Invent. math. (2020) 219:281-329 ")
https://doi.org/10.1007/s00222-019-00909-x Check for

updates

On the K-theory of division algebras over local
fields

Lars Hesselholt!2 . Michael Larsen? -
Ayelet Lindenstrauss®

Andrei Suslin in memoriam

Received: 4 September 2018 / Accepted: 11 July 2019 / Published online: 27 July 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019, corrected publication 2019

Introduction

Let K be a complete discrete valuation field with finite residue field of char-
acteristic p, and let D be a central division algebra over K of finite index d.
Thirty years ago, Suslin and Yufryakov [35, Theorem 3] showed that for all
prime numbers ¢ # p and integers j > 1, there exists an isomorphism of
£-adic K-groups

Nrd
Kj(D.Zo) —2 K (K, Zo)
such that d - Nrdp, g is equal to the norm homomorphism Np, g . The purpose
of this paper is to prove the following analogous result for the p-adic K -groups.

Theorem A Let D be a central division algebra of finite index d over a com-
plete discrete valuation field K with finite residue field of odd characteristic
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p. For all integers j > 1, there exists a canonical isomorphism of p-adic
K -groups

Nrdp/k
Kj(D, Zp) e Kj(K, Zp)

such that d - Nrdp g is equal to the norm homomorphism Np k.

By contrast to the norm homomorphism Np,k, we do not know that the
reduced norm isomorphism Nrdpk is induced by a map of K-theory spectra,
and such a map may well not exist; compare Merkurjev [29, Proposition 4].

The tool that makes it possible to now prove Theorem A is the topological
cyclichomology introduced by Bokstedt et al. [3]. The recent work by Nikolaus
and Scholze [31] has greatly clarified the nature of this theory, and we will
use their setup, which we briefly explain. Let SpB T be the 1nﬁn1ty category of
p-complete spectra with an action by the circle ']I‘ Given X € Sp , We write

TC (X) -2 TP(X)

for the canonical map from the homotopy fixed points spectrum to the Tate
spectrum of X. We refer to these spectra as the negative topological cyclic
homology and the periodic topological cyclic homology of X, respectively. A
cyclotomic structure on X is a map of spectra with T-action

X 2 X1

called the Frobenius map. The target of this map is the Tate spectrum of X
with respect to the subgroup C;, C T of order p. It has aresidual T/ C),-action,
which we consider a T-action via the pth root isomorphism p: T — T/C),.
The Frobenius induces a map of homotopy T-fixed points,

hT
TC_(X) — X/’lT L (Xth)h(T/Cp) ~ Xt']T — TP(X),

the target of which is canonically identified with the T-Tate spectrum by the
Tate orbit lemma of Nikolaus and Scholze [31, Lemma 1.2.1]. We will abuse
notation and write ¢: TC™ (X) — TP(X) for the resulting map, which we
again call the Frobenius map. Now, the topological cyclic homology of X is
the homotopy equalizer

TC(X) —— TC—(X) ﬁ TP(X)

of the Frobenius map and the canonical map. Nikolaus and Scholze also show
that, in a natural way, the p-complete cyclotomic spectra can be organized
into a symmetric monoidal stable infinity-category CycSp p» Whose tensor
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unit is the p-complete sphere spectrum S, with trivial T-action and with the
composite map

@ hCp can tCp
SP SP SP

as its cyclotomic structure map. Here, the left-hand map is the canonical map
from a spectrum with trivial action to its fixed points. Finally, the left-hand map
in the homotopy equalizer above is canonically identified with the “forgetful”
map

mapcycsp, (Sp, X) o mapspﬁT(Sp, X)

between mapping spectra in the stable infinity-categories of p-complete cyclo-
tomic spectra and p-complete spectra with T-action, respectively.

We now let K be the quotient field of a complete discrete valuation ring S
with finite residue field kg of characteristic p, let D be a central division algebra
over K, and letd = dimg (D)2 be the index of D over K. The valuation on K
extends uniquely to a valuation on D, and the subring A C D of elements of
non-negative valuation is the unique maximal S-order. In [20], the first author
and Madsen produced a p-complete cyclotomic spectrum THH(S | K, Z ) and
a trace map

K(K,Z,) "+ TC(S|K,Zp)

to its topological cyclic homology spectrum, which we abbreviate as indicated,
from the p-completion of the algebraic K -theory spectrum of the field K. This
construction also defines a p-complete cyclotomic spectrum THH(A | D, Z))
and a trace map

K(D,Zp) —"+TC(A|D,Zp)

to its topological cyclic homology spectrum from the p-completion of the
algebraic K-theory spectrum of the division ring D. Moreover, by [19, The-
orem D], both maps induce isomorphisms of homotopy groups in degrees
Jj = 1. Hence, Theorem A is a consequence of the following more precise
Theorem B. In order to state it, we first remark that THH(S | K, Z,) has a
canonical structure of an E-algebra in CycSp p» that THH(A | D, Z)) has a
canonical structure of a THH(S | K, Z))-module, and that the trace map Tr4 /s
is a map of THH(S | K, Z)-modules

T
THH(A | D, Z,) —* . THH(S | K, Z,)
in CycSp,. The following is our main result.
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Theorem B Let K be the quotient field of a complete discrete valuation ring
S with finite residue field of odd characteristic p, let D be a central division
algebra over K, and let A C D be the maximal S-order.

(1) There exists an equivalence of THH(S | K, Z,)-modules in cyclotomic
spectra,

THH(A | D, Z,,) TS THH(S | K, Zp).
(2) As maps of THH(S | K, Z,)-modules in spectra with T-action,
d- TrdA/S ~ TrA/S .

(3) If p divides d, then, as maps of THH(S | K, Zp)-modules in cyclotomic
spectra,

d -TI'dA/S ;ﬁ TI‘A/S.

The first part of the theorem shows, in particular, that TC,(A | D, Z)) is
free on a generator of degree 0 as a graded TC,(S | K, Zj)-module, and this
implies the first statement in Theorem A. This generator is not in the image of
the cyclotomic trace, and K. (D, Z) is neither free nor finitely generated as
a graded K (K, Z;)-module.

To produce the desired equivalence of THH(S | K, Z,)-modules inCycSp e
we instead produce its inverse equivalence

rda/s

THH(S | K, Z,) 145 THH(A | D, 7).

The space of such maps has group of components TCy(A| D, Zp), and,
similarly, the corresponding space of maps in Sp » has group of compo-
nents TCy (A | D, Z)). To understand TC, (A | D, Z), we choose a maximal
unramiﬁed subfield K € L € Dandlet S C T C A be the subring of
elements of non-negative valuation. The extension L/K is of degree d and
the Galois group G of L/K is canonically isomorphic to that of the extension
kT / ks of residue fields. In general, for R a unital associative ring, we write
P for the exact category of finitely generated projective left R-modules. In
the case at hand, the ring homomorphisms

AQsT - TRgT —=T

given by the canonical inclusion and the multiplication are finite locally free,
and hence, we have the functors m.: Pagr — Presr and 8.: P —
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PresT given by restriction-of-scalars along 7 and &, respectively. Let 7' be
the right adjoint of . given by coextension-of-scalars along m, and let 6* be
the left adjoint of §, given by extension-of-scalars along §. We consider the
diagram

WA#9A®5T

TrdA®ST/TJ/TIrdA®ST/T

3k

Py ———— Pr,

where the right-hand adjunction is the composite adjunction (8* o 74, 77" 08,
and where the horizontal functors are extension-of-scalars along the canon-
ical inclusion f: § — T. Said adjunction is not an adjoint equivalence of
categories, but it becomes one after extension-of-scalars along the canoni-
cal inclusion 2: § — K, exhibiting the well-known Morita equivalence of
D ®k L and L. Thering A ®¢ T is not a maximal 7-order in D ®g L, so the
following result, which we prove in Sect. 1, came as a rather fortunate surprise.

Theorem C The ring A s T is left regular.
Here, we follow Bass [2, p. 122] and call a ring R left regular if every

finitely generated left R-module admits a finite resolution by finitely generated
projective left R-modules. Using Theorem C, we show that, in the diagram

TC,(A|D,Zp) — HY(G,TC,(A®s T | D ®x L,Zp))

TrdA@gT/TJ/TIrdAQbST/T
f*

TC, (S|K.,Z,) ——— H(G, TC; (T | L, Z,)),

the horizontal morphisms are isomorphisms, and the Morita equivalence
mentioned above implies that also the vertical morphisms are isomor-
phisms. All morphisms in the diagram are graded TC_ (S| K, Z))-module
homomorphisms, so we conclude that the graded TC_ (S| K, Z))-module
TC,(A|D,Z,) is free on a single generator of degree zero. We let y €
TC, (A|D,Zp,) be the unique generator with the property that f*(y)
= Irdagr/7(f*(1)). It satisfies that ¢(y) = can(y), and accordingly, there
exists y € TCo(A | D, Zp) withi(y) = y. This implies part (1) of Theorem B,
and part (2) follows from the fact that Tr4,s(y) = d - 1. This equation also
characterizes the generator y, since the common groups TC (A | D, Z;) and
TC, (S| K, Zp) are free Z,-modules of rank one. By contrast, the common
groups TCy(A | D, Z)) and TCy(S | K, Z,) are free Z,-modules of rank two,
and we show that if p divides d, then it is not possible to choose the generator
v such that Tr 4 /() is a divisible by @, which implies part (3) of Theorem B.
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The uniqueness of the generator y € TCy (A | D, Z,) with Tra/s(y) = d -1
implies that the reduced trace isomorphisms on negative topological cyclic
homology groups and on periodic cyclic homology groups are canonical and
satisfy

d- TrdA/S = TI‘A/S .

That the corresponding statements hold on topological cyclic homology groups
is not immediately clear and is false in degree zero, if p divides d. However,
for j > 1 and odd, we show that there are exact sequences

@—can

0——TC;(A|D,Z)p) ATC;(A |D,Z,) =5 TP;(A| D, Z,)

J/TrdA/s J/TrdA/S J/Trd/\/s

@—can

0——TC;(S| K, Zp) %TCJT(SlK, Z,) TP (S | K, Zy),

which show that also the left-hand map Trd 4 s is canonical and that its dth
multiple is equal to Tra,s. Similarly, for j > 2 and even, there are exact
sequences

@—can

TC, (A D, Z,) " =5TP;11(A| D, 7)) S TC;(A|D,Zy) —0

lTrdA/s J/TrdA/s JTrdA/s

@—can

TC;, (SIK. Zp) =5 TP 1 (S| K, Zp), 25 TC;(S| K, Zp) — 0

which show that the right-hand map Trd 4/ is canonical and that its dth mul-
tiple is equal to Tr 4 /5. This proves that latter statement in Theorem A that the
reduced norm isomorphism is canonical and satisfies d - Nrdp,x = Np/k.

Our proofs of Theorem B (2)—(3) use [20, Theorem 5.5.1], which is the
reason that we assume p to be odd. The remaining results hold also for p = 2,
as do all our results, if S is of equal characteristic. We expect our results to
hold also for p = 2.

1 Categories of modules

In this section, we examine the structure of the category of left modules over
the ring A ®s T and prove Theorem C of the introduction.

If R is a unital associative ring R, then we write Mody for the category of
left R-modules, and if f: R — S is aring homomorphism, then we define the
restriction along f to be the functor f,: Modg — Modg that to an S-module
M assigns the R-module f, (M) with the same underlying additive group as
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that of M and with left scalar multiplication by a € R given by left scalar
multiplication by f(a) € S and that to an S-linear map h: M — M’ assigns
the same map h: fo(M) — fo(M’). We note that the restriction of scalars
along the identity homomorphism idg and the identity functor of Modg are
canonically naturally isomorphic, as are (g o f), and fi o g, for composable
ring homomorphisms f: R — Sandg: S — T.

The functor f, admits both a left adjoint functor and a right adjoint functor.
We say that a choice of an adjunction (f*, fy, €, n) from Modg to Modg
is an extension of scalars along f; and we say that a choice of adjunction
(f+, ', €, 1) from Modg to Mody is a coextension of scalars along f. If
f: R — Sand g: § — T are composable ring homomorphisms, then the
functors g*o f* and (go £)* and the functors g'o f* and (go f)" are canonically
naturally isomorphic, and the extension and coextension along the identity
homomorphism idg both are canonically naturally isomorphic to the identity
functor; compare [27, Theorem IV.7.2].

We write .#r and &g for the full subcategories of Modg whose objects
are the finitely generated left R-modules and the finitely generated projec-
tive left R-modules, respectively. Let f: R — § be a ring homomorphism.
The extension of scalars along f restricts to functors f*: .#r — .#s and
f*: Pr — g, the former of which is an exact functor if and only if f is
flat; the restriction of scalars along f restricts to a functor fi: .#s — Mg,
if f is finite, and to a functor fi,: Pg — Hg, if f is finite and if S consid-
ered as a left R-module via f is projective, both of which are exact; and the
coextension of scalars along f restricts to exact functors f Y g —> M,
if S is a finitely generated projective R-module, and f': Pr — P, if, in
addition, the coextension of R, Homg (S, R), is a finitely generated projective
S-module. In particular, if S is a finitely generated projective R-module and
every object M of .# such that f,M is an object of &g must in fact lie in
Py, then f’: Pr — Py exists and is exact.

We again let S be a complete discrete valuation ring with finite residue
field ks of characteristic p and with quotient field K, and let D be a finite
dimensional central division algebra over K. We recall the structure of D
following [34, Chapter 3]. The valuation vk on K extends uniquely to a discrete
valuation vp on D given by

1
vp(x) = MUK(ND/K(X)),

where x € D* and Np /g : D* — K* is the norm. The algebra D is complete
with respect to vp, and the subring A C D of elements of non-negative
valuation is both the integral closure of S in D and the unique maximal S-
order in D. We choose a maximal subfield K C L C D with the property
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that the extension L/K is unramified and let 7 C L be the integral closure
of S. The equality dimg (L) = dimy (D) holds, and the common dimension
d is called the index of D over K. Hence, if mp is a generator of the unique
maximal ideal mp C A, then the tuple (1, 7p, ..., n,‘é‘l) is a basis of D as a
left L-vector space. Now, by [34, Theorem 14.5], we may choose the generator
7T p such that n;l) is contained in S (and hence is a generator wx of the maximal
ideal mg C S) and such that the inner automorphism x — Dxngl of D
restricts to an automorphism o of L /K which generates Gal(L/K). The map

Gal(L/K) - Gal(kr / ks)

defined by €(g)(y + mr) = g(y) + mr is an isomorphism, since L/K is
unramified. It maps the generator o of the domain to a generator of the target,
which we may therefore write as the rth power of the Frobenius automorphism,
for a unique integer 0 < r < d relatively prime to d. The class of r/d in Q/Z
is called the Hasse invariant of D. It determines the central division K -algebra
D, up to non-canonical isomorphism. Moreover, every element of Q/Z occurs
as the index of some central division K -algebra D.

Let k be a commutative ring, let R be a commutative k-algebra, and let
¢: R — R be a k-algebra automorphism. The twisted polynomial algebra
R?{x} is the quotient of the coproduct R #*; k[x], in the category of unital
associative k-algebras, of R and k[x] by the two-sided ideal generated by the
family of elements ¢(a)x — xa witha € R. We let ij: R — R?{x} and
ir: k[x] = R?{x} be the two k-algebra homomorphisms defined as the com-
positions of the respective canonical inclusions into the coproduct followed
by the canonical projection.

Lemma 1.1 In the situation above, if k' is a commutative k-algebra and
R’ = R ®y k', then there is a unique isomorphism of k'-algebras

(R)7®{x} —— R’ {x} @ k'

compatible with the maps i} and ip over k and k', respectively.

Proof The universal property of coproducts gives a canonical map of k’-
algebras

R’ s k'[x] — (R *¢ k[x]) ®x k',

the universal property of extension of scalars gives a canonical map of k-
modules

(R #x k[x]) @k k' — R xp K'[x],
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and the two maps are mutually inverse. Moreover, the kernels of the canonical
projections to (R")?®{x} and R {x} ®; k’, respectively, are identified under
these isomorphisms. O

Lemma 1.2 With notation as above, let v be the unique S-algebra homomor-
phism

TO{x}) —— A

such that voiy: T — A is the canonical inclusion and v o ir: S[x] — A'is
the unique S-algebra homomorphism mapping x to wp. Then v is surjective,
and its kernel is the two-sided ideal generated by x? — .

Proof To prove surjectivity, recall that every element a € D can be writ-
ten uniquely as an L-linear combination a = yg + - -+ + yd_lngfl. Now,
since vp(L*) = dZ, the values vD(y,-rrf)) are pairwise distinct. There-
fore, we conclude from the ultrametric inequality that a € A if and only
if yo, ..., yg—1 € T asdesired. Clearly, x? — 7k lies in the kernel of v, and by
the linear independence of (1, 7p, ..., ng_l) over L, no polynomial of lower
degree does so. Therefore, by the right division algorithm, every element in
the kernel of v is a left multiple of the (central) element x4 — 7k. O

Corollary 1.3 The unique T-algebra homomorphism

(T ®s T)(7®id{x} L) A ®s T

suchthatv' o(i1®id): T®sT — A®gsT is the canonical inclusion and such
that v' o (i ® id): T[x] — A ®s T the unique T-algebra homomorphism
that maps x to mp ® 1 is surjective, and its kernel is the two sided ideal
x? — g @ 1).

Proof The map v’ factors as the composition

(T ®s T)o®id{x} LN TU{X} Qs T ﬂ) AQ®sT

of the isomorphism in Lemma 1.2 and the extension of scalarsalong f: S — T
of the isomorphism in Lemma 1.3. O

We define a category Mod 7 as follows. An objectis a triple (N, (Ng)gea,
@), where N is a left T-module, (Ng)gei is a grading on N of type G
= Gal(L/K),and ¢: N — N is a graded T-linear endomorphism of degree
o1 € G such that ¢¢ is equal to left multiplication by 7x € T. A morphism

h: (N, (Ng),9) — (N, (Ng),¢") is a graded T-linear map h: N — N’
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of degree 1 € G such that h o ¢ = ¢’ o h. We write the composition law
in G multiplicatively and refer to [6, Chapter 2, §11] for the definitions of
graded modules and graded homomorphisms. We recall that since f: S — T
is faithfully étale with Galois group G, the ring homomorphism

T®STLng€GT

with gth component wg (t; ® 1) = g(#1)t, is an isomorphism. We let (e4)¢ei
be the family of orthogonal idempotents in 7 ® T such that wg(e,) = 8¢ o
and let

MOdA®ST L Mod T.G

be the functor that to aleft AQ s 7-module N assigns the triple(N, (Ng)geG, @),
where, by abuse of notation, N is the underlying left 7-module of the left
A ®s T-module N, where N, C N is the T-submodule e, - N C N,
and where ¢: N — N is the T-linear map given by left multiplication by
tpR®1eARQgT.

Proposition 1.4 The functor

MOdA®ST L Mod T.G

is an equivalence of categories.

Proof First, to prove that F is well-defined, we must verify that the 7 -linear

map ¢: N — N defined by ¢(y) = mp ® 1 - y is indeed graded of degree

o~ ! and that ¢¢ is given by multiplication by 7 k. The latter holds, since
ng®1:m<®1:1®m<,

and to prove the former we apply Corollary 1.3 to conclude that

(1 ® 12)y) = (o(11) ® 2)p(y),

forally e Nand ) ® r € T ®s T. Moreover, the commutative diagram

T@sT—[l4ecT

J/O‘ ®id l(a ®id)¥

T®sT——[lgec T,
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where the map (0 ® id)" is defined by pr, o(o ® id)" = pr,,,, shows that
(0 ®@id)(eg) = €451

This shows that ¢: N — N is graded of degree o ! as desired.
We define a quasi-inverse functor

Mod T,G $ MOdA®ST

as follows. Given an object (N, (Ng)geG, ¢) of the domain category, we first
use the grading (Ng) e to define a left T ® g T-module structure on the left
T-module N by letting 11 ® 1, € T ®s T multiply by w, (11 @ 12) on Ny C N.
Moreover, since the T-linear map ¢: N — N is graded of degree o !, the
argument above shows that

p((n ® 1)y) = (o (1) @ )e(y),

forally e Nand ty ® p € T ®gs T. Since, in addition, <pd is given by
multiplication by g, this defines a (T ®g T)°®id {x}/ (x4 — 7x ® 1)-module
structure on N, where the left multiplication by x is given by the map¢p: N —
N, and by Corollary 1.3, this defines a left A ® ¢ T-module structure on N.
This defines the functor H, and it is clear that F o H and H o F are equal to
the respective identity functors. O

Example 1.5 Right multiplication on A ®s T by the idempotents (e;)nec
defined in the proof of Proposition 1.4 gives rise to a direct sum decomposition

A@sT=EDA®sT ey
heG

as left A ®¢s T-modules. Hence, as a left A ®g T-module, each of the d
summands is projective. We now evaluate F(A ®s T - ep,). By Corollary 1.3,

(rp®@1)-en =(0QL)(en) (tp®1) =e€p6-1 - (Tp ® 1),
so as a left T-submodule of A ®g T,
e - ARsT -ep=T-(Th® 1),
where 0 < i < d is the unique integer such that g = 4 o o ~*. Hence, the map
eg-A®ST-eh$egoa—1 CAQs T -ey
is anisomorphism, exceptfor g = hoo, whereitisinjective with cokernel k7-1.
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Let .#1 ¢ and &1 ¢ be the full subcategories of Mod 7 ¢ whose objects
are the triples (N, (Ng), ¢) such that the left T-module N is finitely generated
and finitely generated and projective, respectively.

Addendum 1.6 The equivalence F: Modag,r — Mod7r g restricts to
equivalences F: Magst — M1.6 and F: P gt — P1.6.

Proof The T-algebra A®sT is finitely generated and projective as a 7-module.
So the former statement follows immediately and to prove the latter, we must
show that full subcategory &2 g of .# r ¢ is precisely that consisting of the
projective objects. Every projective objectin .Z r ¢ is an objectin & r ¢, since
the underlying 7-module of a projective left A ® s 7-module is projective.
To prove the converse, let (P, (P,), ¢) be an object of &7 . The finitely
generated projective 7-modules P, all have the same rank r. Indeed, the T'-
linear map ¢: P, — P, becomes an isomorphism after extending scalars
along T — L, and hence, so does ¢: P, — P,,-1. Here and below we use
that o € G is a generator. We call the common rank r the size of (P, (P,), ¢)
and proceed to show by induction on r that (P, (Pg), ¢) is a projective object
in ./, the case r = 0 being trivial.

First, if » = 1, then the T-modules P, /mg P, all have length 1. It follows
that the maps ¢: Py, — P,,-1 all are isomorphisms, except for a single
g = hoo for which it is injective with cokernel of length 1. We conclude from
Example 1.5 that (P, (Py), ¢) is isomorphic to the object F(A Qs T - ey),
hence projective.

To prove the induction step, we let (P, (Pg), ¢) have size r > 1 and assume
that all objects of smaller size are projective. We will construct a sequence in

2716,

0—— (P!, (PP, ¢) —— (P, (P), ) —= (P", (P}), ¢") —— 0,

which is exact in the abelian category .# 1 ¢ and in which the left-hand term
has size 1. Inductively, the left-hand term and the right-hand term, which has
size r — 1, both are projective, and hence, the sequence will show that also
the middle term is projective. To construct the desired sequence, we choose
any non-zero element x; € P and set x, = goi(xl) € Py if g = o~ with
0 <i < d. We then define j,: P; — P, by means of the pullback square of
T-modules

Jg
/

—
Py Py

]

L-xg—— P, Qr L,
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where all maps are the canonical inclusions, and define g, : P, — P tobea
cokernel of j,. The T-modules Pg and Py are finitely generated of rank 1 and
r — 1, respectively, and both are torsion-free, and hence, projective. Here, to
see that Py is torsion-free, we use that if x € P, and px € Pg, then x € Py,
We define j: P — P and g: P — P” to be the respective sums indexed
by g € G of jo: Py — Py and gg: P, — Pg. The map ¢: P — P induces
maps ¢’ : P/ — P’ and ¢”: P” — P”.Moreover, since ¢ is graded T-linear
of degree 0! with ¢? given by multiplication by 7x € T, the same is true
for the maps ¢’ and ¢”. This completes the proof. |

Corollary 1.7 Let M be an A ®s T-module. If the T ®s T -module obtained
from M by restriction of scalars along T s T — A®s T is finitely generated
and projective, then M is finitely generated and projective.

Proof Since restriction of scalars along T — T ®gs T takes P rg 1 to X1,
it suffices to prove that if the restriction of an A ® ¢ T-module M along T —
A ®g T is finitely generated projective, then so is M. Applying F, this follows
from the definition of # 7 ¢ and from Addendum 1.6. m|

Proof of Theorem C We claim that the stronger statement that all submodules
of a finitely generated projective left A ® ¢ T-module again are finitely gener-
ated projective holds. The analogous statement holds for the discrete valuation
ring T'. Hence, the claim follows from Addendum 1.6 and from A ®g T being
noetherian. m|

We next identify the adjoint functors

Traggr/T

PagsT ___ Pr
laggr/T

defined to be the restriction and coextension along 7 — A ®g T under the
equivalence of Addendum 1.6. Given g € G, we define adjoint functors

deg,

QT,G « 7 Pr
indg

bydeg, (P, (Pn)reg, ) = Pgandindg(Q) = (D) Q. (Qneg, V), where
i takes the summand indexed by & € G to the one indexed by hoo ™! € G

by the map g -idg, if h = g, and by the identity map, otherwise. We define
the adjunction isomorphism

Homy (deg, (P, (Pp)neG- ¢). Q) —— Homagr (P, (Pi)neG . ). indg(Q))
bya(f)p=foe': P, — Q,whereg=hoo ' with0<i <d.
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Lemma 1.8 In the situation above, the following hold:

(i) The map induced by the canonical inclusions,
@geG(degg © F)(P) — TrA®ST/T(P)’

is a natural isomorphism of left T -modules.
(ii) Writingg € Gasg =0 " with0 <i < d, the T-linear map

(deg, o F)(P) ™22 (deg, o F)(P)
is natural and becomes an isomorphism after extension of scalars along
T — L.
(iii) The multiplication §: T s T — T induces a natural isomorphism
(degy o F)(P) —— Trdagsr/T(P).
Proof This follows immediately from the definitions. O

Remark 1.9 By adjunction, the statements (i)—(iii) in Lemma 1.8 imply that
there is a natural isomorphism of left A ® s 7-modules

Iagsr/T(Q) — [4e (H 0indg)(Q);
that there is a natural A ® g T -linear map
(H oindg)(Q) —— (H o ind()(Q),

which becomes an isomorphism after extension of scalars along A ®s T —
D ®k Lj; and that there is a natural isomorphism of left A ®s 7-modules

IrdagsT(Q) — (H 0 ind1)(Q).
Finally, we compare the T-order A® g7 in the semisimple L-algebra D&k L
to amaximal T-order. We recall from [34, Theorem 7.15] that, by viewing D as

aright L-vector space, left multiplication by D on itself defines an L-algebra
isomorphism

D ®x L —End; (D).

It restricts to a T-algebra monomorphism from the 7-order A ®gs T of the
domain to the T-order End7 (A) of the target, which by op. cit., Theorem 8.7,
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is a maximal T -order. We identify the T -algebra Endr (A) with the matrix 7T -
algebra M;(T) by means of the T-algebra isomorphism End7(A) — M4(T)
that to an endomorphism of the right 7-module A associates its matrix with
respect to the basis (7},)o<s<d-

Proposition 1.10 With notation as above, there is a cartesian square of T -
algebras

A®sT —" s By(kr)

I |
Mo
My(T) —""— My(kr)
in which the right-hand vertical map is the canonical inclusion of the subal-

gebra of lower triangular matrices, and the map i : T — kr is the canonical
projection.

Proof The morphism / maps the T-subalgebra T ®s T C A ®s T isomorphi-
cally onto the T-subalgebra H;(T) C M4(T) of diagonal matrices, and

0 00---0mg
1 00---00
Irp®1) = 01 0---00
000---10

Thus, the left Hy(T)-submodule of My (T) spanned by (I(7r}, ® 1))o<s<a 18
equal to the left H;(T)-submodule of matrices that are lower triangular modulo
M (mr), and, by Corollary 1.3, this left H; (T )-submodule, in turn, is is equal
to the image of the 7'-algebra homomorphism/: A ®s T — My(T). O

Remark 1.11 The top horizontal morphism i’ in Proposition 1.10 maps the

radical mp ®s T C A ®s T onto the nilpotent two-sided ideal Ny (k) C
Bg(kr) of strictly lower triangular matrices. Moreover, the composition

A ®s T —— By(kr) — Ba(kr)/Na(kr) — kr @ kr

of i/, the canonical projection, and the inverse of the isomorphism that maps #; ®
1> to the class of the diagonal matrix diag(#;7;, o1 (m)n, ..., o_(d_l)(tl)tz)
is equal to the canonical projectioni: A ®s T — k7 Qg kT.
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2 Localization sequences in K -theory and topological cyclic homology

In this section, we recall the algebraic K-theory symmetric spectrum of a
pointed exact category with weak equivalences following Waldhausen [37,
Section 1] and prove a localization sequence needed in the proof of Theorem B.

An exact category with weak equivalences is a triple (¢, &, #') of a cat-
egory %’; a set & of exact sequences in ¢ satisfying axioms (a) and (b) in
[33, §2], axiom (c) being redundant [21, Appendix A]; and a subcategory %
of weak equivalences in ¢ satisfying axioms (Weq 1) and (Weq 2) in [37,
Section 1.2]. An exact functor F: (¢, &, W) — (€', &, W) between exact
categories with weak equivalences is a functor F: 4 — ¢’ that maps &
to & and ¥ to #’; and an exact natural transformation between two such
functors is a natural transformation f: F = F’ such that for every object ¢
in ¢, the morphism f.: F(c) — F’(c) belongs to #". Now Waldhausen’s
S-construction is a functor

ExCat —— ExCat4”

that to an exact category with weak equivalences assigns a simplicial exact
category with weak equivalences. The construction, thus, may be iterated and
gives, for every non-negative integer r, a functor

ExCat —— ExCat4™"

that to an exact category with weak equivalences assigns an r-simplicial exact
category with weak equivalences.

In the following, we will also write w(%, &, #') instead of # for the
subcategory of weak equivalences. We define

(Y, ENECY, W NEY)YC(E, 8, W)
be the full sub-exact category with weak equivalences consisting of those
objects ¢ in € with the property that 0 — ¢ is in . Its subcategory of weak
equivalences has a zero object, and therefore, is contractible. In particular, the
subspace
IN(w (€Y, &ENE, W NEY)| C INw(E,E,7))
is contractible, and the pointed space given by the quotient

K@@, & W) =INwS (€, & W) /INwS (€, ENEY, W NEY))]
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is by definition the rth space in the symmetric spectrum K (¢, &, #'). The left
action by the symmetric group X, on this pointed space is induced from the
permutation of the r-simplicial directions; and the spectrum structure maps

T,

K(C, & W) NS5 K(C, 8, W )yt

are induced by the inclusion of the 1-skeleta in the last s simplicial directions.

We refer to [13, Appendix] for proof that this is indeed a symmetric spec-

trum and for a discussion of multiplicative properties of the construction. We

also recall that, as a consequence of the additivity theorem [37, Theorem 1.4.2,

Proposition 1.5.3], the symmetric spectrum K (¢, &, #') is fibrant in the posi-

tive model structure on the category of symmetric spectra; see [28, Section 14].
An exact functor F: (¢,&, %) — (¢', &', #") induces a morphism

k&, &) X k@ o .

of symmetric spectra and an exact natural transformations f: F = F’
between two such functors gives rise to a homotopy K (f) from K(F) to
K (F'). In this way, the K-theory construction is a strict 2-functor from the
strict 2-category of exact categories with weak equivalences, exact func-
tors, and exact natural transformations to the strict 2-category of symmetric
spectra, morphisms of symmetric spectra, and homotopy classes of homo-
topies between morphisms of symmetric spectra. Like every 2-functor, it takes
adjunctions in the domain 2-category to adjunctions in the target 2-category,
and the latter adjunctions automatically are adjoint equivalences, since the
2-morphisms in the target 2-category are invertible.

An abelian category .# has a canonical structure of an exact category
with weak equivalences, where the set of exact sequences & consists of the
sequences

MM m

in ./ such that i is a kernel of p and p a cokernel of i, and where the subcate-
gory of weak equivalences 7 is the subcategory of isomorphisms in .# . More-
over, an additive full subcategory &2 of .#, which is extension-closed in the
sense that, for every sequence in & whose initial term M’ and terminal term M"”
arein &, also the middle term M isin &2, has an induced structure of exact cat-
egory with weak equivalences, where the set of exact sequences &N consists
of the sequences in & all of whose terms are in &2, and where the subcategory of
weak equivalences # N2 is the full subcategory of # whose objects are in .

Now let R be a left noetherian ring, and let .#Zg and Zf be the categories
of finitely generated left R-modules and finitely generated and projective left
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R-modules, respectively. We assume that these categories are small, which
may be accomplished by assuming the axiom of universe [1, Exposé] or by
some ad hoc restriction on the modules allowed. The category .# is abelian
and the additive full subcategory &g is extension-closed. We define K'(R)
and K (R) to be the K-theory symmetric spectra of the exact categories with
weak equivalences associated to these as discussed above. We recall that the
canonical inclusion functor induces a weak equivalence

K(R)—— K'(R),

provided that R is left regular in the sense that every object in .4k admits a
finite resolution by objects in Fg.

Proposition 2.1 Let S be a complete discrete valuation ring with residue field
ks and quotient field K and let R be an S-algebra. Assuming that, as a ring, R
is left regular, there is a canonical natural cofibration sequence of symmetric
spectra

J

K'(R ®s ks) —— K(R) K(R®s K)—" SK'(R ®s ks).

The terms in the sequence have canonical natural K (S)-module structures
and the maps in the sequences respect these structures.

Proof We first introduce some notation. Let .# be an abelian category, let &2
be an extension-closed full additive subcategory of .#, and let 57 and .7 be
two Serre subcategories of .Z . Let & N & be the set of exact sequences in the
exact category structure on & defined above. We define Ch? (2, 5, 7) tobe
the following exact category with weak equivalences: The underlying category
has objects the bounded chain complexes in &7 whose associated homology
objects, calculated in .#, are in the Serre subcategory .7, and has morphisms
all chain maps; the exact sequences in this category are the sequences of
complexes that degree-wise are in & N &; and the weak equivalences are the
morphisms that, modulo the Serre subcategory .7, induce isomorphisms of
homology objects. If .7 is the Serre subcategory of zero objects in .#, then
we write Chb(@, ) instead of Chb(@, H,.T).

We now let .7 be the Serre subcategory of .#k whose objects are the
finitely generated left R-modules annihilated by extension of scalars along
f: S — K and consider the diagram of K-theory symmetric spectra

K(Ch*(Px. Tr)) -+ K(Ch(Px, Tx. Ti))

L I

K(Ch?(Pg, .z)) - K (ChP(Pg, Mr. Tr))
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with all maps induced by the respective canonical inclusion functors. It follows
from Waldhausen’s fibration theorem [37, Theorem 1.6.4] that the diagram is
homotopy cartesian. Moreover, by the 2-functoriality of the K -theory construc-
tion, the unique natural transformation from the identity functor to a constant
functor with value a zero object defines a homotopy from the identity map
of the upper right-hand term to the constant map. Indeed, this natural trans-
formation is exact. This homotopy, in turn, determines a homotopy from the
composite map J o I to the constant map, and the combined data determines
a cofibration sequence in the homotopy category of symmetric spectra. We
proceed to identify the terms and maps in this cofibration sequence with the
ones in the cofibration sequence in the statement.

We use Waldhausen’s approximation theorem [37, Theorem 1.6.7], but for
our purposes, the formulation in [36, Theorem 1.9.8] is more convenient. The
theorem states that the map of K -theory symmetric spectra induced by an exact
functor F is a weak equivalence, if a list of hypotheses are satisfied. In our sit-
uation, the only hypothesis that is not automatically satisfied is loc. cit. 1.9.7.1,
which is the requirement that, for every object B in the target of F', there exists
an object A in the domain of F and a weak equivalence f: F(A) — B inthe
target of F.

Now, the left-hand vertical map / fits in the diagram

K (Ch’(Pg, TR)) —— K(ChP(Pg, MR)) —— K (Ch* (P, MR))

J

K (ChP (g, Tr)) — K(Ch (R, MR)) «——— K (ChP(Pg, MR))

K (Ch?( Tk, Tr)) —— K(ChP (g, MR)) +—— K (Ch® (PR, R))

Fy TF() TFO

K (%) K (AR) K(Zg)

i*

K (Mrers) ——— K (My) K(PR).

where the unmarked maps are induced by the respective canonical inclusion
functors. The top vertical maps and the second and third right-hand horizontal
maps are weak equivalences by op. cit. Theorem 1.9.8, and the vertical maps
labelled Fy are weak equivalences by op. cit. Theorem 1.11.7. The second
left-hand vertical map also is a weak equivalence by op. cit. Theorem 1.9.8,
the hypothesis 1.9.7.1 being satisfied by [20, Lemma 1.5.3]. Finally, the lower
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left-hand vertical map is a weak equivalence by Quillen’s devissage theorem
[33, Theorem 4].

Similarly, the lower horizontal map J in the diagram above fits in the dia-
gram

K (Ch(Pg, MR)) —— K (Ch(Pg. M. T)) —— K(Ch*(Prask. Mrosk))

I .* I

K(ZR) : K(ZRresk)

with the vertical maps induced by the exact functor that to a module M assigns
the complex Fy(M) whose degree n term is M, if n = 0, and a zero object 0,
otherwise. The upper right-hand horizontal map is induced by the exact functor
given by degree-wise extension of scalars along f: S — K, and it is a weak
equivalence, since this functor satisfies the hypotheses op. cit. Theorem 1.9.8.
The vertical maps also are weak equivalences by op. cit. Theorem 1.11.7. O

We will prove an analogue of Proposition 2.1 for topological cyclic homol-
ogy, and begin by recalling the definition following [12]. We denote by T the
circle group of complex numbers of modulus 1 under multiplication.

For (¢, &, #') an exact category with weak equivalences, the Bokstedt-
Dennis trace map is a natural morphism of symmetric spectra with left T-action

K(E,& W) " THH(E, &, W)

from the K-theory symmetric spectrum with trivial left T-action to the topo-
logical Hochschild spectrum, the definition and properties of which we now
briefly discuss. The topological Hochschild construction assigns to an addi-
tive category ¢ the left T-space THH(%") defined to be the realization of the
cyclic space THH(%)[—] given in [12, Definition 1.3.6]. The left T-action is
a consequence of Connes’ theory of cyclic objects [10], which also identifies
the canonical inclusion of the subspace of points fixed by the left T-action
with a T-equivariant map

ob(¢) —X— THH(¥)

from the set of objects in € considered as a discrete space with trivial left T-
action. The topological Hochschild symmetric spectrum of an exact category
with weak equivalences (%, &, #') and the Bokstedt-Dennis trace map is
defined by incorporating Waldhausen’s S-construction as follows. If [ is a
small category, then we define (¢, &, #')! to be the exact category with the
category ¢! of I-diagrams in € as underlying category; with the sequences in
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€' that, objectwise, are in & as the exact sequences; and with the morphisms
in ¢! that, objectwise, are in # as the weak equivalences. We also fix the
fully faithful functor

i: A — Cat

that to a non-empty finite ordinal [n] assigns the category i ([n]) with object
set [n] and with a unique morphism from s to ¢ if and only if s < ¢, and
that to an order-preserving map 6: [m] — [n] assigns the unique functor
i(@): i(Im]) — i([n]) with the map 0 as the underlying map of object sets.
With these preparations in hand, we let

NY(€. &, M)-1 C (€. 6, 9) D
be the sub-simplicial exact category with weak equivalences, whose underlying
simplicial category is the full sub-simplicial category of ¢” (=D with simplicial
set of objects given by ob(#/!=D). Again, the subspace
| THH(NY (S" (€Y, ENEY, W N€™)))| C |THHWNY(S" (€, &, #)))]

is T-equivariantly contractible, and the rth space in the symmetric spectrum
with left T-action THH(%', &, #') is defined to be the quotient pointed left
T-space. Here, the topological Hochschild construction is applied degreewise
to the (r + 1)-simplicial additive categories in question. The structure maps

r.s

THH(E, &, #), A S° 25 THH(E, &, W )ris

are defined analogously to those in the K-theory symmetric spectrum.
We next recall the classical definition of the Frobenius maps

THH(%, &, %) —— THH(E, &, W)

following [31, Section ITL.5].! We define maps of symmetric spectra with left
T-action

THH(Y, &, #) +— ps THH(Z, &, #)*C» = p» THH(Y, &, #)Cr,

where C;, C T is the subgroup of prime order p, and where T acts on the
middle and right-hand terms via the pth root isomorphism p,: T — T/C),.

1 Recently, a fully homotopy invariant definition based on the Tate diagonal of [31, Section I1I.1]
was given by Nikolaus [30].
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The left-hand map will be an equivalence, and hence, we may compose an
inverse of r, with the map s, to obtain the Frobenius map ¢, well-defined
up to contractible choice, in the infinity-category Sp? T of spectra with left
T-action. The topological Hochschild construction [12, Section 1.3.6] gives,
more generally, a functor THH(%', &, #'; —) from pointed spaces to symmet-
ric spectra with left T-action, whose value at 50 agrees with THH(%, &, #).
In order to define the geometric fixed point spectrum and the Tate spectrum,
we fix the infinite dimensional complex T-representation

%= P Cu,

keZ,ieN

where z € T acts on Cy; by multiplication by z*. We will write V C %
to indicate that V is a finite dimensional complex sub-T-representation of
% . Now, the pointed space THH(%, &, #; SV), has two left T-actions, one
coming from the cyclic structure and one induced by the left T-action on SV .
If we give it the diagonal T-action, then

(THH(Z, &, #)%Cr), = hocolim (THH(Z, &, #; S¥)<")
veu,ver=0

is the rth space of the geometric fixed point spectrum. Similarly,

(THH(Z, &, #)'Cr), = hocolim (THH(%, &, #; SV)I7)
Ve, ver=0

is the rth space of the Tate spectrum, and the map s, is induced by the canonical
map from fixed points to homotopy fixed points. The map r, in turn, is the
map from the first homotopy colimit induced by T-equivariant maps

p5(THH(E, &, 9 SV);") —— THH(%, &, #'; §9),

that exist in the Bokstedt model of topological Hochschild homology and are
given by restricting a C-equivariant map to the induced map of C)-fixed
points. It is an equivalence by [31, Theorem I11.4.7].

In general, one uses the Frobenius maps to define a number of spectra
associated with a cyclotomic spectrum X. If p is a prime number and s > 1
an integer, then the Tate orbit lemma, [31, Lemma 1.2.1], implies that the
canonical map

Xths (Xtcp)h(cps/cp)
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is an equivalence. Hence, by precomposing the inverse equivalence with the
map of homotopy C ,s-1-fixed points induced by ¢,: X — X' Cr, we obtain a
map

Xth»Yfl XthS
and define
TR"(X; p) =X X y1C, xhCr X y1Cp2 xher X ytCp3 = o+ X ytCpn- xher! ,

where X"Cr*~! — X'Cr* are the maps just defined, whereas X'Cr* « X"C»*
are the canonical maps. Moreover, the restriction and Frobenius maps

R
TR (X; p) HT TR"~'(X; p)

are defined to be the projection onto the first n — 1 factors and the composition
of the projection onto the last n — 1 factors and the map induced by the forgetful
map X"C» — X, respectively. Since the fiber of the restriction map agrees with
the fiber of the canonical map X"¢»"~' — X'C»"~' we get the “fundamental”
cofibration sequence

Xnept —— TR™(X; p) —— TR (X; p).

Finally, we define TC" (X; p) to be the homotopy equalizer of these two maps
and define TC(X; p) to be their homotopy limit as n > 1 varies. It is proved
in [31, Theorem I1.4.10] that if X is p-complete, then the spectrum TC(X; p)
agrees canonically with the spectrum TC(X) considered in the introduction.

If X is the cyclotomic spectrum THH(%', &, #), then the Bokstedt-Dennis
trace map lifts to a map of spectra called the cyclotomic trace map

K(€, 6, W) —"=TC(E,EW).
It is not clear from the definition that topological cyclic homology should be
easier to understand than K -theory. We now explain why this is often the case.

As for K-theory, the additivity theorem [12, Proposition 2.0.4] implies that
the adjunct structure maps

THH(G, &, W), —2* Q5 (THH(E, &, W)y 1s)

are weak equivalences, for all integers r > 1 and s > 0. However, by contrast
with K -theory, these maps are also weak equivalences, forr = Oand s > 0, if
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& is equal to the set of split-exact sequences in 6’; see [12, Proposition 2.1.3].
Moreover, the inclusion of the 0-skeleton in N¥ (%', &, #') induces a weak
equivalence

THH(%) —— THH(%, &, # )o,

if # is equal to the subcategory of isomorphisms in &

Now let A be a unital associative ring. By abuse of notation, we write A also
for the additive category with a single object ¥ whose ring of endomorphisms is
A. There is an additive functori: A — 24 that to the unique object ¢ assigns
A considered as a left A-module under multiplication and thatto a € End 4 (9)
assigns the A-linear map i(a) € End», (i(¥)) given by right multiplication
by a. The induced map

THH(A) 22, THH(22,)

is a weak equivalence by [12, Proposition 2.1.5]. The domain of this map
is Bokstedt’s original topological Hochschild space of the ring A, whose
homotopy groups often are amenable to calculation. Hence, we conclude that
Bokstedt’s topological Hochschild homology groups and the homotopy groups
of the topological Hochschild spectrum of the category &4 equipped with its
canonical structure of exact category with weak equivalences agree, up to
canonical natural isomorphism. We will abuse notation and write THH(A)
also for the latter spectrum, and we write TR” (A; p), TC"(A; p), etc. for the
associated spectra defined above. The homotopy groups THH, (A), however,
are well-defined, up to canonical natural isomorphism.

We are now in a position to state and prove the analogue of Proposition 2.1
for topological Hochschild homology and its variants.

Proposition 2.2 Let S be a complete discrete valuation ring with residue field
ks and quotient field K and let R be an S-algebra. Assuming that, as a ring, R
is left regular, there is a canonical natural cofibration sequence of cyclotomic
spectra

THH'(R ®s ks) — s THH(R) ——s THH(R | R ®5 K) —°— ¥ THH'(R ®s ks),

where the left-hand term and right-hand term denote the topological
Hochschild spectra of Mrggks and Ch?(Pr, My, Tr), respectively. The
terms in the sequence have canonical THH(S)-module structures and the
morphisms in the sequence are THH(S)-linear.

Proof We repeat the proof of Proposition 2.1 mutatis mutandis. The ana-
logues of Waldhausen’s fibration theorem and Quillen’s dévissage theorem
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hold and are proved in [20, Theorem 1.3.11] and [11, Theorem 1], respec-
tively. However, the analogue of Waldhausen’s approximation theorem, which
is proved in [12, Proposition 2.3.2], requires a stronger hypothesis to be sat-
isfied. In the situation at hand, it follows from [20, Lemma 1.5.3] and [8,
Chapter XVII, Proposition 1.2] that the hypothesis is satisfied in all cases,
with the exception that THH(R | R ®s K) cannot be identified with THH
(R ®s K). O

Addendum 2.3 Let S be a complete discrete valuation ring with residue field
ks and quotient field K and let R be an S-algebra. Assuming that, as a ring,
R is left regular, there is a commutative diagram of spectra

K'(R ®s ks) —=— K(R) —— K(R| R ®s K) —>— SK'(R ®s ks)

A

TC/(R ®s ks) —*— TC(R) —— TC(R | R ®5 K) —— £ TC'(R ®s ks)

in which the rows are cofibration sequences.

Proof The two sequences in the statement are obtained by applying respec-
tively the K-theory functor and the topological cyclic homology functor to
the same sequence of pointed exact categories with weak equivalences, so
the diagram commutes by the naturality of the cyclotomic trace map. The
sequences are cofibration sequences by Proposition 2.1 and Proposition 2.2,
respectively. O

Remark 2.4 1f the ring R ®g kg is artinian and if its quotient (R ®g ks)/J by
the radical is regular, then the morphisms

K(R®sks)/J) —— K'((R®s ks)/J) — K'(R ®s ks)
induced by the canonical inclusion functor and by the restriction-of-scalars
functor are weak equivalences by [33, Corollary 2 of Theorem 3] and [33,

Theorem 4]. The analogous statements for topological Hochschild homology
and its variants hold by [11, Theorem 2] and [11, Theorem 1].

Theorem 2.5 With notation as in the introduction, the cyclotomic trace map
induces isomorphisms of p-adic homotopy groups in degrees j > 1,

K;(D,Z,) 5 TC;(A|D,Zp).
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Proof The ring A ®g kg is artinian and its quotient k7 by the radical is reg-
ular. Hence, by Remark 2.4, Addendum 2.3 gives a commutative diagram of
symmetric spectra

Kkr) —" S K(A) —  K(A|D)— s N K (k)

T

TC(k7; p) — TC(A; p) ——— TC(A | D: p) —— £ TC(kz: p)

in which the rows are cofibration sequences. By [19, Theorem D], the first
and second vertical morphisms from the left induce isomorphisms of p-adic
homotopy groups in non-negative degrees, so the theorem follows from the
five-lemma. O

3 Galois descent for topological cyclic homology

In this section, we prove a rather general étale descent result for topolog-
ical cyclic homology. The following result is well-known for commutative
algebras.

Proposition 3.1 Let S be a commutative ring, let f: S — T be an étale
morphism of commutative rings, and let A be any unital associative S-algebra,
not necessarily commutative. In this case, the map induced by extension of
scalars along f: S — T,

THH;(A) ®s T —— THH; (A ®gs T),

is an isomorphism, for all integers j.

Proof To fix notation, given a commutative ring S, a unital associative S-
algebra R, and an S-symmetric R-R-bimodule M, one has the Hochschild
homology S-modules HH;(R/S; M). We abbreviate and write HH;(R/S)
instead of HH;(R/S; M), if M is R considered as an S-symmetric R-R-
bimodule via left and right multiplication. We also abbreviate and write
HH;(R; M) instead of HH;(R/Z; M). If the S-algebra R is commutative,
then an R-module N determines and is determined by a unique R-symmetric
R-R-bimodule N with underlying R-module N. In this situation, we abuse
notation and write HH; (R/S; N) instead of HH; (R/S; N).
We recall from [15, Theorem 0.1] that, for all integers j, the map

HH; (S) ®s T — HH;(T)
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induced by extension of scalars along f: § — T is an isomorphism. More
generally, for every S-module N, the map induced by extension of scalars
along f: S —> T,
HH;(S; N) ®s T ——HH;(T; N ®s T),
is an isomorphism, for all integers j. Indeed, by choosing a simplicial resolu-
tion of the S-module N by free S-modules, we are reduced to the case N = S.
We conclude from [25, Theorem 3.1] that, similarly, the 7'-linear map
THH;(S; N) ®s T —— THH;(T; N ®s T)
induced by extension of scalars along f: S — T is an isomorphism, for all

integers j. It also follows from loc. cit. that there is a spectral sequence of
S-modules

E?} = HH;(A/S; THH;(S; A)) = THH;  ; (A),

where the S-symmetric A-A-bimodule structure on THH; (S; A) is induced
from left and right multiplication by A on itself. We now extend scalars along
the flat morphism f: S — T to obtain a spectral sequence of 7T-modules

Ei%j = HH;(A/S; THH;(S; A)) ®s T = THH; 1 j (A) Qs T,
which we compare to the spectral sequence of 7-modules
E}; =HH;(A®s T/T: THH;(T: A®s T)) = THH; ;(A ®s T),

which also is an instance of loc. cit. The map in the statement induces a map of
spectral sequences which, on E2-terms, is the composition of the isomorphism

HH; (A/S; THH;(S; A)) s T —— HH;(A®s T/T; THH;(S; A) ®s T)
obtained by applying the exact functor — ® s T degreewise in the Hochschild

complex and the isomorphism obtained by applying HH; (A ®s T/T; —) to
the isomorphism

THH;(S; A) ®s T —— THH;(T; A®s T)

of T-symmetric A ®s T-A ®s T-bimodules. This completes the proof. O

@ Springer



308 L. Hesselholt et al.

Addendum 3.2 Let S be a commutative ring, let f: S — T be an étale
morphism of commutative rings, and let A be any unital associative S-algebra,
not necessarily commutative. In this case, the map induced by extension of
scalars along f: S — T,

TR’ (A; p) ®w,(s) Wa(T) —— TR}(A @5 T p),

is an isomorphism, for all prime numbers p and integersn > 1 and j.

Proof The proof is by induction on n > 1 with the case n = 1 being already
proved in Proposition 3.1. To prove the induction step, we use the following
diagram

d d
JTj(THH(A)hcpn—1) Ow,(s) Wn(T) — 7j(THH(A Qg T)hcpn—l)
N N

TR’ (A; p) ®w,(5) Wn(T) ————— TRI(A®s T p)

R R

TR~ (A; p) ®w,5) Wa(T) ——— TRY" (A ®s T; p)
I [

The right-hand column is the long exact sequence of homotopy groups
induced by the “fundamental” cofibration sequence for the cyclotomic spec-
trum THH(A ®g T). It is a sequence of W,(T)-modules, by the argument
in [19, pp. 71-72]. The left-hand column is obtained from the corresponding
sequence for THH(A) by extension of scalars along W,, () : W, (S) — W, (T)
and it is exact, since the ring homomorphism W, (f): W,(S) — W, (T)
again is étale and hence flat by [4, Theorem B]. Moreover, the bottom groups
TR’}_I(A; p) and TR?_I(A ®s T; p) are considered a W,,(S)-module and
a W, (T)-module, respectively, via the respective restriction maps. There-
fore, by [5, Corollary 15.4], the bottom horizontal map agrees with the
map

TR (A; p) ®w, (5) Wt (T) — TR} (A @5 T; p)

that we inductively assume to be an isomorphism. Hence, it will suffice
to show that the top horizontal map is an isomorphism. The argument in
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[19, pp. 71-72] also shows that there is a natural spectral sequence of W, (S)-
modules

E}; = Hi(Cpr—t, (F"")4(THH;(A))) = ;4 j(THH(A)jc 1)

from the group homology of C,»-1 with coefficients in the W, (S)-module
obtained from the S-module THH;(A) by restriction of scalars along
F" 1. W,(S) — S. By cobase-change along the flat ring homomorphism
W, (f): W, (S) — W,(T), this gives a spectral sequence of W, (T)-modules
converging to the domain of the top horizontal map in the diagram above.
The target of this map, in turn, is the abutment of the spectral sequence of
W, (T')-modules

E} ;=H;(Cpr-1, (F"1),(THH, (A ®s T))) === m; j(THH(A ®5 T)jc 1),

and the map in question induces a map from the former spectral sequence to
the latter which, on E2-terms, is the W,,(T)-linear map

(F"~1)«(THH; (A)) ®w,(s) Wa(T) — (F"~1)«(THH; (A ®5 T))

induced by extension of scalars along f: § — T. But [5, Corollary 15.4]
shows that

n—1
Wa(S) ———§

an(f) lf
n—1

w(T) - 7T

is a cocartesian diagram of commutative rings, so Proposition 3.1 implies that
the this map is an isomorphism. This completes the proof. O

A Galois extension of commutative rings is a pair (f, p) of a faithfully
étale ring homomorphism f: § — T and a left action p: G — Autg(T)
by a finite group G on T through S-algebra isomorphisms such that the ring
homomorphism

T®sT " lyesT

defined by h(f; ® 1) = (g(f1)f2)gec 18 an isomorphism. This notion is a
special case of the general notion of a torsor in a topos [16, Chapitre III,
Définition 1.4.1].
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Corollary 3.3 Suppose that (f: S — T,p: G — Autg(T)) is a Galois
extension of commutative rings and that A is a unital associative S-algebra,
not necessarily commutative. For all prime numbers p and integersn > 1 and
j, the Wy (S)-linear map induced by extension of scalars along f: S — T,

TR'(A: p) —— HO(G. TR'(A ®5 T p)),

is an isomorphism and the W, (S)-modules H (G, TR’; (A®sT; p))withi > 0
vanish. '

Proof Let p be a prime number and let n be a positive integer. We claim that

W, W, 0
(Wn(S) Wy W, (T), G —% Autyy, (s)(Wy(T)))

is a Galois extension of commutative rings. The ring homomorphism W, (f)
is étale, by [4, Theorem B], and faithful, by op. cit., Proposition 6.9, and we
now consider the commutative diagram

Wi (T) @w,(s) Wa(T) — [1geq WalT)

l W (h) T

Wi (T @5 T) ———— Wn([lgec T)

in which the vertical maps are the canonical maps. It is proved in op. cit.,
Corollary 9.4, that the left-hand vertical map is an isomorphism, and it follows
immediately from the definition of Witt vectors that the right-hand vertical
map is an isomorphism. Finally, by assumption, the lower horizontal map is
an isomorphism, and hence, the top horizontal map is an isomorphism, as
desired.

Finally, we abbreviate M = TR"(A; p), k = W, (S),and R = W, (T), and
consider the augmented cosimplicial k-module

M L M Q4 R ®xl=1

Since k — R is faithfully flat, this map is a weak equivalence, by faithfully flat
descent for modules. We also consider the augmented simplicial k[ G ]-module

k[G] ®k[-] Qi N L) N,

@ Springer



K -theory of division algebras 311

which is a weak equivalence for every k[G]-module N. Now, since k — R is
Galois with group G, we have an isomorphism of cosimplicial k-modules

M ®; R —— Homy gy (k[G]®~), M @ R).
Hence, we conclude that there is a canonical isomorphism
M —- RHomk[G](k, M ®i R),

in the derived category of k-modules. This proves the corollary. O

4 Reduced trace isomorphisms

We now prove the first part of Theorem B, which is equivalent to the
statement that there exists an element y € TCy(A| D, Z,) whose image
vi € THHo(A|D,Z,) freely generates THH.(A|D, Z,) as a graded
THH, (S | K, Zp)-module.

Lemma 4.1 Let w € A be a non-zero element. Conjugation by m in D defines
an automorphism a: A — A and the endomorphism of the cyclotomic spec-
trum

THH(A | D) = THH(Ch? (24, M a, T4))

induced by extension of scalars along « is homotopic to the identity.

Proof Since vp(mrxm~') = vp(x), conjugation by 7 in D restricts to an
automorphism « of A, as stated. Extension of scalars along o defines an exact
functor

Chb(Pu, Ma, Ty) <, Ch( Py, M, Th)

and left multiplication by 7 defines a natural transformation /: o* = id.
Indeed, if P is in &4, then a™(P) = A ®4 P, where A is considered as a
right A-module via o, and the map hp: A ®4 P — P, whichmaps 1 ® x to
mx is A-linear, since

1

hp(a®x)=hp(1 ®7(—1arrx) =nan anx =anx =ahp(x).

Since w € A is a non-zero-divisor, the natural transformation % : o™ = id is

exact, and therefore, induces a homotopy through maps of cyclotomic spectra
from the map induced by o* to the identity map. O
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Addendum 4.2 The endomorphism of THH(A ®s T | D ®k L) induced by
extension of scalars along o ® id is homotopic to the identity, as a map of
cyclotomic spectra.

Proof The proof is entirely analogous to the proof of Lemma 4.1. That the
natural transformation 4 : (o ® id)* = id is exact again uses that 7 ® 1 is a
non-zero-divisor in the regular ring A ®g 7. O

In particular, conjugation in D by our chosen generator 71p € mp C A
defines an automorphism o : A — A. Moreover, since g € K is central, we
see thatthe actionof G = Gal(L/K) on T /S extends to an actionon A/S. This,
in turn, induces an action of G on the cyclotomic spectrum THH(A | D), and
by Lemma 4.1, the action by the generator o € G is homotopic to the identity
map. It follows that G acts trivially on the homotopy groups THH..(A | D),

TR2(A | D; p), TC4(A | D), etc.?

Theorem 4.3 Foralln > 1, the graded TR} (S | K; p)-module TR} (A | D; p)
is free of rank one on a canonical generator y, of degree zero.

Proof We consider the diagram of exact functors

f*
Chb(ﬁA, //A, <7A) —_— Chb(gZA®5T7 ///A®5T» 9A®5T)
TrdA@gT/TlTIFdAcasT/T
f*
Ch*(Ps, Ms, Ts) ———— Ch’(Pr, M1, Tr),
that we defined in the introduction. The group G acts on A and T, and we let
it act diagonally on A ®g T and trivially on S. With respect to these actions,
all functors in the diagram are G-equivariant, and hence, we obtain the fol-

lowing induced diagram of THH(S | K')-modules in cyclotomic spectra with
G-action,

THH(A | D) — THH(A ®5 T | D ® L)

TrdA®ST/TJ/TIrdA®ST/T
THH(S | K) — ' THH(T | L).
In this diagram, the right-hand vertical maps both are equivalences, since the

counit and the unit of the adjunction (Trdpgg7/7, IrdagT/ T, €, 17) both are
exact. While the G-action on the botton left-hand term is trivial, this is generally

2 By contrast, we show in Corollary 5.8 below that if p divides d, then the G-action on the
cyclotomic spectrum THH(A | D) is non-trivial.
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not true for the upper left-hand term. However, by Lemma 4.1, the action is
trivial on homotopy groups, so we obtain the following induced diagram of
graded TR/ (S| K; p)-modules,

TRI(A|D; p) ——— H(G, TR"(A®s T | D ®k L; p))
TrdA®ST/TlTIrdA®ST/T
f*

TR(S|K; p) —————— HY(G, TRIT | L; p)).

In this diagram, the horizontal maps are isomorphisms by Corollary 3.3, and the
vertical maps are isomorphisms by what was just said. Moreover, by Skolem—
Noether, all K-algebra homomorphisms L — D are conjugate in D, and
therefore, it follows from Addendum 4.2 that the vertical maps are indepen-
dent of the choice of maximal unramified subfield L C D. Hence, we obtain
canonical inverse isomorphisms

Trdays
TRL(A|D; p) = TRL(S|K; p)
Irdays

given by the maps making the respective square diagrams commute. Equiva-
lently, the graded TR (S | K'; p)-module TR (A | D; p) is free on the single
canonical generator y, = Ird4/s(1) € TR{j(A | D; p), as stated. m|

Next, we wish to prove the analogous result for the p-adic homotopy groups.
In general, the p-adic homotopy groups of a spectrum X are defined to the
homotopy groups of its p-completion, and by [7, Proposition 2.5] there is an
exact sequence

0 — ExtL(Q,/Zp, 7;(X)) — 7;(X, Z,) — Homz(Q,/Z,, wj—1(X)) — 0

that relates the homotopy groups of X and the p-adic homotopy groups of X.

Definition 4.4 An abelian group M is p-controlled if it is a direct sum of a
uniquely divisible Mg;y and a group Mo annihilated by some power of p.

Lemma 4.5 If M and N are p-controlled, then every extension of N by M
and the kernel and cokernel of every homomorphism M — N are also p-
controlled. If M is p-controlled, then Homyz (M, Z,) and Homyz(Q,/Z,, M)
both vanish.

Proof The only statement that needs proof is that the full subcategory of the
abelian category of abelian groups is closed under extensions. So we let

0 M P N 0
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be an exact sequence of abelian groups, where M and N are p-controlled,
and wish to show that P is p-controlled. As uniquely divisible groups are
Z-injective, P is isomorphic to Mgiy & P /Mgiy, so replacing M and P by My,
and P /Mgy, respectively, we assume that M = M. Let P and PV pe
the inverse images of Ny, and Ngjy in P, respectively. It suffices to prove that
P and PV are p-controlled, so we may reduce to the two cases N = Nior
and N = Ngiy. The first is trivial, and for the second, it suffices to prove that
ExtIZ(N , M) = 0. But this is clear, since this group is both p-divisible and
killed by a power of p. O

Proposition 4.6 The group TR” (S| K; p) is p-controlled, for alln > 1 and
j =L

Proof The groups TR” (ks; p) are finite p-groups for all integersn > 1 and j.
Hence, by Proposmon 2.2 and Lemma 4.5, it suffices to show that TR” S; p)
is p-controlled, for alln > 1 and j > 1. If S is of equal characterlstlc then
the groups TR’}(S ; p) are annihilated by p”. So we assume that S is of mixed
characteristic and proceed by induction on n > 1. In the case n = 1, we use
the spectral sequence

E}; = HH;(S/Z,, THH;(Z)) ®z, S) = THH;;(S)
from [25, Corollary 3.3]. If j > 1, then THH;(Z)) is p-controlled, by The-
orem 2.2 and Example 3.4 of [24], and hence so are the groups E , since
HH;(S/Z,, M) is M, for i = 0, and is annihilated by a fixed power of p,
for i > 0. This also shows that E2O is p-controlled, for i > 0. Therefore,

Lemma 4.5 and the spectral sequence shows that THH; (S) is p-controlled.
To prove the induction step, we use the “fundamental” cofibration

THH(S)hcpn1 — TR(S; p) —— TR"71(S; p)
and the spectral sequence
E}; = Hi(Cp—1, THH;(S)) = ;1 j(THH(S)pc 1)

By the case n = 1, we conclude that E2 i is p-controlled, ifi > Oor j > 0, and
hence, Lemma 4.5 shows that 7; (THH(S)hc 1—1) is p-controlled, for j > 0.
The induction step now follows from Lemma 4.5, since the boundary map

TRflz—l (S, p) L j'[o(THH(S)th"fl )

is zero for every commutative ring. m|
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Addendum 4.7 The graded TR(S | K; p, Z,)-module TR, (A | D; p, Z,) is
free of rank one with canonical generator y, € TRi(A|D; p, Z)), for all
n>1.

Proof 1f § is of equal characteristic, then TR"(S | K; p) and TR"*(A | D; p)
are already p-complete, so there is nothing further to prove. If S is of mixed
characteristic, then by Proposition 4.6 and Lemma 4.5, the horizontal maps in
the diagram

Exty,(Qp/Zp, TRY(A| D; p)) —— TRY(A| D; p, Zp))

TrdA/SJ/ TITdA/S TrdA/SJ TIrdA/S

Ext},(Q,/Z,, TRE(S | K; p)) —— TRY(S| K p, Zp))

of graded TR (S | K; p, Zj,)-modules are isomorphisms, and we define the
right-hand vertical maps to be the unique maps that make the respective
square diagrams commute. Finally, by Theorem 4.3, the left-hand vertical maps
are mutally inverse isomorphisms, and hence, so are the right-hand vertical
maps. O

Lemma 4.8 Forall j > 1, the limit systems

o B TRY(S: p.Zy) — - — 5 TRA(S: p, Zp) —— TRE(S: p. Zp)

...LTRY;(S; P, Zp) _F.o . _F TRi(S;p,Z,,) LI TR}(S; D, Lp)

both satisfy the Mittag—Leffler condition.

Proof If S is of mixed characteristic, then the groups TR’}(S; P, L) with
j = 1 are all finite p-groups. Indeed, the case n = 1 is proved in [26],
and the general case follows by an inductive argument similar to the proof of
Proposition 4.6 above. In particular, the limit systems satisfy the Mittag—Leffler
condition. If S is of equal characteristic, then it follows from [17, Theorem B]
that the canonical map

Wu 825 ® TRL(Fp; p) —— TRE(S; p)
is an isomorphism. Indeed, the ring S = kg[[#]] is a regular kg-algebra, and
hence, is a filtered colimit of smooth kg-algebras by [32]. Moreover, by Bokst-
edt periodicity, we have TR (F,; p) = Z/p" [x,], where x,, has degree 2 and

may be chosen such that R(x,) = px,—1 and F(x,) = x,_1. The structure
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of the de Rham—Witt groups was determined in [14, Theorem B]. It shows in
particular that

im(lim,,, g TR (S; p) L TR (S: p)) = im(TRﬁ"(S; p) = TR'(S: p)).
im(lim,, 7 TR (S; p) S TR (S: p)) = im(TRﬁ”(S; p) TR’ (S: p)),

whence the lemma. O

Theorem 4.9 The graded TR« (S| K; p, Zp)-module TR (A | D; p,Zp) is
free on a canonical generator y. The graded TF.(S|K; p, Z,)-module
TF.(A | D; p, Z)) is free on a canonical generator y.

Proof We prove the second statement; the first statement is proved analo-
gously. By Theorem 4.3, the graded TR, (S | K'; p, Z})-module TR (A | D; p,
Zp) is free on the canonical generator y, = Ird4/s(1) € TRG(A | D; p, Zp).
Moreover, we have

F(yn) = F(rdg s(1)) =1Irdas(F (1)) =Irdg/s(1) = yp—1.

Indeed, the second identity holds, since the maps

THH(A | D) —.— THH(A ®5 T | D ®x L)

TrdA®ST/TJ/TIrdA®ST/T
£

THH(S | K) ——— THH(T | L).

that we used to define the isomorphism Ird 4 /s are maps of cyclotomic spectra,
and the third identity holds, since F is a ring homomorphism. Finally, we claim
that the canonical maps

TFj(A | D; p, Zp) — lim, r TRY(A | D; p, Z,),

TF;(S | K; p, Zp) —— lim, TR’}.(S |K; p,Zp)

are isomorphisms, or equivalently, that the corresponding derived limits vanish.
Inthecase j > 1,thisfollows from Lemma4.8, and inthe case j = 0, itfollows
from the fact that TR{(S | K; p, Z,) = W,(S) admits a compact topology
with respect to which the map F is continuous. So the theorem follows with
y € TFo(A | D; p, Z,) the unique class with image y, € TR{(A | D; p, Zp)
foralln > 1. O
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Proof of Theorem B (1) We recall that for a cyclotomic spectrum X, its topo-
logical cyclic homology is equivalently given as the homotopy equalizer

1

. s
TC(X; p) —— TF(X; p) —_ TF(X; p),

id

1

where the inverse Frobenius ¢ =" is defined to be the composition

holim,,_r TR™(X; p) —2 holim,_r TR"*1(X; p) —=— holim,_y TR"(X; p)

of the restriction along the successor functor followed by the map of limits
induced by the restriction maps. Hence, in the induced diagram

-1
. @

TCo(X; p) —— TFo(X; p) %T TFo(X; p),
1

the map i surjects onto the equalizer of maps ¢~ and id. Now, if X is the cyclo-

tomic spectrum THH(A | D, Z,), then the element y € TFy(A | D; p, Z,)
satisfies ¢ 1(y) = y, because R(y,) = y,—i. Hence, there exists y €
TCyo(A| D ,Zp) such that i(y) = y. The class y defines a component in
the mapping space

MapMOdTHH(S\K,Zp)(CyCSpp)(THH(S |K,Zp), THH(A | D, Z)))
~ MaprCspp (Sp, THH(A | D, Z))) ~ 2 TC(A| D, Z,),
and every point in this component induces the isomorphism

Irda/s
THH,(S | K. Z,) S THH,(A | D, Z,)

on the level of homotopy groups. Indeed, the class y € TCy(A | D, Z,) maps
tothe class y; € THHo(A | D, Z ;) and Ird 4 /5 is given by multiplication by y;.
This shows that every point in the component y of the mapping space defines
an equivalence of THH(S | K, Z;)-modules in cyclotomic spectra,

Ird
THH(S | K, Z,) —4*THH(A | D, Z,),

whose inverse Trd4 /s therefore also is an equivalence of THH(S | K, Z)-
modules in cyclotomic spectra. This proves part (1) of the Theorem B. O
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5 Comparison with the trace map

The equivalence of cyclotomic spectra in Theorem B (1) shows, in particu-
lar, that the graded TC_ (S | K, Z},)-module TC_ (A | D, Z,) and the graded
TP.(S| K, Zp)-module TP, (A | D, Z,) both are free of rank one generated
by the image under

TC.(A|D,Z,) —TC;(A|D,Z TP.(A|D.Z,)

P)H

of the generator y € TCy(A | D, Z,). We first use results from [14] and [20]
to prove structural results about these groups.

Lemma 5.1 The Frobenius map
THH(S | K, Z,) —— THH(S | K, Z,)"C»

induces an equivalence of connective covers.

Proof 1f S is of mixed characteristic, then this is proved in [20, Theorem 5.4.3].
We therefore assume that S = kg[[7r] is of equal characteristic. Since the
Frobenius ¢: THH(ks) — THH (ks)'Cr induces an equivalence of (—1)-
connective covers, it suffices to show that the Frobenius ¢: THH(S) —
THH(S)'” induces an equivalence of connective covers. Now, by [17, Theo-
rem B] and [32], the canonical map

2% @ THH,(F,) —— THH,(S)

is an isomorphism. Since kg is perfect, §2§ is an exterior algebra over S on a
generator dm of degree 1, and THH, (FF,) is a polynomial algebra over IF,, on
a generator x of degree 2 by Bokstedt periodicity. Hence, in the Tate spectral
sequence

E}; = H™(C,, THH;(S)) = m;+;(THH(S)'‘7),
we have E2 = S ® Afu, dw} @ Fp[rt!, x] with deg(u) = (1, 0), deg(dn)
= (0, 1), deg(r) = (—2,0), and deg(x) = (0,2). The d?-differential is a
derivation, which is automatically S”-linear, and is given by d?(r) = td, so
the E3-term takes the form

E*=8"@ A{u, " Y} @ F,[r*!, x].
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The Frobenius ¢ maps the class a € S (resp. dm, resp. x) to the class repre-
sented in the spectral sequence by a? € S? (resp. by 7”~'dn, resp. by r~1),
which therefore is an infinite cycle. Moreover, comparing with the spectral
sequence for THH(IF,), we see that also x is an infinite cycle and that, up to
aunitin [F,

a3 (n) = 2x.
Hence, all further differentials in the spectral sequence are zero, and

E® =5"® AnP ldr} @ F,[rF].

In particular, the Frobenius ¢: THH(S) — THH(S)’ C» induces an isomor-
phism of homotopy groups in degrees j > 0, as desired. O

Corollary 5.2 The Frobenius map induces an equivalence of connective
covers

TF(S|K; p, Z,) ——TC (S| K, Zp).
Proof For every cyclotomic spectrum X, we have the canonical projection

n—1 Pln n—
TR"(X; p) = X X yrc, X" X yic,p -+ X yrcpt XMOPTH 1 X RO

and there are commutative diagrams

TR™(X; p) — s xhCpr-!

| |

pr,—
TR (X; p) —— xhCp=2

in which the horizontal maps are the canonical projections and the right-hand
vertical maps are the map induced by the subgroup inclusions C,»—2 C Cpr-1.
Hence, the canonical projections induce a map of homotopy limits

TF(X; p) = hOhmn,F TR™(X:; p) —— holim,, xhCpn—1 )
Moreover, if X is p-complete, then the map
hOlil’Iln thpn_l — XhT — TC* (X),
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induced by the subgroup inclusions C,»-1 C T is an equivalence, so we get a
map

TE(X; p) — TC~(X).

As pointed out in the proof of [22, Theorem 3], it is clear from this construction
that if the Frobenius ¢: X — X’Cr induces an isomorphism of homotopy
groups in degrees j > d, then so do the maps pr,, and map above. So by taking
X to be the p-complete cyclotomic spectrum THH(S | K, Z)), the corollary
follows from Lemma 5.1. O

Lemma 5.3 The canonical projectioni: S — ks induces an isomorphism
limn’F W, (S) — lim,LF W, (ks).

Proof Let mg C S be the maximal ideal. The injectivity and the surjectiv-
ity of the map in the statement are equivalent to the vanishing of the limit
lim, r Wy(mg) and the derived limit R! lim, r W,(mg) = 0, respectively.
We recall that the Witt vector Frobenius F: W, (S) — W, _1(S) satisfies
F(a) = R(a)? modulo W, _1(pS); see for example [18, Lemma 1.8]. It fol-
lows that F(W,(mY)) C Wn_l(m’gﬂ), for all m > 0, which shows that
the limit vanishes. The derived limit vanishes, since W, (mg) has a compact
topology for which F: W, (mgs) — W,_1(mg) is continuous. O

Since kg is perfect, we further identify the common ring in Lemma 5.3 with
the ring of Witt vectors W (k) via the isomorphism

lim, g Wy (ks) ——lim, g Wy (ks) = W(ks)

that atlevel n is given by the map W, (ks) — W, (ks) inducedby ¢" : ks — ks.
It is an isomorphism, since kg is perfect. In particular, the ring

TFo(S| K p, Zp) = lim, F W, (S)

is an integral domain.

Theorem 5.4 For every even integer j = 2k > 0, the map
TC; (S| K. Zp) "3 TP;(S| K, Z)p)
is an isomorphism.
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Proof It follows from Lemma 5.1 and the Tate orbit lemma [31, Lemma [.2.1]
that

TC; (S| K, Zy) —TP;(S| K, Z))

is an isomorphism, for j > 0. We evaluate the common group for j = 2k >
0, and consider the cases, where S is of equal characteristic and of mixed
characteristic, separately.

In the mixed characteristic case, the groups THH; (S | K, Z)) for j = 2k >
0 are zero by [20, Remark 2.4.2]. Hence, the homotopy fixed points spectral
sequence

E}; = H™'(BT, THH,(S | K. Z))) = TC, (S|K,Zp)

shows that the same is true for the groups TC;(S | K, Zp).

If § = kgl ] is of equal characteristic, then TP, (S | K) is a graded algebra
over the graded ring TP, (F,) = Z,,[vil], where deg(v) = —2, and hence, is
2-periodic. We have canonical isomorphisms

TPo(S | K) +=—TCy (S| K) +—— TFo(S | K; p) —— W (ks),

where the latter follows from Lemma 5.3. Under this identification, the
two maps ¢, can: TC;(S|K) — TPo(S|K) are given by the automor-
phisms of W (k) induced by ¢, id: ks — kg, respectively. Finally, the maps
¢,can: TC, (F,) — TPy(F,) are given by (p(v_l) = v~ ! and can(v™1)
= pv_l; see [31, Section IV.4]. Hence, we find that for j = 2k > 0, the maps

@, can

TC; (S| K) —— TP;(S| K)
are respectively an isomorphism and p* times an isomorphism, so for j =
2k > 0, their difference is an isomorphism, as stated. O

Proof of Theorem B (2) We consider the diagram of spectra

TF(A|D; p,Zy) — TC (A | D, Zp)

TII‘dA/S TII‘dA/S

TE(S | K; p, Zp) — TC (S| K, Zp),

where the vertical maps are induced by the equivalence of cyclotomic spectra
from part (1) of the theorem, and where the horizontal maps are the maps
defined in the proof of Corollary 5.2. The diagram commutes by naturality of
the horizontal maps, the vertical maps are equivalences, and, by Corollary 5.2,
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the horizontal maps induce equivalences of connective covers. The class y
=Irda;s(1) € TC, (A | D, Z)) defines a component in the mapping space

MaPytodrygys & 2, ep8 T (THHIS [ K, Z,), THH(A | D, Z,))

~ MapSpgT(SP, THH(A | D,Z,)) ~ 2°TC (A|D,Zp,)
and any point in this component is an equivalence. Now, let 14,5 be the map
induced by extension of scalars along the inclusion of S in A. It follows from
Remark 1.9 and from the construction of the class y that /4,5(1) = d - y. This
shows that

Iays =~ d-Irdays

as maps of THH(S | K, Zj)-modules in Spﬁ T We claim that this implies that
also

Trass =~ d-Trdass
as maps of THH(S | K, Z,)-modules in Spg T Indeed,
d-(Trassolrdass) =~ Trasso(d -Irdass) >~ Tra s olays = d?-id,
which implies that
Trajsolrda s >~ d -1id,
since TCy (S| K, Zp) = W (ks) is an integral domain. But we also have
(d-Trdpys) olrdgys >~ d - (Trdgysolrdays) >~ d - id,

and since Ird4 /s is an equivalence, the claim follows. This completes the
proof. O

Remark 5.5 The component in the mapping space

MapMOdTHH(sm,Zp)(SPgT) (THH(A | D, ZP)’ THH(S | K, Zp))

that contains the equivalence Trd 4 /g is uniquely determined by the property
that

d-Trdass >~ Trass.
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Indeed, the mapping space in question is simultaneously a torsor for the
Eso-monoids of endomorphisms of the domain and target, and their rings
of components are both integral domains, being isomorphic to W (k).

Proof of Theorem A For all integers j, the equivalence of cyclotomic spectra
Trd 4 /s in Theorem B (1) induces an isomorphism

Trdays
TC;(A|D. Zp) —2% TC;(S | K. Zp),

and for j > 1, this induces the desired isomorphism

Nrda/s
K;j(D,Zp) —— K;j(K, Zp),

by Theorem 2.5. We claim that for j > 1, the former isomorphism is canonical
and satisfies d - Trdy/s = Trs/s. Indeed, by Theorem 5.4 we have exact
sequences

p—can

0——TC;j(A| D, Zp) 5 TC; (A| D, Zy) “““5TP;(A| D, Zp)

J/Trd/,/s J/TrdA/S J/TrdA/S

p—can

0——TC;(S|K,Zy) —=TC; (S|K,Z,) ““5TP;(S| K, Zp),

for j > 1 and odd, and by Theorem B (2), the middle and right-hand ver-
tical maps are canonical and satisfy the desired identity. Theorem 5.4 shows
similarly that for j > 2 and even, there are exact sequences

@—can

TC7, (AID, Zy) "8 TP (A D, Zp) L5 TC;(A| D, Zp) —0

lTrdA/s lTrdA/s J/TrdA/S

@—can

TC,, (S| K. Zp) "5 TP 1 (S| K. Zy), —25 TC;(S| K, Zy) — 0,

and by Theorem B (2), the left-hand and middle vertical maps are canonical
and satisfy the desired identity. This completes the proof. O

Lemma 5.6 Themapi,: TCj(ks, Z,) — TC;(S, Z)) is zero for all integers
J-
Proof First, for j = 0, we consider the following diagram with exact rows.

Kotks, Zp) —— Ko(S, Zp) —— Ko(K. Z,)

L

TCo(ks. Zp) — TCo(S, Zp) —— TCo(S | K. Z,)
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In the top row, the map j* is an isomorphism, since S and K both are local
rings. Therefore, the map i in the top row is zero, and since the left-hand and
middle vertical maps are isomorphisms by [19, Theorem D], the map i, in the
bottom row is zero, as stated. Next, we claim that the map

TC; (5. Z,) ——TC, (ks. Z,)

is surjective. Granting this, the lemma follows. Indeed, if x =i ( y), then
x(0) = ix(x - 1) = i, (" (y) - 1) =y - ix(1),

by the projection formula, and we have already proved that i, (1) = 0. The
claims needs proof only if j = 0 or j = —1, since the target of the map in
question is zero, otherwise, and in these cases, the domain and target both are
free Z,-modules of rank 1. For j = 0, the mapis a Z-algebra homomorphism,
and therefore, it is necessarily an isomorphism. Finally, for j = —1, we
consider the diagram

TPy(S, Z) —— TPy(ks, Z;)

I I
TC_ (S, Zp) —— TC_; (ks, Z,).
The top horizontal map is canonically identified with the map in the statement
of Lemma 5.3, and hence, it is surjective. The right-hand vertical map also is

surjective, since TC_ (kg, Z ) is concentrated in even degrees by Bokstedt peri-
odicity. It follows that the lower horizontal map is surjective, as claimed. O

Corollary 5.7 The Z,-module TC(S | K, Zp) is free of rank 2.

Proof By Lemma 5.6, we have a short exact sequence
0 ——TCo(S, Zp) SEAN TCo(S | K, Zp) SN TC_(ks, Zp) — 0,

and, we have as already remarked, the left-hand term and the right-hand term
both are free Z,-modules of rank 1. O

Proof of Theorem B (3) We consider the diagram

0—— TP (A| D, Z)y —— TCo(A| D, Z,) —— TCy (A| D, Z,)* —0

lTrdA/S J/TrdA/s J/TrdA/S

0—— TPi(S|K, Z,)y —— TCo(S | K, Z,) —— TC;y (S| K, Z)¥ —0,
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where (—)? and (—),, indicate the kernel and cokernel of ¢ — can, respec-
tively. The vertical maps are induced by the equivalence of cyclotomic spectra
from part (1) of the theorem. Accordingly, the vertical maps are all isomor-
phisms and the diagram commutes. By Corollary 5.7, the middle terms are
free Z,-modules of rank 2, and we claim that the right-hand terms are free
Zp-modules of rank 1. Indeed, we have already identified TC,, (S | K, Z)) and
TPo(S | K, Zp) with W (ks) and the maps ¢ and can with the maps induced
by ¢, id: ks — kg, and since

W(p)
W(E ) —— Wks) — Wiks)
1

is an equalizer of rings, the claim follows. We conclude that the left-hand terms
are free Z,-modules of rank 1 as well.

We choose abasis (eq, e2) of TCy(S | K, Z ) such that e1 isinthei 1mage of d
and such thati(ep) = 1, and let (e1 , ez) be the basis (Trdz/s(el) TrdA/S(ez))
of TCy(A | D, Z). By part (2) of the theorem, the matrix that represents

Trass

TCo(A| D, Z,) —2% TCo(S | K, Z,)

with respect to these bases is of the form

d
(o ;) € My(Z,).

We proceed to show that if p divides d, then d does not divide a, which proves
part (3) of the theorem. To this end, we consider the commutative diagram

Ko(D, Zp) 5 TCo(A| D, Z) —TCy (A | D, Z.,)*

J/ND/K JTTA/S J/TrA/S

Ko(K,Zp) 5 TCo(S | K, Zy) —TCy (S| K, Z,)*.

The left-hand terms are both free Z ,-modules of rank 1 generated by the classes
[Dland [K],and Np,k ([D]) = dg [K]. Moreover, the lower horizontal maps
are ring homomorphisms, and hence, map the element 1 = [K] of the lower
left-hand term to the element 1 in the lower right-hand term. Since part (2) of
the theorem shows that the right-hand vertical map is equal to d - Trd 4 /g5, we
conclude that coordinates of the class tr([D]) € TCy(A | D, Z,) with respect
to the basis (¢}, €5) take the form

(Z) € M 1(Zp).
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Hence, the coordinates of Tr 4 /s (tr([ D])) with respect to the basis (eq, e3) are

d a\(b\ _(da+Db)
0 d)\d) d? ’
It follows that a + b € Z,, is divisible by d, since

Tra,s(tr([D])) = tr(Np,k ([D]) = d* - (K1) = d* - 1.

Therefore, d divides a if and only if d divides b. We now consider the following
commutative diagram with exact rows.

Ko(A.Zp) — s Ko(D. Zp) —>— K_\ (k1. Zp)

P e

TCo(A, Z,) —— TCy(A| D, Z,) —— TC_(kr, Z,)

Since A and D are local rings, the map j* in the top row is an isomorphism
between free Z,-modules of rank 1. Moreover, the left-hand vertical map is an
isomorphism by [19, Theorem D], since A is a finite Z,-algebra. Hence, in the
bottom row, the middle term is a free Z,-module of rank 2, and the left-hand
term and the right-hand term both are free Z,-modules of rank 1. Therefore,
in the bottom row, the map j* is injective, and its cokernel is a free Z,-module
of rank 1. We conclude that

w([D]) = tr(j*([A]) = j*(«([A]) € TCo(A| D, Zp)

is not divisible by p. So if p divides d, then d does not divide b, and hence, d
does not divide a, as we wished to prove. |

Corollary 5.8 If p divides d, then the G-action on THH(A | D) is non-trivial.

Proof 1f the G-action on THH(A | D) were trivial, then the diagram

THH(A | D) —— THH(A®s T | D Qg L)hG
TrdA@_gT/TJTIrdA®ST/T
f*

THH(S | K) ——— THH(T | L)"¢
would be meaningful and would define an equivalence

Trdays
THH(A | D) —— THH(S | K)
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of THH(S | K)-modules in cyclotomic spectra such that d - Trda/s >~ Try/s.
However, if p divides d, then Theorem B (3) shows that such an equivalence
does not exist, so the G-action on THH(A | D) is necessarily non-trivial. O

Remark 5.9 The proof of Theorem 4.3 gives maps of exact sequences

---%THHj(kT) LTHH]'(A) L>THH,~(A | D) LI

TrdA/sJ/TIrdA/S TrdA/sJ/TIrdA/s TrdA/SJ/TIrdA/S

.. —2 S THH (k) —— THH, (S) —_— THH, (S | K) -2 - .-

such that all maps are THH, (S)-linear and such that the right-hand vertical
maps are isomorphisms defined in this paper. The analogous statement holds
for the groups TR;%, TR, TF;, and for the respective groups with p-adic coef-
ficients. We further expect that the left-hand vertical maps in the diagram agree
with the maps Try; /s and Iy, k4, respectively. Indeed, this would explain the
appearance of the kernel of Try, /., in the calculations of HH,(A/Z,) by the
second author in [23, Theorem 3.5] and of THH, (A, Z) by the third author
and Chan in [9, Theorem 5.1].
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