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In this paper, we propose a toolkit called EDOM facilitating the evaluation and optimization of energy- 
efficient multicore-based database systems. The two core components in EDOM are a benchmarking 
toolkit and a multicore manager to improve energy efficiency of database systems running on multicore 
servers. We start this study by analyzing the energy efficiency of two popular database operations (i.e., 
cross join and outer join) processed on multicore processors. We describe the criteria and challenges of 
building an energy efficiency benchmark for databases on multicore servers. We build a benchmarking 
toolkit, which is comprised a configuration module, a test driver, and a power monitor. We develop a 
multicore manager to optimize the number of cores, thereby making good tradeoff between performance 

and energy efficiency in multicore database servers. At the heart of the multicore manager is a memory 
usage model that estimates memory utilization from queries and database characteristics. An appropriate 
number of cores is determined using the estimated memory usage to avert unnecessary memory 
swapping. We make use of the proposed benchmark toolkit to quantitatively evaluate the performance 
of our novel multicore manager. Our benchmarking tool of EDOM shows that the multicore and CPU 
utilizations have significant impacts on energy efficiency. More importantly, extensive experimental 
results show that our multicore manager in EDOM provides a simple yet powerful solution for improving 
energy efficiency of database applications running on multicore servers. 

© 2017 Elsevier B.V. All rights reserved. 

 
 

 

 

1. Introduction 

 
Because multicore processors have been widely utilized by 

various database applications (see, for example, [1]), evaluating 

energy efficiency of database applications running on multicore 

systems becomes indispensable and strategic components of 

building green data centers. 

High energy efficiency is of importance for reducing operating 

cost of data centers, where database applications are running  

on multicore servers [2]. Traditional energy saving techniques 

for database systems are inadequate for multicore computing. 

To address this problem, we propose in this study a multicore 

manager called EDOM—a simple yet effective way of improving 

energy efficiency of database operations on multicore servers. 
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To investigate energy efficiency of multicore database systems, 

we build an energy-efficiency benchmarking toolkit for modern 

database systems. We show that the toolkit can be applied to 

evaluate the energy efficiency of our proposed EDOM on multicore 

servers. 

The following four motivations make energy-efficiency bench- 

marking tools and multicore managers for database operations de- 

sirable and achievable. 

(1) Rising energy costs in large data centers are driving an agenda 

for energy-efficient database systems. 

(2) The lack of study on the energy efficiency of database 

operations (e.g., cross and outer joins) running on multicore 

servers. 

(3) The pressing need of benchmarking tools for energy-efficient 

database systems. 

(4) The growing importance of improving energy efficiency of 

database systems through multicore management. 

Motivation 1. Energy cost is one of the significant components 

of operational costs in data center environments [3]. Evidence 

shows that a data center containing 1000 racks consumes 10 MW 
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total power per year [4]. A wide variety of techniques were 

proposed to build high performance and energy-efficient clusters 

in data centers, because it is greatly desirable to facilitate energy- 

efficient and environmental friendly clusters [5]. Unfortunately, 

little attention has been paid to energy efficiency improvement of 

database applications, the popularity of which is rapidly growing. 

The lack of energy-efficient database systems motivates us to 

investigate energy efficiency of modern database systems. 

Motivation 2. Computer architecture enters a new era of multi- 

core structures, which become a standard computing platform for a 

wide range of application domains including database systems [6]. 

A key concept of multicore computing lies in multi-threading, 

which concurrently executes multiple threads on multiple cores. 

Although growing attention has been paid to the improvement of 

database energy efficiency [7], little attention has been paid to the 

energy efficiency analysis of database operations on multicore pro- 

cessors widely deployed in modern servers. Hence, we are moti- 

vated to kick off this research by focusing on the analysis of energy 

efficiency of database operations running on multicore servers. 

Motivation 3. To optimize energy efficiency of database 

systems, one has to rely on benchmarks to assess the effectiveness 

of energy-saving schemes deployed in the systems. In a handful 

of prior studies, benchmarks have been developed for energy 

efficiency in data centers. For example, JouleSort is used to evaluate 

the energy efficiency of clusters [8]. The existing benchmarks 

were focused on energy efficiency of cluster computing systems 

rather than database systems. This problem inspires us to develop 

an energy-efficient benchmarking tool for database operations 

processed in multicore systems. 

Motivation 4. The hardware advancement of multicore pro- 

cessors brings new challenges to the design of database systems, 

because a main performance bottleneck shifts from slow I/O ac- 

cess to main memory access [9]. This challenge becomes more pro- 

nounced for data-intensive applications like database processing. 

This challenge motivates us to investigate how to choose an appro- 

priate number of cores to improve energy efficiency of multicore 

database systems by averting the memory bottleneck problem. 

Contributions. We make the following six contributions in this 

study. 

(1) The criteria and challenges of developing energy efficiency 

benchmarks for database operations. 

(2) A toolkit called EDOM facilitating the evaluation and optimiza- 

tion of energy-efficient multicore-based database systems. 

(3) A benchmarking tool in EDOM to evaluate energy-efficient 

database systems. 

(4) An analysis of energy-efficiency impacts of multicore proces- 

sors on database operations. 

(5) An energy-aware multicore manager—a core component in 
EDOM. 

(6) The evaluation of EDOM in terms of energy consumption and 

performance. 

We investigate the criteria as well as challenges of developing 

energy efficiency benchmarks for database operations. Such 

criteria and challenges provide a general guideline for the design 

of our energy-efficiency benchmarking tool. 

We develop a benchmarking toolkit to evaluate energy 

efficiency of database systems. The toolkit is comprised of three 

modules, including a workload generator, a test driver, and a power 

monitor. The workload generator facilitates the configurations 

of the PostgreSQL database system. We leverage this generator 

to set up tables and populate data records into the database.  

The test driver automatically issues operations to the database 

system in accordance to access patterns created by the workload 

generator. The power monitor keeps track of energy efficiency 

and performance of the multicore database system processing the 

operations driven by the test driver. 

We evaluate energy-efficiency impacts of multicore processors 

on database operations. In particular, we apply the benchmarking 

tool to empirically study energy consumption of cross  and  

outer joins running on multi-core processors. Our benchmarking 

experiments show that the multicore and CPU utilizations have 

significant impacts on energy efficiency. For example, we show 

that multicore processors are more energy efficient than the non- 

multicore counterparts; the cross and outer join operations have 

remarkable difference in energy consumption; and the indexing 

technique improves energy efficiency of the database system. 

To optimize the number of cores, we develop a multicore 

manager – EDOM – that makes a good tradeoff between 

energy efficiency and performance in database systems.  The 

key component of EDOM is a memory usage model estimating 

memory utilization from queries and database characteristics. An 

appropriate number of cores is determined using the estimated 

memory usage to alleviate the memory swapping problem, which 

is a main driver for high energy cost in multicore database systems. 

We make use of the benchmarking toolkit to evaluate EDOM 

in terms of energy consumption and performance. Our extensive 

experiments show that EDOM provides a simple yet powerful 

solution for improving energy efficiency of database applications 

running on multicore servers. 

Paper organization. The rest of the paper is organized as 

follows. Section 2 summarizes the related work. In Section 3,   

the criteria and challenges in the development of our energy 

efficiency benchmark are discussed. The design of energy- 

efficiency benchmark as well as implementation issues are stated 

in Section 4. In Section 5, the multicore manager is proposed  

and the algorithm of the multicore manager is stated. Section 6 

provides an investigation in operations regarding energy and 

performance efficiency, and an in depth analysis is presented 

after that. Finally, Section 7 shows conclusions including the 

contributions of this research along with our future research 

directions. 

 
2. Related work 

 
Energy-efficient clusters are becoming increasingly popular 

in large-scale data centers [10] to reduce high operational cost 

caused by huge energy consumption. Recent studies proposed a 

wide range of energy-saving techniques in the realm of cluster 

computing. For example, Zong et al. proposed two energy-efficient 

duplication-based scheduling algorithms called EAD and PEBD 

to achieve the goal of optimizing both performance and energy 

efficiency in clusters [5]. Rather than investigating energy-efficient 

clusters, in this study we focus on energy-efficient database 

management systems. 

There is a demanding need to develop energy-efficient database 

management systems (DBMS). Evidence shows that a variety   

of factors affect the energy-efficiency of DMBS. For example, 

Tsirogiannis et al. analyzed the energy efficiency of processors 

in a database server, discovering that energy consumed  by  

CPUs does not vary linearly with CPU utilization under database 

workload [11]. Lang et al. analyzed a number of important 

parameters related to the design of energy-efficient DBMS [7]. A 

framework built by Lang et al. optimizes queries by considering 

both performance and energy consumption as optimization 

criteria [7]. 

Increasing attention has been paid to making good tradeoffs 

between energy efficiency and performance in the field of DBMS. 

Although energy saving and high performance are two conflicting 

design goals, prior findings indicate that a few energy-efficient 

configurations and schemes may deliver good  performance  

and achieve high energy efficiency [11]. Schall and Härder 

developed a distributed DBMS – WattDB – to make dynamical 
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configurations to satisfy performance demands while conserving 

energy consumption on clusters [12]. Xu et al. implemented 

PET—an energy-aware query optimization framework that is an 

extension of the PostgreSQL kernel [13]. PET makes use of its 

power cost estimation module and plan evaluation model to 

allow database system to make good tradeoffs between energy 

efficiency and performance. Our EDOM is distinctly different from 

the aforementioned approach in that EDOM aims to conserve 

energy cost of DBMS running on multicore servers while achieving 

high query performance. 

Recently, energy consumption models have been developed for 

computing systems [14]. A few models were focused on projecting 

energy consumption of disk systems using CPU demands. The 

energy consumption models for storage systems are inadequate for 

DBMS. Other intriguing high-level energy models were proposed 

for DBMS [15]. For instance, by focusing on the energy cost 

estimation of query plans, Xu and Tu build a series of models for 

energy estimation of individual relational operators based on their 

resource consumption patterns [16]. Different from the existing 

energy consumption models, our models built in EDOM pay 

attention to modeling energy consumption of DBMS operations. 

 
3. Criteria and challenges 

 
Noticing that there is the lack of simple yet efficient bench- 

marks for energy-aware database systems, we start this study by 

focusing on the criteria and challenges of the development of en- 

ergy efficiency benchmarks in the realm of database. The criteria 

presented in this section set the preliminary principles by which 

our energy efficiency benchmark is established. 

Existing energy management studies (e.g., [7]) summarized in 

Section 2 paid attention to the energy-efficiency evaluation and 

comparison of energy-efficient database management systems. In 

contrast, the first part of our study is focused on energy-efficiency 

benchmarking tools that address issues related to energy profiling, 

energy efficiency, and continuously changing performance. 

Energy efficiency profiling. Ideally, an energy-efficiency 

benchmark should offer us an intuitively profiling approach by 

which we can directly test, measure, and analyze a database 

system’s energy efficiency [17]. Our tool aims to show that 

multicore processors, CPU utilization, memory usage, and hard 

disks affect energy consumption when the database system 

executes queries. 

Energy-efficiency profiling benchmarks provide two remark- 

able benefits. First of all, one can take full advantage of energy- 

efficiency profiling to establish an energy-efficiency model which 

mathematically demonstrates the correlations among multicore 

processors, CPU utilization, memory usage, and indexing [18]. 

Secondly, energy-efficiency profiling provides us with the ability 

to facilitate an effective estimation of new techniques deployed to 

improve the energy-efficiency of database systems. 

In short, energy-efficiency benchmarks make it possible to 

investigate energy cost caused by hardware (e.g., multicore 

processors, CPU utilization, and memory usage) and software 

components (e.g., indexing, query types, optimization strategies). 

Energy consumption measurement. The goal of our bench- 

marking tool is to measure real-world database systems deployed 

in modern data centers. There are three salient features of our tool. 

First, to fulfill testing needs, one can configure workload condi- 

tions by varying table size and choosing indexing schemes. Sec- 

ond, the test-driver tailored for a database system is able to choose 

the query type, amount of execution time, and CPU utilization rate. 

Third, our tool offers a simple yet efficient way of testing energy- 

efficient database systems. It is straightforward to apply the tool 

to automatically and concurrently measure and record both the 

power consumption and performance. 

 

 
 

Fig. 1. The framework of the energy efficiency benchmarking toolkit, which 

consists of a configuration module, a test driver, and a power-performance monitor. 

 

Performance profiling. Measuring database system perfor- 

mance such as execution time, response time, and throughput 

should be taken into account in energy-efficiency benchmarks. 

On one hand, reducing the energy cost in modern data centers  

is important and indispensable [19]; on the other hand, improv- 

ing system performance is a crucial aspect of metrics to evalu- 

ate overall database efficiency [20]. In a vast majority of cases, 

system administrators have to make tradeoffs between energy 

efficiency and performance. For certain applications, it is not 

worthwhile to conserve energy at the cost of a significant perfor- 

mance degradation [21]. An energy-efficiency benchmark should 

be able to measure energy efficiency in conjunction with perfor- 

mance of database systems. An ideal energy-efficiency benchmark- 

ing tool offers constructive guideline for system administrators to 

improve the energy efficiency while maintaining database perfor- 

mance in large data centers. 

Optimization for multicore-based database systems. It is 

challenging to optimize database systems running on multicore 

processors [22]. This challenge becomes even more daunting when 

it comes to making energy cost and performance tradeoffs for 

database systems running on multicore servers. We pay attention 

to multicore management to optimize energy efficiency of cross 

join and outer join operations running in multicore systems. We 

design a multicore manager to optimize the number of cores in 

order to make good tradeoffs between performance and energy 

efficiency in multicore database servers. 

The challenge of developing the multicore manager lies in a 

memory usage model [23], which is responsible for estimating 

memory utilization using queries and database characteristics 

like table and record size. The multicore manager decides how 

many cores should be allocated to process database operations 

without giving rise to the memory swapping problem that causes 

high energy consumption [24]. The multicore manager and the 

benchmarking tool should be seamlessly integrated into the 

EDOM system for energy-efficient database systems. As such, we 

can apply the benchmark toolkit to quantitatively evaluate the 

performance of the multicore manager. 

 
4. The energy efficiency benchmark 

In this section, we present the design issues of the energy 

efficiency benchmark toolkit for database systems. Our benchmark 

tool plotted in Fig. 1 consists of three components, namely, the 

configuration module, the test driver, and the power-performance 

monitor. 



Y. Zhou et al. / Future Generation Computer Systems 105 (2020) 1002–1015 1005 
 

− 

 
Table 1 

Testbed configurations. 

 

 

OptiPlex 3020 MT/SFF technical specifications 

 
Table 2 

Power meter specifications. 

 

 

TS-836A power meter specifications 

CPU Intel 4th Core i5-4570 Quad Core@3.20 GHz 

Memory 4 GB Non-ECC 1600 MHz DDR3 SDRAM 

Hard drives Seagate KC47-500 GB SATA (7.200 RPM) 

Operating system CentOS 6.5 (Final) 

 
 

Measurement of consumption 0.00–9999.99 kWh 

Voltage display range 0–9999 V 

Current range 0.000–15.000 A 

Frequency display 0–9999 Hz 

 

Database system 
Linux kernel 2.6.32 431.el6.x8664 

PostgreSQL 9.3.5 

Wattage display (Watts) 0–1800 W 
 

 

 
 

 

4.1. Simplicity of EDOM toolkit 

The module-oriented design approach gives rise to the sim- 
plicity of our EDOM toolkit. To make our EDOM toolkit easy and 
portable to use, we group the functions into three modules, which 
consist of related source code. Furthermore, to reduce the overhead 
of the energy consumption and computing source, the test driver 
and power-performance monitor (see Fig. 1) are implemented by 
a highly light-weighted scripting language (i.e., Python). In addi- 
tion, the configuration module is comprised of three submodules, 
namely, query type generator, CPU utilization configuration, and 
multi-core utilization configuration. The configuration module is 
launched only once to set up the test driver before EDOM is kicking 
off to evaluate and optimize the of energy-efficiency of database 
systems. After the configuration is completed, the module requests 
no system resource. 

 

4.2. Configuration module 

The responsibility of the workload generator is three-fold. First, 
it configures the table size of tested database according to an 

experiment design. Second, the module can enable or disable 
indexing features during the course of energy efficiency testing. 
Last, the module provides a straightforward way of managing data 
of tested tables in a database system. The configuration module 
automatically creates and setups a large amount of test data  
imported to the database system prior to a test. The configuration 
module also adjusts field types and sizes with accordance to 
specific test requirements. 

 

4.3. Test driver 

The test driver generates a set of queries issued to the tested 
database system. This module contains three parts: the query 
type generator, the CPU utilization controller, and the multicore 
controller. The query type generator manipulates the types of 
performed queries in the PostgreSQL database. The CPU utilization 
controller configures the CPU utilization of a server processing all 
the issued queries. For example, this controller can set the CPU 
utilization to four different levels (i.e., 25%, 50%, 75%, and 100%). 
The multicore controller is in charge of setting the number of cores 
running queries. For instance, in our experiments, the number of 
cores can be flexibly configured to a number anywhere between 
one and four. 

4.4. CentOS and PostgreSQL 

We run the PostgreSQL database system on CentOS. PostgreSQL, 
an object-relational database management system with high ex- 
tensibility, securely stores and retrieves data for other software ap- 
plications [25]. ProstgreSQL is capable of processing workloads of 
small-scale applications as well as large Web-based applications. 
We maintain a dedicated computing environment to test Post- 
greSQL, because the focus of our experiments is to measure energy 
consumption of database operations. Query requests are issued by 
the light-weight test driver, the energy consumption of which is ig- 
nored in our experiments. Table 1 shows the database server spec- 
ification. 

4.5. Power efficiency and performance monitor 

 

The power-performance monitoring module is responsible 

for measuring and collecting metrics like power consumption, 

processing time, CPU utilization, and memory usage [26]. We apply 

an electricity meter to measure power consumption of a power 

outlet socket, to which our server is connected. To improve the 

measurement accuracy, we connect the display into another power 

socket, ensuring that the measured energy is only consumed by 

the PostgreSQL database server. The power meter employed in 

this study is TS-836A Plug Energy Watt Voltage Amps Meter (see 

Table 2 for details). In addition to energy consumption, the other 

measured metrics such as processing time and memory usage are 

automatically collected by a light-weight process implemented in 

a Python script. 

 
5. The multicore manager 

 
In this section, we propose a multicore manager—a core 

component of EDOM. The goal of the multicore manager is to make 

a good tradeoff between energy efficiency and performance in 

database systems. This goal is achieved by alleviating the memory 

swapping problem through the decisions on the most appropriate 

number of cores. We design a memory usage estimator to provide a 

guideline for determining the number of cores (see Section 5.1). We 

show the algorithm of the multicore manager in Section 5.2. The 

energy efficiency of a database system governed by the multicore 

manager is evaluated in Section 5.3. 

 

5.1. Memory usage estimator 

 

The optimal number of cores utilized in a multicore-based 

database system largely depends on workload conditions (e.g., 

query types, data size, and processing time). The workload 

conditions exhibit various memory-usage characteristics, which 

in turn affect the optimal number of cores employed in the 

system. This observation motivates us to develop a memory usage 

estimator to provide a general guideline for determining the 

number of cores. 

In modern database systems, memory resources become a vital 

component affecting performance and energy efficiency [27]. This 

argument is especially true when it comes to big data applications. 

When a database system has insufficient free memory, then some 

memory resources must be freed by writing data back to disks [28]. 

Our empirical study reveals that the memory usage imposes a 

significant impact on the energy efficiency of database systems. 

For example, Figs. 2, 5(a), and 6(a) indicate that heavily utilized 

main memory adversely slows downs the performance of multiple 

cores; as  a  result,  an  increasing  number  of  queries  cannot 

be processed in a timely manner, thereby pushing the power 

consumption at an unacceptably high level. Please refer to 

Section 6.1.1 for a detailed analysis on the impact of memory 

utilization on system energy efficiency. 

The multicore manager aims to decide an optimal number of 

cores that meets the resource needs of heavy workload, where 

main memory becomes scarce resources. Recognizing that the 

mailto:Core@3.20
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Fig. 2. The impact of the number of cores on memory usage of a multicore-based 

database system. 

 

 

Fig. 3. The framework of the memory usage estimator. 

 
optimization of number of cores relies on memory utilization, we 

develop a memory usage estimating module to predict memory 

utilization under any workload modeled in forms of query types 

and the other database characteristics. And we designed an 

effective algorithm to calculate the most appropriate number of 

cores for running operations under a limited memory hardware 

situation. 

To address the problem of heavy workload coupled with scarce 

memory resources, the memory usage estimator estimates the 

memory usage according to the following four operation factors. 

• database query type, 

• the number of tables, 

• the number of records, and 

• the record size. 

Fig. 3 depicts the architecture of the multicore manager, which 

consists of five key components. Given the number of tables, the 

number of records in the table, and record size, the memory 

usage estimator applies a mathematical model to project memory 

usage, which is used in the multicore calculator to determine  

the number of the multicores. The multicore manager algorithm 

detailed in Section 5.2 incorporates a multicore calculator (see 

Fig. 3) to govern the process of choosing an approximate number of 

cores. The query profiling in the multicore manager is designed to 

acquire the database workload characteristics such as the numbers 

of tables and records. The multicore controller obtaining the 

estimated number of cores is in charge of setting up the number 

of cores that execute database queries in the system. 

5.2. Algorithm design 

In this section, we propose the algorithm of the multicore 
manager to optimize the number of cores for given workload 
conditions. The primary function of the multicore manager is to 
make a good tradeoff between energy efficiency and performance 
in database systems running on multicore servers. 

Recall that the memory usage estimator (see Section 5.1) pre- 
dicts memory utilization from queries and database characteris- 
tics. An appropriate number of cores is determined by Algorithm 
2, which takes an estimated memory usage as the input to allevi- 
ate the memory swapping problem. 

 

Algorithm 1 Multicore Manager Algorithm: optimal() 
 

 

Input: 

number of tables t 

number of records r 

record size s 

Output: 

number of cores Copt 

1: Cmin 1; 

2:  Cmax MAX _NUM_CORES; 

3: core_search(Cmin, Cmax, t, r, s); 

4: return Copt ; 
 

 

 

The multicore manager algorithm (see Algorithm 1) outlined 
above initializes the minimal and maximal number of cores to Cmin 
and Cmax, respectively (see Lines 1–2 in Algorithm 1). Next, the 
multicore manager algorithm invokes the binary search algorithm 
(see Algorithm 2) to recursively calculate the number of cores 
under a workload condition expressed in the form of the number 
of tables t, the number of records r , and the number of record size 

s (see Line 3 in Algorithm 1). 
 

Algorithm 2 Recursive Core Search: core_search() 
 

 

Input: 

Cmin - Minimal number of cores 

Cmax - Maximal number of cores 

number of tables t 

number of records r 

record size s 

Output: 

number of cores Copt 

1:  Copt  =    Cmin+
2

Cmax 

2: if (memoryestimated(t, r, s, Copt ) < memory) then 

return core_search(Copt , Cmax, t, r, s); 

3: else if memoryestimated(t, r, s, Copt ) > memory then 

return core_search(Cmin, Copt , t, r, s); 

4: else 

return Copt ; 

5: end if 
 

 

 

The binary core search algorithm is recursive in nature. In each 
recursion, the algorithm takes the following two main steps to 
obtain the appropriate number of cores. 

Step 1. The optimal number of core Copt is set to the midpoint 
between the minimal (i.e., Cmin) and maximal (i.e., Cmax) 
numbers of cores (see Line 1). 
Step 2. Using workload condition (i.e., t, r , s) and the tentative 
optimal number of cores Copt , the memory usage estimator 

predicts the memory load (i.e., memoryestimated(t, r, s, Copt )) (see 
Line 2 in Algorithm 2). 
Step 3. If the projected memory load is smaller than the 
available memory capacity, then the optimal number of cores 

is increased by recursively calling the core_search() algorithm, 
where the searching range is between Copt and Cmax (see Line 2 
in Algorithm 2). Otherwise, when the estimated memory load 

exceeds the available memory size, core_search() is recursively 
invoked to update the optimal core number by searching a 
range between Cmin and Copt (see Line 3 in Algorithm 2). 

• 

• 

• 
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Fig. 4. The validation of energy consumption governed by our multicore manager. 

 
We demonstrate in the next subsection (i.e., Section 5.3) that 

an appropriate number of cores determined using the multicore 

manager algorithm helps in alleviating the serious memory 

swapping problem—a main driver for high energy cost in multicore 

database systems. 

 
5.3. Energy efficiency of the multicore manager 

 
We design a group of experiments to study the energy efficiency 

of the multicore manager. We increase the table size from 6    105 

records to 1.4   106 records with an increment of 2 105 records. 

We evaluate the power consumption of a database system, where 

the number of cores is dynamically controlled by our multicore 

manager (see Algorithm 1). We compare our algorithm with two 

baseline solutions, where the number of cores is fixed to one core 

and four cores. 

Fig. 4 shows the energy consumption of the multicore-based 

database system governed by our multicore manager; Fig. 4 also 

illustrates the energy consumption in the one-core and four-core 

cases. 

The results indicate that as the table size is increased from      

6 × 105 to 1.2 × 106 records, the optimal number of cores in terms 

of energy efficiency is four; in such a relatively light load, the one- 

core manager exhibits the worst energy efficiency. The evidence 

shows that our multicore manager chooses the optimal number of 

cores to reduce energy consumption under low and medium-low 

workload conditions. 

When the table size is very large (e.g., 1.4 106 records), the 

energy consumption of the four-core case dramatically increases 

due to the memory-swapping problem (see also Fig. 4). Not 

surprisingly, our multicore manager judiciously downgrades the 

number of cores to three, which significantly conserves energy 

consumption compared with the four-core case. Moreover, the 

results demonstrate that our multicore manager is also more 

energy efficient than the one-core counterpart. We observe from 

this group of experiments that the multicore manager is capable 

of determining an optimal number of cores under relatively heavy 

workload (e.g., table size larger than 1.4 106 records). 

We conclude that the multicore manager in our EDOM is 

conducive to deciding the number of cores needed to optimize the 

energy efficiency of multicore-based database systems where main 

memory becomes a scarce resource. 

 
6. Experimental results 

 
We have conducted extensive experiments to demonstrate 

the usage and effectiveness of EDOM. We apply the developed 

EDOM to evaluate the energy efficiency and performance of a 

multicore-based database server system. In this part of the study, 

we first investigate the impacts of CPU utilization and multicore 

on the database system. Then, we compare the energy efficiency 

of different database operations. Finally, we demonstrate how the 

indexing technique affects power consumption and performance 

of the database system. 

 
6.1. CPU utilization and multicores 

 

In the first group  of  experiments,  we  focus  on  the  impacts  

of  CPU  utilization  and  multicores  on  the   energy   efficiency 

and performance of the tested database system. To make fair 

comparison, we keep the number of queries executed by the  

system a constant under various hardware configurations. By 

doing so, we demonstrate how multicores under a wide range of 

configurations affect the database system. 

 

 

 

 

 
 

    

(a) The impact of multicores on power consumption with the Outer-Join 

operation. 

(b) The impact of CPU utilization on power consumption with the Outer-Join 

operation. 
 

Fig. 5.   Power consumption profiling of query: Outer-Join. 
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(a) The impact of Multicores on power consumption with the Cross-Join 

operation. 

(b) The impact of CPU utilization on power consumption with the Cross-Join 

operation. 
 

Fig. 6.   Power consumption profiling of query: Cross-Join. 
 

6.1.1. Energy efficiency of the outer-join operation 

In this experiment, we issue a fixed number of outer-join 

queries while changing the database table sizes and number of 

cores in the system. Fig. 5(a) reveals that regardless of the number 

of cores, energy consumption of the database system goes up when 

the table size increases. This trend is reasonable, because the query 

processing time is enlarged when the data volume increases with 

the increasing table size. The large processing time gives rise to the 

high energy consumption. 

Now we compare the three curves plotted in Fig. 5(a). When the 

table size is smaller than 1.4 106 records, increasing the number 

of cores in the database system significantly reduces the energy 

consumption caused by processing the outer-join queries. When 

we add extra cores into the database system, the query processing 

time is noticeably shortened, which in turn conserves energy. 

Interestingly, the trend is inapplicable for cases where the table 

size becomes very large. For example, the energy consumption of 

the four-core system is much larger than the two-core counterpart 

when the table size is 1.6    106  records. The four-core system    

is unable to conserve energy under the large-table-size condition, 

because the main memory requirement imposed by the four cores 

exceed the available memory (i.e., 4 GB) in the tested system. We 

conclude that increasing the number of cores is an effective way to 

save energy of a database system, provided that the system’s main 

memory resource can meet the multicore system’s needs. 

Fig. 5(b) indicates that given a fixed amount of outer-join 

queries, executed under different CPU utilization within one core, 

the most energy efficient condition is the 100% CPU utilization. And 

as the table size increases, the more CPU utilization it takes the 

slower the energy consumption grows. The energy consumption  of 

100% CPU utilization at the point of table size 2million is even 37% 

of the energy consumption of 25% CPU utilization. The reason is 

the less CPU utilization used, the more idle status consumption is 

taken into account of the whole energy consumption. 

We are in a position to evaluate the impacts of CPU utilization 

on the energy consumption of the database system processing 

outer-join queries. We test a total of four cases, in each of which 

the CPU utilization is fixed. Because the focus of this experiment 

is CPU utilization, we set the number of cores to one, avoiding any 

side effect incurred by the multicores. 
The experimental results demonstrate that the most energy- 

efficient case is the one when the CPU utilization is set to 100%. For 

instance, when the table size is configured to 2.0 × 106 records, 

the 100%-CPU-utilization case reduces the energy consumption of 

the 25%-CPU-utilization case by more than 63%. Such a significant 

energy saving is expected, and the reason is two-fold. First, the 

25%-CPU-utilization case exhibits a large number of small idling 

time periods. Second, the database system is unable to keep the 

CPU in the low-power mode to conserve energy during these short 

idling time intervals. 

We also observe that regardless of the CPU utilization value, a 

large table size leads to high energy consumption. This observation 

is consistent with that drawn from Fig. 5(a). 

 

6.1.2. Energy efficiency of the cross-join operation 

In this set of experiments, we evaluate the energy efficiency 

of the database system using cross-join queries. Similar to the 

previous experiments discussed in Section 6.1.1, in this group of 

experiments a fixed number of cross-join queries are executed 

while varying the table size and number of multicores. 

We observe that various types of database operations have 

different impacts on energy efficiency. Nevertheless, the power 

consumption trend shown in Fig. 6(a) is similar to that of Fig. 5(a); 

thus, regardless of the number of cores, energy consumption of   

the database system goes up when the table size increases. This      

is because increasing table size enlarges data volume and its 

processing time, which in turn consume more energy. 

The comparison of the two curves in Fig. 6(a) reveals that in the 

case where the table size is set to 1800, an extra core dramatically 

reduces the energy consumption. This observation is consistent 

with the one drawn from Fig. 5(a). 

The energy consumption of the three-core and four-core cases 

are not plotted in Fig. 6(a), because the system’s main memory 

is so heavily utilized that multiple cores are unable to process 

any query. For example, the three-core system exhibits excessive 

long response times even when the table size is as small as 1000. 

We conclude that the memory resource becomes a performance 

bottleneck of the multicore-based database system. Moreover, 

compared with the outer-join operations, the energy behavior of 

cross-join queries are more sensitive to main memory capacity of 

the system. 

Fig. 6(b) shares similar energy consumption patterns  as those  

of Fig. 5(b) (Section 6.1.1). Thus, the system’s energy efficiency can 

be significantly improved by pushing CPU utilization up to 100%. 

Fig. 6(b) confirms a trend illustrated in Fig. 6(a) that increasing 

table size leads to a high energy-consumption level. Compared 
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(a) The impact of multicores on time consumption with the Outer-Join operation. (b) The impact of CPU utilization on time consumption with the Outer-Join 

operation. 
 

   

(c) The impact of multicores on memory usage with the Outer-Join operation. (d) The impact of CPU utilization on memory usage with the Outer-Join 

operation. 

 
Fig. 7. Performance profiling of Outer-Join under different CPU utilization and multicores. 

 

with the 100%-CPU-utilization case, the energy consumption of the 

25%-CPU-utilization case is more sensitive to the table size. In other 

words, when we enlarge the table size in the 25%-CPU-utilization 

case, the system’s energy consumption increases faster than the 

100%-CPU-utilization case. 

If the table size is smaller than 1600, increasing the CPU 

utilization from 75% up to 100% has a marginal energy-efficiency 

improvement. On the other hand, when it comes to a large table 

size (e.g., 1600–2400), a CPU-utilization increase of 25% up from 

75% makes a noticeable reduction in power consumption. 

An insightful conclusion drawn from this group of experiments 

is that we can improve the energy efficiency of database systems 

by making a full usage of multicore processors in servers. 

 
6.1.3. Performance of the outer-join operation 

Now we study performance of the outer-join  operations.  

Fig. 7(a) shows the performance as a function of the number      

of table size in the one-core,  two-core,  and  four-core  cases. 

The results reveal that the outer-join operations exhibit better 

performance in the four-core configuration than in the other two 

cases. The four cores reduce the execution time of performing the 

outer-join queries, thereby improving system energy efficiency 

(see also Fig. 5(a)). We observe that in the four-core case, the 

execution time sharply climbs up when the table size exceeds 

1.4 million. Such a performance degradation is attributed to the 

problem that the main memory capacity is unable to meet the 

needs of the large table size. 

Fig. 7(b) illustrates the impact of CPU utilization on the 

performance of the system running outer-join operations. In this 

group of experiments, we vary the table size from 0.02 to 2.0 

million; we also tested four cases where the  CPU  utilization  is 

kept at 100%, 75%, 50%, and 25%, respectively. Fig. 7(b) shows that 

increasing CPU utilization shortens the time spent in performing 

the outer-join operations. This performance trend becomes more 

pronounced when the table size is large. The 100%-CPU-utilization 

case outperforms the other three cases, because CPU idle times      

in the other three scenarios slow down the query process 

performance. 

We investigate the memory usage under various table sizes and 

number of cores. Fig. 7(c) indicates that regardless of the number 

of cores, increasing the table size slightly drives the memory usage 

up. Compared with the memory usage in the one-core and two- 

core systems, memory usage of the four-core system is more 

sensitive to the page size. For example, when we increase the 
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(a) The impact of multicores on time consumption 

with the Cross-Join operation. 

(b) The impact of CPU utilization on time 

consumption with the Cross-Join operation. 

(c) The impact of multicores on memory usage with 

the Cross-Join operation. 
 

Fig. 8. Performance profiling of Cross-Join under different CPU utilization and multicores. 

 

 

  

(a) Power consumption comparison between Outer-Join and Cross-Join in the 

single-core case. 

(b) Power consumption comparison between Outer-Join and Cross-Join in the 

two-core case. 
 

Fig. 9. Power consumption comparison between outer-join and cross-join in multicore systems. 
 

table size from 0.4 to 1.2 millions, the memory usage of the four- 

core system increases from 63% to 92%, whereas the memory 

usage of the single core system only slightly goes up to 26% 

from 15%. The four-core system’s query processing performance 

is significantly deteriorated when the memory usage is very high, 

which represents a high demand on memory resources. 

Fig. 7(d) reveals the impact of CPU utilization on system 

memory usage. The experimental results suggest that the CPU 

utilization has no noticeable impact on memory usage. We 

conclude that a database system’s memory usage largely depends 

on the table size and the number of cores in the system. 

 
6.1.4. Performance of the cross-join operation 

In this group of experiments, we evaluate the performance  

of cross-join operations running on multi-core systems. Fig. 8(a) 

shows a similar performance trend as that plotted in Fig. 7(a). 

We only show the results of the single-core and two-core cases, 

because the query processing time of the four-core system is 

extremely long due to the high memory usage. The execution time 

of the cross-join operations is significantly reduced by adding an 

extra core into the database system. In addition, the execution time 

of the two-core system is less sensitive to the table size than that 

of the single-core system, thanks to high performance offered by 

the two cores. 

Fig. 8(b) shows the impact of CPU  utilization  on  the  cross-  

join performance. A high CPU utilization helps in boosting the 

processing performance of cross-join queries. This performance 

trend is consistent with that observed from Fig. 7(b). 

Fig. 8(c) reveals the memory usage of cross-join operations 

under various table size and the number of cores. Fig. 8(c)  

shows that the memory usage increases almost linearly with the 

increasing table size. We observe that compared with the memory 

usage of the outer-join operations, the memory usage of cross-join 

operations is more sensitive to the table size (see also Fig. 7(c) and 

Fig. 8(c)). More detailed comparison between outer-join and cross- 

join operations can be found in Section 6.2. 

 

6.2. Outer-join vs. cross-join operations 

 

Now we compare the energy behaviors between outer-join and 

cross-join operations in multicore database systems. 

 

6.2.1. Impact of multicores on outer-join and cross-join queries 

We pay particular attention to the impact of multicores on the 

outer-join and cross-join queries under the changing table size. 

The results plotted in Fig. 9(a) and (b) indicate that the query 

types have significant impacts on energy efficiency. For example, 

the energy consumption of outer-join is only 0.047% and 0.078% 

of that of cross-join when table size is set to 2400 and 1800, 

respectively (see Fig. 9(a) and (b)). Thus, the energy consumption of 

cross-join queries is 1000–10 000 times higher than that of outer- 

join queries. This energy consumption trend is attributed to two 
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(a) Power consumption comparison between Outer-join and Cross-join in the 25% 

CPU utilization case. 
 

 

 

(c) Power consumption comparison between Outer-join and Cross-join in the 

75% CPU utilization case. 

(b) Power consumption comparison between Outer-join and Cross-join in the 

50% CPU utilization case. 
 

 

 

(d) Power consumption comparison between Outer-join and Cross-join in the 

100% CPU utilization case. 
 

Fig. 10. Energy efficiency impact of outer-join and cross-join operations on multicore systems under various CPU utilization. 

 

reasons. First, cross-join queries give rise to a huge amount of data 

loaded from disks into main memory. Second, the database system 

allocates a significant portion of CPU resources to process cross- 

join queries. 

We observe from Fig. 9(a) that in the single-core case, outer-

join queries are less sensitive to table  size  than  cross-  join 

queries. Compared with outer-join operations, cross-join’s 

energy consumption can be substantially reduced by applying 

optimization algorithms (e.g., relational optimizer) to maintain 

small query sizes in multicore-based database systems. Unlike 

cross-join queries, outer-join queries may enjoy marginal benefit 

from the optimization algorithms. 

Interestingly, Fig. 9(b) shows that in the two-core case, cross- 

join queries become less sensitive to table size than outer-join 

queries. Nevertheless, the wide energy-consumption gap between 

outer-join and cross-join is alleviated by increasing the number of 

cores from one to two. There is no doubt that employing multiple 

cores and reducing query size are two efficient ways of narrowing 

the gap between the outer-join and cross join operations. 

 
6.2.2. Impact of CPU utilization on outer-join and cross-join queries 

Now we compare the difference between the outer-join and 

cross join queries from the perspectives of CPU utilization impact 

on energy consumption. Again, we increase the table size from 
1000 to 2400 records with an increment of 200. Fig. 10 reveals 

that regardless of CPU utilization, the cross-join query is a whole 
lot more energy expensive than the outer-join one. This trend is 
consistent with the results plotted in Fig. 9. 

An intriguing observation drawn from Fig. 10 is that the cross- 
join operation’s energy-consumption increasing ratio is more 
sensitive to CPU utilization and table size than that of the outer-join 
one. For example, let us consider a scenario where the table size is 
gradually increased from 1000 to 2400. In the 25%-CPU-utilization 
case, the energy consumption of outer-join query increased by 
approximately 50%; in the 100%-CPU-utilization case, the outer- 
join’s energy consumption is increased by more than 122%. In the 
25%-CPU-utilization and 100%-CPU-utilization cases, the cross-join 
operation’s energy consumption is increased by 308% and 337%, 
respectively. 

The implication of the results shown in Fig. 10 is that under 
heavy CPU utilization, reducing table size becomes a feasible 
approach to noticeably conserving energy consumption of the 
cross-join operation. 

 

6.2.3. Energy efficiency vs. performance impacts 
In this group of experiments, we compare the performance in 

terms of response time between outer-join and cross-join queries 
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(a) Response time comparison between Outer-join and Cross-join queries in the 

multicore system when CPU utilization is 25%. 
 

 

 

(c) Response time comparison between Outer-join and Cross-join queries in the 

multicore system when CPU utilization is 75%. 

(b) Response time comparison between Outer-join and Cross-join queries in the 

multicore system when CPU utilization is 50%. 
 

 
 

 

(d) Response time comparison between Outer-join and Cross-join queries in 

the multicore system when CPU utilization is 100%. 

 

Fig. 11. Performance comparison of outer-join and cross-join queries in the multicore system under various CPU utilization. 

 

under various CPU workload. The performance trend observed 

in this set of experiments may shed some light on the energy- 

consumption comparisons between the two query types (see 

Sections 6.2.1 and 6.2.2). 

Like the configuration of the previous experiment, the table size 

is increased from 1000 to 2400 records with an increment of 200; 

the CPU utilization is set to 25%, 50%, 75%, and 100%, respectively. 

Fig. 11 shows that the cross-join query’s response time is almost 

222 times longer than that of the outer-join one when the table size 

and CPU utilization are set to 1600 records and 75%, respectively. 

Not surprisingly, the performance trends revealed in Fig. 11 are 

similar to the energy-efficiency trends observed in Fig. 11. We 

conclude that the energy consumption of the two query types 

are strongly correlated to their response time. The experimental 

results suggest that any algorithm aiming to shorten the response 

times of the queries is likely to improve the energy efficiency of the 

queries running in multicore systems. 

The results from this group of experiments also confirm that 

under high CPU workload (see, for example, Fig. 11(d)), reducing 

table size can significantly shorten the response times of the 

queries. This conclusion is especially true for the outer-join 

operation. 

Fig. 12 shows the performance comparisons between the outer- 

join and cross-join queries under the single-core and double-core 

cases. Very interestingly, we observe that the speedup efficiency of 

cross-join is higher than that of outer-join. For example, when the 

table size is set to 1000, the speedups of cross-join and outer-join 

are 1.92 and 1.51. Overall, the speedup efficiency of both outer-join 

and cross-join is improved with the increasing table size. 

Fig. 13 illustrates the comparisons between outer-join and 

cross-join operations from the perspective of memory usage. The 

results show that compared with outer-join’s memory usage, 

cross-join’s memory usage is more sensitive to table size. Such a 

trend becomes more pronounced when we increase the number of 

cores from one (see Fig. 13(a)) to two (see Fig. 13(b)). For instance, 

Fig. 13(b) reveals that the memory usage of cross-join goes up from 

42% to almost 100% when the table size is increased from 1000  

to 1800, whereas the outer-join operation’s memory usage stays 

fairly flat regardless of the table size and the number of cores. 

 
6.3. The indexing technique 

 

Now we investigate the indexing technique’s impacts on the 

energy behaviors of the outer-join queries. We only demonstrate 
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(a) Execution time comparison between Outer-Join 

and Cross-Join queries in single-core case. 

(b) Execution time comparison between Outer-Join and 

Cross-Join queries in two-core case. 

(c) Speedup comparison between Outer-Join and 

Cross-Join queries. 
 

Fig. 12. Comparison of execution time between outer-join and cross-join under multicore situations. 

 

 

  

(a) Memory usage comparison between Outer-Join and Cross-Join queries in 

single-core case. 

(b) Memory usage comparison between Outer-Join and Cross-Join queries in 

two-core case. 
 

Fig. 13. Impacts of outer-join and cross-join operations on the memory usage of multicore systems. 

 

   
(a) Power consumption comparison between 

Cross-Join with indexing and Cross-Join without 

indexing. 

(b) Execution time comparison between Cross-Join 

with indexing and Cross-Join without indexing. 

(c) Memory usage comparison between Cross-Join 

with indexing and Cross-Join without indexing. 

 

Fig. 14. Impacts of the indexing technique on energy efficiency of the outer-join and cross-join operations running in multicore systems. 

 

the power consumption of outer-join, because cross-join’s power 
consumption has a similar trend. In this group of experiments, we 

vary the table size from 1.0 106 to 2.0 106. 

Fig. 14 intuitively shows that indexing substantially affects 

the outer-join operation’s power consumption, performance, and 

memory usage. The energy trend plotted in Fig. 14(a) is similar 

to the performance trend illustrated in Fig. 14(b), implying that 

the performance and energy efficiency of outer-join have a tight 

correlation. The experimental results suggest that when it comes 

to indexing, there is no need to make tradeoff between energy 

efficiency and performance. 

Fig. 14(a) and (b) indicate that indexing not only boosts outer- 

join performance, but also makes outer-join more energy efficient. 

The energy efficiency and performance improvements offered by 
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indexing become more significant when the table size is growing 

up. For example, when the table size is small, the indexing scheme 

has a limited impact on power consumption; indexing only man- 

ages to reduce the power consumption by 4.8%. If we change the 

table size to 1.4 106, indexing is able to offer an energy saving of 

23.9%. 

We observe from Fig. 14(c) that the indexing technique 

significantly reduces the memory usage of the outer-join query. 

For example, when we set the table size to 1.0 106, the memory 

usage rate of the indexing case is 69.3%; without indexing, the 

memory usage rate goes up to 75.7%. The memory usage results 

show evidence that indexing improves outer-join’s performance 

by alleviating memory load in the multicore system. The indexing 

technique proactively reduces the amount of data loaded from the 

disks to the main memory, which in turn noticeably cuts the query 

response time. We conclude that with indexing in place, the outer- 

join queries are processed in an energy efficient way thanks to the 

shortened query response times made possible by indices. 

After evaluating the energy overhead incurred by creating 

indices, we reach a conclusion that the energy overhead caused by 

indexing is trivial and; therefore, we ignored the energy overhead 

results from the figures. 

 
7. Conclusions and future work 

 
We started this study by investigating the workload condi- 

tions and proposing metrics as well as the guidelines of energy- 

efficiency benchmarks. Then, we proposed EDOM—a tool sys- 

tematically evaluating and optimizing the energy-efficiency of 

multicore-based database systems. 

We incorporated the TPC-W benchmark database in EDOM to 

resemble real-world database systems. The EDOM tool employs 

the PostgreSQL database to evaluate the energy efficiency of two 

database queries, namely, outer-join and cross-join operations. 

EDOM offers a simple yet efficient way of measuring energy 

efficiency of database queries running on multicore processors; 

EDOM shows the correlation between CPU utilization and energy 

efficiency. 

At the heart of EDOM is a multicore manager  making  a 

good tradeoff between energy efficiency and performance in 

database systems. EDOM leverages a memory usage model to 

estimate memory utilization using query types and database 

characteristics. EDOM alleviates the memory swapping problem by 

determining the most appropriate number of cores. We showed 

that EDOM substantially improves energy efficiency of multicore- 

based database systems by addressing the memory swapping 

issue. 

Our experimental results and analysis indicate that our tool is a 

simple yet efficient platform to measure, improve, and optimize  

the queries, hardware configurations, and resource allocations 

multicore-based databases systems housed in data centers. One 

salient feature of EDOM lies in its high flexibility and adaptability, 

which allow EDOM to be customized and populated according to 

any research and application domain. 

We will pursue our future research direction into two steps. 

First, we plan to develop an energy efficient model aiming to 

predict energy-efficiency in database queries. In the second step, 

we plan to integrate the energy efficient model into an database 

system to optimize the energy efficiency of database operations. 

We also intend to seamlessly integrate the energy efficient model 

with a power manager and a thermal manager in the multicore- 

based database system to offer further energy savings. 
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