
Modeling HPC Storage Performance Using Long

Short-Term Memory Networks

Youbiao He

Department of Computer Science

Iowa State University

Ames, IA, United States

yh54@iastate.edu

Dong Dai

Department of Computer Science

University of North Carolina at Charlotte

Charlotte, NC, United States

dong.dai@uncc.edu

Forrest Sheng Bao

Department of Computer Science

Iowa State University

Ames, IA, United States

fsb@iastate.edu

Abstract—As scientific applications become increasingly data-
intensive, the I/O and storage components can easily become
the bottlenecks of high performance computing (HPC) systems.
Such a trend drives recent development of complex, layered HPC
I/O software stack, which contains a huge number of tunable
parameters, to achieve good I/O performance. It then becomes
necessary for the application developers to fully understand the
performance projection of their applications given a set of chosen
parameters, and also their potential effects on other concurrent
applications. Although there are a number of recent studies
aiming to model the relationship between I/O performance of
applications and their parameters to provide such insights,
the complexity of HPC systems and the interactions between
concurrent applications make existing approaches over-simplified
and far from practical. In this paper, we try to solve this problem
using a powerful deep learning tool, the long short-term memory
(LSTM), together with the full history of I/O settings of all
concurrent applications in the system. To prove the concept, we
carry out extensive experiments using the IOR benchmark and
train the model using real system logs. Empirical results show
that our LSTM-based model can predict the write speed more
accurately than the state-of-the-art approaches. We hope this
work can initiate the study toward more accurate and practical
I/O performance estimation in HPC systems.

Index Terms—High Performance Computing, Parallel I/O,
Deep Learning, LSTM

I. INTRODUCTION

In recent years, scientific applications running on high

performance computing (HPC) platforms are becoming in-

creasingly data-intensive. Such a trend makes applications’

I/O performance more and more critical to the overall effi-

ciency and performance of HPC platforms. To achieve the

best I/O performance, scientific application developers often

leverage the existing, layered I/O software stack to facilitate

their development. Hence, a typical data access in an HPC

application can easily go through multiple I/O libraries such

as HDF5 [1] or netCDF [2], ROMIO [3], I/O scheduler [4],

burst buffer [5], and parallel file system library [6], etc.

The key challenge of utilizing such a layered I/O stack is

that each of these software layers has many configurable

options/parameters, affecting the overall I/O performance [7].

In addition, many of these parameters affect not only their own

This work is partially funded by NSF grants MCB-1821828 and CNS-
1817089.

layers but also closely interact with other layers and change

their performance. This complexity lays significant challenges

on the application developers as it is hard for them to choose

the appropriate parameters for each storage stack layer to

achieve expected, optimized I/O performance.

Previous studies have shown that the I/O-relevant parame-

ters of different layers in the I/O stack could largely determine

the overall I/O performance of the applications; and it is

feasible to predict the expected I/O performance based on the

known parameters of an application [8]–[11]. For example,

Behzad et al. develop a non-linear regression model to predict

the data write time given the parameters of the Lustre stripe

settings [8]. The HPC application developers, then, can utilize

such prediction to choose their parameters wisely. These stud-

ies provide important insights for the application developers

as well as the HPC system administrators to fine-tune their

applications and systems.

However, these studies have two major issues that signifi-

cantly limit their usages in real-world scenarios. First, because

of the large number of cross-layer tunable parameters and their

wide range of values, the exploration space could be huge. The

interactions among parameters from different layers could also

be complex and hard to model by using simple regression

methods. So, most of the existing studies often only focus on

parameters from a specific layer to achieve accurate prediction.

On the other hand, it is known that an optimal setting in one

layer does not necessarily lead to optimal performance across

layers. For example, an optimal chunk size in HDF5 [12]

can lead to poor performance just because the number of I/O

processes (configured in the MPI I/O library) does not match

it [13].

Second, in the real-world scenarios, it is typical to have

many applications running concurrently, competing for I/O

resources and affecting each other. Many existing studies [8],

[10], [11] often make a simple assumption that the single

application will take the full system and build models based

on this unrealistic assumption. Hence, the built models can

easily become inaccurate when the applications run in a real

system. In addition, the constantly changing I/O workloads

from concurrent applications also complicate the problem of

parameter-based I/O performance prediction, which limits the

accuracy of simple machine learning methods such as linear or

1107

2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th
International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems

978-1-7281-2058-4/19/$31.00 ©2019 IEEE
DOI 10.1109/HPCC/SmartCity/DSS.2019.00157

Authorized licensed use limited to: Iowa State University. Downloaded on October 08,2020 at 19:27:37 UTC from IEEE Xplore. Restrictions apply.

nonlinear regression. Note that, in current HPC storage stack,

most of the I/O-relevant parameters cannot change when the

applications are running. Hence, without knowing the possible

concurrently running applications in advance, developers may

find it not particularly useful to predict the dynamic I/O

performance of their applications under different workloads.

However, we believe that the I/O parameters can become

changeable by revising the libraries; then developers can

leverage the accurate dynamic prediction to set rules for pa-

rameter changing during runtime to significantly improve the

performance. In addition, the accurate dynamic performance

prediction with the consideration of concurrent workloads will

be useful to HPC system administrators and job schedulers to

optimize the whole system. Thus, we focus on this aspect in

this study.

The interactions among parameters of multiple storage

software layers and among concurrent applications make the

whole system very complex to model or predict. Existing

studies fall short of handling these scenarios. Fortunately, the

recent progress on deep learning (DL) shows that the deep

neural networks have the ability to model very complex but de-

terministic systems [14]. Hence, this study boldly hypothesizes

that the I/O performance of each application in a concurrent

environment can be modeled as a function of the I/O-relevant

parameter settings of all running applications and the history of

them by using deep learning techniques. Through this idea, we

formulate the problem into predicting HPC applications’ I/O

performance from a stream of I/O settings, and solve it with

the latest advances of sequence modeling in deep learning. To

the best of our knowledge, this is the first try in this direction

and we believe that this new holistic approach is promising

in the future to enable dynamic, on-line parameter tuning for

production HPC systems.

To achieve this, in this study, we first design a series

of experiments based on the representative I/O benchmark

IOR [15] to collect training data, which are I/O parameters

of concurrent applications and their I/O performance in each

sample interval. Then, based on the training data from a large

number of experiments, we propose a long short-term memory

(LSTM) network to model and predict the I/O performance

of each application. LSTMs [16] are one special kind of re-

current neural networks (RNNs), which are efficient to extract

dependency information in the sequential data in classification

or regression tasks. In practical HPC applications, the I/O

performance at each timestamp is not only determined by

the current system state and workloads but also by those of

previous time. Therefore, we leverage an LSTM network to

fully take these dependencies into account in this study. Our

experimental results also confirm the advantages of LSTM.

Our contributions are as follows:

• We show the feasibility of modeling concurrent I/O

performance as a function of the history of and current

I/O parameters of concurrent applications.

• We formulate the problem into a deep learning task and

design an LSTM model to tackle the task.

• We design a strategy to generate real data to train the

LSTM-based model and show its effectiveness through

intensive experiments.

The rest of the paper is organized as follows. The back-

ground of HPC storage stack and the LSTM are introduced in

sections II and III, respectively. In section IV, we present our

HPC experiment design and LSTM-based prediction model.

The experimental results are shown in section V. The related

work and conclusions are given in sections VI and VII,

respectively.

II. BACKGROUND ON HPC STORAGE SYSTEM

HPC platforms are designed for performance-critical tasks,

which require a highly concurrent and rapid storage system

that is achieved using a complex storage stack [17]. They

usually consist of a deep storage stack including layers like

I/O libraries, caching and buffering, parallel file system, and

high-end storage devices (usually RAID). A demonstrative

example of these core layers is given in Fig. 1, where I/O

libraries cover both the high-level I/O libraries like HDF5 [1],

netCDF [2], or ADIOS [18], and the middleware layer MPI

I/O library like ROMIO [3]. Their requested data might be

stored in an optional buffering layer like Burst Buffer [5],

or in parallel file system that normally runs on a standalone

storage cluster, connected through high-speed network. RAID

is then built upon persistent devices like hard disks to improve

data integrity and reliability.

Fig. 1: Typical HPC storage stack.

For each storage stack layer, numerous parameters affect

its performance. Because of the complexity of the storage

system, these parameters might have a significant impact on

the performance in other layers too. For example, HDF5 I/O

library supports chunked data layout, where datasets are split

into multiple chunks stored separately in the file [12]. Since

chunks are accessed individually, the I/O performance could be

better if each process operates on their own chunks without

contention, which is relevant to the number of parallel I/O

processes [13]. Interestingly, the number of I/O processes is

not controlled by HDF5 itself; instead, by the number of

aggregators defined by collective I/O optimization in MPI

I/O library [19]. This simple example shows that one single

parameter (e.g., chunk size) can impact, and also can be

1108

Authorized licensed use limited to: Iowa State University. Downloaded on October 08,2020 at 19:27:37 UTC from IEEE Xplore. Restrictions apply.

impacted by, parameters from other layers (e.g., aggregator

number). It is clear that complex correlations among layers of

storage stack make the performance prediction a challenging

task.

Many existing works leverage machine learning techniques

such as linear regression, decision tree, to predict the I/O

performance [8]–[11]. However, they only work with simpli-

fied problems, where either only a small set of parameters

from a single layer is considered; or build the system based

on unrealistic assumptions such as the whole HPC storage

system is taken by a single application. In the real world,

there are many cross-layer parameters to tune and there are

often more than one applications running on the HPC system,

contending the I/O resources and affecting each other. In these

cases, the parameter setting of one application will affect the

I/O performance of both itself and all the other concurrent

applications. To accurately predict I/O performance of appli-

cations, the parameter settings of all applications should be

used to represent the system state and as the input of the

prediction model. The traditional machine learning techniques

such as linear regression and decision tree, can not extract the

dependency in the time-sequential data, hence are limited for

our use case.

In this study, we propose to utilize a long short-term

memory (LSTM) model to solve the aforementioned problem.

More details are introduced in the following sections.

III. DEEP LEARNING: LONG SHORT-TERM MEMORY

Deep learning is a rapidly emerging machine learning

technique that uses extremely multi-layer, thus deep, networks

to mimic very complicated multi-variate functions [14]. The

complexity of I/O performance hence makes it a perfect appli-

cation of deep learning. The typical deep learning architectures

include convolutional neural networks (CNNs) and recurrent

neural networks (RNNs).

In this study, we leverage a long short-term memory

(LSTM) network, one of special kind of RNNs, to predict the

real-time I/O performance of multiple concurrent applications.

First, unlike the traditional machine learning techniques that all

the inputs and outputs are treated as independent of each other,

LSTMs are capable of modeling input and/or output comprised

of sequences of elements that are not independent [16]. In

our case, the I/O performance at different time steps are

highly related. Thus, to accurately predict the I/O performance

using a history of I/O settings, the dependency in the input

and/or output data must be considered. Second, unlike the

standard/simple RNNs that can only deal with the short-

term dependency, LSTMs are able to extract both long and

short-term dependency in the sequential data. In the short-

term dependency problem, we only need to take the short

history into account while performing the present task. In this

work, the I/O performance at the current time step is not only

affected by the recent system states such as the previous one

or two steps of system states but also impacted by those of

a longer history, which should be considered as a long short-

term dependency problem.

Fig. 2: A recurrent neural network and its unfolding structure.

A RNN unit dealing with the dependencies in the sequential

data is called a cell. It gets inputs from other cells at previous

time steps, which is represented with a black square (repre-

senting a delay of one time step) on the left.

Fig. 2 shows the basic structure of RNN and the unfolding

in time of the computation. The output of each RNN cell ht

and the output of the RNN for each state y
t

are computed as

follows:
{

ht = tanh(a+Wht−1 +Uxt)

y
t
= b+ V ht

(1)

where W , U and V are the weight matrices, a and b are

the bias. It is clear that the output y
t

at any step t is jointly

determined by the current input xt and the output of the cell of

last step ht−1, which represents the dependency on the history

of the input.

The LSTMs have the same structure as this standard/simple

RNN. The difference is that each cell of an LSTM network

has a more complex structure. It consists of input gate, forget

gate and output gate, thus, a more complicated function to map

the current input xt and last cell output ht−1 to the current

cell output ht. This also makes LSTM able to remember the

input for a long time. In our case, xt is the I/O setting of

the current time step t, and a history of I/O settings of all

the previous steps are represented by [...,xt−2,xt−1]. They

jointly determine the I/O performance yt at the time step t.

The dependency on the history of I/O settings up to step t−1
is represented as the output of the last cell, ht−1. Therefore,

by using this “memory” mechanism of LSTM networks, the

long and short-term dependencies of the I/O settings and

I/O performance are extracted and effectively utilized in our

prediction task.

IV. METHODOLOGY AND SYSTEM DESIGN

In this study, we model this problem as a sequence pre-

diction problem. Suppose that we periodically sample the

system. At every time step, we have current I/O settings and

the corresponding performance of each application. Given a

stream of such I/O settings and I/O performance, we intend

to approximate a function that, for each application, maps a

history of I/O settings up to step t to the I/O performance at

the same step t. Such idea is illustrated in Fig.3. More details

will be discussed in the following subsections.

1109

Authorized licensed use limited to: Iowa State University. Downloaded on October 08,2020 at 19:27:37 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: The problem formulated as the mapping from the

stream of I/O settings to the stream of I/O performance, for

all the concurrent applications.

A. I/O Parameters and Synthetic I/O Benchmark

The tunable part in Table I lists all the parameters we choose

to represent the I/O settings. These cross-layer parameters

interact with each other, and determine the I/O performance of

each application as discussed in section II. Most of the existing

studies such as [8]–[11] either use part of these parameters or

do not consider the interactions of the parameters between

different storage stack layers. As the first step of our work,

we choose these typical cross-layer parameters from three

different I/O stack layers to predict the I/O performance of

concurrent applications.

The constant parameters in Table I, such as transfer size,

block size and segment count, are selected to get the best I/O

performance while running multiple applications. In addition,

due to the limit of the resource of the HPC cluster, the

maximum number of concurrently running IORs are set to

5 and the number of processes of each IOR is set to 64.

To effectively train our LSTM network, we need to collect

enough data reflecting the relationships between I/O settings

and their corresponding I/O performance of all the concurrent

applications. In this study, instead of using real applications

to generate such training data, we utilize the I/O benchmark

IOR [15] to generate needed training data. First, the previous

study [15] has shown that IOR is good at representing and

simulating the I/O behaviors of real applications. It is able

to reflect most of HPC I/O requirements in the broader HPC

workload, and the real full application can be effectively re-

placed by it. Second, real applications are complex and do not

expose their I/O parameters, making it difficult to effectively

collect the data. IOR exercises configurations across different

storage stack layers such as MPI-IO, HDF5, and POSIX, also

making it a natural choice for our research.

B. Experiment Setup

All experiments are conducted on the HPC platform Cloud-

Lab [20]. CloudLab is a large-scale and flexible distributed

scientific infrastructure designed to support fundamental ad-

vances in cloud architectures and applications. We create an

HPC cluster by instantiating an XML-based RSpec profile on

the CloudLab. We use a Lustre file system with 5 Lustre server

nodes (1 node for MGS/MDT and 4 nodes for OSTS) and 16

Lustre computing nodes. Each node has 16 cores and 16GB

of memory.

We define one experiment as a concurrent run of multiple (5

in this work) IORs of distinct settings. Each IOR reads from

or writes to one file on the same drive. As illustrated in Fig. 4,

the IORs are started sequentially. Two consecutive IORs start

apart by a random period between 10 and 30 seconds.

Fig. 4: One experiment consists of 5 IORs, referred to as IOR

1 to IOR 5 based on their starting times in the rest of the

paper. They start sequentially with a delay randomly picked

from 10 to 30 seconds between two consecutive ones.

In the design of IOR, each IOR includes multiple (64 in this

work) processes. They write to the same file, but to different

parts of it. Each written part for one process consists of a

fixed amount of blocks, which is defined by the parameter

segment count (20 in this work as shown in Table I). The block

size is the same for all processes in one IOR application. For

example, to write a file of 64MB, each of the 64 processes

writes a part of 1MB. The processes of the same IOR do

not start simultaneously but sequentially with a short-time

(within one millisecond) delay between two consecutive ones

as set in IOR source code. An IOR process does not write

continuously but has a random-length cool-down period after

writing a transfer unit. The size of the transfer unit is the same

for all processes in one IOR. For example, if the transfer size

is 64KB, it will take 16 times for a process to write its 1MB

block of a file. In our experiment, the transfer size is equal to

block size. i.e., one block has one transfer unit.

Each IOR has 7 tunable parameters listed in Table I.

Parameters are randomly chosen from the parameter space

per-IOR and per-experiment. Real-time write speed of each

IOR is used to measure the I/O performance. Since there are

5 IORs in our experiments, 5 write speeds are collected at

each time step.

1) Data Collection: In this subsection, we discuss how

to prepare the data for training the LSTM-based model. As

mentioned earlier, when training a neural network, training

samples, each of which is a tuple of an input and an output,

are fed into the neural network for it to update itself.

In this paper, we want to predict per-application, real-time

I/O performance for concurrent programs, given a history of

1110

Authorized licensed use limited to: Iowa State University. Downloaded on October 08,2020 at 19:27:37 UTC from IEEE Xplore. Restrictions apply.

TABLE I: The Parameter Settings for HPC Experiment

Parameter Type Parallel I/O Stack Layer Parameter Name Tuning Range Tuning Step

Tunable

Lustre
stripe count (strp fac) 1-4 1
stripe size (strp unt) 16MB-128MB 16MB

MPIIO
collective buffer nodes (cb nds) 8-64 8

collective buffer size (cb buf size) 16MB-128MB 16MB

HDF5
HDF5 alignment (align(thresh, bndry)) (1KB, 2MB)-(16KB, 32MB) (1KB, 2MB)

HDF5 chunk size 8MB-64MB 8MB

Constant

number of running IORs 5
transfer size 8MB
block size 8MB

segment count 20
number of processes 64

I/O settings of them. Therefore, in a training sample, the input

is a history (20 time steps in this work) of I/O settings of

all IORs and the output is the I/O performance of them. The

structure of each pair of input and output is illustrated in Fig. 5.

Because there are 8 I/O-setting parameters (7 tunable ones

from Table I plus whether the IOR is reading or writing) per

application, 5 applications concurrently, and 20 time steps, the

input is a vector of 800 numbers. If at a time step, less than

5 IORs are running concurrently, the elements in the input

vectors corresponding to the non-running IORs are padded

with zeros. This is a common technique used in machine

learning to ensure the fixed length of the input vector. The

output is relatively simple, just 5 numbers, which are the per-

application write speeds of 5 IORs.

Fig. 5: The format of collected data from training an RNN.

The write speed of an IOR is estimated as follows. Because

each IOR consists of 64 processes, the write speed of an IOR

is the sum of the write speed of all its 64 processes. Because

it is very hard to precisely measure the write speed of a single

process, we use an approximation. If at the time of the time

step i (note that i is just an integer not a timestamp) an IOR

process is writing a transfer unit, then the write speed of the

IOR process at time step i is approximated by transfer size
te−ts

where

ts and te are the start and end timestamps of the written

transfer unit. If at the time of the time step i, the IOR process is

cool-down, then its write speed at time step i is zero. The start

and end times of each transfer unit of each IOR process can

be logged by modifying the source code of the IOR program.

2) Data Cleaning: As described in the last subsection, we

assume that the write speed is constant during a transfer-

size write, and we add all these write speeds up to compute

the total speed of all processes. As a result, some collected

data are redundant and some are inaccurate for measuring I/O

performance. Therefore, we clean the data by discarding those

redundant and inaccurate data.

For the redundant data, assume we have two samples at

time steps i and j (i and j are not necessarily consecutive), at

which all the processes write the same transfer unit, then the

write speed of every process at these two time steps will be

the same, thus, the total write speed of the IOR at these two

time steps are the same. If this occurs at time steps i and j

for every running IOR, we will get two exactly same samples,

which makes one of them redundant and discarded.

The inaccurate data is caused by the following fact: The

write speed of a process while writing a transfer unit can be

impacted by the starting or ending of the other IOR. Suppose

some process p of IOR 1 is writing a transfer unit from time

ts to te, and IOR 2 starts to write its file in this time range.

Then the write speed of IOR 1 on process p will be impacted

and can no longer be viewed as constant. In practice, there are

many processes in IOR 1 to be impacted. In this case, all the

data collected during ts and te are inaccurate and discarded

in this work.

C. LSTM Network Design

Our network uses a typical LSTM network architecture

given in Fig. 6, which consists of an input layer, hidden layers

(includes 2 LSTM layers), and a fully-connected layer. The

input layer takes the 800d input vector. In each state1 of the

LSTM, 40 elements of the input vectors are fed into the first

LSTM layer of the hidden layers. The 40 elements correspond

to the I/O settings of 5 IORs (5× 8 = 40) at a time step. The

LSTM layer has 20 hidden states, corresponding to 20 such

40-element batches, thus 20 time steps. Finally, the output

from the LSTM layers is fed into a fully-connected layer and

outputs a 5d vector, corresponding to the write speeds from

IOR 1 to IOR 5.

1not to be confused with the steps when sampling an HPC system

1111

Authorized licensed use limited to: Iowa State University. Downloaded on October 08,2020 at 19:27:37 UTC from IEEE Xplore. Restrictions apply.

Fig. 6: Our LSTM network architecture.

V. EXPERIMENTS

In this section, we verify our hypothesis that it is possible to

predict real-time per-application I/O performance (write speed)

based on a history of I/O settings with proposed LSTM model.

To demonstrate the advantage of the proposed LSTM model on

this prediction problem, 4 other machine learning techniques

such as linear regression, decision tree, dense network, and

simple RNN, are also implemented as the baselines.

A. LSTM network setup

We prepare training data from 1200 experiments as de-

scribed in Section IV-B1. After data cleaning, there are 57735

samples. We use 10-fold cross-validation [21], thus 90-to-10

split between training and test sets, to train and test the neural

networks. Cross validation is a model evaluation technique

such that all samples in the dataset can be used while there is

no overlap between the training and test sets in each round.

Our LSTM network is developed based on Keras [22],

a high-level neural networks API, using Tensorflow back-

end [23]. The learning rate is set to 0.01 and the batch size is

120 while training. The loss function is mean absolute error

(MAE), which is defined as follows:

1

ns

∑

i

|yi − ŷi| (2)

where yi and ŷi are the ground-truth and predicted values,

respectively, of one training sample, and ns denotes the total

number of the training samples. All samples are normalized

by min-max scaling [24] before fed into the LSTM network.

B. Evaluation metrics

We evaluate the performance of our model using mean

absolute percentage error (MAPE) [25]. Let ẑi be the predicted

value of one test sample, zi be the corresponding ground-truth

value, and nt denote the number of test samples, then the

MAPE is computed as follows:

1

nt

∑

i

|
zi − ẑi

zi
| (3)

It tells the absolute difference between the predicted and

ground-truth write speed as a percentage.

C. Results and discussions

TABLE II: MAPE (%) of 10-fold Cross Validation (mean)

IOR 1 IOR 2 IOR 3 IOR 4 IOR 5

Linear Regression 31.34 27.56 28.64 28.55 28.57

Decision Tree 27.94 27.59 28.38 29.29 28.62

Dense Network 38.55 31.39 28.17 25.53 28.49

Simple RNN 28.87 25.89 26.97 26.47 25.99

LSTM 17.35 16.42 15.00 14.87 15.73

To validate our model, we implement 4 other classic ma-

chine learning models as the comparison baselines, i.e. linear

regression, decision tree, dense network, and simple RNN.

The linear regression and decision tree based performance pre-

diction models are implemented with Python package scikit-

learn, and the dense network and simple RNN models are

implemented with Python in Keras. To find the optimal hyper-

parameters of these baselines, the grid search is performed on

each model. For the decision tree, the maximum depth is set

to 7 after searching in the range of [1, 19] with step 2. The

dense network has 2 fully-connected layers, chosen from 2

to 4. The number of neurons for each layer is finally set to

100 after searching in the range of [50, 150] with the step 25,

and the hyperbolic tangent (tanh) is chosen as the activation

function for each layer after comparing with rectifier (relu) and

sigmoid function. The simple RNN has the same structure as

our LSTM network. The only difference is it uses simple RNN

as its cell instead of LSTM.

The prediction performance of these baselines and our

LSTM network on each of the 5 IORs are reported in

Table II. For any of the IORs, the LSTM model gives the

much lower MAPE compared with other machine learning

methods, which shows that our initial results are most accurate

and encouraging. In addition, the simple RNN also gets a

better overall prediction performance compared with 3 other

baselines. The MAPE of simple RNN is just higher than that

of the decision tree when predicting IOR 1 and dense network

when predicting IOR 4. This is because that the RNN is able

to extract the dependency information in the sequential data.

But the simple RNN is not good enough by only dealing

with the short-term dependency to predict the I/O performance

in our problem as discussed in section III. Therefore, this

result demonstrates that the long-term dependency indeed

exists in the sequential I/O performance of multiple concurrent

applications and LSTM is a suitable model to predict the I/O

performance by using a history of I/O settings.

In Fig. 7, we visualize the write speeds, from the ground

truth and from our prediction model, from one randomly

selected experiment. The overlap between the two curves

echos the promising results reported above in MAPE.

As another way of looking into the results, on one of the

IORs, for all time steps, we make a correlation plot of actual

and predicted write speed in Fig. 8. The linear regression

between actual and predicted write speed is represented in

the solid line. Such a line for perfect prediction, i.e., write

speed is always exactly predicted, is given in a dashed line.

The close proximity of the two lines reveals the great success

1112

Authorized licensed use limited to: Iowa State University. Downloaded on October 08,2020 at 19:27:37 UTC from IEEE Xplore. Restrictions apply.

0 10 20 30 40 50 60
Time (s)

0

20

40

60

80

100

120

140

W
ri
te

s
p
e
e
d
(M

B
/s
)

Ground truth

Prediction

(a) IOR 1.

0 10 20 30 40 50 60
Time (s)

0

20

40

60

80

100

120

140

W
ri
te

s
p
e
e
d
(M

B
/s
)

Ground truth

Prediction

(b) IOR 2.

0 10 20 30 40 50 60
Time (s)

0

20

40

60

80

100

120

140

W
ri
te

s
p
e
e
d
(M

B
/s
)

Ground truth

Prediction

(c) IOR 3.

0 10 20 30 40 50 60
Time (s)

0

20

40

60

80

100

120

140

W
ri
te

s
p
e
e
d
(M

B
/s
)

Ground truth

Prediction

(d) IOR 4.

0 10 20 30 40 50 60
Time (s)

0

20

40

60

80

100

120

140

W
ri
te

s
p
e
e
d
(M

B
/s
)

Ground truth

Prediction

(e) IOR 5.

Fig. 7: The ground truth and prediction of I/O performance for all 5 IORs from one selected experiment.

0 40 80 120 160 200 240
True write speed (MB/s)

0

40

80

120

160

200

240

P
re
d
ic
te
d
w
ri
te

s
p
e
e
d
(M

B
/s
) Perfect

Actual

Fig. 8: Correlation analysis of the predicted and ground-truth

write speed for IOR 1

of our approach, with points distributed well along either of

them.

VI. RELATED WORK

In the modern application of high performance computing

(HPC) systems, the large-scale scientific simulations often

produce a large amount of I/O traffic due to unprecedented

growth of the volumes of data. Therefore, in recent years,

there are a significant amount of studies focusing on improving

parallel I/O performance. One of the most popular approaches

for the I/O performance improvement is analyzing parallel

I/O behavior. Among these studies, some of them implement

the existing I/O performance analyzing tools. Darshan is an

I/O characterization tool, designed to capture the I/O behavior

suitable for the long-term deployment for applications [26].

Uselton et al. [27] explore the performance ensembles to un-

derstand their I/O behaviors by using an extended version of an

existing performance tool called IPM (Integrated Performance

Monitoring). Some other works of I/O behavior analyzing such

as [28]–[30], are devoted to characterizing the workload or I/O

behavior of some specific file systems of supercomputers by

statistically analyzing a large amount of data from a variety

of applications.

Another popular technique of I/O performance improvement

is tuning parallel I/O parameters by modeling I/O performance

or searching the parameter space of HPC system. In [8], [10],

[11], the machine learning techniques are leveraged to model

I/O performance and automatically select the appropriate

parameter values. Behzad et al. [7] develop an auto-tuning

system that search a large configurable parameter space by

exploring genetic algorithms. They also propose another auto-

tuning framework that select the optimal configurations by

matching the data write patterns, which is extracted by tracing

high-level I/O accesses, with previously tuned I/O kernels [31].

The proposed model in this work is capable of predicting

the I/O performance with more details. Therefore, our model

can be applied in both analyzing I/O behavior and modeling

I/O performance.

VII. CONCLUSION AND FUTURE WORK

In this work, we propose a long short-term memory (LSTM)

based approach to model and predict the real-time I/O per-

formance of the parallel applications based on their key I/O-

relevant parameter selections in HPC systems. Specifically,

we introduce and discuss the design of HPC experiments and

the LSTM-based prediction model in detail, and also evaluate

1113

Authorized licensed use limited to: Iowa State University. Downloaded on October 08,2020 at 19:27:37 UTC from IEEE Xplore. Restrictions apply.

our LSTM based model by comparing with other machine

learning techniques. The results confirm that LSTM is able to

extract the long short-term dependency in the sequential I/O

performance and gives the accurate prediction, thus, we believe

that our approach is a more effective way to accurately predict

I/O performance of HPC applications. In the future, we plan

to enlarge the tunable parameter space by increasing both the

granularity and the dimension of parameters, and further apply

proposed approach combined with other sequence prediction

algorithms to make more accurate prediction.

REFERENCES

[1] Mike Folk, Gerd Heber, Quincey Koziol, Elena Pourmal, and Dana
Robinson. An Overview of the HDF5 Technology Suite and Its
Applications. In Proceedings of the EDBT/ICDT 2011 Workshop on

Array Databases, pages 36–47. ACM, 2011.
[2] Jianwei Li, Wei-keng Liao, Alok Choudhary, Robert Ross, Rajeev

Thakur, William Gropp, Robert Latham, Andrew Siegel, Brad Gallagher,
and Michael Zingale. Parallel netCDF: A High-Performance Scientific
I/O Interface. In Supercomputing, 2003 ACM/IEEE Conference, pages
39–39. IEEE, 2003.

[3] ROMIO website. http://www.mcs.anl.gov/research/projects/romio/
index-archived.html.

[4] Dong Dai, Yong Chen, Dries Kimpe, and Robert Ross. Two-choice Ran-
domized Dynamic I/O Scheduler for Object Storage Systems. In SC14:

International Conference for High Performance Computing, Networking,

Storage and Analysis, pages 635–646. IEEE, 2014.
[5] Nawab Ali, Philip Carns, Kamil Iskra, Dries Kimpe, Samuel Lang,

Robert Latham, Robert Ross, Lee Ward, and P Sadayappan. Scalable
I/O Forwarding Framework for High-Performance Computing Systems.
In 2009 IEEE International Conference on Cluster Computing and

Workshops, pages 1–10. IEEE, 2009.
[6] Lustre Software Release. http://lustre.org/.
[7] Babak Behzad, Huong Vu Thanh Luu, Joseph Huchette, Surendra Byna,

Ruth Aydt, Quincey Koziol, Marc Snir, et al. Taming Parallel I/O
Complexity with Auto-Tuning. In Proceedings of the International

Conference on High Performance Computing, Networking, Storage and

Analysis, page 68. ACM, 2013.
[8] B. Behzad, S. Byna, S. M. Wild, Prabhat, and M. Snir. Dynamic model-

driven parallel I/O performance tuning. In 2015 IEEE International

Conference on Cluster Computing, pages 184–193, Sept 2015.
[9] Bing Xie, Yezhou Huang, Jeffrey S. Chase, Jong Youl Choi, Scott

Klasky, Jay Lofstead, and Sarp Oral. Predicting output performance
of a petascale supercomputer. In Proceedings of the 26th International

Symposium on High-Performance Parallel and Distributed Computing,
HPDC ’17, pages 181–192, New York, NY, USA, 2017. ACM.

[10] F. Isaila, P. Balaprakash, S. M. Wild, D. Kimpe, R. Latham, R. Ross, and
P. Hovland. Collective I/O tuning using analytical and machine learning
models. In 2015 IEEE International Conference on Cluster Computing,
pages 128–137, Sept 2015.

[11] S. Kumar, A. Saha, V. Vishwanath, P. Carns, J. A. Schmidt, G. Scorzelli,
H. Kolla, R. Grout, R. Latham, R. Ross, M. E. Papka, J. Chen, and
V. Pascucci. Characterization and modeling of PIDX parallel I/O for
performance optimization. In SC ’13: Proceedings of the International

Conference on High Performance Computing, Networking, Storage and

Analysis, pages 1–12, Nov 2013.
[12] Mark Howison. Tuning HDF5 for Lustre File Systems. In Workshop

on Interfaces and Abstractions for Scientific Data Storage (IASDS10),,

Heraklion, Crete, Greece, September 24, 2010, 2012.
[13] Babak Behzad, Joseph Huchette, Huong Vu Thanh Luu, Ruth Aydt,

Surendra Byna, Yushu Yao, Quincey Koziol, et al. A Framework
for Auto-Tuning HDF5 Applications. In Proceedings of the 22nd

international symposium on High-performance parallel and distributed

computing, pages 127–128. ACM, 2013.

[14] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning.
nature, 521(7553):436, 2015.

[15] Hongzhang Shan, Katie Antypas, and John Shalf. Characterizing and
predicting the I/O performance of HPC applications using a parame-
terized synthetic benchmark. In Proceedings of the 2008 ACM/IEEE

Conference on Supercomputing, SC ’08, pages 42:1–42:12, Piscataway,
NJ, USA, 2008. IEEE Press.

[16] Zachary Chase Lipton. A critical review of recurrent neural networks
for sequence learning. CoRR, abs/1506.00019, 2015.

[17] J Chen, A Choudhary, S Feldman, B Hendrickson, C Johnson, R Mount,
V Sarkar, V White, and D Williams. Synergistic challenges in data-
intensive science and exascale computing. DOE ASCAC Data Subcom-

mittee Report, Department of Energy Office of Science, 2013.
[18] Jay F Lofstead, Scott Klasky, Karsten Schwan, Norbert Podhorszki, and

Chen Jin. Flexible IO and Integration for Scientific Codes Through
the Adaptable IO System (ADIOS). In Proceedings of the 6th inter-

national workshop on Challenges of large applications in distributed

environments, pages 15–24. ACM, 2008.
[19] Rajeev Thakur, William Gropp, and Ewing Lusk. Data Sieving and Col-

lective I/O in ROMIO. In Frontiers of Massively Parallel Computation,

1999. Frontiers’ 99. The Seventh Symposium on the, pages 182–189.
IEEE, 1999.

[20] Robert Ricci, Eric Eide, and CloudLab Team. Introducing cloudlab: Sci-
entific infrastructure for advancing cloud architectures and applications.
; login:: the magazine of USENIX & SAGE, 39(6):36–38, 2014.

[21] Ron Kohavi. A study of cross-validation and bootstrap for accuracy
estimation and model selection. In Proceedings of the 14th Interna-

tional Joint Conference on Artificial Intelligence - Volume 2, IJCAI’95,
pages 1137–1143, San Francisco, CA, USA, 1995. Morgan Kaufmann
Publishers Inc.

[22] Keras: The python deep learning library. https://keras.io/
#why-this-name-keras.

[23] Keras: Deep learning library for theano and tensorflow. https://faroit.
github.io/keras-docs/0.3.0/.

[24] Sebastian Raschka. About feature scaling and normalization, 2014.
[25] Arnaud de Myttenaere, Boris Golden, Bndicte Le Grand, and Fabrice

Rossi. Mean absolute percentage error for regression models. Neuro-

computing, 192:38 – 48, 2016. Advances in artificial neural networks,
machine learning and computational intelligence.

[26] P. Carns, R. Latham, R. Ross, K. Iskra, S. Lang, and K. Riley. 24/7
characterization of petascale I/O workloads. In 2009 IEEE International

Conference on Cluster Computing and Workshops, pages 1–10, Aug
2009.

[27] A. Uselton, M. Howison, N. J. Wright, D. Skinner, N. Keen, J. Shalf,
K. L. Karavanic, and L. Oliker. Parallel I/O performance: From events
to ensembles. In 2010 IEEE International Symposium on Parallel

Distributed Processing (IPDPS), pages 1–11, April 2010.
[28] Y. Kim, R. Gunasekaran, G. M. Shipman, D. A. Dillow, Zhe Zhang,

and B. W. Settlemyer. Workload characterization of a leadership class
storage cluster. In 2010 5th Petascale Data Storage Workshop (PDSW

’10), pages 1–5, Nov 2010.
[29] Huong Luu, Marianne Winslett, William Gropp, Robert Ross, Philip

Carns, Kevin Harms, Mr Prabhat, Suren Byna, and Yushu Yao. A
multiplatform study of I/O behavior on petascale supercomputers. In
Proceedings of the 24th International Symposium on High-Performance

Parallel and Distributed Computing, HPDC ’15, pages 33–44, New
York, NY, USA, 2015. ACM.

[30] Bing Xie, Jeffrey Chase, David Dillow, Oleg Drokin, Scott Klasky, Sarp
Oral, and Norbert Podhorszki. Characterizing output bottlenecks in a
supercomputer. In Proceedings of the International Conference on High

Performance Computing, Networking, Storage and Analysis, SC ’12,
pages 8:1–8:11, Los Alamitos, CA, USA, 2012. IEEE Computer Society
Press.

[31] Babak Behzad, Surendra Byna, Prabhat, and Marc Snir. Pattern-driven
parallel I/O tuning. In Proceedings of the 10th Parallel Data Storage

Workshop, PDSW ’15, pages 43–48, New York, NY, USA, 2015. ACM.

1114

Authorized licensed use limited to: Iowa State University. Downloaded on October 08,2020 at 19:27:37 UTC from IEEE Xplore. Restrictions apply.

