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Introduction

Let K be a complete discrete valuation field with finite residue field of char-
acteristic p, and let D be a central division algebra over K of finite index d.
Thirty years ago, Suslin and Yufryakov [35, Theorem 3] showed that for all
prime numbers � �= p and integers j � 1, there exists an isomorphism of
�-adic K -groups

K j (D,Z�) K j (K ,Z�)
NrdD/K

such that d ·NrdD/K is equal to the norm homomorphism ND/K . The purpose
of this paper is to prove the following analogous result for the p-adic K -groups.

Theorem A Let D be a central division algebra of finite index d over a com-
plete discrete valuation field K with finite residue field of odd characteristic
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p. For all integers j � 1, there exists a canonical isomorphism of p-adic
K -groups

K j (D,Zp) K j (K ,Zp)
NrdD/K

such that d · NrdD/K is equal to the norm homomorphism ND/K .

By contrast to the norm homomorphism ND/K , we do not know that the
reduced norm isomorphism NrdD/K is induced by a map of K -theory spectra,
and such a map may well not exist; compare Merkurjev [29, Proposition 4].

The tool that makes it possible to now prove Theorem A is the topological
cyclic homology introduced byBökstedt et al. [3]. The recentwork byNikolaus
and Scholze [31] has greatly clarified the nature of this theory, and we will
use their setup, which we briefly explain. LetSpB T

p be the infinity-category of
p-complete spectra with an action by the circleT. Given X ∈ SpB T

p , we write

TC−(X) TP(X)
can

for the canonical map from the homotopy fixed points spectrum to the Tate
spectrum of X . We refer to these spectra as the negative topological cyclic
homology and the periodic topological cyclic homology of X , respectively. A
cyclotomic structure on X is a map of spectra with T-action

X XtCp
ϕ

called the Frobenius map. The target of this map is the Tate spectrum of X
with respect to the subgroupCp ⊂ T of order p. It has a residualT/Cp-action,
which we consider a T-action via the pth root isomorphism ρ : T → T/Cp.
The Frobenius induces a map of homotopy T-fixed points,

TC−(X) = XhT (XtCp)h(T/Cp) � XtT = TP(X),
ϕhT

the target of which is canonically identified with the T-Tate spectrum by the
Tate orbit lemma of Nikolaus and Scholze [31, Lemma I.2.1]. We will abuse
notation and write ϕ : TC−(X) → TP(X) for the resulting map, which we
again call the Frobenius map. Now, the topological cyclic homology of X is
the homotopy equalizer

TC(X) TC−(X) TP(X)
i

ϕ

can

of the Frobenius map and the canonical map. Nikolaus and Scholze also show
that, in a natural way, the p-complete cyclotomic spectra can be organized
into a symmetric monoidal stable infinity-category CycSpp, whose tensor
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unit is the p-complete sphere spectrum Sp with trivial T-action and with the
composite map

Sp S
hCp
p S

tCp
p

ϕ̃ can

as its cyclotomic structure map. Here, the left-hand map is the canonical map
from a spectrumwith trivial action to its fixed points. Finally, the left-handmap
in the homotopy equalizer above is canonically identified with the “forgetful”
map

mapCycSpp
(Sp, X) mapSpB T

p
(Sp, X)

i

betweenmapping spectra in the stable infinity-categories of p-complete cyclo-
tomic spectra and p-complete spectra with T-action, respectively.

We now let K be the quotient field of a complete discrete valuation ring S
with finite residue field kS of characteristic p, let D be a central division algebra
over K , and let d = dimK (D)

1/2 be the index of D over K . The valuation on K
extends uniquely to a valuation on D, and the subring A ⊂ D of elements of
non-negative valuation is the unique maximal S-order. In [20], the first author
andMadsen produced a p-complete cyclotomic spectrumTHH(S | K ,Zp) and
a trace map

K (K ,Zp) TC(S | K ,Zp)
tr

to its topological cyclic homology spectrum,whichwe abbreviate as indicated,
from the p-completion of the algebraic K -theory spectrum of the field K . This
construction also defines a p-complete cyclotomic spectrum THH(A | D,Zp)

and a trace map

K (D,Zp) TC(A | D,Zp)
tr

to its topological cyclic homology spectrum from the p-completion of the
algebraic K -theory spectrum of the division ring D. Moreover, by [19, The-
orem D], both maps induce isomorphisms of homotopy groups in degrees
j � 1. Hence, Theorem A is a consequence of the following more precise
Theorem B. In order to state it, we first remark that THH(S | K ,Zp) has a
canonical structure of an E∞-algebra in CycSpp, that THH(A | D,Zp) has a
canonical structure of a THH(S | K ,Zp)-module, and that the trace map TrA/S
is a map of THH(S | K ,Zp)-modules

THH(A | D,Zp) THH(S | K ,Zp)
TrA/S

in CycSpp. The following is our main result.
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Theorem B Let K be the quotient field of a complete discrete valuation ring
S with finite residue field of odd characteristic p, let D be a central division
algebra over K , and let A ⊂ D be the maximal S-order.

(1) There exists an equivalence of THH(S | K ,Zp)-modules in cyclotomic
spectra,

THH(A | D,Zp) THH(S | K ,Zp).
TrdA/S

(2) As maps of THH(S | K ,Zp)-modules in spectra with T-action,

d · TrdA/S � TrA/S .

(3) If p divides d, then, as maps of THH(S | K ,Zp)-modules in cyclotomic
spectra,

d · TrdA/S �� TrA/S .

The first part of the theorem shows, in particular, that TC∗(A | D,Zp) is
free on a generator of degree 0 as a graded TC∗(S | K ,Zp)-module, and this
implies the first statement in Theorem A. This generator is not in the image of
the cyclotomic trace, and K∗(D,Zp) is neither free nor finitely generated as
a graded K∗(K ,Zp)-module.

Toproduce the desired equivalence ofTHH(S | K ,Zp)-modules inCycSpp,
we instead produce its inverse equivalence

THH(S | K ,Zp) THH(A | D,Zp).
IrdA/S

The space of such maps has group of components TC0(A | D,Zp), and,
similarly, the corresponding space of maps in SpB T

p has group of compo-
nents TC−

0 (A | D,Zp). To understand TC−∗ (A | D,Zp), we choose a maximal
unramified subfield K ⊂ L ⊂ D and let S ⊂ T ⊂ A be the subring of
elements of non-negative valuation. The extension L/K is of degree d and
the Galois group G of L/K is canonically isomorphic to that of the extension
kT /kS of residue fields. In general, for R a unital associative ring, we write
PR for the exact category of finitely generated projective left R-modules. In
the case at hand, the ring homomorphisms

A ⊗S T T ⊗S T
π δ T

given by the canonical inclusion and the multiplication are finite locally free,
and hence, we have the functors π∗ : PA⊗ST → PT⊗ST and δ∗ : PT →
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PT⊗ST given by restriction-of-scalars along π and δ, respectively. Let π ! be
the right adjoint of π∗ given by coextension-of-scalars along π , and let δ∗ be
the left adjoint of δ∗ given by extension-of-scalars along δ. We consider the
diagram

PA PA⊗ST

PS PT ,

f ∗

f ∗
TrdA⊗ST/T IrdA⊗ST/T

where the right-hand adjunction is the composite adjunction (δ∗ ◦π∗, π ! ◦ δ∗),
and where the horizontal functors are extension-of-scalars along the canon-
ical inclusion f : S → T . Said adjunction is not an adjoint equivalence of
categories, but it becomes one after extension-of-scalars along the canoni-
cal inclusion h : S → K , exhibiting the well-known Morita equivalence of
D ⊗K L and L . The ring A⊗S T is not a maximal T -order in D ⊗K L , so the
following result, which we prove in Sect. 1, came as a rather fortunate surprise.

Theorem C The ring A ⊗S T is left regular.

Here, we follow Bass [2, p. 122] and call a ring R left regular if every
finitely generated left R-module admits a finite resolution by finitely generated
projective left R-modules. Using Theorem C, we show that, in the diagram

TC−∗ (A | D,Zp) H0(G,TC−∗ (A ⊗S T | D ⊗K L ,Zp))

TC−∗ (S | K ,Zp) H0(G,TC−∗ (T | L ,Zp)),

f ∗

f ∗
TrdA⊗ST/T IrdA⊗ST/T

the horizontal morphisms are isomorphisms, and the Morita equivalence
mentioned above implies that also the vertical morphisms are isomor-
phisms. All morphisms in the diagram are graded TC−∗ (S | K ,Zp)-module
homomorphisms, so we conclude that the graded TC−∗ (S | K ,Zp)-module
TC−∗ (A | D,Zp) is free on a single generator of degree zero. We let y ∈
TC−

0 (A | D,Zp) be the unique generator with the property that f ∗(y)
= IrdA⊗ST/T ( f ∗(1)). It satisfies that ϕ(y) = can(y), and accordingly, there
exists ỹ ∈ TC0(A | D,Zp)with i(ỹ) = y. This implies part (1) of Theorem B,
and part (2) follows from the fact that TrA/S(y) = d · 1. This equation also
characterizes the generator y, since the common groups TC−

0 (A | D,Zp) and
TC−

0 (S | K ,Zp) are free Zp-modules of rank one. By contrast, the common
groups TC0(A | D,Zp) and TC0(S | K ,Zp) are free Zp-modules of rank two,
and we show that if p divides d, then it is not possible to choose the generator
ỹ such that TrA/S(ỹ) is a divisible by d, which implies part (3) of Theorem B.
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The uniqueness of the generator y ∈ TC−
0 (A | D,Zp)with TrA/S(y) = d ·1

implies that the reduced trace isomorphisms on negative topological cyclic
homology groups and on periodic cyclic homology groups are canonical and
satisfy

d · TrdA/S = TrA/S .

That the corresponding statements hold on topological cyclic homology groups
is not immediately clear and is false in degree zero, if p divides d. However,
for j � 1 and odd, we show that there are exact sequences

0

0

TC j (A | D,Zp)

TC j (S | K ,Zp)

TC−
j (A | D,Zp)

TC−
j (S | K ,Zp)

TP j (A | D,Zp)

TP j (S | K ,Zp),

i ϕ−can

TrdA/S TrdA/S TrdA/S

i ϕ−can

which show that also the left-hand map TrdA/S is canonical and that its dth
multiple is equal to TrA/S . Similarly, for j � 2 and even, there are exact
sequences

TC−
j+1(A | D,Zp)

TC−
j+1(S | K ,Zp)

TP j+1(A | D,Zp)

TP j+1(S | K ,Zp),

TC j (A | D,Zp)

TC j (S | K ,Zp)

0

0

ϕ−can ∂

TrdA/S TrdA/S TrdA/S

ϕ−can ∂

which show that the right-hand map TrdA/S is canonical and that its dth mul-
tiple is equal to TrA/S . This proves that latter statement in Theorem A that the
reduced norm isomorphism is canonical and satisfies d · NrdD/K = ND/K .

Our proofs of Theorem B (2)–(3) use [20, Theorem 5.5.1], which is the
reason that we assume p to be odd. The remaining results hold also for p = 2,
as do all our results, if S is of equal characteristic. We expect our results to
hold also for p = 2.

1 Categories of modules

In this section, we examine the structure of the category of left modules over
the ring A ⊗S T and prove Theorem C of the introduction.

If R is a unital associative ring R, then we write ModR for the category of
left R-modules, and if f : R → S is a ring homomorphism, then we define the
restriction along f to be the functor f∗ : ModS → ModR that to an S-module
M assigns the R-module f∗(M) with the same underlying additive group as
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that of M and with left scalar multiplication by a ∈ R given by left scalar
multiplication by f (a) ∈ S and that to an S-linear map h : M → M ′ assigns
the same map h : f∗(M) → f∗(M ′). We note that the restriction of scalars
along the identity homomorphism idR and the identity functor of ModR are
canonically naturally isomorphic, as are (g ◦ f )∗ and f∗ ◦ g∗ for composable
ring homomorphisms f : R → S and g : S → T .

The functor f∗ admits both a left adjoint functor and a right adjoint functor.
We say that a choice of an adjunction ( f ∗, f∗, ε, η) from ModR to ModS
is an extension of scalars along f ; and we say that a choice of adjunction
( f∗, f !, ε, η) from ModR to ModS is a coextension of scalars along f . If
f : R → S and g : S → T are composable ring homomorphisms, then the
functors g∗◦ f ∗ and (g◦ f )∗ and the functors g!◦ f ! and (g◦ f )! are canonically
naturally isomorphic, and the extension and coextension along the identity
homomorphism idR both are canonically naturally isomorphic to the identity
functor; compare [27, Theorem IV.7.2].

We write MR and PR for the full subcategories of ModR whose objects
are the finitely generated left R-modules and the finitely generated projec-
tive left R-modules, respectively. Let f : R → S be a ring homomorphism.
The extension of scalars along f restricts to functors f ∗ : MR → MS and
f ∗ : PR → PS , the former of which is an exact functor if and only if f is
flat; the restriction of scalars along f restricts to a functor f∗ : MS → MR ,
if f is finite, and to a functor f∗ : PS → PR , if f is finite and if S consid-
ered as a left R-module via f is projective, both of which are exact; and the
coextension of scalars along f restricts to exact functors f ! : MR → MS ,
if S is a finitely generated projective R-module, and f ! : PR → PS , if, in
addition, the coextension of R, HomR(S, R), is a finitely generated projective
S-module. In particular, if S is a finitely generated projective R-module and
every object M of MS such that f∗M is an object of PR must in fact lie in
PS , then f ! : PR → PS exists and is exact.

We again let S be a complete discrete valuation ring with finite residue
field kS of characteristic p and with quotient field K , and let D be a finite
dimensional central division algebra over K . We recall the structure of D
following [34,Chapter 3]. The valuation vK on K extends uniquely to a discrete
valuation vD on D given by

vD(x) = 1

dimK (D)
vK (ND/K (x)),

where x ∈ D∗ and ND/K : D∗ → K ∗ is the norm. The algebra D is complete
with respect to vD , and the subring A ⊂ D of elements of non-negative
valuation is both the integral closure of S in D and the unique maximal S-
order in D. We choose a maximal subfield K ⊂ L ⊂ D with the property
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that the extension L/K is unramified and let T ⊂ L be the integral closure
of S. The equality dimK (L) = dimL(D) holds, and the common dimension
d is called the index of D over K . Hence, if πD is a generator of the unique
maximal ideal mD ⊂ A, then the tuple (1, πD, . . . , πd−1

D ) is a basis of D as a
left L-vector space. Now, by [34, Theorem 14.5], wemay choose the generator
πD such that πd

D is contained in S (and hence is a generator πK of the maximal
ideal mK ⊂ S) and such that the inner automorphism x �→ πD xπ

−1
D of D

restricts to an automorphism σ of L/K which generates Gal(L/K ). The map

Gal(L/K ) Gal(kT /kS)
ε

defined by ε(g)(y + mT ) = g(y) + mT is an isomorphism, since L/K is
unramified. It maps the generator σ of the domain to a generator of the target,
whichwemay thereforewrite as the r th power of the Frobenius automorphism,
for a unique integer 0 < r < d relatively prime to d. The class of r/d in Q/Z

is called the Hasse invariant of D. It determines the central division K -algebra
D, up to non-canonical isomorphism.Moreover, every element ofQ/Z occurs
as the index of some central division K -algebra D.

Let k be a commutative ring, let R be a commutative k-algebra, and let
ϕ : R → R be a k-algebra automorphism. The twisted polynomial algebra
Rϕ{x} is the quotient of the coproduct R ∗k k[x], in the category of unital
associative k-algebras, of R and k[x] by the two-sided ideal generated by the
family of elements ϕ(a)x − xa with a ∈ R. We let i1 : R → Rϕ{x} and
i2 : k[x] → Rϕ{x} be the two k-algebra homomorphisms defined as the com-
positions of the respective canonical inclusions into the coproduct followed
by the canonical projection.

Lemma 1.1 In the situation above, if k′ is a commutative k-algebra and
R′ = R ⊗k k′, then there is a unique isomorphism of k′-algebras

(R′)σ⊗id{x} Rσ {x} ⊗k k′u

compatible with the maps i1 and i2 over k and k′, respectively.

Proof The universal property of coproducts gives a canonical map of k′-
algebras

R′ ∗k′ k′[x] (R ∗k k[x]) ⊗k k′,

the universal property of extension of scalars gives a canonical map of k-
modules

(R ∗k k[x]) ⊗k k′ R′ ∗k′ k′[x],
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and the two maps are mutually inverse. Moreover, the kernels of the canonical
projections to (R′)σ⊗id{x} and Rσ {x} ⊗k k′, respectively, are identified under
these isomorphisms. 
�
Lemma 1.2 With notation as above, let v be the unique S-algebra homomor-
phism

T σ {x} A
v

such that v ◦ i1 : T → A is the canonical inclusion and v ◦ i2 : S[x] → A is
the unique S-algebra homomorphism mapping x to πD. Then v is surjective,
and its kernel is the two-sided ideal generated by xd − πK .

Proof To prove surjectivity, recall that every element a ∈ D can be writ-
ten uniquely as an L-linear combination a = y0 + · · · + yd−1π

d−1
D . Now,

since vD(L×) = dZ, the values vD(yiπ i
D) are pairwise distinct. There-

fore, we conclude from the ultrametric inequality that a ∈ A if and only
if y0, . . . , yd−1 ∈ T as desired. Clearly, xd −πK lies in the kernel of v, and by
the linear independence of (1, πD, . . . , πd−1

D ) over L , no polynomial of lower
degree does so. Therefore, by the right division algorithm, every element in
the kernel of v is a left multiple of the (central) element xd − πK . 
�
Corollary 1.3 The unique T -algebra homomorphism

(T ⊗S T )σ⊗id{x} A ⊗S T
v′

such that v′ ◦(i1⊗ id) : T ⊗S T → A⊗S T is the canonical inclusion and such
that v′ ◦ (i2 ⊗ id) : T [x] → A ⊗S T the unique T -algebra homomorphism
that maps x to πD ⊗ 1 is surjective, and its kernel is the two sided ideal
(xd − πK ⊗ 1).

Proof The map v′ factors as the composition

(T ⊗S T )σ⊗id{x} T σ {x} ⊗S T A ⊗S T
u v⊗id

of the isomorphism inLemma1.2 and the extension of scalars along f : S → T
of the isomorphism in Lemma 1.3. 
�

Wedefine a categoryMod T,G as follows. An object is a triple (N , (Ng)g∈G,

ϕ), where N is a left T -module, (Ng)g∈G is a grading on N of type G
= Gal(L/K ), and ϕ : N → N is a graded T -linear endomorphism of degree
σ−1 ∈ G such that ϕd is equal to left multiplication by πK ∈ T . A morphism
h : (N , (Ng), ϕ) → (N ′, (N ′

g), ϕ
′) is a graded T -linear map h : N → N ′
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290 L. Hesselholt et al.

of degree 1 ∈ G such that h ◦ ϕ = ϕ′ ◦ h. We write the composition law
in G multiplicatively and refer to [6, Chapter 2, §11] for the definitions of
graded modules and graded homomorphisms. We recall that since f : S → T
is faithfully étale with Galois group G, the ring homomorphism

T ⊗S T
∏

g∈G Tw

with gth component wg(t1 ⊗ t2) = g(t1)t2 is an isomorphism. We let (eg)g∈G
be the family of orthogonal idempotents in T ⊗S T such that wg(eg′) = δg,g′
and let

ModA⊗ST Mod T,G
F

be the functor that to a left A⊗ST -module N assigns the triple(N , (Ng)g∈G, ϕ),
where, by abuse of notation, N is the underlying left T -module of the left
A ⊗S T -module N , where Ng ⊂ N is the T -submodule eg · N ⊂ N ,
and where ϕ : N → N is the T -linear map given by left multiplication by
πD ⊗ 1 ∈ A ⊗S T .

Proposition 1.4 The functor

ModA⊗ST Mod T,G
F

is an equivalence of categories.

Proof First, to prove that F is well-defined, we must verify that the T -linear
map ϕ : N → N defined by ϕ(y) = πD ⊗ 1 · y is indeed graded of degree
σ−1 and that ϕd is given by multiplication by πK . The latter holds, since

πd
D ⊗ 1 = πK ⊗ 1 = 1 ⊗ πK ,

and to prove the former we apply Corollary 1.3 to conclude that

ϕ((t1 ⊗ t2)y) = (σ (t1) ⊗ t2)ϕ(y),

for all y ∈ N and t1 ⊗ t2 ∈ T ⊗S T . Moreover, the commutative diagram

T ⊗S T
∏

g∈G T

T ⊗S T
∏

g∈G T,

w

w

σ⊗id (σ⊗id)w
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where the map (σ ⊗ id)w is defined by prg ◦(σ ⊗ id)w = prg◦σ , shows that

(σ ⊗ id)(eg) = eg◦σ−1 .

This shows that ϕ : N → N is graded of degree σ−1 as desired.
We define a quasi-inverse functor

Mod T,G ModA⊗ST
H

as follows. Given an object (N , (Ng)g∈G, ϕ) of the domain category, we first
use the grading (Ng)g∈G to define a left T ⊗S T -module structure on the left
T -module N by letting t1 ⊗ t2 ∈ T ⊗S T multiply by wg(t1 ⊗ t2) on Ng ⊂ N .
Moreover, since the T -linear map ϕ : N → N is graded of degree σ−1, the
argument above shows that

ϕ((t1 ⊗ t2)y) = (σ (t1) ⊗ t2)ϕ(y),

for all y ∈ N and t1 ⊗ t2 ∈ T ⊗S T . Since, in addition, ϕd is given by
multiplication by πK , this defines a (T ⊗S T )σ⊗id{x}/(xd − πK ⊗ 1)-module
structure on N , where the left multiplication by x is given by the map ϕ : N →
N , and by Corollary 1.3, this defines a left A ⊗S T -module structure on N .
This defines the functor H , and it is clear that F ◦ H and H ◦ F are equal to
the respective identity functors. 
�
Example 1.5 Right multiplication on A ⊗S T by the idempotents (eh)h∈G
defined in the proof of Proposition 1.4 gives rise to a direct sum decomposition

A ⊗S T =
⊕

h∈G
A ⊗S T · eh

as left A ⊗S T -modules. Hence, as a left A ⊗S T -module, each of the d
summands is projective. We now evaluate F(A ⊗S T · eh). By Corollary 1.3,

(πD ⊗ 1) · eh = (σ ⊗ 1)(eh) · (πD ⊗ 1) = eh◦σ−1 · (πD ⊗ 1),

so as a left T -submodule of A ⊗S T ,

eg · A ⊗S T · eh = T · (π i
D ⊗ 1),

where 0 � i < d is the unique integer such that g = h ◦ σ−i . Hence, the map

eg · A ⊗S T · eh eg◦σ−1 · A ⊗S T · ehϕ

is an isomorphism, except for g = h◦σ ,where it is injectivewith cokernel kT ·1.
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292 L. Hesselholt et al.

Let M T,G and P T,G be the full subcategories of Mod T,G whose objects
are the triples (N , (Ng), ϕ) such that the left T -module N is finitely generated
and finitely generated and projective, respectively.

Addendum 1.6 The equivalence F : ModA⊗ST → Mod T,G restricts to
equivalences F : MA⊗ST → M T,G and F : PA⊗ST → P T,G.

Proof TheT -algebra A⊗ST is finitely generated andprojective as aT -module.
So the former statement follows immediately and to prove the latter, we must
show that full subcategory P T,G of M T,G is precisely that consisting of the
projective objects. Every projective object inM T,G is an object inP T,G , since
the underlying T -module of a projective left A ⊗S T -module is projective.
To prove the converse, let (P, (Pg), ϕ) be an object of P T,G . The finitely
generated projective T -modules Pg all have the same rank r . Indeed, the T -
linear map ϕd : Pg → Pg becomes an isomorphism after extending scalars
along T → L , and hence, so does ϕ : Pg → Pg◦σ−1 . Here and below we use
that σ ∈ G is a generator. We call the common rank r the size of (P, (Pg), ϕ)

and proceed to show by induction on r that (P, (Pg), ϕ) is a projective object
in M T,G , the case r = 0 being trivial.

First, if r = 1, then the T -modules Pg/πK Pg all have length 1. It follows
that the maps ϕ : Pg → Pg◦σ−1 all are isomorphisms, except for a single
g = h ◦σ for which it is injective with cokernel of length 1. We conclude from
Example 1.5 that (P, (Pg), ϕ) is isomorphic to the object F(A ⊗S T · eh),
hence projective.

To prove the induction step, we let (P, (Pg), ϕ) have size r > 1 and assume
that all objects of smaller size are projective. We will construct a sequence in
P T,G ,

0 (P ′, (Pg′), ϕ′) j
(P, (Pg), ϕ)

q
(P ′′, (P ′′

g ), ϕ′′) 0,

which is exact in the abelian category M T,G and in which the left-hand term
has size 1. Inductively, the left-hand term and the right-hand term, which has
size r − 1, both are projective, and hence, the sequence will show that also
the middle term is projective. To construct the desired sequence, we choose
any non-zero element x1 ∈ P1 and set xg = ϕi (x1) ∈ Pg if g = σ−i with
0 � i < d. We then define jg : Pg′ → Pg by means of the pullback square of
T -modules

Pg′
jg

Pg

L · xg Pg ⊗T L ,
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where all maps are the canonical inclusions, and define qg : Pg → Pg′′ to be a
cokernel of jg. The T -modules Pg′ and Pg′′ are finitely generated of rank 1 and
r − 1, respectively, and both are torsion-free, and hence, projective. Here, to
see that Pg′′ is torsion-free, we use that if x ∈ Pg and px ∈ Pg′, then x ∈ Pg′.
We define j : P ′ → P and q : P → P ′′ to be the respective sums indexed
by g ∈ G of jg : Pg′ → Pg and qg : Pg → Pg′′. The map ϕ : P → P induces
maps ϕ′ : P ′ → P ′ and ϕ′′ : P ′′ → P ′′. Moreover, since ϕ is graded T -linear
of degree σ−1 with ϕd given by multiplication by πK ∈ T , the same is true
for the maps ϕ′ and ϕ′′. This completes the proof. 
�
Corollary 1.7 Let M be an A ⊗S T -module. If the T ⊗S T -module obtained
from M by restriction of scalars along T ⊗S T → A⊗S T is finitely generated
and projective, then M is finitely generated and projective.

Proof Since restriction of scalars along T → T ⊗S T takes P T⊗ST to P T ,
it suffices to prove that if the restriction of an A ⊗S T -module M along T →
A⊗S T is finitely generated projective, then so is M . Applying F , this follows
from the definition ofP T,G and from Addendum 1.6. 
�
Proof of Theorem C We claim that the stronger statement that all submodules
of a finitely generated projective left A⊗S T -module again are finitely gener-
ated projective holds. The analogous statement holds for the discrete valuation
ring T . Hence, the claim follows from Addendum 1.6 and from A⊗S T being
noetherian. 
�

We next identify the adjoint functors

PA⊗ST P T

TrA⊗ST/T

IA⊗ST/T

defined to be the restriction and coextension along T → A ⊗S T under the
equivalence of Addendum 1.6. Given g ∈ G, we define adjoint functors

P T,G P T

degg

indg

bydegg(P, (Ph)h∈G, ϕ) = Pg and indg(Q) = (
⊕

h∈G Q, (Q)h∈G, ψ), where
ψ takes the summand indexed by h ∈ G to the one indexed by h ◦ σ−1 ∈ G
by the map πK · idQ , if h = g, and by the identity map, otherwise. We define
the adjunction isomorphism

HomT (degg(P, (Ph)h∈G , ϕ), Q)
α

HomA⊗ST ((P, (Ph)h∈G, ϕ), indg(Q))

by α( f )h = f ◦ ϕ i : Ph → Q, where g = h ◦ σ−i with 0 ≤ i < d.
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Lemma 1.8 In the situation above, the following hold:

(i) The map induced by the canonical inclusions,

⊕
g∈G(degg ◦ F)(P) TrA⊗ST/T (P),

is a natural isomorphism of left T -modules.
(ii) Writing g ∈ G as g = σ −i with 0 ≤ i < d, the T -linear map

(deg1 ◦ F)(P) (degg ◦ F)(P)
(πD⊗1)i

is natural and becomes an isomorphism after extension of scalars along
T → L.

(iii) The multiplication δ : T ⊗S T → T induces a natural isomorphism

(deg1 ◦ F)(P) TrdA⊗ST/T (P).

Proof This follows immediately from the definitions. 
�
Remark 1.9 By adjunction, the statements (i)–(iii) in Lemma 1.8 imply that
there is a natural isomorphism of left A ⊗S T -modules

IA⊗ST/T (Q)
∏

g∈G(H ◦ indg)(Q);

that there is a natural A ⊗S T -linear map

(H ◦ indg)(Q) (H ◦ ind1)(Q),

which becomes an isomorphism after extension of scalars along A ⊗S T →
D ⊗K L; and that there is a natural isomorphism of left A ⊗S T -modules

IrdA⊗ST (Q) (H ◦ ind1)(Q).

Finally,we compare theT -order A⊗ST in the semisimple L-algebra D⊗K L
to amaximal T -order.We recall from [34, Theorem 7.15] that, by viewing D as
a right L-vector space, left multiplication by D on itself defines an L-algebra
isomorphism

D ⊗K L EndL(D).
l

It restricts to a T -algebra monomorphism from the T -order A ⊗S T of the
domain to the T -order EndT (A) of the target, which by op. cit., Theorem 8.7,
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is a maximal T -order. We identify the T -algebra EndT (A) with the matrix T -
algebra Md(T ) by means of the T -algebra isomorphism EndT (A) → Md(T )

that to an endomorphism of the right T -module A associates its matrix with
respect to the basis (π s

D)0�s<d .

Proposition 1.10 With notation as above, there is a cartesian square of T -
algebras

A ⊗S T Bd(kT )

Md(T ) Md(kT )

i ′

l l̄

Md (i)

in which the right-hand vertical map is the canonical inclusion of the subal-
gebra of lower triangular matrices, and the map i : T → kT is the canonical
projection.

Proof The morphism l maps the T -subalgebra T ⊗S T ⊂ A⊗S T isomorphi-
cally onto the T -subalgebra Hd(T ) ⊂ Md(T ) of diagonal matrices, and

l(πD ⊗ 1) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 · · · 0 πK
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Thus, the left Hd(T )-submodule of Md(T ) spanned by (l(π s
D ⊗ 1))0�s<d is

equal to the left Hd(T )-submodule ofmatrices that are lower triangularmodulo
Md(mT ), and, by Corollary 1.3, this left Hd(T )-submodule, in turn, is is equal
to the image of the T -algebra homomorphism l : A ⊗S T → Md(T ). 
�
Remark 1.11 The top horizontal morphism i ′ in Proposition 1.10 maps the
radical mD ⊗S T ⊂ A ⊗S T onto the nilpotent two-sided ideal Nd(kT ) ⊂
Bd(kT ) of strictly lower triangular matrices. Moreover, the composition

A ⊗S T
i ′ Bd(kT ) Bd(kT )/Nd(kT ) kT ⊗kS kT

of i ′, the canonical projection, and the inverse of the isomorphism thatmaps t1⊗
t2 to the class of the diagonal matrix diag(t1t2, σ−1(t1)t2, . . . , σ−(d−1)(t1)t2)
is equal to the canonical projection i : A ⊗S T → kT ⊗kS kT .
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2 Localization sequences in K -theory and topological cyclic homology

In this section, we recall the algebraic K -theory symmetric spectrum of a
pointed exact category with weak equivalences following Waldhausen [37,
Section 1] and prove a localization sequence needed in the proof of TheoremB.

An exact category with weak equivalences is a triple (C ,E ,W ) of a cat-
egory C ; a set E of exact sequences in C satisfying axioms (a) and (b) in
[33, §2], axiom (c) being redundant [21, Appendix A]; and a subcategory W
of weak equivalences in C satisfying axioms (Weq 1) and (Weq 2) in [37,
Section 1.2]. An exact functor F : (C ,E ,W ) → (C ′,E ′,W ′) between exact
categories with weak equivalences is a functor F : C → C ′ that maps E
to E ′ and W to W ′; and an exact natural transformation between two such
functors is a natural transformation f : F ⇒ F ′ such that for every object c
in C , the morphism fc : F(c) → F ′(c) belongs to W ′. Now Waldhausen’s
S-construction is a functor

ExCat S ExCatΔ
op

that to an exact category with weak equivalences assigns a simplicial exact
category with weak equivalences. The construction, thus, may be iterated and
gives, for every non-negative integer r , a functor

ExCat Sr ExCat(Δ
op)r

that to an exact category with weak equivalences assigns an r -simplicial exact
category with weak equivalences.

In the following, we will also write w(C ,E ,W ) instead of W for the
subcategory of weak equivalences. We define

(C w,E ∩ C w,W ∩ C w) ⊂ (C ,E ,W )

be the full sub-exact category with weak equivalences consisting of those
objects c in C with the property that 0 → c is in W . Its subcategory of weak
equivalences has a zero object, and therefore, is contractible. In particular, the
subspace

|N (w (C w,E ∩ C w,W ∩ C w))| ⊂ |N (w (C ,E ,W ))|

is contractible, and the pointed space given by the quotient

K (C ,E ,W )r = |N (w Sr (C ,E ,W ))| / |N (w Sr (C w,E ∩ C w,W ∩ C w))|
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is by definition the r th space in the symmetric spectrum K (C ,E ,W ). The left
action by the symmetric group �r on this pointed space is induced from the
permutation of the r -simplicial directions; and the spectrum structure maps

K (C ,E ,W )r ∧ Ss K (C ,E ,W )r+s
σr,s

are induced by the inclusion of the 1-skeleta in the last s simplicial directions.
We refer to [13, Appendix] for proof that this is indeed a symmetric spec-
trum and for a discussion of multiplicative properties of the construction. We
also recall that, as a consequence of the additivity theorem [37, Theorem 1.4.2,
Proposition 1.5.3], the symmetric spectrum K (C ,E ,W ) is fibrant in the posi-
tivemodel structure on the category of symmetric spectra; see [28, Section 14].

An exact functor F : (C ,E ,W ) → (C ′,E ′,W ′) induces a morphism

K (C ,E ,W ) K (C ′,E ′,W ′),K (F)

of symmetric spectra and an exact natural transformations f : F ⇒ F ′
between two such functors gives rise to a homotopy K ( f ) from K (F) to
K (F ′). In this way, the K -theory construction is a strict 2-functor from the
strict 2-category of exact categories with weak equivalences, exact func-
tors, and exact natural transformations to the strict 2-category of symmetric
spectra, morphisms of symmetric spectra, and homotopy classes of homo-
topies between morphisms of symmetric spectra. Like every 2-functor, it takes
adjunctions in the domain 2-category to adjunctions in the target 2-category,
and the latter adjunctions automatically are adjoint equivalences, since the
2-morphisms in the target 2-category are invertible.

An abelian category M has a canonical structure of an exact category
with weak equivalences, where the set of exact sequences E consists of the
sequences

M ′ i M
p

M ′′

inM such that i is a kernel of p and p a cokernel of i , and where the subcate-
gory ofweak equivalencesW is the subcategory of isomorphisms inM .More-
over, an additive full subcategory P of M , which is extension-closed in the
sense that, for every sequence inE whose initial termM ′ and terminal termM ′′
are inP , also themiddle termM is inP , has an induced structure of exact cat-
egorywithweak equivalences, where the set of exact sequencesE ∩P consists
of the sequences inE all ofwhose terms are inP , andwhere the subcategory of
weak equivalencesW ∩P is the full subcategory ofW whose objects are inP .

Now let R be a left noetherian ring, and let MR and PR be the categories
of finitely generated left R-modules and finitely generated and projective left
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R-modules, respectively. We assume that these categories are small, which
may be accomplished by assuming the axiom of universe [1, Exposé] or by
some ad hoc restriction on the modules allowed. The category MR is abelian
and the additive full subcategory PR is extension-closed. We define K ′(R)

and K (R) to be the K -theory symmetric spectra of the exact categories with
weak equivalences associated to these as discussed above. We recall that the
canonical inclusion functor induces a weak equivalence

K (R) K ′(R),

provided that R is left regular in the sense that every object in MR admits a
finite resolution by objects in PR .

Proposition 2.1 Let S be a complete discrete valuation ring with residue field
kS and quotient field K and let R be an S-algebra. Assuming that, as a ring, R
is left regular, there is a canonical natural cofibration sequence of symmetric
spectra

K ′(R ⊗S kS)
i∗ K (R)

j∗
K (R ⊗S K )

∂
�K ′(R ⊗S kS).

The terms in the sequence have canonical natural K (S)-module structures
and the maps in the sequences respect these structures.

Proof We first introduce some notation. LetM be an abelian category, letP
be an extension-closed full additive subcategory of M , and let H and T be
two Serre subcategories ofM . Let E ∩P be the set of exact sequences in the
exact category structure onP defined above.We defineChb(P,H ,T ) to be
the following exact categorywith weak equivalences: The underlying category
has objects the bounded chain complexes in P whose associated homology
objects, calculated inM , are in the Serre subcategoryH , and has morphisms
all chain maps; the exact sequences in this category are the sequences of
complexes that degree-wise are in E ∩ P; and the weak equivalences are the
morphisms that, modulo the Serre subcategory T , induce isomorphisms of
homology objects. If T is the Serre subcategory of zero objects in M , then
we write Chb(P,H ) instead of Chb(P,H ,T ).

We now let TR be the Serre subcategory of MR whose objects are the
finitely generated left R-modules annihilated by extension of scalars along
f : S → K and consider the diagram of K -theory symmetric spectra

K (Chb(PR,TR)) K (Chb(PR,TR,TR))

K (Chb(PR,MR)) K (Chb(PR,MR,TR))

J ′

I I ′

J
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with all maps induced by the respective canonical inclusion functors. It follows
from Waldhausen’s fibration theorem [37, Theorem 1.6.4] that the diagram is
homotopy cartesian.Moreover, by the 2-functoriality of the K -theory construc-
tion, the unique natural transformation from the identity functor to a constant
functor with value a zero object defines a homotopy from the identity map
of the upper right-hand term to the constant map. Indeed, this natural trans-
formation is exact. This homotopy, in turn, determines a homotopy from the
composite map J ◦ I to the constant map, and the combined data determines
a cofibration sequence in the homotopy category of symmetric spectra. We
proceed to identify the terms and maps in this cofibration sequence with the
ones in the cofibration sequence in the statement.

We use Waldhausen’s approximation theorem [37, Theorem 1.6.7], but for
our purposes, the formulation in [36, Theorem 1.9.8] is more convenient. The
theorem states that themap of K -theory symmetric spectra induced by an exact
functor F is a weak equivalence, if a list of hypotheses are satisfied. In our sit-
uation, the only hypothesis that is not automatically satisfied is loc. cit. 1.9.7.1,
which is the requirement that, for every object B in the target of F , there exists
an object A in the domain of F and a weak equivalence f : F(A) → B in the
target of F .

Now, the left-hand vertical map I fits in the diagram

K (Chb(PR,TR))
I K (Chb(PR,MR)) K (Chb(PR,MR))

K (Chb(MR,TR)) K (Chb(MR,MR)) K (Chb(PR,MR))

K (Chb(TR,TR)) K (Chb(MR,MR)) K (Chb(PR,MR))

K (TR)

F0

K (MR)

F0

K (PR)

F0

K (MR⊗SkS )

i∗
i∗ K (MR) K (PR),

where the unmarked maps are induced by the respective canonical inclusion
functors. The top vertical maps and the second and third right-hand horizontal
maps are weak equivalences by op. cit. Theorem 1.9.8, and the vertical maps
labelled F0 are weak equivalences by op. cit. Theorem 1.11.7. The second
left-hand vertical map also is a weak equivalence by op. cit. Theorem 1.9.8,
the hypothesis 1.9.7.1 being satisfied by [20, Lemma 1.5.3]. Finally, the lower
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left-hand vertical map is a weak equivalence by Quillen’s devissage theorem
[33, Theorem 4].

Similarly, the lower horizontal map J in the diagram above fits in the dia-
gram

K (Chb(PR,MR))
J

K (Chb(PR,MR,TR))
j∗

K (Chb(PR⊗S K ,MR⊗S K ))

K (PR)
j∗

F0

K (PR⊗S K )

F0

with the vertical maps induced by the exact functor that to a module M assigns
the complex F0(M) whose degree n term is M , if n = 0, and a zero object 0,
otherwise. The upper right-hand horizontalmap is induced by the exact functor
given by degree-wise extension of scalars along f : S → K , and it is a weak
equivalence, since this functor satisfies the hypotheses op. cit. Theorem 1.9.8.
The vertical maps also are weak equivalences by op. cit. Theorem 1.11.7. 
�

We will prove an analogue of Proposition 2.1 for topological cyclic homol-
ogy, and begin by recalling the definition following [12]. We denote by T the
circle group of complex numbers of modulus 1 under multiplication.

For (C ,E ,W ) an exact category with weak equivalences, the Bökstedt-
Dennis tracemap is a naturalmorphismof symmetric spectrawith leftT-action

K (C ,E ,W ) THH(C ,E ,W )
tr

from the K -theory symmetric spectrum with trivial left T-action to the topo-
logical Hochschild spectrum, the definition and properties of which we now
briefly discuss. The topological Hochschild construction assigns to an addi-
tive category C the left T-space THH(C ) defined to be the realization of the
cyclic space THH(C )[−] given in [12, Definition 1.3.6]. The left T-action is
a consequence of Connes’ theory of cyclic objects [10], which also identifies
the canonical inclusion of the subspace of points fixed by the left T-action
with a T-equivariant map

ob(C ) THH(C )
tr

from the set of objects in C considered as a discrete space with trivial left T-
action. The topological Hochschild symmetric spectrum of an exact category
with weak equivalences (C ,E ,W ) and the Bökstedt-Dennis trace map is
defined by incorporating Waldhausen’s S-construction as follows. If I is a
small category, then we define (C ,E ,W )I to be the exact category with the
categoryC I of I -diagrams in C as underlying category; with the sequences in
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C I that, objectwise, are in E as the exact sequences; and with the morphisms
in C I that, objectwise, are in W as the weak equivalences. We also fix the
fully faithful functor

i : Δ → Cat

that to a non-empty finite ordinal [n] assigns the category i([n]) with object
set [n] and with a unique morphism from s to t if and only if s � t , and
that to an order-preserving map θ : [m] → [n] assigns the unique functor
i(θ) : i([m]) → i([n]) with the map θ as the underlying map of object sets.
With these preparations in hand, we let

Nw(C ,E ,W )[−] ⊂ (C ,E ,W )i([−])

be the sub-simplicial exact categorywithweak equivalences,whose underlying
simplicial category is the full sub-simplicial category ofC i([−]) with simplicial
set of objects given by ob(W i([−])). Again, the subspace

|THH(Nw(Sr (C w,E ∩ C w,W ∩ C w)))| ⊂ |THH(Nw(Sr (C ,E ,W )))|
is T-equivariantly contractible, and the r th space in the symmetric spectrum
with left T-action THH(C ,E ,W ) is defined to be the quotient pointed left
T-space. Here, the topological Hochschild construction is applied degreewise
to the (r + 1)-simplicial additive categories in question. The structure maps

THH(C ,E ,W )r ∧ Ss THH(C ,E ,W )r+s
σr,s

are defined analogously to those in the K -theory symmetric spectrum.
We next recall the classical definition of the Frobenius maps

THH(C ,E ,W )
ϕp

THH(C ,E ,W )tCp

following [31, Section III.5].1 We define maps of symmetric spectra with left
T-action

THH(C ,E ,W ) ρ∗
p THH(C ,E ,W )φCp

rp sp
ρ∗
p THH(C ,E ,W )tCp ,

where Cp ⊂ T is the subgroup of prime order p, and where T acts on the
middle and right-hand terms via the pth root isomorphism ρp : T → T/Cp.

1 Recently, a fully homotopy invariant definition based on theTate diagonal of [31, Section III.1]
was given by Nikolaus [30].
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The left-hand map will be an equivalence, and hence, we may compose an
inverse of rp with the map sp to obtain the Frobenius map ϕp, well-defined
up to contractible choice, in the infinity-category SpBT of spectra with left
T-action. The topological Hochschild construction [12, Section 1.3.6] gives,
more generally, a functor THH(C ,E ,W ; −) from pointed spaces to symmet-
ric spectra with left T-action, whose value at S0 agrees with THH(C ,E ,W ).
In order to define the geometric fixed point spectrum and the Tate spectrum,
we fix the infinite dimensional complex T-representation

U =
⊕

k∈Z,i∈N
Ck,i ,

where z ∈ T acts on Ck,i by multiplication by z k . We will write V ⊂ U
to indicate that V is a finite dimensional complex sub-T-representation of
U . Now, the pointed space THH(C ,E ,W ; SV )r has two left T-actions, one
coming from the cyclic structure and one induced by the left T-action on SV .
If we give it the diagonal T-action, then

(THH(C ,E ,W )φCp)r = hocolim
V⊂U ,VCp=0

(THH(C ,E ,W ; SV )
Cp
r )

is the r th space of the geometric fixed point spectrum. Similarly,

(THH(C ,E ,W )tCp)r = hocolim
V⊂U ,VCp=0

(THH(C ,E ,W ; SV )
hCp
r )

is the r th space of the Tate spectrum, and themap sp is induced by the canonical
map from fixed points to homotopy fixed points. The map rp, in turn, is the
map from the first homotopy colimit induced by T-equivariant maps

ρ∗
p(THH(C ,E ,W ; SV )

Cp
r ) THH(C ,E ,W ; S 0)r

that exist in the Bökstedt model of topological Hochschild homology and are
given by restricting a Cp-equivariant map to the induced map of Cp-fixed
points. It is an equivalence by [31, Theorem III.4.7].

In general, one uses the Frobenius maps to define a number of spectra
associated with a cyclotomic spectrum X . If p is a prime number and s � 1
an integer, then the Tate orbit lemma, [31, Lemma I.2.1], implies that the
canonical map

XtCps (XtCp)h(Cps /Cp)
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is an equivalence. Hence, by precomposing the inverse equivalence with the
map of homotopy Cps−1-fixed points induced by ϕp : X → XtCp , we obtain a
map

XhCps−1 XtCps

and define

TRn(X; p) = X ×XtCp XhCp ×XtCp2 XhCp2 ×XtCp3 · · · ×XtCpn−1 XhCpn−1
,

where XhCps−1 → XtCps are the maps just defined, whereas XtCps ← XhCps

are the canonical maps. Moreover, the restriction and Frobenius maps

TRn(X; p) R

F
TRn−1(X; p)

are defined to be the projection onto the first n−1 factors and the composition
of the projection onto the last n−1 factors and themap induced by the forgetful
map XhCp → X , respectively. Since the fiber of the restrictionmap agreeswith
the fiber of the canonical map XhCpn−1 → XtCpn−1 , we get the “fundamental”
cofibration sequence

XhCpn−1
N TRn(X; p) R TRn−1(X; p).

Finally, we define TCn(X; p) to be the homotopy equalizer of these two maps
and define TC(X; p) to be their homotopy limit as n � 1 varies. It is proved
in [31, Theorem II.4.10] that if X is p-complete, then the spectrum TC(X; p)
agrees canonically with the spectrum TC(X) considered in the introduction.

If X is the cyclotomic spectrum THH(C ,E ,W ), then the Bökstedt-Dennis
trace map lifts to a map of spectra called the cyclotomic trace map

K (C ,E ,W )
tr TC(C ,E ,W ).

It is not clear from the definition that topological cyclic homology should be
easier to understand than K -theory. We now explain why this is often the case.

As for K -theory, the additivity theorem [12, Proposition 2.0.4] implies that
the adjunct structure maps

THH(C ,E ,W )r
σ̃r,s

Ωs(THH(C ,E ,W )r+s)

are weak equivalences, for all integers r � 1 and s � 0. However, by contrast
with K -theory, these maps are also weak equivalences, for r = 0 and s � 0, if
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E is equal to the set of split-exact sequences in C ; see [12, Proposition 2.1.3].
Moreover, the inclusion of the 0-skeleton in Nw(C ,E ,W ) induces a weak
equivalence

THH(C ) THH(C ,E ,W )0,

if W is equal to the subcategory of isomorphisms in C .
Now let A be a unital associative ring. By abuse of notation, we write A also

for the additive categorywith a single object∅whose ring of endomorphisms is
A. There is an additive functor i : A → PA that to the unique object ∅ assigns
A considered as a left A-module under multiplication and that to a ∈ EndA(∅)

assigns the A-linear map i(a) ∈ EndPA(i(∅)) given by right multiplication
by a. The induced map

THH(A) THH(PA)
THH(i)

is a weak equivalence by [12, Proposition 2.1.5]. The domain of this map
is Bökstedt’s original topological Hochschild space of the ring A, whose
homotopy groups often are amenable to calculation. Hence, we conclude that
Bökstedt’s topological Hochschild homology groups and the homotopy groups
of the topological Hochschild spectrum of the categoryPA equipped with its
canonical structure of exact category with weak equivalences agree, up to
canonical natural isomorphism. We will abuse notation and write THH(A)

also for the latter spectrum, and we write TRn(A; p), TCn(A; p), etc. for the
associated spectra defined above. The homotopy groups THHq(A), however,
are well-defined, up to canonical natural isomorphism.

We are now in a position to state and prove the analogue of Proposition 2.1
for topological Hochschild homology and its variants.

Proposition 2.2 Let S be a complete discrete valuation ring with residue field
kS and quotient field K and let R be an S-algebra. Assuming that, as a ring, R
is left regular, there is a canonical natural cofibration sequence of cyclotomic
spectra

THH′(R ⊗S kS)
i∗

THH(R)
j∗

THH(R | R ⊗S K )
∂

� THH′(R ⊗S kS),

where the left-hand term and right-hand term denote the topological
Hochschild spectra of MR⊗SkS and Chb(PR,MR,TR), respectively. The
terms in the sequence have canonical THH(S)-module structures and the
morphisms in the sequence are THH(S)-linear.

Proof We repeat the proof of Proposition 2.1 mutatis mutandis. The ana-
logues of Waldhausen’s fibration theorem and Quillen’s dévissage theorem
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hold and are proved in [20, Theorem 1.3.11] and [11, Theorem 1], respec-
tively. However, the analogue ofWaldhausen’s approximation theorem, which
is proved in [12, Proposition 2.3.2], requires a stronger hypothesis to be sat-
isfied. In the situation at hand, it follows from [20, Lemma 1.5.3] and [8,
Chapter XVII, Proposition 1.2] that the hypothesis is satisfied in all cases,
with the exception that THH(R | R ⊗S K ) cannot be identified with THH
(R ⊗S K ). 
�
Addendum 2.3 Let S be a complete discrete valuation ring with residue field
kS and quotient field K and let R be an S-algebra. Assuming that, as a ring,
R is left regular, there is a commutative diagram of spectra

K ′(R ⊗S kS)
i∗

tr

K (R)
j∗

tr

K (R | R ⊗S K )
∂

tr

�K ′(R ⊗S kS)

� tr

TC′(R ⊗S kS)
i∗ TC(R)

j∗
TC(R | R ⊗S K )

∂
� TC′(R ⊗S kS)

in which the rows are cofibration sequences.

Proof The two sequences in the statement are obtained by applying respec-
tively the K -theory functor and the topological cyclic homology functor to
the same sequence of pointed exact categories with weak equivalences, so
the diagram commutes by the naturality of the cyclotomic trace map. The
sequences are cofibration sequences by Proposition 2.1 and Proposition 2.2,
respectively. 
�
Remark 2.4 If the ring R ⊗S kS is artinian and if its quotient (R ⊗S kS)/J by
the radical is regular, then the morphisms

K ((R ⊗S kS)/J ) K ′((R ⊗S kS)/J ) K ′(R ⊗S kS)

induced by the canonical inclusion functor and by the restriction-of-scalars
functor are weak equivalences by [33, Corollary 2 of Theorem 3] and [33,
Theorem 4]. The analogous statements for topological Hochschild homology
and its variants hold by [11, Theorem 2] and [11, Theorem 1].

Theorem 2.5 With notation as in the introduction, the cyclotomic trace map
induces isomorphisms of p-adic homotopy groups in degrees j � 1,

K j (D,Zp) TC j (A | D,Zp).
tr
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Proof The ring A ⊗S kS is artinian and its quotient kT by the radical is reg-
ular. Hence, by Remark 2.4, Addendum 2.3 gives a commutative diagram of
symmetric spectra

K (kT )
i∗

tr

K (A)
j∗

tr

K (A | D)
∂

tr

�K (kT )

� tr

TC(kT ; p) i∗ TC(A; p) j∗
TC(A | D; p) ∂

� TC(kT ; p)

in which the rows are cofibration sequences. By [19, Theorem D], the first
and second vertical morphisms from the left induce isomorphisms of p-adic
homotopy groups in non-negative degrees, so the theorem follows from the
five-lemma. 
�

3 Galois descent for topological cyclic homology

In this section, we prove a rather general étale descent result for topolog-
ical cyclic homology. The following result is well-known for commutative
algebras.

Proposition 3.1 Let S be a commutative ring, let f : S → T be an étale
morphism of commutative rings, and let A be any unital associative S-algebra,
not necessarily commutative. In this case, the map induced by extension of
scalars along f : S → T ,

THH j (A) ⊗S T THH j (A ⊗S T ),

is an isomorphism, for all integers j .

Proof To fix notation, given a commutative ring S, a unital associative S-
algebra R, and an S-symmetric R-R-bimodule M , one has the Hochschild
homology S-modules HH j (R/S; M). We abbreviate and write HH j (R/S)

instead of HH j (R/S; M), if M is R considered as an S-symmetric R-R-
bimodule via left and right multiplication. We also abbreviate and write
HH j (R; M) instead of HH j (R/Z; M). If the S-algebra R is commutative,
then an R-module N determines and is determined by a unique R-symmetric
R-R-bimodule Ñ with underlying R-module N . In this situation, we abuse
notation and write HH j (R/S; N ) instead of HH j (R/S; Ñ ).

We recall from [15, Theorem 0.1] that, for all integers j , the map

HH j (S) ⊗S T HH j (T )
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induced by extension of scalars along f : S → T is an isomorphism. More
generally, for every S-module N , the map induced by extension of scalars
along f : S → T ,

HH j (S; N ) ⊗S T HH j (T ; N ⊗S T ),

is an isomorphism, for all integers j . Indeed, by choosing a simplicial resolu-
tion of the S-module N by free S-modules, we are reduced to the case N = S.
We conclude from [25, Theorem 3.1] that, similarly, the T -linear map

THH j (S; N ) ⊗S T THH j (T ; N ⊗S T )

induced by extension of scalars along f : S → T is an isomorphism, for all
integers j . It also follows from loc. cit. that there is a spectral sequence of
S-modules

E2
i, j = HHi (A/S;THH j (S; A)) THHi+ j (A),

where the S-symmetric A-A-bimodule structure on THH j (S; A) is induced
from left and right multiplication by A on itself. We now extend scalars along
the flat morphism f : S → T to obtain a spectral sequence of T -modules

E2
i, j = HHi (A/S;THH j (S; A)) ⊗S T THHi+ j (A) ⊗S T,

which we compare to the spectral sequence of T -modules

E2
i, j = HHi (A ⊗S T/T ;THH j (T ; A ⊗S T )) THHi+ j (A ⊗S T ),

which also is an instance of loc. cit. The map in the statement induces a map of
spectral sequenceswhich, on E2-terms, is the composition of the isomorphism

HHi (A/S;THH j (S; A)) ⊗S T HHi (A ⊗S T/T ;THH j (S; A) ⊗S T )

obtained by applying the exact functor − ⊗S T degreewise in the Hochschild
complex and the isomorphism obtained by applying HHi (A ⊗S T/T ; −) to
the isomorphism

THH j (S; A) ⊗S T THH j (T ; A ⊗S T )

of T -symmetric A ⊗S T -A ⊗S T -bimodules. This completes the proof. 
�
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Addendum 3.2 Let S be a commutative ring, let f : S → T be an étale
morphism of commutative rings, and let A be any unital associative S-algebra,
not necessarily commutative. In this case, the map induced by extension of
scalars along f : S → T ,

TRn
j (A; p) ⊗Wn(S) Wn(T ) TRn

j (A ⊗S T ; p),

is an isomorphism, for all prime numbers p and integers n � 1 and j .

Proof The proof is by induction on n � 1 with the case n = 1 being already
proved in Proposition 3.1. To prove the induction step, we use the following
diagram

...
...

π j (THH(A)hCpn−1 ) ⊗Wn(S) Wn(T ) π j (THH(A ⊗S T )hCpn−1 )

TRn
j (A; p) ⊗Wn(S) Wn(T ) TRn

j (A ⊗S T ; p)

TRn−1
j (A; p) ⊗Wn(S) Wn(T ) TRn−1

j (A ⊗S T ; p)

...
...

∂ ∂

N N

R R

∂ ∂

The right-hand column is the long exact sequence of homotopy groups
induced by the “fundamental” cofibration sequence for the cyclotomic spec-
trum THH(A ⊗S T ). It is a sequence of Wn(T )-modules, by the argument
in [19, pp. 71–72]. The left-hand column is obtained from the corresponding
sequence for THH(A) by extension of scalars alongWn( f ) : Wn(S) → Wn(T )

and it is exact, since the ring homomorphism Wn( f ) : Wn(S) → Wn(T )

again is étale and hence flat by [4, Theorem B]. Moreover, the bottom groups
TRn−1

j (A; p) and TRn−1
j (A ⊗S T ; p) are considered a Wn(S)-module and

a Wn(T )-module, respectively, via the respective restriction maps. There-
fore, by [5, Corollary 15.4], the bottom horizontal map agrees with the
map

TRn−1
j (A; p) ⊗Wn−1(S) Wn−1(T ) TRn−1

j (A ⊗S T ; p)

that we inductively assume to be an isomorphism. Hence, it will suffice
to show that the top horizontal map is an isomorphism. The argument in
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[19, pp. 71–72] also shows that there is a natural spectral sequence of Wn(S)-
modules

E2
i, j = Hi (Cpn−1, (Fn−1)∗(THH j (A))) πi+ j (THH(A)hCpn−1)

from the group homology of Cpn−1 with coefficients in the Wn(S)-module
obtained from the S-module THH j (A) by restriction of scalars along
Fn−1 : Wn(S) → S. By cobase-change along the flat ring homomorphism
Wn( f ) : Wn(S) → Wn(T ), this gives a spectral sequence of Wn(T )-modules
converging to the domain of the top horizontal map in the diagram above.
The target of this map, in turn, is the abutment of the spectral sequence of
Wn(T )-modules

E2
i, j =Hi (Cpn−1 , (Fn−1)∗(THH j (A ⊗S T ))) πi+ j (THH(A ⊗S T )hCpn−1),

and the map in question induces a map from the former spectral sequence to
the latter which, on E2-terms, is the Wn(T )-linear map

(Fn−1)∗(THH j (A)) ⊗Wn(S) Wn(T ) (Fn−1)∗(THH j (A ⊗S T ))

induced by extension of scalars along f : S → T . But [5, Corollary 15.4]
shows that

Wn(S) S

Wn(T ) T

Fn−1

Wn( f ) f

Fn−1

is a cocartesian diagram of commutative rings, so Proposition 3.1 implies that
the this map is an isomorphism. This completes the proof. 
�

A Galois extension of commutative rings is a pair ( f, ρ) of a faithfully
étale ring homomorphism f : S → T and a left action ρ : G → AutS(T )

by a finite group G on T through S-algebra isomorphisms such that the ring
homomorphism

T ⊗S T
h ∏

g∈G T

defined by h(t1 ⊗ t2) = (g(t1)t2)g∈G is an isomorphism. This notion is a
special case of the general notion of a torsor in a topos [16, Chapitre III,
Définition 1.4.1].
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Corollary 3.3 Suppose that ( f : S → T, ρ : G → AutS(T )) is a Galois
extension of commutative rings and that A is a unital associative S-algebra,
not necessarily commutative. For all prime numbers p and integers n � 1 and
j , the Wn(S)-linear map induced by extension of scalars along f : S → T ,

TRn
j (A; p) f ∗

H0(G,TRn
j (A ⊗S T ; p)),

is an isomorphismand theWn(S)-modules Hi (G,TRn
j (A⊗ST ; p))with i > 0

vanish.

Proof Let p be a prime number and let n be a positive integer. We claim that

(Wn(S) Wn(T ),G AutWn(S)(Wn(T )))
Wn( f ) Wn◦ρ

is a Galois extension of commutative rings. The ring homomorphism Wn( f )
is étale, by [4, Theorem B], and faithful, by op. cit., Proposition 6.9, and we
now consider the commutative diagram

Wn(T ) ⊗Wn(S) Wn(T )
∏

g∈G Wn(T )

Wn(T ⊗S T ) Wn(
∏

g∈G T )

h

Wn(h)

in which the vertical maps are the canonical maps. It is proved in op. cit.,
Corollary 9.4, that the left-hand vertical map is an isomorphism, and it follows
immediately from the definition of Witt vectors that the right-hand vertical
map is an isomorphism. Finally, by assumption, the lower horizontal map is
an isomorphism, and hence, the top horizontal map is an isomorphism, as
desired.

Finally, we abbreviate M = TRn
j (A; p), k = Wn(S), and R = Wn(T ), and

consider the augmented cosimplicial k-module

M
η

M ⊗k R⊗k [−].

Since k → R is faithfully flat, this map is a weak equivalence, by faithfully flat
descent for modules.We also consider the augmented simplicial k[G]-module

k[G]⊗k [−] ⊗k N
μ

N ,
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which is a weak equivalence for every k[G]-module N . Now, since k → R is
Galois with group G, we have an isomorphism of cosimplicial k-modules

M ⊗k R⊗k [−] Homk[G](k[G]⊗k [−], M ⊗k R).

Hence, we conclude that there is a canonical isomorphism

M RHomk[G](k, M ⊗k R),

in the derived category of k-modules. This proves the corollary. 
�

4 Reduced trace isomorphisms

We now prove the first part of Theorem B, which is equivalent to the
statement that there exists an element ỹ ∈ TC0(A | D,Zp) whose image
y1 ∈ THH0(A | D,Zp) freely generates THH∗(A | D,Zp) as a graded
THH∗(S | K ,Zp)-module.

Lemma 4.1 Let π ∈ A be a non-zero element. Conjugation by π in D defines
an automorphism α : A → A and the endomorphism of the cyclotomic spec-
trum

THH(A | D) = THH(Chb(PA,MA,TA))

induced by extension of scalars along α is homotopic to the identity.

Proof Since vD(πxπ−1) = vD(x), conjugation by π in D restricts to an
automorphism α of A, as stated. Extension of scalars along α defines an exact
functor

Chb(PA,MA,TA) Chb(PA,MA,TA)
α∗

and left multiplication by π defines a natural transformation h : α∗ ⇒ id.
Indeed, if P is in PA, then α∗(P) = A ⊗A P , where A is considered as a
right A-module via α, and the map hP : A ⊗A P → P , which maps 1 ⊗ x to
πx is A-linear, since

hP(a ⊗ x) = hP(1 ⊗ π−1aπx) = ππ−1aπx = aπx = ahP(x).

Since π ∈ A is a non-zero-divisor, the natural transformation h : α∗ ⇒ id is
exact, and therefore, induces a homotopy through maps of cyclotomic spectra
from the map induced by α∗ to the identity map. 
�
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Addendum 4.2 The endomorphism of THH(A ⊗S T | D ⊗K L) induced by
extension of scalars along α ⊗ id is homotopic to the identity, as a map of
cyclotomic spectra.

Proof The proof is entirely analogous to the proof of Lemma 4.1. That the
natural transformation h : (α ⊗ id)∗ ⇒ id is exact again uses that π ⊗ 1 is a
non-zero-divisor in the regular ring A ⊗S T . 
�

In particular, conjugation in D by our chosen generator πD ∈ mD ⊂ A
defines an automorphism σ : A → A. Moreover, since π d

D ∈ K is central, we
see that the action ofG = Gal(L/K )on T/S extends to an action on A/S. This,
in turn, induces an action of G on the cyclotomic spectrum THH(A | D), and
by Lemma 4.1, the action by the generator σ ∈ G is homotopic to the identity
map. It follows that G acts trivially on the homotopy groups THH∗(A | D),
TRn∗(A | D; p), TC∗(A | D), etc.2

Theorem 4.3 For all n � 1, the gradedTRn∗(S | K ; p)-moduleTRn∗(A | D; p)
is free of rank one on a canonical generator yn of degree zero.

Proof We consider the diagram of exact functors

Chb(PA,MA,TA) Chb(PA⊗ST ,MA⊗ST ,TA⊗ST )

Chb(PS,MS,TS) Chb(PT ,MT ,TT ),

f ∗

f ∗
TrdA⊗ST/T IrdA⊗ST/T

that we defined in the introduction. The group G acts on A and T , and we let
it act diagonally on A ⊗S T and trivially on S. With respect to these actions,
all functors in the diagram are G-equivariant, and hence, we obtain the fol-
lowing induced diagram of THH(S | K )-modules in cyclotomic spectra with
G-action,

THH(A | D) THH(A ⊗S T | D ⊗K L)

THH(S | K ) THH(T | L).

f ∗

TrdA⊗ST/T IrdA⊗ST/T

f ∗

In this diagram, the right-hand vertical maps both are equivalences, since the
counit and the unit of the adjunction (TrdA⊗ST/T , IrdA⊗ST/T , ε, η) both are
exact.While theG-actionon the botton left-hand term is trivial, this is generally

2 By contrast, we show in Corollary 5.8 below that if p divides d , then the G-action on the
cyclotomic spectrum THH(A | D) is non-trivial.
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not true for the upper left-hand term. However, by Lemma 4.1, the action is
trivial on homotopy groups, so we obtain the following induced diagram of
graded TRn∗(S | K ; p)-modules,

TRn∗(A | D; p) H0(G,TRn∗(A ⊗S T | D ⊗K L; p))

TRn∗(S | K ; p) H0(G,TRn∗(T | L; p)).

f ∗

TrdA⊗ST/T IrdA⊗ST/T

f ∗

In this diagram, the horizontalmaps are isomorphismsbyCorollary 3.3, and the
vertical maps are isomorphisms by what was just said. Moreover, by Skolem–
Noether, all K -algebra homomorphisms L → D are conjugate in D, and
therefore, it follows from Addendum 4.2 that the vertical maps are indepen-
dent of the choice of maximal unramified subfield L ⊂ D. Hence, we obtain
canonical inverse isomorphisms

TRn∗(A | D; p) TRn∗(S | K ; p)
TrdA/S

IrdA/S

given by the maps making the respective square diagrams commute. Equiva-
lently, the graded TRn∗(S | K ; p)-module TRn∗(A | D; p) is free on the single
canonical generator yn = IrdA/S(1) ∈ TRn

0(A | D; p), as stated. 
�
Next, wewish to prove the analogous result for the p-adic homotopy groups.

In general, the p-adic homotopy groups of a spectrum X are defined to the
homotopy groups of its p-completion, and by [7, Proposition 2.5] there is an
exact sequence

0 → Ext1
Z
(Qp/Zp, π j (X)) → π j (X,Zp) → HomZ(Qp/Zp, π j−1(X)) → 0

that relates the homotopy groups of X and the p-adic homotopy groups of X .

Definition 4.4 An abelian group M is p-controlled if it is a direct sum of a
uniquely divisible Mdiv and a group Mtor annihilated by some power of p.

Lemma 4.5 If M and N are p-controlled, then every extension of N by M
and the kernel and cokernel of every homomorphism M → N are also p-
controlled. If M is p-controlled, then HomZ(M,Zp) and HomZ(Qp/Zp, M)

both vanish.

Proof The only statement that needs proof is that the full subcategory of the
abelian category of abelian groups is closed under extensions. So we let

0 M P N 0
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be an exact sequence of abelian groups, where M and N are p-controlled,
and wish to show that P is p-controlled. As uniquely divisible groups are
Z-injective, P is isomorphic to Mdiv⊕ P/Mdiv, so replacing M and P by Mtor
and P/Mdiv, respectively, we assume that M = Mtor. Let P tor and Pdiv be
the inverse images of Ntor and Ndiv in P , respectively. It suffices to prove that
P tor and Pdiv are p-controlled, so we may reduce to the two cases N = Ntor
and N = Ndiv. The first is trivial, and for the second, it suffices to prove that
Ext1

Z
(N , M) = 0. But this is clear, since this group is both p-divisible and

killed by a power of p. 
�
Proposition 4.6 The group TRn

j (S | K ; p) is p-controlled, for all n � 1 and
j � 1.

Proof The groups TRn
j (kS; p) are finite p-groups for all integers n � 1 and j .

Hence, by Proposition 2.2 and Lemma 4.5, it suffices to show that TRn
j (S; p)

is p-controlled, for all n � 1 and j � 1. If S is of equal characteristic, then
the groups TRn

j (S; p) are annihilated by pn . So we assume that S is of mixed
characteristic and proceed by induction on n � 1. In the case n = 1, we use
the spectral sequence

E2
i, j = HHi (S/Zp,THH j (Zp) ⊗Zp S) ⇒ THHi+ j (S)

from [25, Corollary 3.3]. If j � 1, then THH j (Zp) is p-controlled, by The-
orem 2.2 and Example 3.4 of [24], and hence, so are the groups E2

i, j , since
HHi (S/Zp, M) is M , for i = 0, and is annihilated by a fixed power of p,
for i > 0. This also shows that E2

i,0 is p-controlled, for i > 0. Therefore,
Lemma 4.5 and the spectral sequence shows that THH j (S) is p-controlled.

To prove the induction step, we use the “fundamental” cofibration

THH(S)hCpn−1
N TRn(S; p) R TRn−1(S; p)

and the spectral sequence

E2
i, j = Hi (Cpn−1,THH j (S)) ⇒ πi+ j (THH(S)hCpn−1 ).

By the case n = 1, we conclude that E2
i, j is p-controlled, if i > 0 or j > 0, and

hence, Lemma 4.5 shows that π j (THH(S)hCpn−1 ) is p-controlled, for j > 0.
The induction step now follows from Lemma 4.5, since the boundary map

TRn−1
1 (S; p) ∂∂

π0(THH(S)hCpn−1 )

is zero for every commutative ring. 
�
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Addendum 4.7 The graded TRn∗(S | K ; p,Zp)-module TRn∗(A | D; p,Zp) is
free of rank one with canonical generator yn ∈ TRn

0(A | D; p,Zp), for all
n � 1.

Proof If S is of equal characteristic, then TRn(S | K ; p) and TRn(A | D; p)
are already p-complete, so there is nothing further to prove. If S is of mixed
characteristic, then by Proposition 4.6 and Lemma 4.5, the horizontal maps in
the diagram

Ext1
Z
(Qp/Zp,TRn∗(A | D; p)) TRn∗(A | D; p,Zp))

Ext1
Z
(Qp/Zp,TRn∗(S | K ; p)) TRn∗(S | K ; p,Zp))

TrdA/S TrdA/SIrdA/S IrdA/S

of graded TRn∗(S | K ; p,Zp)-modules are isomorphisms, and we define the
right-hand vertical maps to be the unique maps that make the respective
square diagrams commute. Finally, byTheorem4.3, the left-hand verticalmaps
are mutally inverse isomorphisms, and hence, so are the right-hand vertical
maps. 
�
Lemma 4.8 For all j � 1, the limit systems

· · · R TRn
j (S; p,Zp)

R · · · R TR2
j (S; p,Zp)

R TR1
j (S; p,Zp)

· · · F TRn
j (S; p,Zp)

F · · · F TR2
j (S; p,Zp)

F TR1
j (S; p,Zp)

both satisfy the Mittag–Leffler condition.

Proof If S is of mixed characteristic, then the groups TRn
j (S; p,Zp) with

j � 1 are all finite p-groups. Indeed, the case n = 1 is proved in [26],
and the general case follows by an inductive argument similar to the proof of
Proposition 4.6 above. In particular, the limit systems satisfy theMittag–Leffler
condition. If S is of equal characteristic, then it follows from [17, Theorem B]
that the canonical map

WnΩ
∗
S ⊗ TRn∗(Fp; p) TRn∗(S; p)

is an isomorphism. Indeed, the ring S = kS[[t]] is a regular kS-algebra, and
hence, is a filtered colimit of smooth kS-algebras by [32]. Moreover, by Bökst-
edt periodicity, we have TRn∗(Fp; p) = Z/pn [xn], where xn has degree 2 and
may be chosen such that R(xn) = pxn−1 and F(xn) = xn−1. The structure
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of the de Rham–Witt groups was determined in [14, Theorem B]. It shows in
particular that

im( limm,R TRm
j (S; p) pr

TRn
j (S; p) ) = im(TR2n

j (S; p) Rn

TRn
j (S; p) ),

im( limm,F TRm
j (S; p) pr

TRn
j (S; p) ) = im(TR2n

j (S; p) Fn

TRn
j (S; p) ),

whence the lemma. 
�
Theorem 4.9 The graded TR∗(S | K ; p,Zp)-module TR∗(A | D; p,Zp) is
free on a canonical generator y. The graded TF∗(S | K ; p,Zp)-module
TF∗(A | D; p,Zp) is free on a canonical generator y.

Proof We prove the second statement; the first statement is proved analo-
gously. ByTheorem4.3, the gradedTRn∗(S | K ; p,Zp)-module TRn∗(A | D; p,
Zp) is free on the canonical generator yn = IrdA/S(1) ∈ TRn

0(A | D; p,Zp).
Moreover, we have

F(yn) = F(IrdA/S(1)) = IrdA/S(F(1)) = IrdA/S(1) = yn−1.

Indeed, the second identity holds, since the maps

THH(A | D) THH(A ⊗S T | D ⊗K L)

THH(S | K ) THH(T | L).

f ∗

TrdA⊗ST/T IrdA⊗ST/T

f ∗

that we used to define the isomorphism IrdA/S are maps of cyclotomic spectra,
and the third identity holds, since F is a ring homomorphism. Finally, we claim
that the canonical maps

TF j (A | D; p,Zp) limn,F TRn
j (A | D; p,Zp),

TF j (S | K ; p,Zp) limn,F TRn
j (S | K ; p,Zp)

are isomorphisms, or equivalently, that the correspondingderived limits vanish.
In the case j � 1, this follows fromLemma4.8, and in the case j = 0, it follows
from the fact that TRn

0(S | K ; p,Zp) = Wn(S) admits a compact topology
with respect to which the map F is continuous. So the theorem follows with
y ∈ TF0(A | D; p,Zp) the unique class with image yn ∈ TRn

0(A | D; p,Zp)

for all n � 1. 
�
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Proof of Theorem B (1) We recall that for a cyclotomic spectrum X , its topo-
logical cyclic homology is equivalently given as the homotopy equalizer

TC(X; p) i TF(X; p)
ϕ−1

id
TF(X; p),

where the inverse Frobenius ϕ−1 is defined to be the composition

holimn,F TRn(X; p) resσ holimn,F TRn+1(X; p) R holimn,F TRn(X; p)

of the restriction along the successor functor followed by the map of limits
induced by the restriction maps. Hence, in the induced diagram

TC0(X; p) i TF0(X; p)
ϕ−1

id
TF0(X; p),

themap i surjects onto the equalizer ofmapsϕ−1 and id. Now, if X is the cyclo-
tomic spectrum THH(A | D,Zp), then the element y ∈ TF0(A | D; p,Zp)

satisfies ϕ−1(y) = y, because R(yn) = yn−1. Hence, there exists ỹ ∈
TC0(A | D ,Zp) such that i(ỹ) = y. The class ỹ defines a component in
the mapping space

MapModTHH(S | K ,Zp)(CycSpp)
(THH(S | K ,Zp),THH(A | D,Zp))

� MapCycSpp
(Sp,THH(A | D,Zp)) � Ω∞ TC(A | D,Zp),

and every point in this component induces the isomorphism

THH∗(S | K ,Zp) THH∗(A | D,Zp)
IrdA/S

on the level of homotopy groups. Indeed, the class ỹ ∈ TC0(A | D,Zp) maps
to the class y1 ∈ THH0(A | D,Zp) and IrdA/S is given bymultiplication by y1.
This shows that every point in the component ỹ of the mapping space defines
an equivalence of THH(S | K ,Zp)-modules in cyclotomic spectra,

THH(S | K ,Zp) THH(A | D,Zp),
IrdA/S

whose inverse TrdA/S therefore also is an equivalence of THH(S | K ,Zp)-
modules in cyclotomic spectra. This proves part (1) of the Theorem B. 
�
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5 Comparison with the trace map

The equivalence of cyclotomic spectra in Theorem B (1) shows, in particu-
lar, that the graded TC−∗ (S | K ,Zp)-module TC−∗ (A | D,Zp) and the graded
TP∗(S | K ,Zp)-module TP∗(A | D,Zp) both are free of rank one generated
by the image under

TC∗(A | D,Zp) TC−∗ (A | D,Zp) TP∗(A | D,Zp)
i

ϕ

can

of the generator ỹ ∈ TC0(A | D,Zp). We first use results from [14] and [20]
to prove structural results about these groups.

Lemma 5.1 The Frobenius map

THH(S | K ,Zp)
ϕ

THH(S | K ,Zp)
tCp

induces an equivalence of connective covers.

Proof If S is ofmixed characteristic, then this is proved in [20, Theorem5.4.3].
We therefore assume that S = kS[[π ]] is of equal characteristic. Since the
Frobenius ϕ : THH(kS) → THH(kS)tCp induces an equivalence of (−1)-
connective covers, it suffices to show that the Frobenius ϕ : THH(S) →
THH(S)tCp induces an equivalence of connective covers. Now, by [17, Theo-
rem B] and [32], the canonical map

Ω∗
S ⊗ THH∗(Fp) THH∗(S)

is an isomorphism. Since kS is perfect, Ω∗
S is an exterior algebra over S on a

generator dπ of degree 1, and THH∗(Fp) is a polynomial algebra over Fp on
a generator x of degree 2 by Bökstedt periodicity. Hence, in the Tate spectral
sequence

E2
i, j = Ĥ−i (Cp,THH j (S)) ⇒ πi+ j (THH(S)tCp),

we have E2 = S ⊗ �{u, dπ} ⊗ Fp[t±1, x] with deg(u) = (−1, 0), deg(dπ)

= (0, 1), deg(t) = (−2, 0), and deg(x) = (0, 2). The d2-differential is a
derivation, which is automatically S p-linear, and is given by d2(π) = tdπ , so
the E3-term takes the form

E3 = S p ⊗ �{u, π p−1dπ} ⊗ Fp[t±1, x].
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The Frobenius ϕ maps the class a ∈ S (resp. dπ , resp. x) to the class repre-
sented in the spectral sequence by a p ∈ S p (resp. by π p−1dπ , resp. by t−1),
which therefore is an infinite cycle. Moreover, comparing with the spectral
sequence for THH(Fp), we see that also x is an infinite cycle and that, up to
a unit in Fp,

d3(u) = t2x .

Hence, all further differentials in the spectral sequence are zero, and

E∞ = S p ⊗ �{π p−1dπ} ⊗ Fp[t±1].

In particular, the Frobenius ϕ : THH(S) → THH(S)tCp induces an isomor-
phism of homotopy groups in degrees j � 0, as desired. 
�
Corollary 5.2 The Frobenius map induces an equivalence of connective
covers

TF(S | K ; p,Zp) TC−(S | K ,Zp).

Proof For every cyclotomic spectrum X , we have the canonical projection

TRn(X; p) = X ×XtCp XhCp ×XtCp2 · · · ×XtCpn−1 XhCpn−1 prn XhCpn−1

and there are commutative diagrams

TRn(X; p) XhCpn−1

TRn−1(X; p) XhCpn−2

prn

F

prn−1

in which the horizontal maps are the canonical projections and the right-hand
vertical maps are the map induced by the subgroup inclusionsCpn−2 ⊂ Cpn−1 .
Hence, the canonical projections induce a map of homotopy limits

TF(X; p) = holimn,F TRn(X; p) holimn XhCpn−1
.

Moreover, if X is p-complete, then the map

holimn XhCpn−1 XhT = TC−(X),

123



320 L. Hesselholt et al.

induced by the subgroup inclusions Cpn−1 ⊂ T is an equivalence, so we get a
map

TF(X; p) TC−(X).

As pointed out in the proof of [22, Theorem 3], it is clear from this construction
that if the Frobenius ϕ : X → XtCp induces an isomorphism of homotopy
groups in degrees j � d, then so do the maps prn and map above. So by taking
X to be the p-complete cyclotomic spectrum THH(S | K ,Zp), the corollary
follows from Lemma 5.1. 
�
Lemma 5.3 The canonical projection i : S → kS induces an isomorphism

limn,F Wn(S) limn,F Wn(kS).

Proof Let mS ⊂ S be the maximal ideal. The injectivity and the surjectiv-
ity of the map in the statement are equivalent to the vanishing of the limit
limn,F Wn(mS) and the derived limit R1 limn,F Wn(mS) = 0, respectively.
We recall that the Witt vector Frobenius F : Wn(S) → Wn−1(S) satisfies
F(a) = R(a)p modulo Wn−1(pS); see for example [18, Lemma 1.8]. It fol-
lows that F(Wn(m

m
S )) ⊂ Wn−1(m

m+1
S ), for all m > 0, which shows that

the limit vanishes. The derived limit vanishes, since Wn(mS) has a compact
topology for which F : Wn(mS) → Wn−1(mS) is continuous. 
�

Since kS is perfect, we further identify the common ring in Lemma 5.3 with
the ring of Witt vectors W (ks) via the isomorphism

limn,F Wn(kS) limn,R Wn(kS) = W (kS)

that at level n is given by themapWn(kS) → Wn(kS) induced byϕn : kS → kS .
It is an isomorphism, since kS is perfect. In particular, the ring

TF0(S | K ; p,Zp) = limn,F Wn(S)

is an integral domain.

Theorem 5.4 For every even integer j = 2k > 0, the map

TC−
j (S | K ,Zp) TP j (S | K ,Zp)

ϕ−can

is an isomorphism.
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Proof It follows from Lemma 5.1 and the Tate orbit lemma [31, Lemma I.2.1]
that

TC−
j (S | K ,Zp) TP j (S | K ,Zp)

ϕ

is an isomorphism, for j � 0. We evaluate the common group for j = 2k >

0, and consider the cases, where S is of equal characteristic and of mixed
characteristic, separately.

In the mixed characteristic case, the groups THH j (S | K ,Zp) for j = 2k >

0 are zero by [20, Remark 2.4.2]. Hence, the homotopy fixed points spectral
sequence

E2
i, j = H−i (BT,THH j (S | K ,Zp)) ⇒ TC−

i+ j (S | K ,Zp)

shows that the same is true for the groups TC−
j (S | K ,Zp).

If S = kS[[π ]] is of equal characteristic, then TP∗(S | K ) is a graded algebra
over the graded ring TP∗(Fp) = Zp[v±1], where deg(v) = −2, and hence, is
2-periodic. We have canonical isomorphisms

TP0(S | K ) TC−
0 (S | K )

can TF0(S | K ; p) W (kS),

where the latter follows from Lemma 5.3. Under this identification, the
two maps ϕ, can : TC−

0 (S | K ) → TP0(S | K ) are given by the automor-
phisms of W (ks) induced by ϕ, id : kS → kS , respectively. Finally, the maps
ϕ, can : TC−

2 (Fp) → TP2(Fp) are given by ϕ(v−1) = v−1 and can(v−1)

= pv−1; see [31, Section IV.4]. Hence, we find that for j = 2k � 0, the maps

TC−
j (S | K ) TP j (S | K )

ϕ, can

are respectively an isomorphism and pk times an isomorphism, so for j =
2k > 0, their difference is an isomorphism, as stated. 
�
Proof of Theorem B (2) We consider the diagram of spectra

TF(A | D; p,Zp) TC−(A | D,Zp)

TF(S | K ; p,Zp) TC−(S | K ,Zp),

IrdA/S IrdA/S

where the vertical maps are induced by the equivalence of cyclotomic spectra
from part (1) of the theorem, and where the horizontal maps are the maps
defined in the proof of Corollary 5.2. The diagram commutes by naturality of
the horizontal maps, the vertical maps are equivalences, and, by Corollary 5.2,

123



322 L. Hesselholt et al.

the horizontal maps induce equivalences of connective covers. The class y
= IrdA/S(1) ∈ TC−

0 (A | D,Zp) defines a component in the mapping space

MapModTHH(S | K ,Zp)(Sp
B T

p )
(THH(S | K ,Zp),THH(A | D,Zp))

� MapSpB T

p
(Sp,THH(A | D,Zp)) � Ω∞ TC−(A | D,Zp)

and any point in this component is an equivalence. Now, let IA/S be the map
induced by extension of scalars along the inclusion of S in A. It follows from
Remark 1.9 and from the construction of the class y that IA/S(1) = d · y. This
shows that

IA/S � d · IrdA/S

as maps of THH(S | K ,Zp)-modules in SpB T

p . We claim that this implies that
also

TrA/S � d · TrdA/S

as maps of THH(S | K ,Zp)-modules in SpB T

p . Indeed,

d · (TrA/S ◦ IrdA/S) � TrA/S ◦(d · IrdA/S) � TrA/S ◦IA/S � d2 · id,

which implies that

TrA/S ◦ IrdA/S � d · id,

since TC−
0 (S | K ,Zp) = W (kS) is an integral domain. But we also have

(d · TrdA/S) ◦ IrdA/S � d · (TrdA/S ◦ IrdA/S) � d · id,

and since IrdA/S is an equivalence, the claim follows. This completes the
proof. 
�
Remark 5.5 The component in the mapping space

MapModTHH(S | K ,Zp)(Sp
B T

p )
(THH(A | D,Zp),THH(S | K ,Zp))

that contains the equivalence TrdA/S is uniquely determined by the property
that

d · TrdA/S � TrA/S .
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Indeed, the mapping space in question is simultaneously a torsor for the
E∞-monoids of endomorphisms of the domain and target, and their rings
of components are both integral domains, being isomorphic to W (kS).

Proof of Theorem A For all integers j , the equivalence of cyclotomic spectra
TrdA/S in Theorem B (1) induces an isomorphism

TC j (A | D,Zp) TC j (S | K ,Zp),
TrdA/S

and for j � 1, this induces the desired isomorphism

K j (D,Zp) K j (K ,Zp),
NrdA/S

by Theorem 2.5.We claim that for j � 1, the former isomorphism is canonical
and satisfies d · TrdA/S = TrA/S . Indeed, by Theorem 5.4 we have exact
sequences

0

0

TC j (A | D,Zp)

TC j (S | K ,Zp)

TC−
j (A | D,Zp)

TC−
j (S | K ,Zp)

TP j (A | D,Zp)

TP j (S | K ,Zp),

i ϕ−can

TrdA/S TrdA/S TrdA/S

i ϕ−can

for j � 1 and odd, and by Theorem B (2), the middle and right-hand ver-
tical maps are canonical and satisfy the desired identity. Theorem 5.4 shows
similarly that for j � 2 and even, there are exact sequences

TC−
j+1(A | D,Zp)

TC−
j+1(S | K ,Zp)

TP j+1(A | D,Zp)

TP j+1(S | K ,Zp),

TC j (A | D,Zp)

TC j (S | K ,Zp)

0

0,

ϕ−can ∂

TrdA/S TrdA/S TrdA/S

ϕ−can ∂

and by Theorem B (2), the left-hand and middle vertical maps are canonical
and satisfy the desired identity. This completes the proof. 
�
Lemma 5.6 The map i∗ : TC j (kS,Zp) → TC j (S,Zp) is zero for all integers
j .

Proof First, for j = 0, we consider the following diagram with exact rows.

K0(kS,Zp)
i∗

tr

K0(S,Zp)
j∗

tr

K0(K ,Zp)

tr

TC0(kS,Zp)
i∗ TC0(S,Zp)

j∗
TC0(S | K ,Zp)
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In the top row, the map j∗ is an isomorphism, since S and K both are local
rings. Therefore, the map i∗ in the top row is zero, and since the left-hand and
middle vertical maps are isomorphisms by [19, Theorem D], the map i∗ in the
bottom row is zero, as stated. Next, we claim that the map

TC j (S,Zp)
i ∗ TC j (kS,Zp)

is surjective. Granting this, the lemma follows. Indeed, if x = i (y), then

i∗(x) = i∗(x · 1) = i∗(i ∗(y) · 1) = y · i∗(1),
by the projection formula, and we have already proved that i∗(1) = 0. The
claims needs proof only if j = 0 or j = −1, since the target of the map in
question is zero, otherwise, and in these cases, the domain and target both are
freeZp-modules of rank 1. For j = 0, themap is aZp-algebra homomorphism,
and therefore, it is necessarily an isomorphism. Finally, for j = −1, we
consider the diagram

TP0(S,Zp)
i ∗

∂

TP0(kS,Zp)

∂

TC−1(S,Zp)
i ∗ TC−1(kS,Zp).

The top horizontal map is canonically identified with the map in the statement
of Lemma 5.3, and hence, it is surjective. The right-hand vertical map also is
surjective, sinceTC−∗ (kS,Zp) is concentrated in evendegrees byBökstedt peri-
odicity. It follows that the lower horizontal map is surjective, as claimed. 
�
Corollary 5.7 The Zp-module TC0(S | K ,Zp) is free of rank 2.

Proof By Lemma 5.6, we have a short exact sequence

0 TC0(S,Zp)
j∗

TC0(S | K ,Zp)
δ TC−1(kS,Zp) 0,

and, we have as already remarked, the left-hand term and the right-hand term
both are free Zp-modules of rank 1. 
�
Proof of Theorem B (3) We consider the diagram

0 TP1(A | D,Zp)ϕ
∂

TrdA/S

TC0(A | D,Zp)
i

TrdA/S

TC−
0 (A | D,Zp)

ϕ

TrdA/S

0

0 TP1(S | K ,Zp)ϕ
∂

TC0(S | K ,Zp)
i

TC−
0 (S | K ,Zp)

ϕ 0,
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where (−)ϕ and (−)ϕ indicate the kernel and cokernel of ϕ − can, respec-
tively. The vertical maps are induced by the equivalence of cyclotomic spectra
from part (1) of the theorem. Accordingly, the vertical maps are all isomor-
phisms and the diagram commutes. By Corollary 5.7, the middle terms are
free Zp-modules of rank 2, and we claim that the right-hand terms are free
Zp-modules of rank 1. Indeed, we have already identified TC−

0 (S | K ,Zp) and
TP0(S | K ,Zp) with W (kS) and the maps ϕ and can with the maps induced
by ϕ, id : kS → kS , and since

W (Fp) W (kS) W (kS)
W (ϕ)

id

is an equalizer of rings, the claim follows.We conclude that the left-hand terms
are free Zp-modules of rank 1 as well.

We choose a basis (e1, e2) of TC0(S | K ,Zp) such that e1 is in the image of ∂
and such that i(e2) = 1, and let (e′

1, e
′
2) be the basis (Trd−1

A/S(e1),Trd
−1
A/S(e2))

of TC0(A | D,Zp). By part (2) of the theorem, the matrix that represents

TC0(A | D,Zp) TC0(S | K ,Zp)
TrA/S

with respect to these bases is of the form
(
d a
0 d

)

∈ M2(Zp).

We proceed to show that if p divides d, then d does not divide a, which proves
part (3) of the theorem. To this end, we consider the commutative diagram

K0(D,Zp) TC0(A | D,Zp) TC−
0 (A | D,Zp)

ϕ

K0(K ,Zp) TC0(S | K ,Zp) TC−
0 (S | K ,Zp)

ϕ.

tr i

tr i

ND/K TrA/S TrA/S

The left-hand terms are both freeZp-modules of rank 1generated by the classes
[D] and [K ], and ND/K ([D]) = d2 ·[K ]. Moreover, the lower horizontal maps
are ring homomorphisms, and hence, map the element 1 = [K ] of the lower
left-hand term to the element 1 in the lower right-hand term. Since part (2) of
the theorem shows that the right-hand vertical map is equal to d · TrdA/S , we
conclude that coordinates of the class tr([D]) ∈ TC0(A | D,Zp) with respect
to the basis (e′

1, e
′
2) take the form

(
b
d

)

∈ M2,1(Zp).
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Hence, the coordinates of TrA/S(tr([D])) with respect to the basis (e1, e2) are

(
d a
0 d

) (
b
d

)

=
(
d(a + b)

d2

)

.

It follows that a + b ∈ Zp is divisible by d, since

TrA/S(tr([D])) = tr(ND/K ([D]) = d2 · tr([K ]) = d2 · 1.
Therefore, d divides a if and only if d divides b.We now consider the following
commutative diagram with exact rows.

K0(A,Zp)
j∗

tr

K0(D,Zp)
δ

tr

K−1(kT ,Zp)

tr

TC0(A,Zp)
j∗

TC0(A | D,Zp)
δ TC−1(kT ,Zp)

Since A and D are local rings, the map j∗ in the top row is an isomorphism
between freeZp-modules of rank 1. Moreover, the left-hand vertical map is an
isomorphism by [19, TheoremD], since A is a finiteZp-algebra. Hence, in the
bottom row, the middle term is a free Zp-module of rank 2, and the left-hand
term and the right-hand term both are free Zp-modules of rank 1. Therefore,
in the bottom row, the map j∗ is injective, and its cokernel is a freeZp-module
of rank 1. We conclude that

tr([D]) = tr( j∗([A])) = j∗(tr([A])) ∈ TC0(A | D,Zp)

is not divisible by p. So if p divides d, then d does not divide b, and hence, d
does not divide a, as we wished to prove. 
�
Corollary 5.8 If p divides d, then the G-action on THH(A | D) is non-trivial.

Proof If the G-action on THH(A | D) were trivial, then the diagram

THH(A | D)
f ∗

THH(A ⊗S T | D ⊗K L)hG

TrdA⊗ST/T

THH(S | K )
f ∗

THH(T | L)hG

IrdA⊗ST/T

would be meaningful and would define an equivalence

THH(A | D) THH(S | K )
TrdA/S
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of THH(S | K )-modules in cyclotomic spectra such that d · TrdA/S � TrA/S .
However, if p divides d, then Theorem B (3) shows that such an equivalence
does not exist, so the G-action on THH(A | D) is necessarily non-trivial. 
�
Remark 5.9 The proof of Theorem 4.3 gives maps of exact sequences

· · · THH j (kT ) THH j (A) THH j (A | D) · · ·

· · · THH j (kS) THH j (S) THH j (S | K ) · · ·

δ i∗ j∗ δ

TrdA/S IrdA/S TrdA/S IrdA/S TrdA/S IrdA/S

δ i∗ j∗ δ

such that all maps are THH∗(S)-linear and such that the right-hand vertical
maps are isomorphisms defined in this paper. The analogous statement holds
for the groups TRn

j , TR j , TF j , and for the respective groups with p-adic coef-
ficients.We further expect that the left-hand vertical maps in the diagram agree
with the maps TrkT /kS and IkT /kS , respectively. Indeed, this would explain the
appearance of the kernel of TrkT /kS in the calculations of HH∗(A/Zp) by the
second author in [23, Theorem 3.5] and of THH∗(A,Zp) by the third author
and Chan in [9, Theorem 5.1].
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