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Abstract—As scientific applications become increasingly data-
intensive, the I/O and storage components can easily become
the bottlenecks of high performance computing (HPC) systems.
Such a trend drives recent development of complex, layered HPC
I/O software stack, which contains a huge number of tunable
parameters, to achieve good I/O performance. It then becomes
necessary for the application developers to fully understand the
performance projection of their applications given a set of chosen
parameters, and also their potential effects on other concurrent
applications. Although there are a number of recent studies
aiming to model the relationship between I/O performance of
applications and their parameters to provide such insights,
the complexity of HPC systems and the interactions between
concurrent applications make existing approaches over-simplified
and far from practical. In this paper, we try to solve this problem
using a powerful deep learning tool, the long short-term memory
(LSTM), together with the full history of I/O settings of all
concurrent applications in the system. To prove the concept, we
carry out extensive experiments using the IOR benchmark and
train the model using real system logs. Empirical results show
that our LSTM-based model can predict the write speed more
accurately than the state-of-the-art approaches. We hope this
work can initiate the study toward more accurate and practical
I/0O performance estimation in HPC systems.

Index Terms—High Performance Computing, Parallel 1/O,
Deep Learning, LSTM

I. INTRODUCTION

In recent years, scientific applications running on high
performance computing (HPC) platforms are becoming in-
creasingly data-intensive. Such a trend makes applications’
I/0 performance more and more critical to the overall effi-
ciency and performance of HPC platforms. To achieve the
best I/0 performance, scientific application developers often
leverage the existing, layered I/O software stack to facilitate
their development. Hence, a typical data access in an HPC
application can easily go through multiple I/O libraries such
as HDF5 [1] or netCDF [2], ROMIO [3], I/O scheduler [4],
burst buffer [5], and parallel file system library [6], etc.
The key challenge of utilizing such a layered I/O stack is
that each of these software layers has many configurable
options/parameters, affecting the overall I/O performance [7].
In addition, many of these parameters affect not only their own
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layers but also closely interact with other layers and change
their performance. This complexity lays significant challenges
on the application developers as it is hard for them to choose
the appropriate parameters for each storage stack layer to
achieve expected, optimized I/O performance.

Previous studies have shown that the I/O-relevant parame-
ters of different layers in the I/O stack could largely determine
the overall I/O performance of the applications; and it is
feasible to predict the expected I/O performance based on the
known parameters of an application [8]-[11]. For example,
Behzad et al. develop a non-linear regression model to predict
the data write time given the parameters of the Lustre stripe
settings [8]. The HPC application developers, then, can utilize
such prediction to choose their parameters wisely. These stud-
ies provide important insights for the application developers
as well as the HPC system administrators to fine-tune their
applications and systems.

However, these studies have two major issues that signifi-
cantly limit their usages in real-world scenarios. First, because
of the large number of cross-layer tunable parameters and their
wide range of values, the exploration space could be huge. The
interactions among parameters from different layers could also
be complex and hard to model by using simple regression
methods. So, most of the existing studies often only focus on
parameters from a specific layer to achieve accurate prediction.
On the other hand, it is known that an optimal setting in one
layer does not necessarily lead to optimal performance across
layers. For example, an optimal chunk size in HDF5 [12]
can lead to poor performance just because the number of 1/O
processes (configured in the MPI I/O library) does not match
it [13].

Second, in the real-world scenarios, it is typical to have
many applications running concurrently, competing for I/O
resources and affecting each other. Many existing studies [8],
[10], [11] often make a simple assumption that the single
application will take the full system and build models based
on this unrealistic assumption. Hence, the built models can
easily become inaccurate when the applications run in a real
system. In addition, the constantly changing I/O workloads
from concurrent applications also complicate the problem of
parameter-based I/O performance prediction, which limits the
accuracy of simple machine learning methods such as linear or
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nonlinear regression. Note that, in current HPC storage stack,
most of the I/O-relevant parameters cannot change when the
applications are running. Hence, without knowing the possible
concurrently running applications in advance, developers may
find it not particularly useful to predict the dynamic I/O
performance of their applications under different workloads.
However, we believe that the I/O parameters can become
changeable by revising the libraries; then developers can
leverage the accurate dynamic prediction to set rules for pa-
rameter changing during runtime to significantly improve the
performance. In addition, the accurate dynamic performance
prediction with the consideration of concurrent workloads will
be useful to HPC system administrators and job schedulers to
optimize the whole system. Thus, we focus on this aspect in
this study.

The interactions among parameters of multiple storage
software layers and among concurrent applications make the
whole system very complex to model or predict. Existing
studies fall short of handling these scenarios. Fortunately, the
recent progress on deep learning (DL) shows that the deep
neural networks have the ability to model very complex but de-
terministic systems [14]. Hence, this study boldly hypothesizes
that the I/O performance of each application in a concurrent
environment can be modeled as a function of the I/O-relevant
parameter settings of all running applications and the history of
them by using deep learning techniques. Through this idea, we
formulate the problem into predicting HPC applications’ I/O
performance from a stream of I/O settings, and solve it with
the latest advances of sequence modeling in deep learning. To
the best of our knowledge, this is the first try in this direction
and we believe that this new holistic approach is promising
in the future to enable dynamic, on-line parameter tuning for
production HPC systems.

To achieve this, in this study, we first design a series
of experiments based on the representative I/0O benchmark
IOR [15] to collect training data, which are I/O parameters
of concurrent applications and their I/O performance in each
sample interval. Then, based on the training data from a large
number of experiments, we propose a long short-term memory
(LSTM) network to model and predict the I/O performance
of each application. LSTMs [16] are one special kind of re-
current neural networks (RNNSs), which are efficient to extract
dependency information in the sequential data in classification
or regression tasks. In practical HPC applications, the I/O
performance at each timestamp is not only determined by
the current system state and workloads but also by those of
previous time. Therefore, we leverage an LSTM network to
fully take these dependencies into account in this study. Our
experimental results also confirm the advantages of LSTM.
Our contributions are as follows:

We show the feasibility of modeling concurrent I/O
performance as a function of the history of and current
I/0 parameters of concurrent applications.
We formulate the problem into a deep learning task and
design an LSTM model to tackle the task.
We design a strategy to generate real data to train the
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LSTM-based model and show its effectiveness through
intensive experiments.

The rest of the paper is organized as follows. The back-
ground of HPC storage stack and the LSTM are introduced in
sections II and III, respectively. In section IV, we present our
HPC experiment design and LSTM-based prediction model.
The experimental results are shown in section V. The related
work and conclusions are given in sections VI and VII,
respectively.

II. BACKGROUND ON HPC STORAGE SYSTEM

HPC platforms are designed for performance-critical tasks,
which require a highly concurrent and rapid storage system
that is achieved using a complex storage stack [17]. They
usually consist of a deep storage stack including layers like
I/O libraries, caching and buffering, parallel file system, and
high-end storage devices (usually RAID). A demonstrative
example of these core layers is given in Fig. 1, where 1/O
libraries cover both the high-level 1/O libraries like HDF5 [1],
netCDF [2], or ADIOS [18], and the middleware layer MPI
I/O library like ROMIO [3]. Their requested data might be
stored in an optional buffering layer like Burst Buffer [5],
or in parallel file system that normally runs on a standalone
storage cluster, connected through high-speed network. RAID
is then built upon persistent devices like hard disks to improve
data integrity and reliability.

HPC Application

HDF5
High-level I/O Library NetCDF
ADIOS
3
]
2| voMiddeware | «“ MPI 1/O (ROMIO) |
:
‘§ | Buffering Layer |{| Burst Buffer |
Q
N Lustre
Parallel File System { OrangeFs

Storage Devices { RAID Controller

Fig. 1: Typical HPC storage stack.

For each storage stack layer, numerous parameters affect
its performance. Because of the complexity of the storage
system, these parameters might have a significant impact on
the performance in other layers too. For example, HDF5 1/O
library supports chunked data layout, where datasets are split
into multiple chunks stored separately in the file [12]. Since
chunks are accessed individually, the I/O performance could be
better if each process operates on their own chunks without
contention, which is relevant to the number of parallel I/O
processes [13]. Interestingly, the number of I/O processes is
not controlled by HDFS5 itself; instead, by the number of
aggregators defined by collective I/O optimization in MPI
I/O library [19]. This simple example shows that one single
parameter (e.g., chunk size) can impact, and also can be
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impacted by, parameters from other layers (e.g., aggregator
number). It is clear that complex correlations among layers of
storage stack make the performance prediction a challenging
task.

Many existing works leverage machine learning techniques
such as linear regression, decision tree, to predict the I/O
performance [8]-[11]. However, they only work with simpli-
fied problems, where either only a small set of parameters
from a single layer is considered; or build the system based
on unrealistic assumptions such as the whole HPC storage
system is taken by a single application. In the real world,
there are many cross-layer parameters to tune and there are
often more than one applications running on the HPC system,
contending the I/O resources and affecting each other. In these
cases, the parameter setting of one application will affect the
I/O performance of both itself and all the other concurrent
applications. To accurately predict I/O performance of appli-
cations, the parameter settings of all applications should be
used to represent the system state and as the input of the
prediction model. The traditional machine learning techniques
such as linear regression and decision tree, can not extract the
dependency in the time-sequential data, hence are limited for
our use case.

In this study, we propose to utilize a long short-term
memory (LSTM) model to solve the aforementioned problem.
More details are introduced in the following sections.

III. DEEP LEARNING: LONG SHORT-TERM MEMORY

Deep learning is a rapidly emerging machine learning
technique that uses extremely multi-layer, thus deep, networks
to mimic very complicated multi-variate functions [14]. The
complexity of I/O performance hence makes it a perfect appli-
cation of deep learning. The typical deep learning architectures
include convolutional neural networks (CNNs) and recurrent
neural networks (RNNs).

In this study, we leverage a long short-term memory
(LSTM) network, one of special kind of RNNS, to predict the
real-time I/O performance of multiple concurrent applications.
First, unlike the traditional machine learning techniques that all
the inputs and outputs are treated as independent of each other,
LSTMs are capable of modeling input and/or output comprised
of sequences of elements that are not independent [16]. In
our case, the I/O performance at different time steps are
highly related. Thus, to accurately predict the I/O performance
using a history of I/O settings, the dependency in the input
and/or output data must be considered. Second, unlike the
standard/simple RNNs that can only deal with the short-
term dependency, LSTMs are able to extract both long and
short-term dependency in the sequential data. In the short-
term dependency problem, we only need to take the short
history into account while performing the present task. In this
work, the I/O performance at the current time step is not only
affected by the recent system states such as the previous one
or two steps of system states but also impacted by those of
a longer history, which should be considered as a long short-
term dependency problem.
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Fig. 2: A recurrent neural network and its unfolding structure.
A RNN unit dealing with the dependencies in the sequential
data is called a cell. It gets inputs from other cells at previous
time steps, which is represented with a black square (repre-
senting a delay of one time step) on the left.

Fig. 2 shows the basic structure of RNN and the unfolding
in time of the computation. The output of each RNN cell h;
and the output of the RNN for each state y, are computed as

follows:

where W, U and V are the weight matrices, @ and b are
the bias. It is clear that the output y, at any step ¢ is jointly
determined by the current input x; and the output of the cell of
last step h;_1, which represents the dependency on the history
of the input.

The LSTMs have the same structure as this standard/simple
RNN. The difference is that each cell of an LSTM network
has a more complex structure. It consists of input gate, forget
gate and output gate, thus, a more complicated function to map
the current input x; and last cell output h;_; to the current
cell output h;. This also makes LSTM able to remember the
input for a long time. In our case, x; is the I/O setting of
the current time step ¢, and a history of I/O settings of all
the previous steps are represented by |[...,x;_o,@;—1]. They
jointly determine the I/O performance y; at the time step t.
The dependency on the history of 1/O settings up to step ¢t —1
is represented as the output of the last cell, h;_;. Therefore,
by using this “memory” mechanism of LSTM networks, the
long and short-term dependencies of the I/O settings and
I/0 performance are extracted and effectively utilized in our
prediction task.

h, = tanh(a + Why_1 + Ux)

1
v bt Vh M

IV. METHODOLOGY AND SYSTEM DESIGN

In this study, we model this problem as a sequence pre-
diction problem. Suppose that we periodically sample the
system. At every time step, we have current I/O settings and
the corresponding performance of each application. Given a
stream of such I/O settings and I/O performance, we intend
to approximate a function that, for each application, maps a
history of I/O settings up to step ¢ to the I/O performance at
the same step ¢. Such idea is illustrated in Fig.3. More details
will be discussed in the following subsections.
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Fig. 3: The problem formulated as the mapping from the
stream of I/O settings to the stream of I/O performance, for
all the concurrent applications.

A. I/O Parameters and Synthetic I/O Benchmark

The tunable part in Table I lists all the parameters we choose
to represent the I/O settings. These cross-layer parameters
interact with each other, and determine the I/O performance of
each application as discussed in section II. Most of the existing
studies such as [8]—[11] either use part of these parameters or
do not consider the interactions of the parameters between
different storage stack layers. As the first step of our work,
we choose these typical cross-layer parameters from three
different I/O stack layers to predict the I/O performance of
concurrent applications.

The constant parameters in Table I, such as transfer size,
block size and segment count, are selected to get the best I/O
performance while running multiple applications. In addition,
due to the limit of the resource of the HPC cluster, the
maximum number of concurrently running IORs are set to
5 and the number of processes of each IOR is set to 64.

To effectively train our LSTM network, we need to collect
enough data reflecting the relationships between I/O settings
and their corresponding I/O performance of all the concurrent
applications. In this study, instead of using real applications
to generate such training data, we utilize the I/O benchmark
IOR [15] to generate needed training data. First, the previous
study [15] has shown that IOR is good at representing and
simulating the I/O behaviors of real applications. It is able
to reflect most of HPC I/O requirements in the broader HPC
workload, and the real full application can be effectively re-
placed by it. Second, real applications are complex and do not
expose their I/O parameters, making it difficult to effectively
collect the data. IOR exercises configurations across different
storage stack layers such as MPI-1IO, HDFS, and POSIX, also
making it a natural choice for our research.

B. Experiment Setup

All experiments are conducted on the HPC platform Cloud-
Lab [20]. CloudLab is a large-scale and flexible distributed
scientific infrastructure designed to support fundamental ad-
vances in cloud architectures and applications. We create an
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HPC cluster by instantiating an XML-based RSpec profile on
the CloudLab. We use a Lustre file system with 5 Lustre server
nodes (1 node for MGS/MDT and 4 nodes for OSTS) and 16
Lustre computing nodes. Each node has 16 cores and 16GB
of memory.

We define one experiment as a concurrent run of multiple (5
in this work) IORs of distinct settings. Each IOR reads from
or writes to one file on the same drive. As illustrated in Fig. 4,
the IORs are started sequentially. Two consecutive IORs start
apart by a random period between 10 and 30 seconds.

IOR 1 (configuration 1)
IOR 2 (configuration 2)
IOR 3 (configuration 3)
|
|
i IOR 4 (configuration 4)
| i
: |
‘ } ; IOR 5 (configuration 5)

| | | ! |
- ~—
: ; ‘d—by ]
110-30s 110-30s; 10-30s 1 10-30s |

Time

-

Fig. 4: One experiment consists of 5 IORs, referred to as IOR
1 to IOR 5 based on their starting times in the rest of the
paper. They start sequentially with a delay randomly picked
from 10 to 30 seconds between two consecutive ones.

In the design of IOR, each IOR includes multiple (64 in this
work) processes. They write to the same file, but to different
parts of it. Each written part for one process consists of a
fixed amount of blocks, which is defined by the parameter
segment count (20 in this work as shown in Table I). The block
size is the same for all processes in one IOR application. For
example, to write a file of 64MB, each of the 64 processes
writes a part of 1IMB. The processes of the same IOR do
not start simultaneously but sequentially with a short-time
(within one millisecond) delay between two consecutive ones
as set in IOR source code. An IOR process does not write
continuously but has a random-length cool-down period after
writing a transfer unit. The size of the transfer unit is the same
for all processes in one IOR. For example, if the transfer size
is 64KB, it will take 16 times for a process to write its 1MB
block of a file. In our experiment, the transfer size is equal to
block size. i.e., one block has one transfer unit.

Each IOR has 7 tunable parameters listed in Table L
Parameters are randomly chosen from the parameter space
per-IOR and per-experiment. Real-time write speed of each
IOR is used to measure the I/O performance. Since there are
5 IORs in our experiments, 5 write speeds are collected at
each time step.

1) Data Collection: In this subsection, we discuss how
to prepare the data for training the LSTM-based model. As
mentioned earlier, when training a neural network, training
samples, each of which is a tuple of an input and an output,
are fed into the neural network for it to update itself.

In this paper, we want to predict per-application, real-time
I/0 performance for concurrent programs, given a history of
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TABLE I: The Parameter Settings for HPC Experiment

Parameter Type | Parallel I/O Stack Layer Parameter Name Tuning Range Tuning Step
Lustre stripe count (strp_fac) 1-4 1
stripe size (strp_unt) 16MB-128MB 16MB
} collective buffer nodes (cb_nds) 8-64 8
Tunable MPIIO collective buffer size (cb_buf_size) T6MB-128MB T6MB
HDF5 HDF5 alignment (align(thresh, bndry)) | (IKB, 2MB)-(16KB, 32MB) | (IKB, 2MB)
) HDFS5 chunk size 8MB-64MB 8MB
number of running IORs 5
transfer size SMB
Constant block size SMB
segment count 20
number of processes 64

1/0O settings of them. Therefore, in a training sample, the input
is a history (20 time steps in this work) of I/O settings of
all IORs and the output is the I/O performance of them. The
structure of each pair of input and output is illustrated in Fig. 5.
Because there are 8 I/O-setting parameters (7 tunable ones
from Table I plus whether the IOR is reading or writing) per
application, 5 applications concurrently, and 20 time steps, the
input is a vector of 800 numbers. If at a time step, less than
5 IORs are running concurrently, the elements in the input
vectors corresponding to the non-running IORs are padded
with zeros. This is a common technique used in machine
learning to ensure the fixed length of the input vector. The
output is relatively simple, just 5 numbers, which are the per-
application write speeds of 5 IORs.

1/0 performance
of 5 IORs at time
step t+19

1st one scalar
IOR | [ per IOR
2nd

IOR

/0 settings of 5 IORs from

time steps t to t+19

8 parameters 1st st 1st 1st
per IOR IOR IOR had IOR IOR
2nd 2nd 2nd 2nd
IO0R I0R b IOR IOR
3rd 3rd 3rd 3rd 3rd
IOR IOR bl IOR IOR IOR
4th 4th 4th

* IOR IOR IOR
5th Sth 5th 5th Sth
IOR IOR b IOR IOR IOR

time  time time time
step step step step

t t+1 t+18 t+19

Map 800-d to 5-d
Via an RNN

Sk
g
o
E

Fig. 5: The format of collected data from training an RNN.

The write speed of an IOR is estimated as follows. Because
each IOR consists of 64 processes, the write speed of an IOR
is the sum of the write speed of all its 64 processes. Because
it is very hard to precisely measure the write speed of a single
process, we use an approximation. If at the time of the time
step ¢ (note that ¢ is just an integer not a timestamp) an IOR
process is writing a transfer unit, then the write speed of the
IOR process at time step ¢ is approximated by "a?f% where
ts and t. are the start and end timestamps of the written
transfer unit. If at the time of the time step 7, the IOR process is
cool-down, then its write speed at time step ¢ is zero. The start
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and end times of each transfer unit of each IOR process can
be logged by modifying the source code of the IOR program.

2) Data Cleaning: As described in the last subsection, we
assume that the write speed is constant during a transfer-
size write, and we add all these write speeds up to compute
the total speed of all processes. As a result, some collected
data are redundant and some are inaccurate for measuring I/O
performance. Therefore, we clean the data by discarding those
redundant and inaccurate data.

For the redundant data, assume we have two samples at
time steps ¢ and j (¢ and j are not necessarily consecutive), at
which all the processes write the same transfer unit, then the
write speed of every process at these two time steps will be
the same, thus, the total write speed of the IOR at these two
time steps are the same. If this occurs at time steps ¢ and j
for every running IOR, we will get two exactly same samples,
which makes one of them redundant and discarded.

The inaccurate data is caused by the following fact: The
write speed of a process while writing a transfer unit can be
impacted by the starting or ending of the other IOR. Suppose
some process p of IOR 1 is writing a transfer unit from time
ts to te, and IOR 2 starts to write its file in this time range.
Then the write speed of IOR 1 on process p will be impacted
and can no longer be viewed as constant. In practice, there are
many processes in IOR 1 to be impacted. In this case, all the
data collected during ¢ and t. are inaccurate and discarded
in this work.

C. LSTM Network Design

Our network uses a typical LSTM network architecture
given in Fig. 6, which consists of an input layer, hidden layers
(includes 2 LSTM layers), and a fully-connected layer. The
input layer takes the 800d input vector. In each state! of the
LSTM, 40 elements of the input vectors are fed into the first
LSTM layer of the hidden layers. The 40 elements correspond
to the I/O settings of 5 IORs (5 x 8 = 40) at a time step. The
LSTM layer has 20 hidden states, corresponding to 20 such
40-element batches, thus 20 time steps. Finally, the output
from the LSTM layers is fed into a fully-connected layer and
outputs a 5d vector, corresponding to the write speeds from
IOR 1 to IOR 5.

"not to be confused with the steps when sampling an HPC system
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Fig. 6: Our LSTM network architecture.
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V. EXPERIMENTS

In this section, we verify our hypothesis that it is possible to
predict real-time per-application I/O performance (write speed)
based on a history of I/O settings with proposed LSTM model.
To demonstrate the advantage of the proposed LSTM model on
this prediction problem, 4 other machine learning techniques
such as linear regression, decision tree, dense network, and
simple RNN, are also implemented as the baselines.

A. LSTM network setup

We prepare training data from 1200 experiments as de-
scribed in Section IV-B1. After data cleaning, there are 57735
samples. We use 10-fold cross-validation [21], thus 90-to-10
split between training and test sets, to train and test the neural
networks. Cross validation is a model evaluation technique
such that all samples in the dataset can be used while there is
no overlap between the training and test sets in each round.

Our LSTM network is developed based on Keras [22],
a high-level neural networks API, using Tensorflow back-
end [23]. The learning rate is set to 0.01 and the batch size is
120 while training. The loss function is mean absolute error
(MAE), which is defined as follows:

1 N
— E 1y — Uil
ns &

where y; and g; are the ground-truth and predicted values,
respectively, of one training sample, and ns denotes the total
number of the training samples. All samples are normalized
by min-max scaling [24] before fed into the LSTM network.

@)

B. Evaluation metrics

We evaluate the performance of our model using mean
absolute percentage error (MAPE) [25]. Let 2; be the predicted
value of one test sample, z; be the corresponding ground-truth
value, and n; denote the number of test samples, then the
MAPE is computed as follows:

1
w2

It tells the absolute difference between the predicted and
ground-truth write speed as a percentage.

Zi — 7:‘2‘
2

3)
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C. Results and discussions

TABLE II: MAPE (%) of 10-fold Cross Validation (mean)

IOR1 | IOR2 | IOR3 | IOR 4 | IOR 5

Linear Regression | 31.34 27.56 28.64 28.55 28.57
Decision Tree 27.94 27.59 28.38 29.29 28.62
Dense Network 38.55 31.39 | 28.17 | 25.53 | 28.49
Simple RNN 28.87 | 2589 | 2697 | 2647 | 2599
LSTM 17.35 1642 | 15.00 | 14.87 15.73

To validate our model, we implement 4 other classic ma-
chine learning models as the comparison baselines, i.e. linear
regression, decision tree, dense network, and simple RNN.
The linear regression and decision tree based performance pre-
diction models are implemented with Python package scikit-
learn, and the dense network and simple RNN models are
implemented with Python in Keras. To find the optimal hyper-
parameters of these baselines, the grid search is performed on
each model. For the decision tree, the maximum depth is set
to 7 after searching in the range of [1,19] with step 2. The
dense network has 2 fully-connected layers, chosen from 2
to 4. The number of neurons for each layer is finally set to
100 after searching in the range of [50, 150] with the step 25,
and the hyperbolic tangent (tanh) is chosen as the activation
function for each layer after comparing with rectifier (relu) and
sigmoid function. The simple RNN has the same structure as
our LSTM network. The only difference is it uses simple RNN
as its cell instead of LSTM.

The prediction performance of these baselines and our
LSTM network on each of the 5 IORs are reported in
Table II. For any of the IORs, the LSTM model gives the
much lower MAPE compared with other machine learning
methods, which shows that our initial results are most accurate
and encouraging. In addition, the simple RNN also gets a
better overall prediction performance compared with 3 other
baselines. The MAPE of simple RNN is just higher than that
of the decision tree when predicting IOR 1 and dense network
when predicting IOR 4. This is because that the RNN is able
to extract the dependency information in the sequential data.
But the simple RNN is not good enough by only dealing
with the short-term dependency to predict the I/O performance
in our problem as discussed in section III. Therefore, this
result demonstrates that the long-term dependency indeed
exists in the sequential I/O performance of multiple concurrent
applications and LSTM is a suitable model to predict the I/O
performance by using a history of I/O settings.

In Fig. 7, we visualize the write speeds, from the ground
truth and from our prediction model, from one randomly
selected experiment. The overlap between the two curves
echos the promising results reported above in MAPE.

As another way of looking into the results, on one of the
IORs, for all time steps, we make a correlation plot of actual
and predicted write speed in Fig. 8. The linear regression
between actual and predicted write speed is represented in
the solid line. Such a line for perfect prediction, i.e., write
speed is always exactly predicted, is given in a dashed line.
The close proximity of the two lines reveals the great success
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Fig. 7: The ground truth and prediction of I/O performance for all 5 IORs
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of our approach, with points distributed well along either of
them.

VI. RELATED WORK

In the modern application of high performance computing
(HPC) systems, the large-scale scientific simulations often
produce a large amount of I/O traffic due to unprecedented
growth of the volumes of data. Therefore, in recent years,
there are a significant amount of studies focusing on improving
parallel I/O performance. One of the most popular approaches
for the I/O performance improvement is analyzing parallel
I/0 behavior. Among these studies, some of them implement
the existing I/O performance analyzing tools. Darshan is an
I/0 characterization tool, designed to capture the I/O behavior
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from one selected experiment.

suitable for the long-term deployment for applications [26].
Uselton et al. [27] explore the performance ensembles to un-
derstand their I/O behaviors by using an extended version of an
existing performance tool called IPM (Integrated Performance
Monitoring). Some other works of I/O behavior analyzing such
as [28]-[30], are devoted to characterizing the workload or I/O
behavior of some specific file systems of supercomputers by
statistically analyzing a large amount of data from a variety
of applications.

Another popular technique of I/O performance improvement
is tuning parallel I/O parameters by modeling I/O performance
or searching the parameter space of HPC system. In [8], [10],
[11], the machine learning techniques are leveraged to model
I/0 performance and automatically select the appropriate
parameter values. Behzad et al. [7] develop an auto-tuning
system that search a large configurable parameter space by
exploring genetic algorithms. They also propose another auto-
tuning framework that select the optimal configurations by
matching the data write patterns, which is extracted by tracing
high-level I/O accesses, with previously tuned I/O kernels [31].

The proposed model in this work is capable of predicting
the I/0O performance with more details. Therefore, our model
can be applied in both analyzing I/O behavior and modeling
I/0 performance.

VII. CONCLUSION AND FUTURE WORK

In this work, we propose a long short-term memory (LSTM)
based approach to model and predict the real-time I/O per-
formance of the parallel applications based on their key I/O-
relevant parameter selections in HPC systems. Specifically,
we introduce and discuss the design of HPC experiments and
the LSTM-based prediction model in detail, and also evaluate
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our LSTM based model by comparing with other machine
learning techniques. The results confirm that LSTM is able to
extract the long short-term dependency in the sequential I/O
performance and gives the accurate prediction, thus, we believe
that our approach is a more effective way to accurately predict
I/0 performance of HPC applications. In the future, we plan
to enlarge the tunable parameter space by increasing both the
granularity and the dimension of parameters, and further apply
proposed approach combined with other sequence prediction
algorithms to make more accurate prediction.
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