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Abstract—Agricultural systems are enormously variable in space and time. New and

developing artificial intelligence (AI)-based tools can leverage site-based science and big

data to help farmers and landmanagers make site-specific decisions. These tools are

improving information about soils and vegetation that forms the basis for investments in

management actions, provides early warning of pest and disease outbreaks, and

facilitates the selection of sustainable croplandmanagement practices. Continued

progress with AI will require more observational data across a wide range of agricultural

settings, over long time periods.

& SCALING UP THE results of site-based research

to improve the efficiency and sustainability of

agricultural systems at national to global scales is

a primary scientific challenge. Some agricultural

innovations, such as new crop cultivars, are so

uniformly beneficial that the rate of spread in

their adoption is limited largely by the transfer of

information. Agricultural “technology transfer”

and collaborative science are used to convey

information to producers and land managers and

to assist them in adapting innovations to regional

production systems.1 In some cases, however, the
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scientific information provided to managers is

highly sensitive to varying spatial and temporal

contexts. In such cases, information products

should be tailored to specific locations and times

by linking a body of site-based observations to

computational models. Such models can fill infor-

mation gaps between sparse local observations

using gridded datasets representing key control-

ling variables, such as climate, soils, vegetation,

landuse, hydrology, neighborhood effects (spatial

interactions), and other variables (see Figure 1).

The potential utility of AI-powered models to

scale or extrapolate information has increased

due to new AI/machine learning algorithms and

the availability of “big” spatiotemporal datasets

representing many variables.2 In the following, we

highlight recent examples in which AI modeling

approaches and related tools can provide preci-

sion information to agricultural producers and

land managers across broad spatial extents.

We also highlight future directions and the impli-

cations of AI for site-based research within net-

works, such as the system of U.S. Department of

Agriculture (USDA) Agricultural Research Service

research stations and the USDA Long-Term Agroe-

cosystemResearch (LTAR) network.

PRECISION ENVIRONMENTAL
INFORMATION

Spatially explicit information about soil

classes, properties, and vegetation is the basis

for decisions about private land management

decisions by farmers and ranchers, public

land management by the U.S. government, and

governmental conservation policy support. All

told, the cost of these decisions measures in the

billions of dollars per year. Precise information

about soils and vegetation to guide these deci-

sions, however, has been challenging to obtain.

Conventional soilmapping, especially in the exten-

sive rangelands of the western United States, often

provides only a coarse estimate of soil properties

at a specific location. Many parts of the world lack

any soil maps. Similarly, key attributes of vegeta-

tion, such as the composition and productivity of

plant species, are only coarsely mapped or not

mapped at all. To provide more precise estimates

of soil properties, machine learning algorithms

have incorporated data from over one hundred

thousand field soil samples gathered across the

world. The algorithms have also incorporated

covariates including gridded remotely sensed and

modeled data on factors that control soil forma-

tion, such as climate, landform, hydrology, and

vegetation cover. A global product, SoilGrids, pro-

vides estimates of nine soil properties at standard

depths at a 250-m resolution.3 These products

also represent the uncertainty of soil predictions.

Products of global extent may have higher uncer-

tainty than nationally, or regionally, tailored mod-

els that can capitalize on regional covariates and

local knowledge of soil property–covariate rela-

tionships. Thus, “digital soil mapping” is being

performed and refined at subglobal and regional

extents and at finer resolutions.4

A similar approach is being applied to map

the dynamic composition of vegetation across

rangelands in the western United States at a

Figure 1. Schematic of data structure used in broad-scale agricultural AI models. Grid cells or point locations in x–y

space (which may influence one another via spatial interactions) have multiple layers of potential covariates (controlling

variables), some of which may change value from one time period to the next.
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30-m resolution, using tens of thousands of stan-

dardized local observations of vegetation and

remotely sensed and modeled covariates.5 Using

the computational power of Google Earth

Engine, Landsat imagery from 1984 to 2017

constitutes the basis for yearly predictions of

vegetation cover, which users can query and

visualize with a custom web application (https://

rangelands.app/).

Continuous soil and vegetation predictions,

in turn, can be combined with other models to

predict and scale up processes, such as soil ero-

sion. For example, bare soil cover, canopy gap

distribution, and vegetation height estimates

modeled in fractional cover products can be

used as inputs in a sediment transport model to

produce spatially explicit dust flux estimates.6

Vegetation and soil classification accuracy is

ultimately limited by the availability of training

data and the utility of available spatially continu-

ous covariates, but new mobile applications can

aid users in collecting local data that can be inte-

grated with machine learning models. For exam-

ple, the USDA-ARS unit in Las Cruces, NM

developed a mobile application (the Land Poten-

tial Knowledge System; LandPKS) that guides

users in collecting data on several soil proper-

ties at a location.7 Global positioning system

(GPS) locations provided by a cell phone are

used to query soil sample and soil covariate

databases to produce a local soil database (see

Figure 2). The soil data the user enters and cova-

riates mapped at the user’s location are incorpo-

rated into a local automated machine learning

model (AutoML) to predict the most probable

soil class at the user’s location. Precision envi-

ronmental information will increasingly combine

user inputs with existing observations and infor-

mation from covariate databases.

PEST AND DISEASE PREDICTION AT
REGIONAL TO NATIONAL SCALES

One of the most important challenges in agri-

culture is managing the impact of invasive

pests and pathogens. As transportation allows

people and products to move, it also provides

a pathway for pests and pathogens to expand

their range. AI and machine learning can assist

in identifying those areas most at risk of inva-

sions/outbreaks as well as assisting in plans to

mitigate the spread of invasives or diseases. Eco-

logical niche modeling (ENM) has greatly

expanded with the use of machine learning and

availability of gridded covariate data. Machine

learning based models, such as MaxEnt,8 can be

used to identify suitable habitats where species

could establish and reproduce.

USDA-ARS scientists in Wapato, WA, have

been using ENM to identify areas in the United

States and internationally where either cur-

rently established pests could expand their

range in response to climate change or newly

arriving invasive species could potentially

spread. These maps can assist in decision mak-

ing for international trade policies that recog-

nize a pest of concern, but in which the ENM

shows little or no suitable habitat to support

this pest. This information can be invaluable

during trade negotiations with prospective

importing countries.

Such machine learning based models have

proven their utility in real time. For example, the

range of the oriental fruit moth (OFM), Grapho-

lita molesta, in Washington State was predicted

Figure 2. Example of soil class prediction delivered

to mobile application (LandPKS) via AI-powered

cloud computing (based on7).
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to be increasing due to climate change.9 At the

end of the 2018 crop year, multiple reports of

OFM damage began pouring in from growers and

pest management companies. The models were

developed using a conservative climate change

scenario; the actual expansion of this pest’s

range occurred about five years earlier than the

model predicted.

A similar ENM model identified areas in the

United States with suitable habitat to support a

newly invasive species, the spotted lanternfly,

Lycorma delicatula10 (see Figure 3). Following the

publication of this model, new populations of

spotted lanternfly were discovered in areas that

the model predicted as highly suitable habitat.

These examples highlight the utility of AI for pre-

dicting invasive species spread with sufficient

lead time to develop mitigation plans.

Animal disease modeling has also benefitted

from machine learning. A transdisciplinary team

of USDA scientists evaluated a large suite of

spatially distributed environmental covariates

(>400) using MaxEnt to develop early warning

strategies for vesicular stomatitis (VS), a com-

mon viral vector-borne vesicular disease affect-

ing livestock throughout the Americas.11 VS

occurrence at the scale of individual landowners

was related to conditions that can be monitored

(i.e., rainfall, temperatures, and streamflow) or

modified (i.e., vegetation). On-site green vegeta-

tion during the month of occurrence and higher

rainfall four months prior combined with either

cool daytime (disease expansion) or nighttime

(disease incursion) temperatures one month

prior were common predictors of VS occurrence.

At landscape to regional scales, conditions that

favor specific VS biological vectors were pre-

dicted, including black flies in incursion years

and biting midges in expansion years.

LOCATION-SPECIFIC FORECASTS
OF CROP PERFORMANCE

A primary goal of sustainable food produc-

tion systems research is to devise strategies to

increase agricultural outputs while improving

soil health, water quality, pest resistance, and

resilience to climate change.

The use of cover crops is one of the most

important sustainability strategies in crop pro-

duction systems. Cover crops are nonmarket-

able plants that grow in between cash crop

Figure 3. Predicted distribution of L. delicatula in the United States from a machine learning model. Areas shaded in red,

yellow, and green indicate high, medium, and low habitat suitability, respectively. White areas are unsuitable for L.

delicatula establishment. See.10
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plantings and can increase crop productivity

while providing other environmental benefits to

the farmer and the public. Realizing these bene-

fits, however, is largely dependent on good

cover crop performance. Farmers need sound

early-season information to reduce the risk of

cover crop failure and to offset cover crop plant-

ing costs by maximizing the benefits accrued

through their use.

Current recommendation systems for cover

crop adoption are based on expert opinions, or

are linked to agronomic simulation models. Com-

mon agronomic tools, such as process-based

models that capture soil and crop responses in

detail, have been successfully applied to some

types of crops. Unfortunately, process-based

models adapted to simulate cover crops have

shown only limited ability to predict growth

and development. For example, a process-based

model accurately predicted biomass of a typical

small grain cover crop (cereal rye, Secale cere-

ale), in only five out of ten years when compared

with field observations.12 AI can improve predic-

tions by taking advantage of large datasets from

real-time sources (i.e., remote sensors, digital

farm equipment, and satellites). Better predic-

tions can lead to more widespread adoption of

cover crops and expansion of the benefits they

provide.

USDA-ARS scientists in Beltsville, MD, are

conducting cutting-edge research to predict the

spatial and temporal variation of cover crops

and their effects on crop systems. For example,

remote sensing and crop management and per-

formance data from a cereal rye cover crop were

compiled from three years of Maryland and

Pennsylvania field experiments testing rye

response to nitrogen fertilizer. Using this data-

set, a machine learning model (Random Forest)

was trained and optimized to predict biomass of

the cover crop. Testing of the model using vali-

dation data from a study in North Carolina

revealed that 60% of biomass predictions corre-

sponded to ranges of observed ground-truth bio-

mass, reaching accuracy levels that surpass

those reported via previous process-based

modeling. Furthermore, crop modelers and data

scientists in Beltsville are collating cover crop

datasets from across the country, complement-

ing an extensive on-farm soil nitrogen and water

monitoring network featuring high-resolution

imagery acquisition, to build the next generation

of models. These new models will be used to cre-

ate spatial maps of cover crop impacts on farm

productivity for the first time.

CONCLUSION
Our review illustrates how AI-based tools can

deliver a variety of high-quality, site-specific

information products to producers and manag-

ers across broad spatial extents. The difficulty in

increasing the practical utility of these tools

reflects general challenges associated with

AI-based technologies, but we want to highlight

two key problems.

First, even though the availability of big data

has made AI potentially useful, we often do not

have enough data to provide predictions with

desired accuracy given the high spatiotemporal

variability inherent to agricultural systems at

broad scales. We need more observations of the

phenomena we seek to predict in order to train

better models. These observations must be gath-

ered across the breadth of spatial variation to

which models are applied and should be long-

term to account for dynamic controlling variables,

such as climate, management, and lag effects.

Research networks, such as LTAR, can contribute

these observations from research sites, but such

sites represent a limited range of variability.

Observations from farms and ranches across land-

scapes and regions are needed, which can be facil-

itated by mobile technologies and collaborative

networks involving farmers and ranchers.

Second, standardized methods and data inte-

gration, harmonization, and availability are

essential to sustain the AI revolution. These

datasets include high-quality observations of

phenomena of interest (such as species occur-

rence or field estimates of plant production) as

well as remotely sensed covariates, which can

be processed in different ways. This is already

a primary emphasis of the agricultural and eco-

logical science communities, but the importance

of bringing additional data into use, promoting a

culture of data sharing among scientists, and

providing systems to discover data and learn

from repeated model-building processes
13 can-

not be overemphasized.
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