducing operating

cost of data centers, where database applications are running

on multicore servers [2]. Traditional energy saving techniques

for database systems are inadequate for multicore computing.

To address this problem, we propose in this study a multicore

manager called EDOM—a simple yet effective way of improving

energy efficiency of database operations on multicore servers.

∗ Corresponding author.

E-mail addresses: yzz0074@auburn.edu (Y. Zhou), shubbhi@auburn.edu

(S. Taneja), xqin@auburn.edu (X. Qin), weishinn@auburn.edu (W.-S. Ku),

zjf@tyust.edu.cn (J. Zhang).

http://dx.doi.org/10.1016/j.future.2017.02.043

0167-739X/© 2017 Elsevier B.V. All rights reserved.

To investigate energy efficiency of multicore database systems,

we build an energy-efficiency benchmarking toolkit for modern

database systems. We show that the toolkit can be applied to

evaluate the energy efficiency of our proposed EDOM on multicore

servers.

The following four motivations make energy-efficiency bench-

marking tools and multicore managers for database operations de-

sirable and achievable.

(1) Rising energy costs in large data centers are driving an agenda

for energy-efficient database systems.

(2) The lack of study on the energy efficiency of database

operations (e.g., cross and outer joins) running on multicore

servers.

(3) The pressing need of benchmarking tools for energy-efficient

database systems.

(4) The growing importance of improving energy efficiency of

database systems through multicore management.

Motivation 1. Energy cost is one of the significant components

of operational costs in data center environments [3]. Evidence

shows that a data center containing 1000 racks consumes 10 MW

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

http://dx.doi.org/10.1016/j.future.2017.02.043
mailto:yzz0074@auburn.edu
mailto:shubbhi@auburn.edu
mailto:xqin@auburn.edu
mailto:weishinn@auburn.edu
mailto:zjf@tyust.edu.cn
http://dx.doi.org/10.1016/j.future.2017.02.043
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs

Y. Zhou et al. / Future Generation Computer Systems 105 (2020) 1002–1015 1003

total power per year [4]. A wide variety of techniques were

proposed to build high performance and energy-efficient clusters

in data centers, because it is greatly desirable to facilitate energy-

efficient and environmental friendly clusters [5]. Unfortunately,

little attention has been paid to energy efficiency improvement of

database applications, the popularity of which is rapidly growing.

The lack of energy-efficient database systems motivates us to

investigate energy efficiency of modern database systems.

Motivation 2. Computer architecture enters a new era of multi-

core structures, which become a standard computing platform for a

wide range of application domains including database systems [6].

A key concept of multicore computing lies in multi-threading,

which concurrently executes multiple threads on multiple cores.

Although growing attention has been paid to the improvement of

database energy efficiency [7], little attention has been paid to the

energy efficiency analysis of database operations on multicore pro-

cessors widely deployed in modern servers. Hence, we are moti-

vated to kick off this research by focusing on the analysis of energy

efficiency of database operations running on multicore servers.

Motivation 3. To optimize energy efficiency of database

systems, one has to rely on benchmarks to assess the effectiveness

of energy-saving schemes deployed in the systems. In a handful

of prior studies, benchmarks have been developed for energy

efficiency in data centers. For example, JouleSort is used to evaluate

the energy efficiency of clusters [8]. The existing benchmarks

were focused on energy efficiency of cluster computing systems

rather than database systems. This problem inspires us to develop

an energy-efficient benchmarking tool for database operations

processed in multicore systems.

Motivation 4. The hardware advancement of multicore pro-

cessors brings new challenges to the design of database systems,

because a main performance bottleneck shifts from slow I/O ac-

cess to main memory access [9]. This challenge becomes more pro-

nounced for data-intensive applications like database processing.

This challenge motivates us to investigate how to choose an appro-

priate number of cores to improve energy efficiency of multicore

database systems by averting the memory bottleneck problem.

Contributions. We make the following six contributions in this

study.

(1) The criteria and challenges of developing energy efficiency

benchmarks for database operations.

(2) A toolkit called EDOM facilitating the evaluation and optimiza-

tion of energy-efficient multicore-based database systems.

(3) A benchmarking tool in EDOM to evaluate energy-efficient

database systems.

(4) An analysis of energy-efficiency impacts of multicore proces-

sors on database operations.

(5) An energy-aware multicore manager—a core component in
EDOM.

(6) The evaluation of EDOM in terms of energy consumption and

performance.

We investigate the criteria as well as challenges of developing

energy efficiency benchmarks for database operations. Such

criteria and challenges provide a general guideline for the design

of our energy-efficiency benchmarking tool.

We develop a benchmarking toolkit to evaluate energy

efficiency of database systems. The toolkit is comprised of three

modules, including a workload generator, a test driver, and a power

monitor. The workload generator facilitates the configurations

of the PostgreSQL database system. We leverage this generator

to set up tables and populate data records into the database.

The test driver automatically issues operations to the database

system in accordance to access patterns created by the workload

generator. The power monitor keeps track of energy efficiency

and performance of the multicore database system processing the

operations driven by the test driver.

We evaluate energy-efficiency impacts of multicore processors

on database operations. In particular, we apply the benchmarking

tool to empirically study energy consumption of cross and

outer joins running on multi-core processors. Our benchmarking

experiments show that the multicore and CPU utilizations have

significant impacts on energy efficiency. For example, we show

that multicore processors are more energy efficient than the non-

multicore counterparts; the cross and outer join operations have

remarkable difference in energy consumption; and the indexing

technique improves energy efficiency of the database system.

To optimize the number of cores, we develop a multicore

manager – EDOM – that makes a good tradeoff between

energy efficiency and performance in database systems. The

key component of EDOM is a memory usage model estimating

memory utilization from queries and database characteristics. An

appropriate number of cores is determined using the estimated

memory usage to alleviate the memory swapping problem, which

is a main driver for high energy cost in multicore database systems.

We make use of the benchmarking toolkit to evaluate EDOM

in terms of energy consumption and performance. Our extensive

experiments show that EDOM provides a simple yet powerful

solution for improving energy efficiency of database applications

running on multicore servers.

Paper organization. The rest of the paper is organized as

follows. Section 2 summarizes the related work. In Section 3,

the criteria and challenges in the development of our energy

efficiency benchmark are discussed. The design of energy-

efficiency benchmark as well as implementation issues are stated

in Section 4. In Section 5, the multicore manager is proposed

and the algorithm of the multicore manager is stated. Section 6

provides an investigation in operations regarding energy and

performance efficiency, and an in depth analysis is presented

after that. Finally, Section 7 shows conclusions including the

contributions of this research along with our future research

directions.

2. Related work

Energy-efficient clusters are becoming increasingly popular

in large-scale data centers [10] to reduce high operational cost

caused by huge energy consumption. Recent studies proposed a

wide range of energy-saving techniques in the realm of cluster

computing. For example, Zong et al. proposed two energy-efficient

duplication-based scheduling algorithms called EAD and PEBD

to achieve the goal of optimizing both performance and energy

efficiency in clusters [5]. Rather than investigating energy-efficient

clusters, in this study we focus on energy-efficient database

management systems.

There is a demanding need to develop energy-efficient database

management systems (DBMS). Evidence shows that a variety

of factors affect the energy-efficiency of DMBS. For example,

Tsirogiannis et al. analyzed the energy efficiency of processors

in a database server, discovering that energy consumed by

CPUs does not vary linearly with CPU utilization under database

workload [11]. Lang et al. analyzed a number of important

parameters related to the design of energy-efficient DBMS [7]. A

framework built by Lang et al. optimizes queries by considering

both performance and energy consumption as optimization

criteria [7].

Increasing attention has been paid to making good tradeoffs

between energy efficiency and performance in the field of DBMS.

Although energy saving and high performance are two conflicting

design goals, prior findings indicate that a few energy-efficient

configurations and schemes may deliver good performance

and achieve high energy efficiency [11]. Schall and Härder

developed a distributed DBMS – WattDB – to make dynamical

1004 Y. Zhou et al. / Future Generation Computer Systems 105 (2020) 1002–1015

configurations to satisfy performance demands while conserving

energy consumption on clusters [12]. Xu et al. implemented

PET—an energy-aware query optimization framework that is an

extension of the PostgreSQL kernel [13]. PET makes use of its

power cost estimation module and plan evaluation model to

allow database system to make good tradeoffs between energy

efficiency and performance. Our EDOM is distinctly different from

the aforementioned approach in that EDOM aims to conserve

energy cost of DBMS running on multicore servers while achieving

high query performance.

Recently, energy consumption models have been developed for

computing systems [14]. A few models were focused on projecting

energy consumption of disk systems using CPU demands. The

energy consumption models for storage systems are inadequate for

DBMS. Other intriguing high-level energy models were proposed

for DBMS [15]. For instance, by focusing on the energy cost

estimation of query plans, Xu and Tu build a series of models for

energy estimation of individual relational operators based on their

resource consumption patterns [16]. Different from the existing

energy consumption models, our models built in EDOM pay

attention to modeling energy consumption of DBMS operations.

3. Criteria and challenges

Noticing that there is the lack of simple yet efficient bench-

marks for energy-aware database systems, we start this study by

focusing on the criteria and challenges of the development of en-

ergy efficiency benchmarks in the realm of database. The criteria

presented in this section set the preliminary principles by which

our energy efficiency benchmark is established.

Existing energy management studies (e.g., [7]) summarized in

Section 2 paid attention to the energy-efficiency evaluation and

comparison of energy-efficient database management systems. In

contrast, the first part of our study is focused on energy-efficiency

benchmarking tools that address issues related to energy profiling,

energy efficiency, and continuously changing performance.

Energy efficiency profiling. Ideally, an energy-efficiency

benchmark should offer us an intuitively profiling approach by

which we can directly test, measure, and analyze a database

system’s energy efficiency [17]. Our tool aims to show that

multicore processors, CPU utilization, memory usage, and hard

disks affect energy consumption when the database system

executes queries.

Energy-efficiency profiling benchmarks provide two remark-

able benefits. First of all, one can take full advantage of energy-

efficiency profiling to establish an energy-efficiency model which

mathematically demonstrates the correlations among multicore

processors, CPU utilization, memory usage, and indexing [18].

Secondly, energy-efficiency profiling provides us with the ability

to facilitate an effective estimation of new techniques deployed to

improve the energy-efficiency of database systems.

In short, energy-efficiency benchmarks make it possible to

investigate energy cost caused by hardware (e.g., multicore

processors, CPU utilization, and memory usage) and software

components (e.g., indexing, query types, optimization strategies).

Energy consumption measurement. The goal of our bench-

marking tool is to measure real-world database systems deployed

in modern data centers. There are three salient features of our tool.

First, to fulfill testing needs, one can configure workload condi-

tions by varying table size and choosing indexing schemes. Sec-

ond, the test-driver tailored for a database system is able to choose

the query type, amount of execution time, and CPU utilization rate.

Third, our tool offers a simple yet efficient way of testing energy-

efficient database systems. It is straightforward to apply the tool

to automatically and concurrently measure and record both the

power consumption and performance.

Fig. 1. The framework of the energy efficiency benchmarking toolkit, which

consists of a configuration module, a test driver, and a power-performance monitor.

Performance profiling. Measuring database system perfor-

mance such as execution time, response time, and throughput

should be taken into account in energy-efficiency benchmarks.

On one hand, reducing the energy cost in modern data centers

is important and indispensable [19]; on the other hand, improv-

ing system performance is a crucial aspect of metrics to evalu-

ate overall database efficiency [20]. In a vast majority of cases,

system administrators have to make tradeoffs between energy

efficiency and performance. For certain applications, it is not

worthwhile to conserve energy at the cost of a significant perfor-

mance degradation [21]. An energy-efficiency benchmark should

be able to measure energy efficiency in conjunction with perfor-

mance of database systems. An ideal energy-efficiency benchmark-

ing tool offers constructive guideline for system administrators to

improve the energy efficiency while maintaining database perfor-

mance in large data centers.

Optimization for multicore-based database systems. It is

challenging to optimize database systems running on multicore

processors [22]. This challenge becomes even more daunting when

it comes to making energy cost and performance tradeoffs for

database systems running on multicore servers. We pay attention

to multicore management to optimize energy efficiency of cross

join and outer join operations running in multicore systems. We

design a multicore manager to optimize the number of cores in

order to make good tradeoffs between performance and energy

efficiency in multicore database servers.

The challenge of developing the multicore manager lies in a

memory usage model [23], which is responsible for estimating

memory utilization using queries and database characteristics

like table and record size. The multicore manager decides how

many cores should be allocated to process database operations

without giving rise to the memory swapping problem that causes

high energy consumption [24]. The multicore manager and the

benchmarking tool should be seamlessly integrated into the

EDOM system for energy-efficient database systems. As such, we

can apply the benchmark toolkit to quantitatively evaluate the

performance of the multicore manager.

4. The energy efficiency benchmark

In this section, we present the design issues of the energy

efficiency benchmark toolkit for database systems. Our benchmark

tool plotted in Fig. 1 consists of three components, namely, the

configuration module, the test driver, and the power-performance

monitor.

Y. Zhou et al. / Future Generation Computer Systems 105 (2020) 1002–1015 1005

−

Table 1

Testbed configurations.

OptiPlex 3020 MT/SFF technical specifications

Table 2

Power meter specifications.

TS-836A power meter specifications

CPU Intel 4th Core i5-4570 Quad Core@3.20 GHz

Memory 4 GB Non-ECC 1600 MHz DDR3 SDRAM

Hard drives Seagate KC47-500 GB SATA (7.200 RPM)

Operating system CentOS 6.5 (Final)

Measurement of consumption 0.00–9999.99 kWh

Voltage display range 0–9999 V

Current range 0.000–15.000 A

Frequency display 0–9999 Hz

Database system
Linux kernel 2.6.32 431.el6.x8664

PostgreSQL 9.3.5

Wattage display (Watts) 0–1800 W

4.1. Simplicity of EDOM toolkit

The module-oriented design approach gives rise to the sim-
plicity of our EDOM toolkit. To make our EDOM toolkit easy and
portable to use, we group the functions into three modules, which
consist of related source code. Furthermore, to reduce the overhead
of the energy consumption and computing source, the test driver
and power-performance monitor (see Fig. 1) are implemented by
a highly light-weighted scripting language (i.e., Python). In addi-
tion, the configuration module is comprised of three submodules,
namely, query type generator, CPU utilization configuration, and
multi-core utilization configuration. The configuration module is
launched only once to set up the test driver before EDOM is kicking
off to evaluate and optimize the of energy-efficiency of database
systems. After the configuration is completed, the module requests
no system resource.

4.2. Configuration module

The responsibility of the workload generator is three-fold. First,
it configures the table size of tested database according to an

experiment design. Second, the module can enable or disable
indexing features during the course of energy efficiency testing.
Last, the module provides a straightforward way of managing data
of tested tables in a database system. The configuration module
automatically creates and setups a large amount of test data
imported to the database system prior to a test. The configuration
module also adjusts field types and sizes with accordance to
specific test requirements.

4.3. Test driver

The test driver generates a set of queries issued to the tested
database system. This module contains three parts: the query
type generator, the CPU utilization controller, and the multicore
controller. The query type generator manipulates the types of
performed queries in the PostgreSQL database. The CPU utilization
controller configures the CPU utilization of a server processing all
the issued queries. For example, this controller can set the CPU
utilization to four different levels (i.e., 25%, 50%, 75%, and 100%).
The multicore controller is in charge of setting the number of cores
running queries. For instance, in our experiments, the number of
cores can be flexibly configured to a number anywhere between
one and four.

4.4. CentOS and PostgreSQL

We run the PostgreSQL database system on CentOS. PostgreSQL,
an object-relational database management system with high ex-
tensibility, securely stores and retrieves data for other software ap-
plications [25]. ProstgreSQL is capable of processing workloads of
small-scale applications as well as large Web-based applications.
We maintain a dedicated computing environment to test Post-
greSQL, because the focus of our experiments is to measure energy
consumption of database operations. Query requests are issued by
the light-weight test driver, the energy consumption of which is ig-
nored in our experiments. Table 1 shows the database server spec-
ification.

4.5. Power efficiency and performance monitor

The power-performance monitoring module is responsible

for measuring and collecting metrics like power consumption,

processing time, CPU utilization, and memory usage [26]. We apply

an electricity meter to measure power consumption of a power

outlet socket, to which our server is connected. To improve the

measurement accuracy, we connect the display into another power

socket, ensuring that the measured energy is only consumed by

the PostgreSQL database server. The power meter employed in

this study is TS-836A Plug Energy Watt Voltage Amps Meter (see

Table 2 for details). In addition to energy consumption, the other

measured metrics such as processing time and memory usage are

automatically collected by a light-weight process implemented in

a Python script.

5. The multicore manager

In this section, we propose a multicore manager—a core

component of EDOM. The goal of the multicore manager is to make

a good tradeoff between energy efficiency and performance in

database systems. This goal is achieved by alleviating the memory

swapping problem through the decisions on the most appropriate

number of cores. We design a memory usage estimator to provide a

guideline for determining the number of cores (see Section 5.1). We

show the algorithm of the multicore manager in Section 5.2. The

energy efficiency of a database system governed by the multicore

manager is evaluated in Section 5.3.

5.1. Memory usage estimator

The optimal number of cores utilized in a multicore-based

database system largely depends on workload conditions (e.g.,

query types, data size, and processing time). The workload

conditions exhibit various memory-usage characteristics, which

in turn affect the optimal number of cores employed in the

system. This observation motivates us to develop a memory usage

estimator to provide a general guideline for determining the

number of cores.

In modern database systems, memory resources become a vital

component affecting performance and energy efficiency [27]. This

argument is especially true when it comes to big data applications.

When a database system has insufficient free memory, then some

memory resources must be freed by writing data back to disks [28].

Our empirical study reveals that the memory usage imposes a

significant impact on the energy efficiency of database systems.

For example, Figs. 2, 5(a), and 6(a) indicate that heavily utilized

main memory adversely slows downs the performance of multiple

cores; as a result, an increasing number of queries cannot

be processed in a timely manner, thereby pushing the power

consumption at an unacceptably high level. Please refer to

Section 6.1.1 for a detailed analysis on the impact of memory

utilization on system energy efficiency.

The multicore manager aims to decide an optimal number of

cores that meets the resource needs of heavy workload, where

main memory becomes scarce resources. Recognizing that the

mailto:Core@3.20

1006 Y. Zhou et al. / Future Generation Computer Systems 105 (2020) 1002–1015

←
←

⌊ ⌋

Fig. 2. The impact of the number of cores on memory usage of a multicore-based

database system.

Fig. 3. The framework of the memory usage estimator.

optimization of number of cores relies on memory utilization, we

develop a memory usage estimating module to predict memory

utilization under any workload modeled in forms of query types

and the other database characteristics. And we designed an

effective algorithm to calculate the most appropriate number of

cores for running operations under a limited memory hardware

situation.

To address the problem of heavy workload coupled with scarce

memory resources, the memory usage estimator estimates the

memory usage according to the following four operation factors.

• database query type,

• the number of tables,

• the number of records, and

• the record size.

Fig. 3 depicts the architecture of the multicore manager, which

consists of five key components. Given the number of tables, the

number of records in the table, and record size, the memory

usage estimator applies a mathematical model to project memory

usage, which is used in the multicore calculator to determine

the number of the multicores. The multicore manager algorithm

detailed in Section 5.2 incorporates a multicore calculator (see

Fig. 3) to govern the process of choosing an approximate number of

cores. The query profiling in the multicore manager is designed to

acquire the database workload characteristics such as the numbers

of tables and records. The multicore controller obtaining the

estimated number of cores is in charge of setting up the number

of cores that execute database queries in the system.

5.2. Algorithm design

In this section, we propose the algorithm of the multicore
manager to optimize the number of cores for given workload
conditions. The primary function of the multicore manager is to
make a good tradeoff between energy efficiency and performance
in database systems running on multicore servers.

Recall that the memory usage estimator (see Section 5.1) pre-
dicts memory utilization from queries and database characteris-
tics. An appropriate number of cores is determined by Algorithm
2, which takes an estimated memory usage as the input to allevi-
ate the memory swapping problem.

Algorithm 1 Multicore Manager Algorithm: optimal()

Input:

number of tables t

number of records r

record size s

Output:

number of cores Copt

1: Cmin 1;

2: Cmax MAX _NUM_CORES;

3: core_search(Cmin, Cmax, t, r, s);

4: return Copt ;

The multicore manager algorithm (see Algorithm 1) outlined
above initializes the minimal and maximal number of cores to Cmin
and Cmax, respectively (see Lines 1–2 in Algorithm 1). Next, the
multicore manager algorithm invokes the binary search algorithm
(see Algorithm 2) to recursively calculate the number of cores
under a workload condition expressed in the form of the number
of tables t, the number of records r , and the number of record size

s (see Line 3 in Algorithm 1).

Algorithm 2 Recursive Core Search: core_search()

Input:

Cmin - Minimal number of cores

Cmax - Maximal number of cores

number of tables t

number of records r

record size s

Output:

number of cores Copt

1: Copt = Cmin+
2

Cmax

2: if (memoryestimated(t, r, s, Copt) < memory) then

return core_search(Copt , Cmax, t, r, s);

3: else if memoryestimated(t, r, s, Copt) > memory then

return core_search(Cmin, Copt , t, r, s);

4: else

return Copt ;

5: end if

The binary core search algorithm is recursive in nature. In each
recursion, the algorithm takes the following two main steps to
obtain the appropriate number of cores.

Step 1. The optimal number of core Copt is set to the midpoint
between the minimal (i.e., Cmin) and maximal (i.e., Cmax)
numbers of cores (see Line 1).
Step 2. Using workload condition (i.e., t, r , s) and the tentative
optimal number of cores Copt , the memory usage estimator

predicts the memory load (i.e., memoryestimated(t, r, s, Copt)) (see
Line 2 in Algorithm 2).
Step 3. If the projected memory load is smaller than the
available memory capacity, then the optimal number of cores

is increased by recursively calling the core_search() algorithm,
where the searching range is between Copt and Cmax (see Line 2
in Algorithm 2). Otherwise, when the estimated memory load

exceeds the available memory size, core_search() is recursively
invoked to update the optimal core number by searching a
range between Cmin and Copt (see Line 3 in Algorithm 2).

•

•

•

Y. Zhou et al. / Future Generation Computer Systems 105 (2020) 1002–1015 1007

×

×

× ×
×

Fig. 4. The validation of energy consumption governed by our multicore manager.

We demonstrate in the next subsection (i.e., Section 5.3) that

an appropriate number of cores determined using the multicore

manager algorithm helps in alleviating the serious memory

swapping problem—a main driver for high energy cost in multicore

database systems.

5.3. Energy efficiency of the multicore manager

We design a group of experiments to study the energy efficiency

of the multicore manager. We increase the table size from 6 105

records to 1.4 106 records with an increment of 2 105 records.

We evaluate the power consumption of a database system, where

the number of cores is dynamically controlled by our multicore

manager (see Algorithm 1). We compare our algorithm with two

baseline solutions, where the number of cores is fixed to one core

and four cores.

Fig. 4 shows the energy consumption of the multicore-based

database system governed by our multicore manager; Fig. 4 also

illustrates the energy consumption in the one-core and four-core

cases.

The results indicate that as the table size is increased from

6 × 105 to 1.2 × 106 records, the optimal number of cores in terms

of energy efficiency is four; in such a relatively light load, the one-

core manager exhibits the worst energy efficiency. The evidence

shows that our multicore manager chooses the optimal number of

cores to reduce energy consumption under low and medium-low

workload conditions.

When the table size is very large (e.g., 1.4 106 records), the

energy consumption of the four-core case dramatically increases

due to the memory-swapping problem (see also Fig. 4). Not

surprisingly, our multicore manager judiciously downgrades the

number of cores to three, which significantly conserves energy

consumption compared with the four-core case. Moreover, the

results demonstrate that our multicore manager is also more

energy efficient than the one-core counterpart. We observe from

this group of experiments that the multicore manager is capable

of determining an optimal number of cores under relatively heavy

workload (e.g., table size larger than 1.4 106 records).

We conclude that the multicore manager in our EDOM is

conducive to deciding the number of cores needed to optimize the

energy efficiency of multicore-based database systems where main

memory becomes a scarce resource.

6. Experimental results

We have conducted extensive experiments to demonstrate

the usage and effectiveness of EDOM. We apply the developed

EDOM to evaluate the energy efficiency and performance of a

multicore-based database server system. In this part of the study,

we first investigate the impacts of CPU utilization and multicore

on the database system. Then, we compare the energy efficiency

of different database operations. Finally, we demonstrate how the

indexing technique affects power consumption and performance

of the database system.

6.1. CPU utilization and multicores

In the first group of experiments, we focus on the impacts

of CPU utilization and multicores on the energy efficiency

and performance of the tested database system. To make fair

comparison, we keep the number of queries executed by the

system a constant under various hardware configurations. By

doing so, we demonstrate how multicores under a wide range of

configurations affect the database system.

(a) The impact of multicores on power consumption with the Outer-Join

operation.

(b) The impact of CPU utilization on power consumption with the Outer-Join

operation.

Fig. 5. Power consumption profiling of query: Outer-Join.

1008 Y. Zhou et al. / Future Generation Computer Systems 105 (2020) 1002–1015

×

×

(a) The impact of Multicores on power consumption with the Cross-Join

operation.

(b) The impact of CPU utilization on power consumption with the Cross-Join

operation.

Fig. 6. Power consumption profiling of query: Cross-Join.

6.1.1. Energy efficiency of the outer-join operation

In this experiment, we issue a fixed number of outer-join

queries while changing the database table sizes and number of

cores in the system. Fig. 5(a) reveals that regardless of the number

of cores, energy consumption of the database system goes up when

the table size increases. This trend is reasonable, because the query

processing time is enlarged when the data volume increases with

the increasing table size. The large processing time gives rise to the

high energy consumption.

Now we compare the three curves plotted in Fig. 5(a). When the

table size is smaller than 1.4 106 records, increasing the number

of cores in the database system significantly reduces the energy

consumption caused by processing the outer-join queries. When

we add extra cores into the database system, the query processing

time is noticeably shortened, which in turn conserves energy.

Interestingly, the trend is inapplicable for cases where the table

size becomes very large. For example, the energy consumption of

the four-core system is much larger than the two-core counterpart

when the table size is 1.6 106 records. The four-core system

is unable to conserve energy under the large-table-size condition,

because the main memory requirement imposed by the four cores

exceed the available memory (i.e., 4 GB) in the tested system. We

conclude that increasing the number of cores is an effective way to

save energy of a database system, provided that the system’s main

memory resource can meet the multicore system’s needs.

Fig. 5(b) indicates that given a fixed amount of outer-join

queries, executed under different CPU utilization within one core,

the most energy efficient condition is the 100% CPU utilization. And

as the table size increases, the more CPU utilization it takes the

slower the energy consumption grows. The energy consumption of

100% CPU utilization at the point of table size 2million is even 37%

of the energy consumption of 25% CPU utilization. The reason is

the less CPU utilization used, the more idle status consumption is

taken into account of the whole energy consumption.

We are in a position to evaluate the impacts of CPU utilization

on the energy consumption of the database system processing

outer-join queries. We test a total of four cases, in each of which

the CPU utilization is fixed. Because the focus of this experiment

is CPU utilization, we set the number of cores to one, avoiding any

side effect incurred by the multicores.
The experimental results demonstrate that the most energy-

efficient case is the one when the CPU utilization is set to 100%. For

instance, when the table size is configured to 2.0 × 106 records,

the 100%-CPU-utilization case reduces the energy consumption of

the 25%-CPU-utilization case by more than 63%. Such a significant

energy saving is expected, and the reason is two-fold. First, the

25%-CPU-utilization case exhibits a large number of small idling

time periods. Second, the database system is unable to keep the

CPU in the low-power mode to conserve energy during these short

idling time intervals.

We also observe that regardless of the CPU utilization value, a

large table size leads to high energy consumption. This observation

is consistent with that drawn from Fig. 5(a).

6.1.2. Energy efficiency of the cross-join operation

In this set of experiments, we evaluate the energy efficiency

of the database system using cross-join queries. Similar to the

previous experiments discussed in Section 6.1.1, in this group of

experiments a fixed number of cross-join queries are executed

while varying the table size and number of multicores.

We observe that various types of database operations have

different impacts on energy efficiency. Nevertheless, the power

consumption trend shown in Fig. 6(a) is similar to that of Fig. 5(a);

thus, regardless of the number of cores, energy consumption of

the database system goes up when the table size increases. This

is because increasing table size enlarges data volume and its

processing time, which in turn consume more energy.

The comparison of the two curves in Fig. 6(a) reveals that in the

case where the table size is set to 1800, an extra core dramatically

reduces the energy consumption. This observation is consistent

with the one drawn from Fig. 5(a).

The energy consumption of the three-core and four-core cases

are not plotted in Fig. 6(a), because the system’s main memory

is so heavily utilized that multiple cores are unable to process

any query. For example, the three-core system exhibits excessive

long response times even when the table size is as small as 1000.

We conclude that the memory resource becomes a performance

bottleneck of the multicore-based database system. Moreover,

compared with the outer-join operations, the energy behavior of

cross-join queries are more sensitive to main memory capacity of

the system.

Fig. 6(b) shares similar energy consumption patterns as those

of Fig. 5(b) (Section 6.1.1). Thus, the system’s energy efficiency can

be significantly improved by pushing CPU utilization up to 100%.

Fig. 6(b) confirms a trend illustrated in Fig. 6(a) that increasing

table size leads to a high energy-consumption level. Compared

Y. Zhou et al. / Future Generation Computer Systems 105 (2020) 1002–1015 1009

(a) The impact of multicores on time consumption with the Outer-Join operation. (b) The impact of CPU utilization on time consumption with the Outer-Join

operation.

(c) The impact of multicores on memory usage with the Outer-Join operation. (d) The impact of CPU utilization on memory usage with the Outer-Join

operation.

Fig. 7. Performance profiling of Outer-Join under different CPU utilization and multicores.

with the 100%-CPU-utilization case, the energy consumption of the

25%-CPU-utilization case is more sensitive to the table size. In other

words, when we enlarge the table size in the 25%-CPU-utilization

case, the system’s energy consumption increases faster than the

100%-CPU-utilization case.

If the table size is smaller than 1600, increasing the CPU

utilization from 75% up to 100% has a marginal energy-efficiency

improvement. On the other hand, when it comes to a large table

size (e.g., 1600–2400), a CPU-utilization increase of 25% up from

75% makes a noticeable reduction in power consumption.

An insightful conclusion drawn from this group of experiments

is that we can improve the energy efficiency of database systems

by making a full usage of multicore processors in servers.

6.1.3. Performance of the outer-join operation

Now we study performance of the outer-join operations.

Fig. 7(a) shows the performance as a function of the number

of table size in the one-core, two-core, and four-core cases.

The results reveal that the outer-join operations exhibit better

performance in the four-core configuration than in the other two

cases. The four cores reduce the execution time of performing the

outer-join queries, thereby improving system energy efficiency

(see also Fig. 5(a)). We observe that in the four-core case, the

execution time sharply climbs up when the table size exceeds

1.4 million. Such a performance degradation is attributed to the

problem that the main memory capacity is unable to meet the

needs of the large table size.

Fig. 7(b) illustrates the impact of CPU utilization on the

performance of the system running outer-join operations. In this

group of experiments, we vary the table size from 0.02 to 2.0

million; we also tested four cases where the CPU utilization is

kept at 100%, 75%, 50%, and 25%, respectively. Fig. 7(b) shows that

increasing CPU utilization shortens the time spent in performing

the outer-join operations. This performance trend becomes more

pronounced when the table size is large. The 100%-CPU-utilization

case outperforms the other three cases, because CPU idle times

in the other three scenarios slow down the query process

performance.

We investigate the memory usage under various table sizes and

number of cores. Fig. 7(c) indicates that regardless of the number

of cores, increasing the table size slightly drives the memory usage

up. Compared with the memory usage in the one-core and two-

core systems, memory usage of the four-core system is more

sensitive to the page size. For example, when we increase the

1010 Y. Zhou et al. / Future Generation Computer Systems 105 (2020) 1002–1015

(a) The impact of multicores on time consumption

with the Cross-Join operation.

(b) The impact of CPU utilization on time

consumption with the Cross-Join operation.

(c) The impact of multicores on memory usage with

the Cross-Join operation.

Fig. 8. Performance profiling of Cross-Join under different CPU utilization and multicores.

(a) Power consumption comparison between Outer-Join and Cross-Join in the

single-core case.

(b) Power consumption comparison between Outer-Join and Cross-Join in the

two-core case.

Fig. 9. Power consumption comparison between outer-join and cross-join in multicore systems.

table size from 0.4 to 1.2 millions, the memory usage of the four-

core system increases from 63% to 92%, whereas the memory

usage of the single core system only slightly goes up to 26%

from 15%. The four-core system’s query processing performance

is significantly deteriorated when the memory usage is very high,

which represents a high demand on memory resources.

Fig. 7(d) reveals the impact of CPU utilization on system

memory usage. The experimental results suggest that the CPU

utilization has no noticeable impact on memory usage. We

conclude that a database system’s memory usage largely depends

on the table size and the number of cores in the system.

6.1.4. Performance of the cross-join operation

In this group of experiments, we evaluate the performance

of cross-join operations running on multi-core systems. Fig. 8(a)

shows a similar performance trend as that plotted in Fig. 7(a).

We only show the results of the single-core and two-core cases,

because the query processing time of the four-core system is

extremely long due to the high memory usage. The execution time

of the cross-join operations is significantly reduced by adding an

extra core into the database system. In addition, the execution time

of the two-core system is less sensitive to the table size than that

of the single-core system, thanks to high performance offered by

the two cores.

Fig. 8(b) shows the impact of CPU utilization on the cross-

join performance. A high CPU utilization helps in boosting the

processing performance of cross-join queries. This performance

trend is consistent with that observed from Fig. 7(b).

Fig. 8(c) reveals the memory usage of cross-join operations

under various table size and the number of cores. Fig. 8(c)

shows that the memory usage increases almost linearly with the

increasing table size. We observe that compared with the memory

usage of the outer-join operations, the memory usage of cross-join

operations is more sensitive to the table size (see also Fig. 7(c) and

Fig. 8(c)). More detailed comparison between outer-join and cross-

join operations can be found in Section 6.2.

6.2. Outer-join vs. cross-join operations

Now we compare the energy behaviors between outer-join and

cross-join operations in multicore database systems.

6.2.1. Impact of multicores on outer-join and cross-join queries

We pay particular attention to the impact of multicores on the

outer-join and cross-join queries under the changing table size.

The results plotted in Fig. 9(a) and (b) indicate that the query

types have significant impacts on energy efficiency. For example,

the energy consumption of outer-join is only 0.047% and 0.078%

of that of cross-join when table size is set to 2400 and 1800,

respectively (see Fig. 9(a) and (b)). Thus, the energy consumption of

cross-join queries is 1000–10 000 times higher than that of outer-

join queries. This energy consumption trend is attributed to two

Y. Zhou et al. / Future Generation Computer Systems 105 (2020) 1002–1015 1011

(a) Power consumption comparison between Outer-join and Cross-join in the 25%

CPU utilization case.

(c) Power consumption comparison between Outer-join and Cross-join in the

75% CPU utilization case.

(b) Power consumption comparison between Outer-join and Cross-join in the

50% CPU utilization case.

(d) Power consumption comparison between Outer-join and Cross-join in the

100% CPU utilization case.

Fig. 10. Energy efficiency impact of outer-join and cross-join operations on multicore systems under various CPU utilization.

reasons. First, cross-join queries give rise to a huge amount of data

loaded from disks into main memory. Second, the database system

allocates a significant portion of CPU resources to process cross-

join queries.

We observe from Fig. 9(a) that in the single-core case, outer-

join queries are less sensitive to table size than cross- join

queries. Compared with outer-join operations, cross-join’s

energy consumption can be substantially reduced by applying

optimization algorithms (e.g., relational optimizer) to maintain

small query sizes in multicore-based database systems. Unlike

cross-join queries, outer-join queries may enjoy marginal benefit

from the optimization algorithms.

Interestingly, Fig. 9(b) shows that in the two-core case, cross-

join queries become less sensitive to table size than outer-join

queries. Nevertheless, the wide energy-consumption gap between

outer-join and cross-join is alleviated by increasing the number of

cores from one to two. There is no doubt that employing multiple

cores and reducing query size are two efficient ways of narrowing

the gap between the outer-join and cross join operations.

6.2.2. Impact of CPU utilization on outer-join and cross-join queries

Now we compare the difference between the outer-join and

cross join queries from the perspectives of CPU utilization impact

on energy consumption. Again, we increase the table size from
1000 to 2400 records with an increment of 200. Fig. 10 reveals

that regardless of CPU utilization, the cross-join query is a whole
lot more energy expensive than the outer-join one. This trend is
consistent with the results plotted in Fig. 9.

An intriguing observation drawn from Fig. 10 is that the cross-
join operation’s energy-consumption increasing ratio is more
sensitive to CPU utilization and table size than that of the outer-join
one. For example, let us consider a scenario where the table size is
gradually increased from 1000 to 2400. In the 25%-CPU-utilization
case, the energy consumption of outer-join query increased by
approximately 50%; in the 100%-CPU-utilization case, the outer-
join’s energy consumption is increased by more than 122%. In the
25%-CPU-utilization and 100%-CPU-utilization cases, the cross-join
operation’s energy consumption is increased by 308% and 337%,
respectively.

The implication of the results shown in Fig. 10 is that under
heavy CPU utilization, reducing table size becomes a feasible
approach to noticeably conserving energy consumption of the
cross-join operation.

6.2.3. Energy efficiency vs. performance impacts
In this group of experiments, we compare the performance in

terms of response time between outer-join and cross-join queries

1012 Y. Zhou et al. / Future Generation Computer Systems 105 (2020) 1002–1015

(a) Response time comparison between Outer-join and Cross-join queries in the

multicore system when CPU utilization is 25%.

(c) Response time comparison between Outer-join and Cross-join queries in the

multicore system when CPU utilization is 75%.

(b) Response time comparison between Outer-join and Cross-join queries in the

multicore system when CPU utilization is 50%.

(d) Response time comparison between Outer-join and Cross-join queries in

the multicore system when CPU utilization is 100%.

Fig. 11. Performance comparison of outer-join and cross-join queries in the multicore system under various CPU utilization.

under various CPU workload. The performance trend observed

in this set of experiments may shed some light on the energy-

consumption comparisons between the two query types (see

Sections 6.2.1 and 6.2.2).

Like the configuration of the previous experiment, the table size

is increased from 1000 to 2400 records with an increment of 200;

the CPU utilization is set to 25%, 50%, 75%, and 100%, respectively.

Fig. 11 shows that the cross-join query’s response time is almost

222 times longer than that of the outer-join one when the table size

and CPU utilization are set to 1600 records and 75%, respectively.

Not surprisingly, the performance trends revealed in Fig. 11 are

similar to the energy-efficiency trends observed in Fig. 11. We

conclude that the energy consumption of the two query types

are strongly correlated to their response time. The experimental

results suggest that any algorithm aiming to shorten the response

times of the queries is likely to improve the energy efficiency of the

queries running in multicore systems.

The results from this group of experiments also confirm that

under high CPU workload (see, for example, Fig. 11(d)), reducing

table size can significantly shorten the response times of the

queries. This conclusion is especially true for the outer-join

operation.

Fig. 12 shows the performance comparisons between the outer-

join and cross-join queries under the single-core and double-core

cases. Very interestingly, we observe that the speedup efficiency of

cross-join is higher than that of outer-join. For example, when the

table size is set to 1000, the speedups of cross-join and outer-join

are 1.92 and 1.51. Overall, the speedup efficiency of both outer-join

and cross-join is improved with the increasing table size.

Fig. 13 illustrates the comparisons between outer-join and

cross-join operations from the perspective of memory usage. The

results show that compared with outer-join’s memory usage,

cross-join’s memory usage is more sensitive to table size. Such a

trend becomes more pronounced when we increase the number of

cores from one (see Fig. 13(a)) to two (see Fig. 13(b)). For instance,

Fig. 13(b) reveals that the memory usage of cross-join goes up from

42% to almost 100% when the table size is increased from 1000

to 1800, whereas the outer-join operation’s memory usage stays

fairly flat regardless of the table size and the number of cores.

6.3. The indexing technique

Now we investigate the indexing technique’s impacts on the

energy behaviors of the outer-join queries. We only demonstrate

Y. Zhou et al. / Future Generation Computer Systems 105 (2020) 1002–1015 1013

× ×

(a) Execution time comparison between Outer-Join

and Cross-Join queries in single-core case.

(b) Execution time comparison between Outer-Join and

Cross-Join queries in two-core case.

(c) Speedup comparison between Outer-Join and

Cross-Join queries.

Fig. 12. Comparison of execution time between outer-join and cross-join under multicore situations.

(a) Memory usage comparison between Outer-Join and Cross-Join queries in

single-core case.

(b) Memory usage comparison between Outer-Join and Cross-Join queries in

two-core case.

Fig. 13. Impacts of outer-join and cross-join operations on the memory usage of multicore systems.

(a) Power consumption comparison between

Cross-Join with indexing and Cross-Join without

indexing.

(b) Execution time comparison between Cross-Join

with indexing and Cross-Join without indexing.

(c) Memory usage comparison between Cross-Join

with indexing and Cross-Join without indexing.

Fig. 14. Impacts of the indexing technique on energy efficiency of the outer-join and cross-join operations running in multicore systems.

the power consumption of outer-join, because cross-join’s power
consumption has a similar trend. In this group of experiments, we

vary the table size from 1.0 106 to 2.0 106.

Fig. 14 intuitively shows that indexing substantially affects

the outer-join operation’s power consumption, performance, and

memory usage. The energy trend plotted in Fig. 14(a) is similar

to the performance trend illustrated in Fig. 14(b), implying that

the performance and energy efficiency of outer-join have a tight

correlation. The experimental results suggest that when it comes

to indexing, there is no need to make tradeoff between energy

efficiency and performance.

Fig. 14(a) and (b) indicate that indexing not only boosts outer-

join performance, but also makes outer-join more energy efficient.

The energy efficiency and performance improvements offered by

1014 Y. Zhou et al. / Future Generation Computer Systems 105 (2020) 1002–1015

×

×

indexing become more significant when the table size is growing

up. For example, when the table size is small, the indexing scheme

has a limited impact on power consumption; indexing only man-

ages to reduce the power consumption by 4.8%. If we change the

table size to 1.4 106, indexing is able to offer an energy saving of

23.9%.

We observe from Fig. 14(c) that the indexing technique

significantly reduces the memory usage of the outer-join query.

For example, when we set the table size to 1.0 106, the memory

usage rate of the indexing case is 69.3%; without indexing, the

memory usage rate goes up to 75.7%. The memory usage results

show evidence that indexing improves outer-join’s performance

by alleviating memory load in the multicore system. The indexing

technique proactively reduces the amount of data loaded from the

disks to the main memory, which in turn noticeably cuts the query

response time. We conclude that with indexing in place, the outer-

join queries are processed in an energy efficient way thanks to the

shortened query response times made possible by indices.

After evaluating the energy overhead incurred by creating

indices, we reach a conclusion that the energy overhead caused by

indexing is trivial and; therefore, we ignored the energy overhead

results from the figures.

7. Conclusions and future work

We started this study by investigating the workload condi-

tions and proposing metrics as well as the guidelines of energy-

efficiency benchmarks. Then, we proposed EDOM—a tool sys-

tematically evaluating and optimizing the energy-efficiency of

multicore-based database systems.

We incorporated the TPC-W benchmark database in EDOM to

resemble real-world database systems. The EDOM tool employs

the PostgreSQL database to evaluate the energy efficiency of two

database queries, namely, outer-join and cross-join operations.

EDOM offers a simple yet efficient way of measuring energy

efficiency of database queries running on multicore processors;

EDOM shows the correlation between CPU utilization and energy

efficiency.

At the heart of EDOM is a multicore manager making a

good tradeoff between energy efficiency and performance in

database systems. EDOM leverages a memory usage model to

estimate memory utilization using query types and database

characteristics. EDOM alleviates the memory swapping problem by

determining the most appropriate number of cores. We showed

that EDOM substantially improves energy efficiency of multicore-

based database systems by addressing the memory swapping

issue.

Our experimental results and analysis indicate that our tool is a

simple yet efficient platform to measure, improve, and optimize

the queries, hardware configurations, and resource allocations

multicore-based databases systems housed in data centers. One

salient feature of EDOM lies in its high flexibility and adaptability,

which allow EDOM to be customized and populated according to

any research and application domain.

We will pursue our future research direction into two steps.

First, we plan to develop an energy efficient model aiming to

predict energy-efficiency in database queries. In the second step,

we plan to integrate the energy efficient model into an database

system to optimize the energy efficiency of database operations.

We also intend to seamlessly integrate the energy efficient model

with a power manager and a thermal manager in the multicore-

based database system to offer further energy savings.

References

[1] S. Tu, W. Zheng, E. Kohler, B. Liskov, S. Madden, Speedy transactions in
multicore in-memory databases, in: Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, ACM, 2013, pp. 18–32.

[2] M. Lin, A. Wierman, L.L. Andrew, E. Thereska, Dynamic right-sizing for power-
proportional data centers, IEEE/ACM Trans. Netw. 21 (5) (2013) 1378–1391.

[3] A. Manzanares, X. Qin, X. Ruan, S. Yin, Pre-bud: Prefetching for energy-efficient
parallel i/o systems with buffer disks, ACM Trans. Storage (TOS) 7 (1) (2011) 3.

[4] M. Ghamkhari, H. Mohsenian-Rad, Energy and performance management of
green data centers: A profit maximization approach, IEEE Trans. Smart Grid 4
(2) (2013) 1017–1025.

[5] Z. Zong, A. Manzanares, X. Ruan, X. Qin, Ead and pebd: two energy-aware
duplication scheduling algorithms for parallel tasks on homogeneous clusters,
IEEE Trans. Comput. 60 (3) (2011) 360–374.

[6] S.D. Viglas, A comparative study of implementation techniques for query
processing in multicore systems, IEEE Trans. Knowl. Data Eng. 26 (1) (2014)
3–15.

[7] W. Lang, S. Harizopoulos, J.M. Patel, M.A. Shah, D. Tsirogiannis, Towards
energy-efficient database cluster design, Proc. VLDB Endow. 5 (11) (2012)
1684–1695.

[8] S. Rivoire, M.A. Shah, P. Ranganathan, C. Kozyrakis, Joulesort: a balanced
energy-efficiency benchmark, in: Proceedings of the 2007 ACM SIGMOD
International Conference on Management of Data, ACM, 2007, pp. 365–376.

[9] A.T. Clements, M.F. Kaashoek, N. Zeldovich, R.T. Morris, E. Kohler, The scalable
commutativity rule: Designing scalable software for multicore processors,
ACM Trans. Comput. Syst. (TOCS) 32 (4) (2015) 10.

[10] A. Beloglazov, J. Abawajy, R. Buyya, Energy-aware resource allocation
heuristics for efficient management of data centers for cloud computing,
Future Gener. Comput. Syst. 28 (5) (2012) 755–768.

[11] D. Tsirogiannis, S. Harizopoulos, M.A. Shah, Analyzing the energy efficiency
of a database server, in: Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data, ACM, 2010, pp. 231–242.

[12] D. Schall, T. Härder, Approximating an energy-proportional dbms by a dynamic
cluster of nodes, in: Database Systems for Advanced Applications, Springer,
2014, pp. 297–311.

[13] Z. Xu, Y.-C. Tu, X. Wang, Pet: reducing database energy cost via query
optimization, Proc. VLDB Endow. 5 (12) (2012) 1954–1957.

[14] S.-W. Ham, M.-H. Kim, B.-N. Choi, J.-W. Jeong, Simplified server model to
simulate data center cooling energy consumption, Energy Build. 86 (2015)
328–339.

[15] C.M. Stoppel, F. Leite, Integrating probabilistic methods for describing
occupant presence with building energy simulation models, Energy Build. 68
(2014) 99–107.

[16] Z. Xu, Y.-C. Tu, X. Wang, Dynamic energy estimation of query plans in
database systems, in: 2013 IEEE 33rd International Conference on Distributed
Computing Systems, (ICDCS), IEEE, 2013, pp. 83–92.

[17] A.-C. Orgerie, M.D.d. Assuncao, L. Lefevre, A survey on techniques for
improving the energy efficiency of large-scale distributed systems, ACM
Comput. Surv. (CSUR) 46 (4) (2014) 47.

[18] H. Ltaief, P. Luszczek, J. Dongarra, Profiling high performance dense linear
algebra algorithms on multicore architectures for power and energy efficiency,
Comput. Sci.-Res. Dev. 27 (4) (2012) 277–287.

[19] D. Kliazovich, P. Bouvry, S.U. Khan, Greencloud: a packet-level simulator of
energy-aware cloud computing data centers, J. Supercomput. 62 (3) (2012)
1263–1283.

[20] G. Clayton, K. Pike, R. Nash, D. Hutton, C. Rogers, Improving the efficiency of
testing database functionality through statistical involvement, Trials 16 (Suppl
2) (2015) P30.

[21] J.C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J.J. Furman, S. Ghemawat, A.
Gubarev, C. Heiser, P. Hochschild, et al., Spanner: Googles globally distributed
database, ACM Trans. Comput. Syst. (TOCS) 31 (3) (2013) 8.

[22] W. Zheng, S. Tu, E. Kohler, B. Liskov, Fast databases with fast durability
and recovery through multicore parallelism, in: 11th USENIX Symposium
on Operating Systems Design and Implementation, OSDI 14, 2014, pp. 465–
477.

[23] Y. Kwon, S. Lee, H. Yi, D. Kwon, S. Yang, B.-g. Chun, L. Huang, P. Maniatis, M.
Naik, Y. Paek, Mantis: Efficient predictions of execution time, energy usage,
memory usage and network usage on smart mobile devices, IEEE Trans. Mob.
Comput. 14 (10) (2015) 2059–2072.

[24] T. Endo, G. Jin, Software technologies coping with memory hierarchy of gpgpu
clusters for stencil computations, in: 2014 IEEE International Conference on
Cluster Computing, (CLUSTER), IEEE, 2014, pp. 132–139.

[25] F. Urbano, H. Dettki, Storing tracking data in an advanced database platform
(postgresql), in: Spatial Database for GPS Wildlife Tracking Data, Springer,
2014, pp. 9–24.

[26] J.A. Mullins, A.T. Cooney, B.T. Butler, G.V. Hallissey, D.A. Barrett, J. Carmody,
P. O’keeffe, P.J. Healy, L. O’mahony, P. Sheehan, et al. Data center energy
manager for monitoring power usage in a data storage environment having a
power monitor and a monitor module for correlating associative information
associated with power consumption, Jun. 17 2014, uS Patent 8,756,
441.

[27] F. Färber, S.K. Cha, J. Primsch, C. Bornhövd, S. Sigg, W. Lehner, Sap hana
database: data management for modern business applications, ACM SIGMOD
Rec. 40 (4) (2012) 45–51.

[28] G. Graefe, H. Volos, H. Kimura, H. Kuno, J. Tucek, M. Lillibridge, A. Veitch, In-
memory performance for big data, Proc. VLDB Endow. 8 (1) (2014) 37–48.

http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref1
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref1
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref1
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref2
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref2
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref3
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref3
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref4
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref4
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref4
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref5
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref5
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref5
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref6
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref6
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref7
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref7
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref8
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref8
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref8
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref9
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref9
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref9
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref10
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref10
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref10
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref11
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref11
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref11
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref12
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref12
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref12
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref13
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref13
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref14
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref14
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref15
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref15
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref15
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref16
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref16
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref16
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref17
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref17
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref17
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref18
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref18
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref18
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref19
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref19
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref20
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref20
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref20
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref21
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref21
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref21
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref23
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref23
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref23
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref23
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref24
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref24
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref24
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref25
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref25
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref25
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref27
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref27
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref27
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref28
http://refhub.elsevier.com/S0167-739X(17)30302-3/sbref28

Y. Zhou et al. / Future Generation Computer Systems 105 (2020) 1002–1015 1015

Yi Zhou (S’16) received the B.E.E., M.S.E.E. degrees in elec-
tronic engineering all from Beijing University of Technol-
ogy, Beijing, in 2006 and 2010 respectively. He is currently
a doctoral student in the Department of Computer Science
and Software Engineering at Auburn University. Prior to
joining Auburn University in 2013, he has been a software
engineer in Alcatel-Lucent Technologies (China) Co.,Ltd.
for four years. His research interests include energy-saving
techniques, database systems, and parallel computing.

Shubbhi Taneja (S’15) received her B.E. degree from
Maharishi Dayanand University, Haryana, India in 2012.
She joined Samuel Ginn College of Engineering, Auburn
University, to pursue as a doctoral student of Computer
Science in 2013. Her main area of research include parallel
and distributed systems, storage systems, energy-efficient
computing, and performance evaluation. Her other areas
of interest include web development and STEM programs
for K-12 students. She is a student member of IEEE, ACM,
and IEEE Computer Society.

Xiao Qin (S’00-’04M-SM’09) received the B.S. and M.S.
degrees in computer science from Huazhong University of
Science and Technology in 1992 and 1999, respectively.
He received the Ph.D. degree in computer science from
the University of Nebraska-Lincoln in 2004. He is currently
a professor in the Department of Computer Science
and Software Engineering at Auburn University. Prior
to joining Auburn University in 2007, he had been an
assistant professor with New Mexico Institute of Mining
and Technology (New Mexico Tech) for three years. He
won an NSF CAREER award in 2009. His research is

supported by the US National Science Foundation (NSF), Auburn University, and
Intel Corporation. He has been on the program committees of various international
conferences, including IEEE Cluster, IEEE MSST, IEEE CCGrid, IEEE IPCCC, and ICPP.
His research interests include parallel and distributed systems, storage systems,
fault tolerance, real-time systems, and performance evaluation. He is a member of
the ACM and a senior member of the IEEE.

Wei-Shinn Ku received his Ph.D. degree in computer
science from the University of Southern California (USC) in
2007. He also obtained both the M.S. degree in computer
science and the M.S. degree in Electrical Engineering
from USC in 2003 and 2006, respectively. He is an
Associate Professor with the Department of Computer
Science and Software Engineering at Auburn University.
His research interests include data management systems,
data analytics, geographic information systems, mobile
computing, and security. He has published more than
80 research papers in refereed international journals and

conference proceedings. He is a senior member of the IEEE and a member of the
ACM.

Jifu Zhang received the BS and MS in Computer Science
and Technology from Hefei University of Technology,
China, in 1983 and 1989, respectively. He received the
Ph.D. degree in Pattern Recognition and Intelligence
Systems from Beijing Institute of Technology in 2005.
He is currently a Professor in the School of Computer
Science and Technology at TYUST. His research interests
include data mining and artificial intelligence, parallel and
distributed systems.

