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Abstract—In this paper, we analyze the non-convex framework
of Wirtinger Flow (WF) for phase retrieval and identify a novel
sufficient condition for universal exact recovery through the lens
of low rank matrix recovery theory. Via a perspective in the lifted
domain, we show that the WF iterates converge to a true solution
with fully deterministic arguments under a single condition on the
lifted forward model. To this end, a geometric relationship between
between the accuracy of spectral initialization and the validity of
the regularity condition is derived. In particular, we determine that
a certain concentration property on the spectral matrix must hold
uniformly with a sufficiently tight constant. This culminates into a
sufficient condition that is equivalent to a restricted isometry-type
property over rank-1, positive semi-definite matrices, and amounts
to a less stringent requirement on the lifted forward model than
those of prominent low-rank-matrix-recovery methods in the liter-
ature. We characterize the performance limits of our framework
in terms of the tightness of the concentration property via novel
bounds on the convergence rate and on the signal-to-noise ratio
such that the theoretical guarantees are valid using the spectral
initialization at the proper sample complexity.

Index Terms—Wirtinger Flow, non-convex optimization, low
rank matrix recovery, phase retrieval, lifting, exact recovery.

I. INTRODUCTION

A. Phase Retrieval

G ENERALIZED phase retrieval (GPR) is a ubiquitous
problem in science and engineering. The problem con-

sists of the recovery of an object of interest x ∈ C
N given the

intensity only measurements of the form:

ym = |〈am,x〉|2, m = 1, 2, . . .M, (1)

where am ∈ C
N denotes the mth sampling vector. In literature,

{am}Mm=1 most prominently corresponds to models such as
Gaussian sampling [1], coded diffraction patterns [2], or the
rows of a known linear transformation, such as the short time
Fourier transform [3], or a particular imaging operator [8].
These models arise in problems such as X-Ray crystallography,
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coded diffraction imaging, optical astronomy, quantum state
tomography, array imaging, or blind channel estimation.

One approach to address GPR is via a least-squares formula-
tion in which the �2 loss over intensity measurements in (1) is
minimized as follows:

minimize
z

f(z) :=
1

2M

M∑
m=1

(ym − |〈am, z〉|2)2. (2)

Alternative forms of f have also been popular in practice for
optical imaging applications, where the �2 loss is computed as a
mismatch of amplitudes instead of intensities [4]. In solving
GPR by (2) or using the amplitudes as measurements, the
objective function f is non-holomorphic and non-convex due
to its invariance to global phase factors on the complex valued
variable z. Conventional methods from optical imaging litera-
ture reformulate (2) as a bilinear inverse problem by inserting
the missing phase component as a variable, which is then solved
by alternating minimization [5], [6], or non-convex analogs
of feasibility problems [7]. However, these methods are not
equipped with practical recovery guarantees, and carry the risk
of getting stuck in local minima due to the non-convexity of the
problem.

Despite the ill-posed nature of the problem, there has been a
significant progress in the development of provably good GPR
algorithms in the last decade. Such methods are characterized
by either one or both of the following two principles: convexifi-
cation of the equality constraints and the solution set, which
include lifting based approaches [2], [8]–[10], or a provably
accurate initialization, followed by an algorithmic map that
refines the initial estimate on the original signal domain [1],
[11], [12]. Notably, lifting-based approaches reformulate in-
version from the quadratic equations of the form (1) into a
convex semi-definite program while squaring the dimension of
the inverse problem. As a result, these solvers have demand-
ing implementation costs due to computational complexity and
memory requirements, which limit their applicability for large
scale sensing problems. Essentially, methods that operate on the
original signal domain evade such practical bottlenecks arising
from the increased dimensionality of the inverse problem.

B. Wirtinger Flow

The latter two-step approach for exact phase retrieval on the
original signal domain was most prominently popularized by
the seminal Wirtinger Flow (WF) framework [1]. In contrast to
other state-of-the art exact phase retrieval methods, i.e., lifting
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or linear programming based approaches [12]–[14], WF solves
the original non-convex problem in (2) directly.

Given an initial estimate z0, WF performs steepest descent
iterations by means of Wirtinger derivatives of f as follows:

zk+1 = zk − μk

‖z0‖2∇f(zk), (3)

where ∇f is defined as the complex gradient operator, and μk

is the step size. The premise of WF is that if z0 is sufficiently
accurate, the iterates formed by (3) provably converge with a
geometric rate to an element in the global solution set which is
defined as follows:

Definition I.1: Global Solution Set. Let

P := {ejφx : φ ∈ [0, 2π)}, (4)

where x ∈ CN is the ground truth of intensity measurements
(1). The set P is said to be the global solution set of (2).

In general for any z ∈ C
N , the non-convex set of the form

{ejΦz : Φ ∈ [0, 2π]} represents an equivalence under the map-
ping of intensity only measurements. The convergence of algo-
rithm iterates is governed by the following distance metric:

Definition I.2: Let x ∈ C
N be an element of the solution set

P . The distance of an element z ∈ C
N to x is defined as [1]:

dist(z,x) = min
φ∈[0,2π]

‖z− xejφ‖. (5)

The angle φ̂ where the minimum is achieved for a given z ∈ C
N

is denoted as Φ(z).
In literal terms, (5) quantifies the distance of an estimate to

the closest point in P , eliminating the effect of non-uniqueness
caused by the global phase factors. As such, the exact phase
retrieval refers to the iterates converging to any of the elements
in the global solution set.

Having to solve a non-convex problem, exact recovery guar-
antees of WF framework depend on the accuracy of the initial
estimate z0 which is computed by the spectral method [11] as
follows:

Y =
1

M

M∑
m=1

ymamaHm. (6)

The leading eigenvector of Y, denoted as v0, is scaled by
the square root of the normalized �1-norm of the data, i.e.,
λ0 = M−1‖y‖1 to yield the initial estimate z0 =

√
λ0v0. De-

noting dist(z0,x) = ε‖x‖, the initial estimate determines an
ε-neighborhood of P as follows:

Definition I.3: ε-Neighborhood of P . Let

E (ε) = {z ∈ C
N : dist(z,P) ≤ ε‖x‖}, (7)

where P is the global solution set as defined in (4). The set E (ε)
is said to be the ε-neighborhood of P .

The main result of WF framework is that for Gaussian sam-
pling and coded diffraction patterns, the initial estimate com-
puted by the spectral method yields a small enough relative
distance-ε, such that the following regularity condition holds
with high probability for M = O(N logN).

Condition I.1: Regularity Condition. The objective function
f in (2) satisfies the regularity condition if, for all z ∈ E (ε) the

following inequality holds

Re
(
〈∇f(z), (z− xeiΦ(z))〉

)
≥ 1

α
dist2(z,x) +

1

β
‖∇f(z)‖2

(8)
with fixed α > 0 and β > 0 such that αβ > 4.

Lemma 7.10 in [1] establishes that if the regularity condition
is satisfied, the WF iterations are contractions with respect to
the distance metric in (5) and all the algorithm iterates remain
in E (ε). Essentially, the validity of (8) ensures that there exists
no first order optimal point z ∈ E (ε) other than the elements
of P .

C. Related Work and Our Contributions

WF inspired several variants [15]–[20], which improve on
its performance guarantees with respect to computational and
sample complexity, as well as robustness to noise and outliers.
The original WF framework has a O(1/N) specification on the
algorithm step-size, yielding O(MN2 log 1/ε0) computational
complexity for an ε0-relative accuracy on the final estimate of
the optimization. Furthermore, the sample complexity of the
method is M = O(N logN) in order to control the heavy tailed
distribution of the spectral matrix, which also relates to the local
curvature of the objective function withinE(ε). These issues are
largely mitigated by the Truncated WF (TWF) framework [15],
which guarantees convergence with a O(1) step-size for a linear
computational complexity, and uniformly controls the tails of
the spectral matrix when M = O(N) by devising a particular
sample truncation scheme. Similar outcomes are achieved by
alternative approaches that reshape the non-convex objective
function to a loss over amplitudes [4], [18]–[20] in the form of
reduced sample complexity, and faster convergence. Truncation
methods were further studied in relation to increasing the robust-
ness of these methods through median truncation [17] or noise
estimation [16]. Spectral initialization schemes were also subject
to further studies such as those involving the design of optimal
pre-processing functions [21]–[25], generalizations [26], [27],
or alternative formulations including highest correlation estima-
tors [19], and orthogonality promoting methods [20].

The aforementioned WF-inspired works offer exact recovery
guarantees for phase retrieval based on a wide range of theo-
retical arguments which are prominently probabilistic in nature,
derived through the properties of statistical models assumed for
the underlying measurement maps. Namely, the exact recovery
analysis of state-of-the-art frameworks focus on establishing the
regularity condition in (8) at the proper sample complexity, given
that E(ε) is constructed by a specific initialization method. We
instead take a low-rank matrix recovery based approach to phase
retrieval, and conduct a geometric analysis of the optimization
problem in (2) for arbitrary measurement models.

To this end, we develop a theoretical framework that unifies
the key arguments that contribute to the exact recovery guaran-
tees of WF and its intensity loss based variants under a single
sufficient condition. Specifically, we show that one arrives at
the restricted strong convexity property of the objective function
around a global solution directly through a concentration bound
of the spectral matrix due to the special structure of the set
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of rank-1, positive semi-definite (PSD) matrices. We reach this
conclusion by interpreting WF in the lifted domain. As a result,
our framework establishes that the two steps of the non-convex
optimization framework blueprinted by the seminal work in [1],
i.e., the accuracy of spectral initialization, and the regularity
condition, are geometric outcomes of a less restrictive sufficient
condition related to the following concentration bound:

‖Y − (xxH + ‖x‖2I)‖ ≤ δ‖x‖2, for any x ∈ C
N . (9)

(9) is by no means an unexpected property. In fact, (9) is
known to hold true with high probability for Gaussian sampling
and coded diffraction patterns when M = O(N logN) through
the concentration of the Hessian of f around its expectation
when evaluated at a global solution. Typically, it is used within
the probabilistic analysis conducted for statistical models in
relating the distance of the spectral initialization to the ground
truth. Its uniformity over all x ∈ C

N is also established when
M = O(N) under the sample truncation scheme of TWF [15].
In our work, we show that this is a much stronger property
than it is given credit for. Namely, we prove that if the con-
centration bound in (9) holds uniformly over all x where δ is
sufficiently tight with δ ≤ 0.184, then the regularity condition
is redundant for the exact recovery guarantees of WF starting
from the spectral initialization. In other words, there surely
exists positive α, β with αβ > 4 in Condition I.1 such that (8)
is satisfied deterministically via the restricted strong convexity
of the objective function in (2).

The resulting deterministic convergence framework amounts
to two key results in this paper. First, under the validity of our
sufficient condition, we identify the best achievable convergence
rate that guarantees the exact recovery of any unknown from
its intensity-only measurements. The upper bound on the con-
vergence rate is determined solely by the concentration bound
parameter δ, which facilitates the derivation of an optimal fixed
step-size μk = μ(δ) for the algorithm that is an O(1) constant.
Secondly, in the presence of additive noise on the received
intensity-only measurements, we determine a δ-dependent lower
bound for the signal-to-noise ratio such that the algorithm is
guaranteed to yield an estimate that is within a bounded pertur-
bation from the ground truth on expectation. Essentially, these
results characterize the relationship of value of δ to the trade-offs
between model parameters and performance of the algorithm
with respect to convergence and stability for practical purposes,
provided that δ ≤ 0.184.

Related to our theory of WF as a non-convex optimization
framework, it is observed in [15] and [28] that the regularity
condition can be enforced by the restricted strong convexity con-
dition due to the local Lipschitz differentiability of the objective
function. Several key insights are built in [28] for exactly solving
(2), in which a benign geometry for the objective function f is
realized with high probability when the number of samples are
sufficiently large as O(N log3 N) for the Gaussian sampling
model. In particular, it is observed that all local minimizers
of f are the elements of the global solution set P , and all its
saddle points have a directional negative curvature with high
probability, which allow vanilla gradient descent to converge to
the exact solution even if the algorithm is initialized randomly.

Through the implicit regularization properties of gradient de-
scent and the incoherence property in the Gaussian sampling
model, [29] improves the step size of WF to O(1/ logN)
starting from spectral initialization when M = O(N logN),
thereby attaining a near linear computational complexity of
O(MN logN log 1/ε0). [29] also identifies a O(N log3 N)
sample complexity for the convergence of WF with a constant
step-size. In contrast, [30] establishes the restricted strong con-
vexity of the objective function (2) around the solution set at
O(N log2 N) sample complexity for the Gaussian sampling
model, with spectral initialization proven to fall within the
strongly convex region with high probability. In this paper, we
improve upon the required sample complexity identified in [30]
to O(N logN) for the restricted strong convexity of (2) in a
sufficiently wide neighborhood around the solution set that is
guaranteed to include the initial spectral estimate. Furthermore,
our approach facilitates reducing the computational complexity
of the algorithm to O(MN log 1/ε0) for ε0-relative accuracy
due to a constant O(1) step-size, which is an improvement
over [1] and [29] at the identical sampling complexity.

A notable work in the literature in relation to our results is [26].
When coupled with the result in [30], [26] guarantees the exact
recovery of a low rank-r matrix deterministically via restricted
strong convexity with a properly set step-size that relates to the
spectra of the ground truth. Another work that closely relates to
our framework is [31], in which a non-convex approach based on
a local restricted isometry property (RIP) over rank-2 matrices
is considered as sufficient and established for the Gaussian sam-
pling model with high probability for exactly solving the blind
deconvolution problem. In essence, our framework stands in
agreement with [26], [31]. Specifically, the sufficient condition
we identify on the lifted forward model for exact non-convex
phase retrieval i) deterministically yields a local RIP-2 type
condition reminiscent to that of [31] when specified to hold
only over the difference of two rank-1, PSD matrices, and ii)
directly implies restricted strong convexity due to the duality
between lifted domain and the underlying signal domain, after
which results of [26] become applicable. Furthermore, under
the validity of the concentration bound over all x ∈ C

N , the
sufficient condition for exact recovery is effectively converted
to a RIP on the lifted forward model of the problem over the
set of rank-1, positive semi-definite (PSD) matrices. In this
manner, the developed framework realizes the full character-
ization of an observation made in [26] by deriving the best
uniform convergence rate and the optimal step-size for exact
recovery only with respect to the restricted isometry constant
(RIC). Thereby, our framework facilitates a bridge between
the optimization based low rank matrix recovery methods, and
the prominent statistical frameworks for phase retrieval with a
unifying sufficient condition.

In recent years, RIP-based conditions on the lifted measure-
ment map have been established as sufficient for global opti-
mality in recovering a rank-r matrix from quadratic or bilinear
equations via first-order non-convex optimization methods. RIP
over rank-6r with a RIC less than or equal to 1/10 is shown
to be sufficient for exact recovery via Procrustes Flow [32].
RIP over rank-4r matrices with a RIC less than or equal to
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1/5 is shown to guarantee the strict saddle point condition
and the absence of any spurious local minima for the �2 loss
function [33]. RIP over rank-2r matrices with a RIC less than
or equal to 1/5 is shown to be sufficient for having no spurious
local minima [34] whereas at most a RIC of 1/2 over rank-2r
matrices is postulated as necessary in [35]. Notably, the sufficient
condition we establish in our framework corresponds to a less
restrictive RIP-type condition than those of the non-convex low
rank matrix recovery methods in [32]–[35], as it suffices that the
property is satisfied only over the set of rank-1, PSD matrices.
The major difference of our result stems from the fact that we
are merely interested in restricted strong convexity within the
ε-neighborhood obtained from the spectral initialization, and
not the global properties of the optimization landscape. As a
result, to the best of our knowledge, with this paper we establish
the most minimal RIP based framework that fully characterizes
the performance guarantees of non-convex phase retrieval via
WF. Other key works for the non-convex rank-r matrix recovery
problem include [36], in which the regularity condition of WF
is considered and shown to hold for the Gaussian sampling
model, and [26], [37] in which exact recovery, and stability
are studied under restricted strong convexity and smoothness
of the objective function, respectively. For further discussion on
advances in non-convex low rank matrix recovery, we refer the
reader to [38].

D. Notation and Organization of the Paper

The rest of the paper is organized as follows. In Section II,
we provide a preliminary discussion on the interpretation of
WF in the lifted domain. Section III contains our main results,
and remarks. Section IV evaluates the robustness of WF in the
presence of additive noise. In Section V, we present the proofs
of our results. Section VI concludes the paper.

We denote the elements of finite dimensional vector spaces
with lower case bold letters. Upper case bold and italic letters are
allocated for matrices and sets, respectively. Caligraphic letters
are allocated for operators that act on the lifted domain inCN×N .
In denoting the norms of elements in different domains, we use
the following notation: ‖ · ‖ denotes the �2 norm when acting on
a vector, and the spectral norm when acting on an operator. ‖ · ‖F
and ‖ · ‖∗ denote the Frobenius and nuclear norms, respectively.
I and I denote the identity operators on the vector space of CN ,
and the lifted domain in C

N×N , respectively.

II. WF IN THE LIFTED DOMAIN

We start by interpreting WF as a solver in the lifted domain,
and adopt the concepts of the seminal work of PhaseLift in [2].
Lifting based approaches provide a profound perspective to the
phase retrieval problem. In principle, these methods target the
core issue of non-injectivity of phaseless measurement maps,
which is a key step in formulating methods that guarantee exact
recovery in phase retrieval literature [12], [39]. Notably, one
can consider the measurement model in (1) as a mapping from
a rank-1, positive semi-definite matrix xxH ∈ C

N×N instead
of a quadratic map from the signal domain in C

N . Lifting
conceptualizes this observation:

Definition II.1: Lifting. Each measurement in (1) can be ex-
pressed in the form of an inner product of two rank-1 operators,
X̃ = xxH and Am = amaHm such that

ym = 〈Am, X̃〉F m = 1, ...,M (10)

where 〈·, ·〉F is the Frobenius inner product. The process of
transforming the signal recovery over CN to the recovery of the
rank-1 unknown X̃ ∈ C

N×N is known as lifting.
The lifting technique introduces a new, linear measurement

map A : CN×N → C
M , which we refer to as the lifted forward

model. Specifically, for the phaseless measurement model in (1),
the domain ofA is constrained on the set of rank-1, positive semi-
definite (PSD) matrices R+

1 = {zzH : z ∈ C
N} as follows:

y = A(xxH) (11)

where y = [y1, y2, . . . yM ] ∈ R
M . As a result, each non-convex

set of equivalent points under the mapping from the signal
domain in C

N to the phaseless measurements, i.e., {zeiΦ :
Φ ∈ [0, 2π)} for z ∈ C

N , is compressed into a single element
zzH ∈ R+

1 . Thereby, quadratic equality constraints over the
signal domain are transformed to affine equality constraints in
the lifted domain in C

N×N , which define a convex manifold.
In typical inference problems, A has a non-trivial null space

as the system of linear equations in (10) is severely underde-
termined with M � N2. Various studies approach the phase
retrieval problem over the lifted domain, leveraging the low
rank structure of the lifted ground truth X̃ = xxH and the
subsequent LRMR theory from compressed sensing and matrix
completion literature [40], [41]. The sufficient conditions on A
for exact recovery of xxH are primarily characterized by its
null space [42]–[44] or restricted isometry properties on low
rank [34], [41], [45] or PSD [2] matrices.

Knowing that (2) corresponds to the minimization of an �2
loss objective, WF exclusively iterates on the set of rank-1, PSD
matrices by solving the following:

minimize:
X

1

2M
‖A(X)− y‖2 s.t. X ∈ R+

1 , (12)

where X denotes the optimization variable in the lifted domain.
The functional constraint on X as rank-1, PSD matrix casts this
minimization equivalent to minimizing over the signal domain
variable z, resulting with dimensionality reduction of the search
space. This is practically enforced by a spectral projection within
the gradient term ∇f , which can be expressed as

∇f(z) =
1

M
AHA(zzH − xxH)z. (13)

Beyond the immediate gains in practicality, the formulation in
(12) reveals a theoretical advantage offered by the non-convex
framework of WF, using which deterministic arguments for
exact recovery similar to those of lifting-based methods can also
be attained [27]. Moving from the convex relaxations of rank-
minimization, WF corresponds to solving a non-convex feasi-
bility problem, reminiscent of the optimizationless PhaseLift
method in [46], and Uzawa’s iterations in [40]. This yields
an iterative scheme for the unrelaxed, non-convex form of the
lifted problem, and enforces the rank-1, PSD structure on the
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iterates. Thereby, the constraint set of WF is considerably less
restrictive than those of the LRMR methods that solve for the
lifted unknown xxH .

Namely, the problem in (12) has a unique solution if there
exists no element H in the null space of A, such that xxH +
H is a rank-1, PSD matrix. Observe that the validity of
Condition I.1 and non-uniqueness of A over the set of rank-1,
PSD matrices result in a contradiction. Essentially, existence of a
ϕ /∈ P that satisfies (1) ascertains either that the spectral initial-
izationz0 is at a stationary point itself, or that the ε-neighborhood
around the ϕ or P contains a stationary point, both of which
violate the regularity condition. Hence, the degree to which Y
approximatesxxH in the spectral norm sense as (9), also dictates
the feasibility of violating the uniqueness condition of A over
the set of rank-1, PSD matrices. This is made further clear under
the following observation.

Remark: The spectral matrix Y in (6) is the backprojection
estimate of the lifted ground truth, X̃ = xxH , i.e.,

Y =
1

M
AH(y), (14)

which, in the noise free case is Y = 1
MAHA(xxH).

In practical terms, (9) becomes a condition on the lifted
normal operator, AHA. Thereby, the main result of this paper
is that, if the following concentration bound

‖ 1

M
AHA(xxH)− (xxH + ‖x‖2I)‖ ≤ δ‖x‖2, (15)

holds for all x ∈ C
N with a δ that is sufficiently small, then

via the special structure of the set of rank-1, PSD matrices, the
iterations in (3) are guaranteed to converge to a solution in P via
the restricted strong convexity of J in E (ε). As δ gets smaller,
the spectral initialization yields more accurate estimates due to
favorable properties of the lifted normal operator over the set
of rank-1, PSD matrices. Due to the fact that shrinkage on the
value of δ is related to increasing the number of measurements
M , the existence of sub-optimal minima accordingly vanishes.
Hence, there exists a phase transition with respect to the value
of δ, below which the tightness of the concentration bound can
deterministically guarantee exact recovery from (1) using WF.

III. MAIN RESULTS

In this section, we prove (15) as a sufficient condition for
exact phase retrieval for an arbitrary measurement model by
establishing a set of lemmas through fully geometric arguments,
given that it holds for all x ∈ C

N with δ < 0.184. Thereby,
we use the form in (14) as a crucial element of our approach.
Note that the lifted forward model in (11) may be a realization
from a statistical model, or a deterministic measurement map.
The following lemma characterizes the normal operator of the
lifted forward model over the set of rank-1, positive semi-definite
matrices.

Lemma III.1: Assume that (15) holds for an arbitrary x ∈
C

N . Then, the normal operator of the lifted forward model can
be expressed as follows over the set of rank-1, PSD matrices:

1

M
AHA = I +R+Δ, (16)

where for any zzH ∈ R+
1 , R(zzH) = ‖z‖2I, with

R(zzH − xxH) = (‖z‖2 − ‖x‖2)I, (17)

and Δ : R+
1 → C

N×N is a perturbation operator satisfying
‖Δ(xxH)‖ ≤ δ‖x‖2 for any x ∈ C

N such that

max
v∈CN\{0}

‖Δ(vvH)‖
‖vvH‖ ≤ δ, (18)

for any deterministic model, or the Gaussian sampling model
with high probability.

Proof: See Section V-A and Appendix A. �
Specifically in the case of the Gaussian model, the operator

R : CN×N → C
N×N characterizes the effect of the 4th mo-

ments of the sampling vectors. This term captures the diagonal
bias of the spectral matrix in estimating the lifted signal, using
the fact that the expectation of the lifted normal operator is linear
on C

N×N .
We begin by considering the spectral initialization scheme.

Namely, through Lemma III.1, the concentration bound in (15)
indicates a proper scaling factor for the unit-norm eigenvector
of Y. This is derived in the following corollary which implies
that the lifted forward model A is a tight frame.

Corollary III.1: Assume that the assumptions of
Lemma III.1 hold. Then, A satisfies the following identity:

(2− δ)‖xxH‖2F ≤ 1

M
‖A(xxH)‖2 ≤ (2 + δ)‖xxH‖2F . (19)

Furthermore, if (19) holds for allx ∈ C
N , then the concentration

bound in (15) equivalently holds uniformly over all x ∈ C
N .

Proof: See Section V-A. �
As a result, λ0 = (2M)−1/2‖y‖ is an estimator for the energy

of the signal ‖x‖2. Using the norm estimate obtained by Corol-
lary III.1 for λ0, the distance of the spectral initialization yields
the following ε-neighborhood as a function of the concentration
parameter δ.

Lemma III.2: Assume that the assumptions of Lemma III.1
hold. Let z0 be the estimate z0 =

√
λ0v0 where v0 is the eigen-

vector corresponding to the leading eigenvalue of the spectral
matrixY in (14), andλ0 is the signal energy estimate obtained as

λ0 =
1√
2M

‖y‖. (20)

Then, the initial estimate z0 satisfies dist2(z0,x) ≤ ε2‖x‖2,
where

ε2 = 1 +

√
1 +

δ

2
− 2

√
(1− 2δ)

(
1 +

δ

2

)1/2

. (21)

Proof: See Section V-B. �
Note thatE(ε) is formed using (21) under the assumption that

δ < 0.5, which is required to have a valid estimate via spectral
initialization. Next, we introduce the following lemma to char-
acterize the relation between the distance metric introduced in
(5), and the distance in the lifted domain.

Lemma III.3: Let z ∈ E(ε) of x, with ε = ε0‖x‖ satisfying
(21). Then, we have

h1(δ)dist(z,x)‖x‖ ≤ ‖zzH − xxH‖F ≤ h2(δ)dist(z,x)‖x‖,
(22)
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where h1 =
√

(1− ε)(2− ε), and h2 = (2 + ε).
Proof: See Section V-C. �
Lemma III.3 states that the distance between the lifted signals

zzH and xxH is of the rate of the distance of the signals z,x ∈
C

N , when z ∈ E (ε) of x. Essentially, the distance metric in
(5) locally tracks the error on the constraint set of rank-1, PSD
matrices in the lifted domain. The outcome of this result, together
with Lemma III.1, is the following local restricted isometry-type
property.

Lemma III.4: Under the assumptions of Lemmas III.1 and
III.3, for any x ∈ C

N and z ∈ E (ε), the lifted forward model
satisfies

(1− δ̂)‖zzH − xxH‖2F ≤ 1

M
‖A(zzH − xxH)‖2

≤ (2 + δ̂)‖zzH − xxH‖2F , (23)

where δ̂ =
√
2(2+ε)√

(1−ε)(2−ε)
δ.

Proof: See Section V-D. �
We refer to δ̂ as the local restricted isometry constant (RIC)

of the lifted forward model over rank-2 matrices. However, note
that this property holds over a very particular subset of rank-2
matrices even beyond the locality with respect to x ∈ C

N .
Namely, (23) states that the distance between two elements
zzH ,xxH ∈ R+

1 is approximately preserved under the mapping
of A, if z ∈ E(ε) of x. The significance of Lemma III.4 is the
fact that the restricted isometry property in (23) is derived as
a deterministic consequence of the concentration bound of the
spectral matrix. The Lemmas III.3 and III.4 culminate to yield
the Lipschitz differentiability of the objective function, stated in
the following lemma:

Lemma III.5: Assume that the assumptions of Lemmas III.3
and III.4 hold. Then, for any z ∈ E(ε), the objective function f
in (2) is local Lipschitz differentiable at x ∈ P with

‖∇f(z)‖ ≤ c(δ) · dist(z,x)‖x‖2 (24)

where c(δ) = (1 + ε)(2 + ε)(2 + δ) is the local Lipschitz
constant.

Proof: See Section V-E. �
Invoking the result of Lemma III.5, to establish the regularity

condition for f , it is sufficient to show that for any z ∈ E(ε)

Re
(
〈∇f(z), (z− xeiφ(z))〉

)
≥
(
1

α
+

c2(δ)‖x‖4
β

)
dist2(z,x)

(25)
which is equivalent to the restricted strong convexity of the
objective function in E (ε). By the definition of strong convexity
around the closest solution x̂ = ejΦ(z)x to an estimatez ∈ E (ε),
this condition, is implied if the objective function satisfies

f(z) ≥ f(x̂) + Re
(∇f(x̂)H(z− x̂)

)
+

L

2
‖z− x̂‖2, (26)

where L equals to the multiplier of the distance term in (25).
Having f(x̂) and ∇f(x̂) equal 0 by definition, the restricted
strong convexity in E (ε) is simply reduced to the following

Fig. 1. The δ̂ and ε values in the region that the regularity condition is
guaranteed to hold. Observe that the limiting value is the local restricted isometry
constant, δ̂, which controls the uniqueness property in the lifted problem locally.

condition:

f(z) ≥ 1

2

(
1

α
+

c2(δ)‖x‖4
β

)
dist2(z,x), (27)

for any z ∈ E (ε). Writing f explicitly in terms of the lifted
signals as f(z) = ‖A(zzH − xxH)‖2/2M , and applying the
lower bounds from Lemmas III.3 and III.4, we have

f(z) ≥ (1− δ̂)h2
1(δ)

2
dist2(z,x)‖x‖2. (28)

Thus, the regularity condition is satisfied by settingα and β such
that αβ > 4, and

1

α‖x‖2 +
c2(δ)‖x‖2

β
≤ (1− δ̂)h2

1(δ) := h(δ). (29)

The final form we derive in (29) results in a number of notable
outcomes regarding the non-convex optimization theory of the
WF framework:

1) We show that there exists a regime in which the regularity
condition holds by default. This regime is characterized by
the concentration bound of the spectral matrix in (15), as δ̂ is
solely a function of δ. Observe that the validity of this regime
depends on attaining δ̂ < 1 which constrains the tightness of the
concentration property in (15). This numerically yields an upper
bound of δ ≤ 0.184 as shown in Fig. 1.

2) (29) provides an interpretation of the algorithm parameters
consistent with the original work of [1]: Fig. 2 demonstrates the
range of values the constants c andh can attain in the valid region
of δ. Notably, the values of these O(1) constants characterize
the convergence rate of the algorithm, as α and β are required
to be sufficiently large constants for (29) to hold. Observe
that (29) implies setting α = O(1/‖x‖2), and β = O(‖x‖2),
hence αβ = O(1). Since we clearly have h < 2, and c > 4, the
condition in (29) holds with αβ > 4 by definition. Hence, the
regularity condition is satisfied, and a step size μ′ ≤ 2/β can be
chosen to yield a convergence rate of 2μ′/α via [1]. This step
size μ′ is then O(1/‖x‖2). Hence, the definition of the updates
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Fig. 2. The c and h values in the region that the regularity condition is
guaranteed to hold. The two constants characterize the values of α and β
parameters for the convergence of the iterates generated by WF updates.

in (3) requires an approximate normalization term1 of ‖z0‖2 on
a scalar entity μk = O(1).

3) The condition in (29) effectively places an upper bound on
the convergence rate of the algorithm under which exact recovery
of any x ∈ C

N is guaranteed. Simply fixing κ = αβ and re-
organizing (29), we obtain the following:

1

α‖x‖2
(
1 +

c2(δ)‖x‖4
κ

α2 − h(δ)‖x‖2α
)

≤ 0. (30)

Since we haveα > 0 by definition and h(δ) > 0 by constraining
δ, it suffices to consider the non-negativity of the discriminant
of the quadratic equation with respect to α in (30) for the overall
condition to hold, which yields

h2(δ)‖x‖4 − 4

κ
c2(δ)‖x‖4 ≥ 0. (31)

As a result, knowing that 4/κ is an upper bound on the rate
of convergence of the algorithm via [1], we obtain the best
achievable geometric convergence rate as a function of the
concentration bound parameter as

4

αβ
≤ h2(δ)

c2(δ)
:= r(δ) =

(
(1− δ̂)(1− ε)(2− ε)

(2 + δ)(1 + ε)(2 + ε)

)2

. (32)

Thereby, beyond directly guaranteeing the existence of a pair of
(α, β) to satisfy the regularity condition when sufficiently small,
the δ-value fully characterizes the practicality and iteration
complexity of the algorithm via r(δ) in (32). Note that r(δ) is
the best convergence rate the algorithm can achieve uniformly
over all x ∈ C

N .
Organizing the arguments developed in this section, we state

the following for exact phase retrieval via Wirtinger Flow:
Theorem III.1: Assume that the concentration property

‖ 1

M
AHA(xxH)− (xxH + ‖x‖2I)‖ ≤ δ‖x‖2.

1The approximation argument can be followed from [1] in the proof of Lemma
7.10.

holds for all x ∈ C
N with δ ≤ 0.184. Then, the initial estimate

z0 obtained from the spectral matrix in (6) using the scaling
factor in (20) satisfies

dist2(z0,x) ≤ ε2‖x‖2,

for all x, where ε2 ≤ 1 +
√
1 + δ

2 − 2
√

(1− 2δ)(1 + δ
2 )

1/2,
and for the iterates generated by (3) with a fixed step size of
μ/‖z0‖2 ≤ 2/β we have that

dist2(zk,x) ≤ ε2(1− 2μ

α
)k‖x‖2,

with the best achievable convergence rate of

2μ

α
≤ h2(δ)

c2(δ)
:=

(
(1− δ̂)(1− ε)(2− ε)

(2 + δ)(1 + ε)(2 + ε)

)2

,

for the recovery of any x ∈ C
N , where δ̂ =

√
2(2+ε)√

(1−ε)(2−ε)
δ.

Remark: For a deterministic model, (15) to hold for an
unspecified, arbitrary x ∈ C

N is equivalent to holding over all
x ∈ C

N [47]. However in the probabilistic setting, the probabil-
ity that (15) holds uniformly over all x ∈ C

N is naturally more
stringent than it is for an arbitrary x. In Appendix A, we provide
the uniformity of (15) for the Gaussian sampling model when
M = O(N logN).

Complementing our performance guarantees in
Theorem III.1, we can further derive an optimal step-size that
achieves our upper bound on the rate of convergence in (32).
Knowing that β = β′‖x‖2, α = α′/‖x‖2 with μk = μ ≤ 2/β′

defined as the largest step-size allowed, and using (29) we have
that:

2 (h(δ)− 1/α′)
c2(δ)

=
r(δ)α′

2
, (33)

when 2μ/α attains r(δ) with equality. Solving for α′ yields
α′ = 2/h(δ), which translates to a constant step-size of μ(δ) =
h(δ)/c2(δ). Hence the WF iterations provably converge to a true
solution at a constant step-size μk = μ = O(1) with μ > 0 as
long as δ ≤ 0.184 in (15).

The evolution of the optimal convergence rate r(δ) and the
step-size μ(δ) within our exact recovery regime is provided in
Fig. 3. The characterization of the convergence rate and the
optimal step-size with respect to δ highlights a key contribution
of our deterministic framework in Theorem III.1. Specifically
considering the Gaussian model at a fixed number of samples at
the proper complexity, picking a smaller δ is equivalent to re-
laxing the probability of success for exact recovery. This in turn
indicates moving up on the μ(δ) curve such that the algorithm is
ran with a larger step-size corresponding to the smaller δ value.
Therefore in practical terms, the behavior in Fig. 3 quantifies the
trade-off between rate of convergence of the algorithm, and the
probability of exactly recovering the ground truth x ∈ C

N . Al-
ternatively an analogous phenomenon characterizes the trade-off
between the number of samples and the algorithm performance,
for a desired fixed probability of success. As a result, we establish
an explicit relationship between the step-size chosen in practice,
and the underlying model parameters such as the number of
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Fig. 3. The r(δ) upper bound on rate of converge and the optimal step size
μ(δ) with respect to the concentration bound parameter δ in the exact recovery
regime of our framework. The optimal step-size is defined as the μ that satisfies
the upper bound on the rate-of convergence.

samples, and the probability of success for non-convex phase
retrieval from intensity measurements via WF.

Note that the uniformity of (15) in the complex Gaussian
sampling model was shown when M = O(N) in [15] via
sample truncation, however not as a sufficient condition for
exact recovery in the manner we established in Theorem III.1.
Our framework essentially captures the impact of such a sam-
ple truncation scheme through its relation to the properties of
the lifted forward model. In this sense, one could consider
Theorem III.1 as an abstraction of the theoretical guarantees
in [15], where we have identified a novel, more minimal suffi-
cient condition for arbitrary lifted forward models. As a result of
such an abstraction, we extend the favorable properties attained
in [15] such as exact recovery with anO(1) step-size and the lin-
ear computational complexity to a more general problem setting
which includes that of the original WF. It can also be observed
that the numerical cases evaluated in [1] for the Gaussian model
are well within the range of values we identify for the validity
of our Theorem III.1. Hence, the theoretical means developed
for Theorem III.1 are consistent with the convergence behavior
demonstrated in [1].

In establishing Theorem III.1 for exact phase retrieval, we
necessarily use the specific structure of the diagonal bias term
in the expectation of the spectral matrix. This is in contrast to our
work in [27], in which the spectral matrix is an unbiased estima-
tor of the lifted signal. Nonetheless, Corollary III.1 highlights
a key advantage of the non-convex framework of WF. Via the
removal of convex relaxations and solving the perturbed problem
in the lifted domain over the set of rank-1, PSD matrices, the
RIP-type properties required by semi-definite programming and
lifting-based approaches are relaxed to smaller, more specific
domain of matrices. Under the lens of LRMR theory, WF not
only offers computational advantages, but also less stringent
theoretical means to achieve exact recovery if the step-size is
properly controlled. The deterministic and less stringent nature
of our recovery guarantees also opens up promising possibilities

for the study of more structured models for problems such as
wave-based imaging, where estimates on δ value would relate
to parameters such as bandwidth, central frequency, or resolu-
tion [8], [47].

Overall, we further stress a few notable outcomes of
Theorem III.1, which include the following observations:
� Via the established deterministic convergence framework

given the concentration bound, our result proves that the
restricted strong convexity property of the objective func-
tion is achieved withO(N logN) samples for the complex
Gaussian sampling model. This is a logN factor less than
the sample complexity reported in [30].

� Our sufficient condition has to hold only over the rank-1,
PSD matrices, which is less stringent than those studied in
the non-convex LRMR literature. Additionally, a universal
upper bound on the relative distance-ε via Fig. 1 is attained
within our exact recovery regime. Hence, the concept of
sufficient accuracy of the spectral initialization is captured
by a quantitative measure.

� Another observation is that the upper bound on the con-
centration property of the spectral matrix in the phase
retrieval problem requires a smaller constant than the one
in the interferometric inversion problem we studied in [27]
(0.184 as opposed to 0.214), in which the relative phase
information of a pair of measurements is retained. This
is indeed an intuitive outcome, as more information is
lost when measurements are phaseless, compared to the
interferometric case. A similar outcome is observed in the
upper bound obtained for the geometric convergence rate
of the algorithm, which approaches to 0 for the case of
interferometric inversion as δ → 0. As a result, the impact
of the additional loss of phase information is directly
captured in the sufficient conditions and the performance
guarantees of the algorithm in solving the different types
of quadratic systems of equations.

IV. ROBUSTNESS

In this section, we assess the robustness of the WF algorithm
in the presence of additive noise in the measurements. We show
that for the general problem setting of

y = A(xxH) + η, (34)

the results presented in Theorem III.1 for the noise-free case in
Section III are attained upto a bounded perturbation for E[η] =
0. It should be noted that, the �2 mismatch function minimized
in the problem formulation fits the data for i.i.d. additive white
Gaussian noise model {ηm}Mm=1 in the maximum likelihood
sense. Despite this, the results presented in this section have no
specification on the distribution of the noise term η, similar to
those of [15], which were derived for the Poisson loss function.

Our first goal is to establish the validity of the spectral
initialization for our exact recovery guarantees with respect to
the SNR of measurements in (34) by utilizing the arguments
developed over the lifted domain. Namely, for our subsequent
convergence theory to hold, we derived numerical constraints
on both the concentration bound (i.e., δ), and the distance of
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Fig. 4. The SNR lower bound required for our convergence framework to hold.
Below the lower bound spectral initialization violates the sufficient conditions
for Theorem IV.1. In this case, pre-processing techniques or other initialization
schemes must be pursued.

the initial estimate obtained from the spectral method (i.e., ε).
These constraints characterize the amount of perturbation the
algorithm can tolerate, which is stated in the following lemma
and shown in Fig. 4.

Lemma IV.1: Consider the spectral matrix formed by (6),
using the noisy measurements in (34). Moreover, let the
concentration bound in (15) hold as stated in the setup of
Theorem III.1. Then, the spectral matrix Y satisfies,

Eη

[‖Y − (xxH + ‖x‖2I)‖] ≤ (δ + (2 + δ)√
SNR

)
‖x‖2, (35)

where SNR stands for signal-to-noise-ratio, defined as SNR =
‖A(xxH)‖2/E[‖η‖2].

Proof: See Section V-F. �
Analogous to the one-to-one relationship of the ε-distance of

the spectral initialization and the concentration bound δ in the
noise-free phase retrieval problem, the noisy scenario has the
additional dependence on the SNR of the measurements through
δ̃ := δ + (2 + δ)/

√
SNR. With the presence of the SNR term,

there exists a level of noise as a function of δ beyond which the
concentration bound in (35) is insufficient to guarantee an effec-
tive spectral initialization. This restriction is directly determined
by two constraints: ε < 1 and δ̂ < 1, in order to retain a valid
regime where convergence arguments from Theorem III.1 hold
true for the noise-free component of the gradients. Thereby, we
obtain a region over the (δ,SNR) domain such that the spectral
method produces a valid estimator under δ̃.

A direct manner to determine this region is by enforcing
δ̃ ≤ 0.184, through which accuracy of spectral initialization and
subsequent arguments within the E (ε) are preserved, yielding
an SNR lower bound of

SNR(dB) ≥ 20 log
2 + δ

0.184− δ
. (36)

Fig. 4 depicts that the lowest SNR value of 20.7dB is attained at
δ = 0. Although it is derived in a straight-forward manner, (36) is
the best lower bound that can be characterized by our framework.
This is rather surprising at first glance, since the δ̂ term is only

affected by the perturbation resulting from noise through the
ε parameter, as δ and δ̂ are properties of the underlying lifted
forward modelA, which is independent of noise. However, these
still prove to be consequential for the stability of the algorithm
under additive noise because of constraints that arise from the
convergence arguments, beyond those related to the validity of
the spectral initialization.

In particular, under additive noise and the assumptions of
Lemma IV.1, within the valid region for the spectral initialization
defined by (36), the convergence guarantees of WF are perturbed
by a constant factor that is a function of SNR.

Theorem IV.1: Assume that the assumptions of Lemma IV.1
hold. Then, for the identical procedure and values of constants
α, β in the setup of Theorem III.1, we have

Eη [dist(zk,x)] � ε

(
1− 2μ

α

) k
2

‖x‖+ α′ (2 + δ)√
SNR

‖x‖, (37)

where μ = μk/‖z0‖2 ≤ 2/β, α′ = O(1) such that α =

α′/‖z0‖2, and ε2 ≤ 1 +

√
1 + δ̃

2 − 2

√
(1− 2δ̃)(1 + δ̃

2 )
1/2,

with δ̃ = δ + (2+δ)√
SNR

.
Proof: See Section V-G. �
As a result of Theorem IV.1, we observe a crucial element

for determining the trade-off between the α and β parameters.
The stability guarantees directly incentivize allocating a small
value for the parameter α, which is inversely related to the
magnitude of the β parameter. Since μ ≤ 2/β by definition,
a tighter stability bound requires a trade-off from the step size
of the algorithm. This outcome is indeed expected, as lower
SNR in the measurements means more variance for the gradient
estimates at the iterative refinement stage, hence one should take
less confident steps to counter inaccurate update terms. Our
framework perfectly captures this phenomenon, and requires
small step sizes for improved stability in the algorithm perfor-
mance while optimizing the noisy landscape of the objective
function over the signal domain.

Furthermore, to guarantee that the iterates formed using the
noisy measurements remain in the E (ε), there is an effective
upper bound on the α parameter such that

α‖x‖2 ≤ ε
√

SNR
(1 + ε)(2 + δ)

. (38)

Equivalently, this is a lower bound on the value of 1/(α‖x‖2)
in (29), which requires

(1 + ε)(2 + δ)

ε
√

SNR
≤ 1

α‖x‖2 < (1− δ̂)(1− ε)(2− ε) (39)

to be satisfied for a finite β to exist to attain a practical step-
size for the algorithm. Thereby, on expectation, iterative updates
that are contractions with respect to the distance metric can be
achieved, if SNR is sufficiently high to satisfy

(1 + ε)(2 + δ)

ε
√

SNR
< (1− δ̂)(1− ε)(2− ε), (40)

where both ε and δ̂ are SNR dependent. Since the left- and
right-hand-sides of the inequality monotonically decrease and
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increase, respectively, with increasing SNR, there exists a tran-
sition point at any fixed δ < 0.184 value beyond which the in-
equality holds true. This numerical characterization of the SNR
requirements for the convergence of WF precisely corresponds
to the lower bound in (36).

Beyond our characterization of the (δ,SNR) domain, pre-
processing techniques developed in the phase retrieval litera-
ture [17], [22], [25] can be adopted to improve the SNR bound
by relaxing our requirements on δ through the value of ε. As
a result, alternative techniques that improve the accuracy of
the spectral estimation can be pursued for practical purposes in
order to sustain the convergence guarantees given our sufficient
condition below the provided SNR lower bound.

V. PROOFS

In this section we present the proofs of our arguments used
in establishing Theorem III.1, and its corollaries. Notably, our
results are derived in a deterministic framework based on geo-
metric arguments unlike the probabilistic theory of original WF
theory [1]. The probabilistic nature of the convergence analysis
prominent in phase retrieval literature is thereby compressed
into a single condition on the lifted forward model. From this
point on, we frequently use Ṽ = vvH to denote the lifted signal
corresponding to an element v ∈ C

N for notational brevity.

A. Proofs of Lemma III.1 and Corollary III.1

1) Lemma III.1: Reprising (15), from the definition of the
lifted forward model A, and spectral matrix Y we have for any
x ∈ C

N :

‖ 1

M
AHA(X̃)− (X̃+ ‖x‖2I)‖ ≤ δ‖x‖2. (41)

Over the set of rank-1 matrices matrices, i.e., R1 = {uvH :
u,v ∈ C

N}, we define the operator R : R1 → span(I) ⊂
C

N×N , such that R(uvH) = (vHu)I. Then, we define
( 1
MAHA− I −R)(X̃) = Δ(X̃), and by (41) we have that

‖Δ(X̃)‖ ≤ δ‖x‖2.
Next, we represent the rank-1, PSD matrix Z̃ = zzH as a

linear combination of rank-1 elements inR1. Letting e = z− x,
we have

Ẽ = Z̃− X̃− exH − xeH , (42)

hence Z̃ = Ẽ+ exH + xeH + X̃. In the range of R, distribut-
ing over the terms on the right hand side we obtain

R(Z̃) = (‖e‖2 + xHe+ eHx+ ‖x‖2)I, (43)

which, from the definition of e, precisely equals to ‖z‖2I. Thus
having R+

1 ⊂ R1, by moving x to the left-hand-side R satisfies,

R(Z̃− X̃) = ‖z‖2 − ‖x‖2. (44)

Since I +R is linear over elements in R+
1 , Δ is necessarily

linear as well knowing that AHA is linear over all C
N×N .

In addition, since 〈R(X̃), X̃〉F = ‖X̃‖2F , R is self-adjoint,
hence Δ is a Hermitian operator by definition. Finally, since

‖Δ(X̃)‖ ≤ δ‖x‖2, we have

max
v∈CN/{0}

|vHΔ(X̃)v|
‖v‖2 ≤ δ‖x‖2. (45)

Equivalently, utilizing the view in the lifted domain, we
have, |vHΔ(X̃)v| = |〈Δ(X̃), Ṽ〉F | = |〈Δ(Ṽ), X̃〉F |. Hence
the concentration property directly implies uniformity of the
bound over the set of the domain of operator Δ, i.e., the set of
rank-1, PSD matrices as

max
v∈CN/{0}

|xHΔ(vvH)x|
‖x‖2‖v‖2 ≤ δ, (46)

again, for any fixed x ∈ C
N . For an arbitrary deterministic

map that already satisfies (41), this completes the proof as the
condition also holds for v̂ that maximizes |〈Δ(Ṽ), X̃〉F |/‖x‖2
as |〈Δ(Ṽ), v̂v̂H〉F |/‖v̂‖2, which, by definition, is the spectral
norm of ‖Δ(vvH)‖. For uniformity in the complex Gaussian
model, we refer the reader to Appendix A.

2) Corollary III.1: The proof of Corollary III.1 then directly
follows from (15) and the definition of the spectral matrix. From
(41) and the definition of the spectral norm, we have

|vH
(

1
MAHA(X̃)− (X̃+ ‖x‖2I)

)
v|

‖v‖2 ≤ δ‖x‖2, (47)

for anyv ∈ C
N/{0}. Hence, forv = x, using the representation

in the lifted domain via the definition of the Frobenius inner
product, we have

|〈 1

M
AHA(X̃)− (X̃+ ‖x‖2I),xxH〉F | ≤ δ‖x‖4,

| 1
M

‖A(X̃)‖2 − ‖X̃‖2F − 〈‖x‖2I, X̃〉F | ≤ δ‖X̃‖2F .
(48)

From the definition of the Frobenius inner product with the
identity matrix I in C

N×N , only the diagonal elements are
multiplied and summed with X̃ = xxH , which corresponds to
‖x‖2. Hence, we get, for any x ∈ C

N ,

| 1
M

‖A(X̃)‖2 − 2‖X̃‖2F | ≤ δ‖X̃‖2F . (49)

Thus, the condition in Corollary III.1 is directly implied by (41).
Furthermore, again using the fact that Δ is Hermitian, consider
the maxima over the unit sphere ‖x‖ = 1 as

max
‖x‖=1

‖Δ(xxH)‖ = max
‖x‖=1

max
‖v‖=1

|vHΔ(xxH)v| (50)

= max
‖x‖=1

max
‖v‖=1

|〈
√
Δ(xxH),

√
Δ(vvH)〉F |,

(51)

where
√
Δ : CN×N → C

N×N is a (non-unique) square root of
the operator Δ. Then from Cauchy-Schwartz we have that

max
‖x‖=1

‖Δ(xxH)‖ ≤ max
‖x‖=1

max
‖v‖=1

‖
√
Δ(xxH)‖F ‖

√
Δ(vvH)‖F

(52)
in which we clearly have a maximization that is fully split such
that

max
‖x‖=1

‖Δ(xxH)‖ ≤ max
‖x‖=1

‖
√
Δ(xxH)‖2F . (53)
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From our construction of
√
Δ, the upper bound in (53) yields

max
‖x‖=1

‖Δ(xxH)‖ ≤ max
‖x‖=1

|xHΔ(xxH)x|. (54)

Since ‖Δ(xxH)‖ = max
‖v‖=1

|vHΔ(xxH)v| ≥ |xHΔ(xxH)x|
by definition, (54) implies that the maxima necessarily occurs
at v = x/‖x‖, as

max
‖x‖=1

‖Δ(xxH)‖ = max
‖x‖=1

|〈Δ(xxH),xxH〉F |. (55)

Hence, the concentration bound holds uniformly with a constant
δ that is equivalent to the restricted isometry constant of the lifted
forward model over the set of rank-1, PSD matrices.

B. Proof of Lemma III.2

As shown in [1] we know that (15) implies |vH
0 x|2 ≥

(1− 2δ)‖x‖2, where ‖v0‖ = 1 is the leading eigenvector of
the spectral matrix Y. Using Corollary III.1, we know that
λ0 = ‖y‖/√2M is an estimate for the energy of the unknown
signal x such that (

√
1− δ/2)‖x‖2 ≤ λ0 ≤ (

√
1 + δ/2)‖x‖2.

Using the definition of the distance metric, and the lower bound
from [1], for z0 =

√
λ0v0, we have

dist2(z0,x) ≤
(

λ0

‖x‖2 + 1− 2

√
λ0

‖x‖2 ‖x‖
√
1− 2δ

)
‖x‖2.

(56)
Since the right-hand-side is a convex quadratic function of

√
λ0,

its maximum value is reached at the boundary values of
√
λ0.

Setting λ0 = (
√

1 + δ/2), the upper bound is monotonically
greater than atλ0 = (

√
1− δ/2) for all valid values for δ, hence

we conclude that

dist2(z0,x) ≤
⎛
⎝√1 +

δ

2
+ 1− 2

√
(1− 2δ)

√
1 +

δ

2

⎞
⎠ ‖x‖2.

(57)

C. Proof of Lemma III.3

1) Proof of the Upper Bound: Let x̂ be the closest solution
in P to an arbitrary z ∈ E(ε). From reverse triangle inequality
we have (1− ε)‖x‖ ≤ ‖z‖ ≤ (1 + ε)‖x‖. Setting e = z− x̂,
by (42) we have

Z̃− X̃ = Ẽ+ ex̂H + x̂eH . (58)

Then, for the Frobenius norm of the error in the lifted domain,
we have

‖Z̃− X̃‖F ≤ ‖Ẽ‖F + ‖ex̂H‖F + ‖x̂eH‖F . (59)

Since all the elements on the right-hand-side are rank-1, and
z ∈ E (ε), by definition, we have ‖ · ‖ = ‖ · ‖F , and

‖Z̃− X̃‖F ≤ ‖e‖2 + 2‖x‖‖e‖ ≤ (2 + ε)‖e‖‖x‖, (60)

which yields the upper bound as ‖e‖ = dist(z,x).
2) Proof of the Lower Bound in Lemma III.3: Expanding

‖Z̃− X̃‖F by the definition of the Frobenius inner product, we
have

‖Z̃− X̃‖2F = ‖Z̃‖2F + ‖X̃‖2F − 2Re〈Z̃, X̃〉F . (61)

Due to rank-1 property, the Frobenius inner product reduces to
2Re〈Z̃, X̃〉F = 2|〈z,x〉|2, and ‖Z̃‖2F = ‖z‖4, ‖X̃‖2F = ‖x‖4.
Hence, (61) equals to ‖z‖4 + ‖x‖4 − 2|〈z,x〉|2, and

(‖z‖4 − |〈z,x〉|2) + (‖x‖4 − |〈z,x〉|2) =
(‖z‖2 + |〈z,x〉|)(‖z‖2 − |〈z,x〉|)+
(‖x‖2 + |〈z,x〉|)(‖x‖2 − |〈z,x〉|).

(62)

Since dist2(z,x) = ‖z‖2 + ‖x‖2 − 2|〈z,x〉| = ‖z− x̂‖2 ≥ 0,
we can lower bound (61) using (62) as

‖z̃− x̃‖2F ≥ min
(
(‖z‖2 + |〈z,x〉|), (‖x‖2 + |〈z,x〉|))
× (‖z‖2 + ‖x‖2 − 2|〈z,x〉|) . (63)

Knowing that dist2(z,x) ≤ ε2‖x‖2 and the result from the
reverse triangle inequality on ‖z‖, the terms within the mini-
mization are further lower bounded using

2|〈z,x〉| ≥ ‖z‖2 + ‖x‖2 − ε2‖x‖2

|〈z,x〉| ≥ (1− ε)‖x‖2. (64)

We then get the bound on the scalar multiplying dist2(z,x) as

min
(
(‖z‖2 + |〈z,x〉|), (‖x‖2 + |〈z,x〉|))

≥ ((1− ε)2 + (1− ε))‖x‖2,
(65)

which yields the lower bound of Lemma III.3

‖z̃− x̃‖F ≥
√

(1− ε)(2− ε) dist(z,x)‖x‖, (66)

and the proof is complete.

D. Proof of Lemma III.4

From Lemma III.1, we have

1

M
‖A(Z̃− X̃)‖2 = 〈AHA(Z̃− X̃)〉F =

〈Z̃− X̃+ (‖z‖2 − ‖x‖2)I+Δ(Z̃− X̃), Z̃− X̃〉F .
(67)

From the linearity of the inner product, (67) becomes ‖Z̃−
X̃‖2F + (‖z‖2 − ‖x‖2)(〈I, z̃〉F − 〈I, x̃〉F ) + 〈Δ(Z̃−X̃), Z̃−
X̃〉F . Since the Frobenius inner product of a matrix with the
identity matrix I is simply the sum of its diagonal terms, and
the lifted signals have the auto-correlation of their entries
at diagonals, the second term reduces to (‖z‖2 − ‖x‖2)2 =
‖z‖4 + ‖x‖4 − 2‖z‖2‖x‖2. From Cauchy-Schwartz, (‖z‖2 −
‖x‖2)2 ≤ ‖z‖4 + ‖x‖4 − 2|〈z,x〉|2 = ‖Z̃− X̃‖2F , by defini-
tion. Hence, we obtain

1

M
‖A(Z̃− X̃)‖2 ≤ 2‖Z̃− X̃‖2F + 〈Δ(Z̃− X̃), Z̃− X̃〉F ,

(68)
and in the other direction, since (‖z‖2 − ‖x‖2)2 is the square of
a real valued quantity, it is lower bounded by 0, which yields

1

M
‖A(Z̃− X̃)‖2 ≥ ‖Z̃− X̃‖2F + 〈Δ(Z̃− X̃), Z̃− X̃〉F .

(69)
It remains to upper bound the quantity |〈Δ(Z̃− X̃), Z̃− X̃〉F |.
Using the definition in (58), and the linearity ofΔ , from Cauchy
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Schwartz inequality, we have, for any z ∈ E (ε),

|〈Δ(Ẽ+ ex̂H + x̂eH), Z̃− X̃〉F |

≤ ‖Z̃− X̃‖∗
(
‖Δ(Ẽ)‖+ ‖Δ(ex̂H)‖+ ‖Δ(x̂eH)‖

)
,

≤
√
2‖Z̃− X̃‖F δ(‖Ẽ‖+ ‖ex̂H‖+ ‖x̂eH‖)

=
√
2‖Z̃− X̃‖F δ(‖e‖2 + 2‖x‖‖e‖)

≤
√
2(2 + ε)δ‖Z̃− X̃‖F dist(z,x)‖x‖.

(70)

Finally, using the lower bound from Lemma III.3 where ε < 1,
we obtain

√
2(2 + ε)δ‖Z̃− X̃‖F dist(z,x)‖x‖

≤
√
2(2 + ε)δ√

(1− ε)(2− ε)
‖Z̃− X̃‖2F . (71)

Thereby, setting δ̂ =
√
2(2+ε)√

(1−ε)(2−ε)
δ, and combining the bounds

(68), (69) and (71), the proof is complete.

E. Proof of Lemma III.5

Recall the definition of the gradient in (13). By
Lemma III.4 a RIP-type property is satisfied locally
for zzH − xxH if z ∈ E(ε). As a result we can ex-
press ∇f(z) = Z̃z− X̃z+ (‖z‖2 − ‖x‖2)z+Δ(Z̃− X̃)z =
‖z‖2z− (x̂Hz)x̂+ (‖z‖2 − ‖x‖2)z+Δ(Z̃− X̃)z, with x̂
again denoting the closest solution in P to a given z ∈ C

N .
Then, we upper bound ∇f(z) as follows:

‖∇f(z)‖ ≤ ‖‖z‖2z− (x̂Hz)x̂‖+ |‖z‖2 − ‖x‖2|‖z‖
+ ‖Δ(Z̃− X̃)‖‖z‖ (72)

from which, knowing that ‖z‖2z− (x̂Hz)x̂ = (‖z‖2 −
x̂Hz)z+ (x̂Hz)(z− x̂), where e = z− x̂ with x̂ again
denoting the closest solution to z in P , and |‖z‖2 − ‖x‖2| ≤
‖Z̃− X̃‖F , we have

‖∇f(z)‖ ≤ ‖z‖(dist(z,x)(‖z‖+ ‖x‖)
+ ‖Z̃− X̃‖F + ‖Δ(Z̃− X̃)‖). (73)

Again considering the expression Z̃− X̃ = Ẽ+ ex̂H + x̂eH ,
we have ‖Δ(Z̃− X̃)‖ ≤ ‖Δ(Ẽ)‖+ ‖Δ(ex̂H + x̂eH)‖. Since
ex̂H + x̂eH is at most of rank-2 by definition, letex̂H + x̂eH =∑2

i=1 λiviv
H
i , by which we obtain ‖Δ(ex̂H + x̂eH)‖ ≤

|λ1|‖Δ(v1v
H
1 )‖+ |λ2|‖Δ(v2v

H
2 )‖. Thereby, using Lemma

III.1, we have ‖Δ(Z̃− X̃)‖ ≤ δ(‖e‖2 + |λ1|+ |λ2|). Further-
more, |λ1|+ |λ2| precisely corresponds to the nuclear norm
of ex̂H + x̂eH , which is upper bounded as ‖ex̂H + x̂eH‖∗ ≤
‖ex̂H‖∗ + ‖x̂eH‖∗ ≤ 2‖e‖‖x‖. As a result, invoking the upper
bound on the error in the lifted domain via Lemma III.3, we
obtain

‖∇f(z)‖ ≤ ‖z‖ ((‖z‖+ ‖x‖) + (1 + δ)(2 + ε)‖x‖) dist(z,x)
≤ (1 + ε)(2 + ε)(2 + δ)‖x‖2dist(z,x). (74)

In (74) we’ve used the fact that, forz ∈ E (ε),‖z‖ ≤ (1 + ε)‖x‖.
Hence, the proof of local Lipschitz differentiability is complete,
with a constant c(δ) = (1 + ε)(2 + ε)(2 + δ).

F. Proof of Lemma IV.1

Using the definition of the spectral matrix as Y = 1
MAH(y),

we have, for any x ∈ C
N , and any realization of η ∈ R

M

‖Y − (X̃+ ‖x‖2I)‖ ≤ ‖ 1

M
AHA(X̃)− (X̃+ ‖x‖2I)

+ ‖ 1

M
AH(η)‖, (75)

where y = A(X̃) + η, and the inequality simply follows from
the triangle inequality. Under the assumption that our sufficient
condition in (15) holds, we get

‖Y − (X̃+ ‖x‖2I)‖ ≤ δ‖x‖2 + ‖ 1

M
AH(η)‖. (76)

Then, using the definition of the spectral norm, we have

‖ 1

M
AH(η)‖ = max

z∈CN ,‖z‖=1
|〈 1

M
AH(η), zzH〉F |

= max
z∈CN ,‖z‖=1

|〈 1

M
η,A(zzH)〉|

≤ 1

M
‖η‖‖A(zzH)‖ ≤

√
2 + δ√
M

‖η‖

(77)

where we used the adjoint definition over the Frobenius in-
ner product for A, followed by Cauchy-Schwartz inequality,
and the upper bound from Corollary III.1 ‖A(zzH)‖2/M ≤
(2 + δ)‖zzH‖2F , with ‖z‖ = 1. Reorganizing the last inequality
in (77), we obtain

‖ 1

M
AH(η)‖ ≤ √

2 + δ

(
1√
M

‖A(X̃)‖
) ‖η‖

‖A(X̃)‖ . (78)

Invoking the upper bound from Corollary III.1 once again, along
with the definition of SNR, and Jensen’s inequality, we obtain

Eη

[√
2 + δ

(
1√
M

‖A(X̃)‖
) ‖η‖

‖A(X̃)‖

]
≤ 2 + δ√

SNR
‖X̃‖F ,

(79)
and plugging the bound in (79) into (76) the proof is complete.

G. Proof of Theorem IV.1

Given the lifted domain definition of the clean gradient term
in (13), using the noisy measurements y = A(xxH) + η with
η ∈ R

M , we define

∇f̃(z) =

(
1

M
AHA(Z̃− X̃) +

1

M
AH(η)

)
z. (80)

Having ∇f(z) = 1
MAHA(Z̃− X̃)z as the ideal gradient esti-

mate and setting μk+1 = μ′, we analyze the following updates:

zk+1 = (zk − μ′

‖x‖2∇f(zk)) +
μ′

‖x‖2
1

M
AH(η)zk

= ẑk+1 +
μ

‖x‖2
1

M
AH(η)zk, (81)
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where ẑk+1 denotes the iterate obtained from the ideal update
given the current estimate zk. We now approach the proof by
induction. Starting from the first iteration k = 0, we have

z1 = ẑ1 +
μ

‖x‖2
1

M
AH(η)z0, (82)

dist(z1,x) ≤ ‖z1 − x̂t‖ ≤ ‖z1 − ẑ1‖+ ‖ẑ1 − x̂‖
= dist(ẑ1,x) + ‖z1 − ẑ1‖. (83)

Furthermore given (38), the iterates are guaranteed to stay in the
ε-neighborhood determined by the spectral initialization, which
via Theorem III.1 guarantees

dist(ẑ1,x) ≤ ε‖x‖
(
1− 2μ′

α′

)1/2

, (84)

under the validity of (36), where μ′/α′ = μ/α. Repeating for
the next iteration, under the validity of (36) and (38), we have
that

dist(z2,x) ≤ ‖z2 − ẑ2‖+ dist(ẑ2,x)

≤
(
1− 2μ

α

)
ε‖x‖+

2∑
l=1

(
1− 2μ

α

) l−1
2

‖zl − ẑl‖,

(85)

and by induction, we obtain

dist(zk,x) ≤ ε

(
1− 2μ

α

)k/2

‖x‖

+

k∑
l=1

(
1− 2μ

α

) l−1
2

‖zl − ẑl‖. (86)

Recalling that ‖zl − ẑl‖ = ‖ μ′
‖x‖2

1
MAH(η)zl−1‖, we can bound

the term within the summation as follows:

‖zl − ẑl‖ ≤ μ′

‖x‖2 ‖zl−1‖ (2 + δ)√
SNR

‖x‖2 := Ul. (87)

After summing both sides in (87), we approximately obtain

k∑
l=1

Ul ≈ (2 + δ)√
SNR

k∑
l=1

μ′
(
1− 2μ′

α′

) l−1
2

‖x‖ (88)

where we have used that the norms of the iterates ‖zl−1‖ ≈ ‖x‖.
Then, applying the geometric sum formula, we obtain

k∑
l=1

Ul ≈ (2 + δ)√
SNR

μ′‖x‖1− (1− 2μ′
α′ )

k−1
2

1− (1− 2μ′
α′ )

1
2

≤ (2 + δ)√
SNR

μ′‖x‖
1 +

√
1− 2μ′

α′

(1−
√

1− 2μ′
α′ )(1 +

√
1− 2μ′

α′ )

≤ (2 + δ)√
SNR

‖x‖2μ
′α′

2μ′ (89)

which completes the proof. �

VI. CONCLUSION

This paper analyzes the exact recovery guarantees of the non-
convex phase retrieval framework of Wirtinger Flow through a
novel perspective in the lifted domain. Our approach quantifies a
regime in which the concentration bound of the spectral matrix
geometrically implies the validity of the regularity condition.
As a result, we identify a sufficient condition under which the
convergence to the true solution is guaranteed deterministi-
cally via Wirtinger Flow, starting from the estimate obtained
from the spectral initialization. Notably, our results address
a theoretical gap that exists in phase retrieval literature, in
which convergence arguments are predominantly probabilistic
in nature. Furthermore, the deterministic convergence arguments
developed in this paper rely on a less stringent restricted isometry
type property than those of state-of-the art low rank matrix
recovery methods. Although numerical simulations on specific
problem domains are beyond the scope of this paper, our results
culminate into a framework that is highly relevant to applications
such as wave-based imaging, in which the underlying scattering
phenomenon is typically a deterministic map. In future work,
we will study the impact of regularization on our framework,
and investigate improvements on our recovery guarantees via
alternative initialization schemes to improve its recovery guar-
antees towards practical measurement models, such as coded
diffraction patterns and 2D-Fourier slices. Further directions
of our interest also include the study of amplitude-based loss
functions to obtain a more inclusive framework beyond our
specified loss function over intensity measurements. Namely,
the superior sample complexity and convergence rates these
methods were shown to attain motivates the study of a RIP-based
approach for the analysis of amplitude-based loss functions or
for possible analogies between the two formulations.

APPENDIX

A. Uniformity for the Gaussian Model

We begin from the concentration bound which is known to
hold for the complex Gaussian sampling model when M ≥
O(N logN) via [1]:

‖ 1

M
AHA(xxH)− (‖x‖2I+ xxH)‖ ≤ δ‖x‖2, (90)

at a fixed δ > 0with probability 1− 5e−γN for an appropriately
chosen γ(δ) > 0, for any fixed x ∈ C

N via unitary invariance
on an event2 E0 which holds with probability 1− 4/N2. We
need to show (90) holds for all x ∈ C

N uniformly in the event
that E0 holds. Note that due to the Hermitian property of Δ, we
established in Lemma III.1 that the condition holds uniformly
over x if v is fixed and vice-versa. We also know from
Corollary III.1 that we can equivalently show that
|〈Δ(xxH),xxH | ≤ δ holds uniformly over the unit sphere in
C

N to establish uniformity of (90), since the maxima over x
was proven to be identical for the two conditions.

Now, on the event that E0 holds, (41) by definition directly
implies |〈Δ(xxH),xxH〉F | ≤ δ, for anyx ∈ C

N with ‖x‖ = 1

2See A.4.2 in [1] for details.
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at the same probability whenM ≥ O(N logN). It then remains
to extend this result over allx ∈ C

N via an ε-net argument. Hav-
ing |〈Δ(xxH),xxH〉F | = |M−1

∑M
m=1 |aHmx|4 − 2| ≤ δ̃, with

E[|aHmx|4] = 2, we follow the methodology of [48] for bounding
the a quantity around its expectation uniformly. Assume the
bound we have at hand holds with δ̃ at any z on the unit sphere,
such that γ is properly set to have

Pr

(
| 1

2M
‖A(zzH)‖2 − 1| ≥ δ̃

2

)
≤ 5e−γN . (91)

We first need to perform the union bound over a properly defined
ε-net of Sε on the unit sphere, and then control any perturbations
when generalizing the result over to the whole domain. To
determine the appropriate ε-net, we first have to consider how
tight the perturbation must be bounded. From (91) we trivially
have

(1− δ̃/2) ≤ 1√
2M

‖A(zzH)‖ ≤ (1 + δ̃/2), (92)

which will hold for allz ∈ Sε once the union bound is performed.
Next we define A as the smallest number such that

1√
2M

‖A(xxH)‖ ≤ (1 +A) for all ‖x‖ = 1. (93)

Hence, by definition of A we have that

‖A(xxH)‖ ≤ ‖A(zzH)‖+ ‖A(xxH − zzH)‖ (94)

1√
2M

‖A(xxH)‖ ≤ 1 + δ̃/2 + (1 +A)‖xxH − zzH‖∗
(95)

where we have used the fact that ‖A(xxH − zzH)‖ ≤
|λ1|‖A(v1v

H
1 )‖+ |λ2|‖A(v2v

H
2 )‖, with xxH − zzH =

λ1v1v
H
1 + λ2v2v

H
2 . Since by definition A is the smallest value

for which (93) holds, we have that

A ≤ δ̃/2 + (1 +A)(|λ1|+ |λ2|). (96)

Setting σ = |λ1|+ |λ2|, we have

A ≤ δ̃/2 + σ

1− σ
, (97)

where we wish to have an ε such that A ≤ δ̃, which indicates

δ̃/2 + σ

1− η
≤ δ̃ → σ ≤ δ̃

2(1 + δ̃)
(98)

which is satisfied for σ ≤ δ̃/4 by definition since δ̃ < 1. Now
we know from Lemma III.3 that for any x with ‖x‖ = 1, and
any z where ‖x− z‖ ≤ ε‖x‖ we have that

σ = ‖xxH − zzH‖∗ ≤ (2 + ε)‖x− z‖‖x‖ ≤ (2 + ε)ε. (99)

As a result, we can determine an ε-net on the unit sphere in
the signal domain, such that a perturbation is controlled in the
lifted domain. It essentially requires that δ̃/4 = 2ε+ ε2. Since
δ̃/4 + 1 = (1 + ε)2, with an ε-net Sε with

ε =

√
δ̃

4
+ 1− 1 ≈ δ̃

8
(100)

we obtain the desired result of A ≤ δ̃. The lower inequality
then follows as 1− δ̃/2− (1 + δ̃)δ̃/4 ≥ 1− δ̃ as noted in [48].
Thereby, generalizing a union bound over the set Sε with cardi-
nality k, for all z ∈ Sε we have that

Pr

(
| 1

2M
‖A(zzH)‖2 − 1| ≤ δ̃

2

)
≤ 1− 5(24/δ̃)ke−γN ,

(101)
where we used the covering number of Sε from [48] via
reference [49]. Hence the concentration bound in (90) holds
uniformly over all x with δ = 2δ̃ with probability 1−
5(24/δ̃)ke−γN − 4N−2 whenM = O(N logN), and the proof
is complete.

REFERENCES

[1] E. J. Candes, X. Li, and M. Soltanolkotabi, “Phase retrieval via Wirtinger
flow: Theory and algorithms,” IEEE Trans. Inf. Theory, vol. 61, no. 4,
pp. 1985–2007, Apr. 2015.

[2] E. J. Candes and T. Strohmer, “PhaseLift: Exact and stable recovery from
magnitude measurements via convex programming,” Commun. Pure Appl.
Math., vol. 66, no. 8, pp. 1241–1274, Aug. 2013.

[3] T. Bendory, Y. C. Eldar, and N. Boumal, “Non-convex phase retrieval from
stft measurements,” IEEE Trans. Inf. Theory, vol. 64, no. 1, pp. 467–484,
Jan. 2018.

[4] H. Zhang and Y. Liang, “Reshaped Wirtinger flow for solving quadratic
systems of equations,” Adv. Neural Inf. Process. Syst., pp. 2622–2630,
2016.

[5] R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the deter-
mination of the phase from image and diffraction plane pictures,” Optik,
vol. 35, pp. 237–246, 1972.

[6] J. R. Fienup, “Reconstruction of an object from the modulus of its Fourier
transform,” Opt. Lett., vol. 3, no. 1, pp. 27–29, 1978.

[7] H. H. Bauschke, P. L. Combettes, and D. R. Luke, “Hybrid projection–
reflection method for phase retrieval,” J. Opt. Soc. Am. A, vol. 20, no. 6,
pp. 1025–1034, 2003.

[8] A. Chai, M. Moscoso, and G. Papanicolaou, “Array imaging using
intensity-only measurements,” IOP Inverse Problems J., vol. 27, no. 1,
pp. 1–16, Jan. 2011.

[9] E. J. Candes, Y. Eldar, T. Strohmer, and V. Voroninski, “Phase retrieval via
matrix completion,” SIAM J. Imag. Sci., vol. 6, no. 1, pp. 199–225, 2013.

[10] I. Waldspurger, A. d’Aspremont, and S. Mallat, “Phase recovery, maxcut
and complex semidefinite programming,” Math. Program., vol. 149, no. 1,
pp. 47–81, 2015.

[11] P. Netrapalli, P. Jain, and S. Sanghavi, “Phase retrieval using alter-
nating minimization,” in Proc. Adv. Neural Inf. Process. Syst., 2013,
pp. 2796–2804.

[12] T. Goldstein and C. Studer, “PhaseMax: Convex phase retrieval via basis
pursuit,” IEEE Trans. Inf. Theory, vol. 64, no. 4, pp. 2675–2689, Apr. 2018.

[13] P. Hand and V. Voroninski, “An elementary proof of convex phase retrieval
in the natural parameter space via the linear program phasemax,” Commun.
Math. Sci., vol. 16, no. 7, pp. 2047–2051, 2018.

[14] S. Bahmani and R. Justin, “A flexible convex relaxation for phase re-
trieval,” Electron. J. Statist., vol. 11, no. 2, pp. 5254–5281, 2017.

[15] Y. Chen and E. J. Candes, “Solving random quadratic systems of equations
is nearly as easy as solving linear systems,” Commun. Pure Appl. Math.,
vol. 70, pp. 0822–0883, 2017.

[16] J. Chen, L. Wang, X. Zhang, and Q. Gu, “Robust Wirtinger flow for phase
retrieval with arbitrary corruption,” 2017.

[17] H. Zhang, Y. Chi, and Y. Liang, “Median-truncated nonconvex approach
for phase retrieval with outliers,” IEEE Trans. Inf. Theory, vol. 64, no. 11,
pp. 7287–7310, Nov. 2018.

[18] G. Wang, G. Giannakis, Y. Saad, and J. Chen, “Solving most systems
of random quadratic equations,” in Proc. Adv. Neural Inf. Process. Syst.,
2017, pp. 1867–1877.

[19] G. Wang, G. B. Giannakis, Y. Saad, and J. Chen, “Phase retrieval via
reweighted amplitude flow,” IEEE Trans. Signal Process., vol. 66, no. 11,
pp. 2818–2833, Jun. 2018.

[20] G. Wang, G. B. Giannakis, and Y. C. Eldar, “Solving systems of random
quadratic equations via truncated amplitude flow,” IEEE Trans. Inf. The-
ory, vol. 64, no. 2, pp. 773–794, Feb. 2018.

Authorized licensed use limited to: Rensselaer Polytechnic Institute. Downloaded on August 24,2020 at 02:19:42 UTC from IEEE Xplore.  Restrictions apply. 



4626 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

[21] Y. M. Lu and G. Li, “Phase transitions of spectral initialization for high-
dimensional nonconvex estimation,” Inf. Inference: A J. IMA, 2019.

[22] M. Mondelli and A. Montanari, “Fundamental limits of weak recovery
with applications to phase retrieval,” Found. Comput. Math., vol. 19, no. 3,
pp. 703–773, 2019.

[23] W. Luo, W. Alghamdi, and Y. M. Lu, “Optimal spectral initialization for
signal recovery with applications to phase retrieval,” IEEE Trans. Signal
Process., vol. 67, no. 9, pp. 2347–2356, May 2019.

[24] R. Ghods, A. S. Lan, T. Goldstein, and C. Studer, “Linear spectral estima-
tors and an application to phase retrieval,” in Proc. 35th Int. Conf. Mach.
Learn., vol. 80, 2018, pp. 1734–1743.

[25] B. Gao and Z. Xu, “Phaseless recovery using the Gauss–Newton method,”
IEEE Trans. Signal Process., vol. 65, no. 22, pp. 5885–5896, Nov. 2017.

[26] S. Bhojanapalli, A. Kyrillidis, and S. Sanghavi, “Dropping convexity for
faster semi-definite optimization,” in Proc. Conf. Learn. Theory, 2016,
pp. 530–582.

[27] B. Yonel and B. Yazici, “A generalization of Wirtinger flow for exact inter-
ferometric inversion,” SIAM J. Imag. Sci., vol. 12, no. 4, pp. 2119–2164,
2019.

[28] J. Sun, Q. Qu, and J. Wright, “A geometric analysis of phase retrieval,”
Found. Comput. Math., vol. 18, no. 5, pp. 1131–1198, 2018.

[29] C. Ma, K. Wang, Y. Chi, and Y. Chen, “Implicit regularization in noncon-
vex statistical estimation: Gradient descent converges linearly for phase
retrieval, matrix completion, and blind deconvolution,” Found. Comput.
Math., vol. 20, no. 3, pp. 451–632, 2020.

[30] S. Sanghavi, R. Ward, and C. D. White, “The local convexity of solving sys-
tems of quadratic equations,” Results Math., vol. 71, no. 3-4, pp. 569–608,
2017.

[31] X. Li, S. Ling, T. Strohmer, and K. Wei, “Rapid, robust, and reliable
blind deconvolution via nonconvex optimization,” Appl. Comput. Harmon.
Anal., vol. 47, pp 893–934, Nov. 2019.

[32] S. Tu, R. Boczar, M. Simchowitz, M. Soltanolkotabi, and B. Recht, “Low-
rank solutions of linear matrix equations via procrustes flow,” in Proc.
35th Int. Conf. Mach. Learn., vol. 48, pp. 964–973, 2016.

[33] Z. Zhu, Q. Li, G. Tang, and M. B. Wakin, “Global optimality in low-
rank matrix optimization,” IEEE Trans. Signal Process., vol. 66, no. 13,
pp. 3614–3628, Jul. 2018.

[34] S. Bhojanapalli, B. Neyshabur, and N. Srebro, “Global optimality of local
search for low rank matrix recovery,” in Proc. Adv. Neural Inf. Process.
Syst., 2016, pp. 3873–3881.

[35] R. Zhang, C. Josz, S. Sojoudi, and J. Lavaei, “How much restricted
isometry is needed in nonconvex matrix recovery?” in Proc. Adv. Neural
Inf. Process. Syst., 2018, pp. 5586–5597.

[36] Q. Zheng and J. Lafferty, “A convergent gradient descent algorithm
for rank minimization and semidefinite programming from random lin-
ear measurements,” in Proc. Adv. Neural Inf. Process. Syst., 2015,
pp. 109–117.

[37] L. Wang, X. Zhang, and Q. Gu, “A unified computational and statistical
framework for nonconvex low-rank matrix estimation,” in Proc. 20th Int.
Conf. Artif. Intell. Statist., vol. 54, pp. 981–990, 2017.

[38] Y. Chi, Y. M. Lu, and Y. Chen, “Nonconvex optimization meets low-rank
matrix factorization: An overview,” IEEE Trans. Sig. Process., vol. 67, no.
20, pp. 5239–5269, Aug. 2019.

[39] A. S. Bandeira, J. Cahill, D. G. Mixon, and A. A. Nelson, “Saving phase:
Injectivity and stability for phase retrieval,” Appl. Comput. Harmon. Anal.,
vol. 37, no. 1, pp. 106–125, 2014.

[40] J.-F. Cai, E. J. Candes, and Z. Shen, “A singular value threshold-
ing algorithm for matrix completion,” SIAM J. Optim., vol. 20, no. 4,
pp. 1956–1982, 2010.

[41] B. Recht, M. Fazel, and P. A. Parrilo, “Guaranteed minimum-rank solutions
of linear matrix equations via nuclear norm minimization,” SIAM Rev.,
vol. 52, no. 3, pp. 471–501, 2010.

[42] B. Recht, W. Xu, and B. Hassibi, “Necessary and sufficient conditions for
success of the nuclear norm heuristic for rank minimization,” in Proc. 47th
IEEE Conf. Decis. Control, 2008, pp. 3065–3070.

[43] B. Recht, W. Xu, and B. Hassibi, “Null space conditions and thresholds for
rank minimization,” Math. Program., vol. 127, no. 1, pp. 175–202, 2011.

[44] S. Oymak, K. Mohan, M. Fazel, and B. Hassibi, “A simplified approach
to recovery conditions for low rank matrices,” in Proc. IEEE Int. Symp.
Inf. Theory Proc., 2011, pp. 2318–2322.

[45] T. T. Cai, “Sharp rip bound for sparse signal and low-rank matrix recovery,”
Appl. Comput. Harmon. Anal, vol. 35, pp. 74–93, 2013.

[46] L. Demanet and P. Hand, “Stable optimizationless recovery from phaseless
linear measurements,” J. Fourier Anal. Appl., vol. 20, no. 1, pp. 199–221,
2014.

[47] B. Yonel, I.-Y. Son, and B. Yazici, “Exact multistatic interferometric
imaging via generalized Wirtinger flow,” IEEE Trans. Comput. Imag.,
vol. 6, pp. 711–726, Jan. 2020.

[48] R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin, “A simple proof
of the restricted isometry property for random matrices,” Constructive
Approximation, vol. 28, no. 3, pp. 253–263, 2008.

[49] R. A. DeVore and G. G. Lorentz, Constructive Approximation, vol. 303.
Berlin, Germany: Springer, 1993.

Bariscan Yonel (Student Member, IEEE) received
the B.Sc. degree in electrical engineering from Koc
University in Istanbul, Turkey, in 2015. He subse-
quently joined Rensselaer Polytechnic Institute (RPI)
in Troy, NY, where he is currently a Ph.D. candi-
date in electrical engineering. His research and thesis
work focus on theoretical guarantees and practical
limitations for solving quadratic equations in high
dimensional inference and wave-based imaging prob-
lems, using low rank matrix recovery theory and com-
putationally efficient non-convex algorithms. Further

research interests include applications of machine learning, compressed sensing
and optimization methods for signal processing and computational imaging.

Birsen Yazici (Senior Member, IEEE) received the
B.S. degree in electrical engineering and mathe-
matics, in 1988, from Bogazici University, Istanbul
Turkey, and M.S. and Ph.D. degrees in mathematics
and electrical engineering both from Purdue Univer-
sity, West Lafayette, IN, in 1990 and 1994, respec-
tively. From September 1994 until 2000, she was
a Research Engineer at General Electric Company
Global Research Center, Schenectady NY. During her
tenure in industry, she worked on radar, transporta-
tion, industrial and medical imaging systems. From

2001 to June 2003, she was an Assistant Professor at Drexel University, Elec-
trical and Computer Engineering Department. In 2003, she joined Rensselaer
Polytechnic Institute where she is currently a Full Professor in the Department
of Electrical, Computer and Systems Engineering and in the Department of
Biomedical Engineering. Prof. Yazıcı’s research interests span the areas of
statistical signal processing, inverse problems in imaging, image reconstruction,
biomedical optics, radar and X-ray imaging. She served as an associate editor
for the IEEE TRANSACTIONS ON IMAGE PROCESSING from 2008 to 2012, IEEE
TRANSACTIONS ON GEOSCIENCES AND REMOTE SENSING from 2014 to 2018,
and for SIAM Journal on Imaging Science from 2010 to 2014. She currently
serves as an Associate Editor for IEEE TRANSACTIONS ON COMPUTATIONAL

IMAGING and as a Distinguished Lecturer of the IEEE Aerospace and Electronics
Systems Society. She is the recipient of the Rensselaer Polytechnic Institute 2007
and 2013 School of Engineering Research Excellence awards. She holds 11 US
patents.

Authorized licensed use limited to: Rensselaer Polytechnic Institute. Downloaded on August 24,2020 at 02:19:42 UTC from IEEE Xplore.  Restrictions apply. 


