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Abstract—Agricultural systems are enormously variable in space and time. New and

developing artificial intelligence (Al)-based tools can leverage site-based science and big
data to help farmers and land managers make site-specific decisions. These tools are
improving information about soils and vegetation that forms the basis for investments in
management actions, provides early warning of pest and disease outbhreaks, and
facilitates the selection of sustainable cropland management practices. Continued

progress with Al will require more observational data across a wide range of agricultural

settings, over long time periods.

M ScaLinG up THE results of site-based research
to improve the efficiency and sustainability of
agricultural systems at national to global scales is
a primary scientific challenge. Some agricultural
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innovations, such as new crop cultivars, are so
uniformly beneficial that the rate of spread in
their adoption is limited largely by the transfer of
information. Agricultural “technology transfer”
and collaborative science are used to convey
information to producers and land managers and
to assist them in adapting innovations to regional
production systems.' In some cases, however, the
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Figure 1. Schematic of data structure used in broad-scale agricultural Al models. Grid cells or point locations in x—y
space (which may influence one another via spatial interactions) have multiple layers of potential covariates (controlling
variables), some of which may change value from one time period to the next.
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scientific information provided to managers is
highly sensitive to varying spatial and temporal
contexts. In such cases, information products
should be tailored to specific locations and times
by linking a body of site-based observations to
computational models. Such models can fill infor-
mation gaps between sparse local observations
using gridded datasets representing key control-
ling variables, such as climate, soils, vegetation,
land use, hydrology, neighborhood effects (spatial
interactions), and other variables (see Figure 1).

The potential utility of Al-powered models to
scale or extrapolate information has increased
due to new Al/machine learning algorithms and
the availability of “big” spatiotemporal datasets
representing many variables.? In the following, we
highlight recent examples in which Al modeling
approaches and related tools can provide preci-
sion information to agricultural producers and
land managers across broad spatial extents.
We also highlight future directions and the impli-
cations of Al for site-based research within net-
works, such as the system of U.S. Department of
Agriculture (USDA) Agricultural Research Service
research stations and the USDA Long-Term Agroe-
cosystem Research (LTAR) network.

PRECISION ENVIRONMENTAL
INFORMATION

Spatially explicit information about soil
classes, properties, and vegetation is the basis
for decisions about private land management
decisions by farmers and ranchers, public
land management by the U.S. government, and

governmental conservation policy support. All
told, the cost of these decisions measures in the
billions of dollars per year. Precise information
about soils and vegetation to guide these deci-
sions, however, has been challenging to obtain.
Conventional soil mapping, especially in the exten-
sive rangelands of the western United States, often
provides only a coarse estimate of soil properties
at a specific location. Many parts of the world lack
any soil maps. Similarly, key attributes of vegeta-
tion, such as the composition and productivity of
plant species, are only coarsely mapped or not
mapped at all. To provide more precise estimates
of soil properties, machine learning algorithms
have incorporated data from over one hundred
thousand field soil samples gathered across the
world. The algorithms have also incorporated
covariates including gridded remotely sensed and
modeled data on factors that control soil forma-
tion, such as climate, landform, hydrology, and
vegetation cover. A global product, SoilGrids, pro-
vides estimates of nine soil properties at standard
depths at a 250-m resolution.®> These products
also represent the uncertainty of soil predictions.
Products of global extent may have higher uncer-
tainty than nationally, or regionally, tailored mod-
els that can capitalize on regional covariates and
local knowledge of soil property—covariate rela-
tionships. Thus, “digital soil mapping” is being
performed and refined at subglobal and regional
extents and at finer resolutions.*

A similar approach is being applied to map
the dynamic composition of vegetation across
rangelands in the western United States at a
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Figure 2. Example of soil class prediction delivered
to mobile application (LandPKS) via Al-powered
cloud computing (based on’).

30-m resolution, using tens of thousands of stan-
dardized local observations of vegetation and
remotely sensed and modeled covariates.® Using
the computational power of Google Earth
Engine, Landsat imagery from 1984 to 2017
constitutes the basis for yearly predictions of
vegetation cover, which users can query and
visualize with a custom web application (https://
rangelands.app/).

Continuous soil and vegetation predictions,
in turn, can be combined with other models to
predict and scale up processes, such as soil ero-
sion. For example, bare soil cover, canopy gap
distribution, and vegetation height estimates
modeled in fractional cover products can be
used as inputs in a sediment transport model to
produce spatially explicit dust flux estimates.®

Vegetation and soil classification accuracy is
ultimately limited by the availability of training
data and the utility of available spatially continu-
ous covariates, but new mobile applications can
aid users in collecting local data that can be inte-
grated with machine learning models. For exam-
ple, the USDA-ARS unit in Las Cruces, NM

May/June 2020

developed a mobile application (the Land Poten-
tial Knowledge System; LandPKS) that guides
users in collecting data on several soil proper-
ties at a location.” Global positioning system
(GPS) locations provided by a cell phone are
used to query soil sample and soil covariate
databases to produce a local soil database (see
Figure 2). The soil data the user enters and cova-
riates mapped at the user’s location are incorpo-
rated into a local automated machine learning
model (AutoML) to predict the most probable
soil class at the user’s location. Precision envi-
ronmental information will increasingly combine
user inputs with existing observations and infor-
mation from covariate databases.

PEST AND DISEASE PREDICTION AT
REGIONAL TO NATIONAL SCALES

One of the most important challenges in agri-
culture is managing the impact of invasive
pests and pathogens. As transportation allows
people and products to move, it also provides
a pathway for pests and pathogens to expand
their range. Al and machine learning can assist
in identifying those areas most at risk of inva-
sions/outbreaks as well as assisting in plans to
mitigate the spread of invasives or diseases. Eco-
logical niche modeling (ENM) has greatly
expanded with the use of machine learning and
availability of gridded covariate data. Machine
learning based models, such as MaxEnt,® can be
used to identify suitable habitats where species
could establish and reproduce.

USDA-ARS scientists in Wapato, WA, have
been using ENM to identify areas in the United
States and internationally where either cur-
rently established pests could expand their
range in response to climate change or newly
arriving invasive species could potentially
spread. These maps can assist in decision mak-
ing for international trade policies that recog-
nize a pest of concern, but in which the ENM
shows little or no suitable habitat to support
this pest. This information can be invaluable
during trade negotiations with prospective
importing countries.

Such machine learning based models have
proven their utility in real time. For example, the
range of the oriental fruit moth (OFM), Grapho-
lita molesta, in Washington State was predicted
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to be increasing due to climate change.’ At the
end of the 2018 crop year, multiple reports of
OFM damage began pouring in from growers and
pest management companies. The models were
developed using a conservative climate change
scenario; the actual expansion of this pest’s
range occurred about five years earlier than the
model predicted.

A similar ENM model identified areas in the
United States with suitable habitat to support a
newly invasive species, the spotted lanternfly,
Lycorma delicatula®® (see Figure 3). Following the
publication of this model, new populations of
spotted lanternfly were discovered in areas that
the model predicted as highly suitable habitat.
These examples highlight the utility of Al for pre-
dicting invasive species spread with sufficient
lead time to develop mitigation plans.

Animal disease modeling has also benefitted
from machine learning. A transdisciplinary team
of USDA scientists evaluated a large suite of
spatially distributed environmental covariates
(>400) using MaxEnt to develop early warning
strategies for vesicular stomatitis (VS), a com-
mon viral vector-borne vesicular disease affect-
ing livestock throughout the Americas.'' VS

occurrence at the scale of individual landowners
was related to conditions that can be monitored
(i.e., rainfall, temperatures, and streamflow) or
modified (i.e., vegetation). On-site green vegeta-
tion during the month of occurrence and higher
rainfall four months prior combined with either
cool daytime (disease expansion) or nighttime
(disease incursion) temperatures one month
prior were common predictors of VS occurrence.
At landscape to regional scales, conditions that
favor specific VS biological vectors were pre-
dicted, including black flies in incursion years
and biting midges in expansion years.

LOCATION-SPECIFIC FORECASTS
OF CROP PERFORMANCE

A primary goal of sustainable food produc-
tion systems research is to devise strategies to
increase agricultural outputs while improving
soil health, water quality, pest resistance, and
resilience to climate change.

The use of cover crops is one of the most
important sustainability strategies in crop pro-
duction systems. Cover crops are nonmarket-
able plants that grow in between cash crop
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plantings and can increase crop productivity
while providing other environmental benefits to
the farmer and the public. Realizing these bene-
fits, however, is largely dependent on good
cover crop performance. Farmers need sound
early-season information to reduce the risk of
cover crop failure and to offset cover crop plant-
ing costs by maximizing the benefits accrued
through their use.

Current recommendation systems for cover
crop adoption are based on expert opinions, or
are linked to agronomic simulation models. Com-
mon agronomic tools, such as process-based
models that capture soil and crop responses in
detail, have been successfully applied to some
types of crops. Unfortunately, process-based
models adapted to simulate cover crops have
shown only limited ability to predict growth
and development. For example, a process-based
model accurately predicted biomass of a typical
small grain cover crop (cereal rye, Secale cere-
ale), in only five out of ten years when compared
with field observations.'? Al can improve predic-
tions by taking advantage of large datasets from
real-time sources (i.e., remote sensors, digital
farm equipment, and satellites). Better predic-
tions can lead to more widespread adoption of
cover crops and expansion of the benefits they
provide.

USDA-ARS scientists in Beltsville, MD, are
conducting cutting-edge research to predict the
spatial and temporal variation of cover crops
and their effects on crop systems. For example,
remote sensing and crop management and per-
formance data from a cereal rye cover crop were
compiled from three years of Maryland and
Pennsylvania field experiments testing rye
response to nitrogen fertilizer. Using this data-
set, a machine learning model (Random Forest)
was trained and optimized to predict biomass of
the cover crop. Testing of the model using vali-
dation data from a study in North Carolina
revealed that 60% of biomass predictions corre-
sponded to ranges of observed ground-truth bio-
mass, reaching accuracy levels that surpass
those reported via previous process-based
modeling. Furthermore, crop modelers and data
scientists in Beltsville are collating cover crop
datasets from across the country, complement-
ing an extensive on-farm soil nitrogen and water
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monitoring network featuring high-resolution
imagery acquisition, to build the next generation
of models. These new models will be used to cre-
ate spatial maps of cover crop impacts on farm
productivity for the first time.

CONCLUSION

Our review illustrates how Al-based tools can
deliver a variety of high-quality, site-specific
information products to producers and manag-
ers across broad spatial extents. The difficulty in
increasing the practical utility of these tools
reflects general challenges associated with
Al-based technologies, but we want to highlight
two key problems.

First, even though the availability of big data
has made Al potentially useful, we often do not
have enough data to provide predictions with
desired accuracy given the high spatiotemporal
variability inherent to agricultural systems at
broad scales. We need more observations of the
phenomena we seek to predict in order to train
better models. These observations must be gath-
ered across the breadth of spatial variation to
which models are applied and should be long-
term to account for dynamic controlling variables,
such as climate, management, and lag effects.
Research networks, such as LTAR, can contribute
these observations from research sites, but such
sites represent a limited range of variability.
Observations from farms and ranches across land-
scapes and regions are needed, which can be facil-
itated by mobile technologies and collaborative
networks involving farmers and ranchers.

Second, standardized methods and data inte-
gration, harmonization, and availability are
essential to sustain the Al revolution. These
datasets include high-quality observations of
phenomena of interest (such as species occur-
rence or field estimates of plant production) as
well as remotely sensed covariates, which can
be processed in different ways. This is already
a primary emphasis of the agricultural and eco-
logical science communities, but the importance
of bringing additional data into use, promoting a
culture of data sharing among scientists, and
providing systems to discover data and learn
from repeated model-building processes13 can-
not be overemphasized.
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