WARING’S PROBLEM FOR RATIONAL FUNCTIONS IN
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BO-HAE IM AND MICHAEL LARSEN

ABSTRACT. Let f € Q(z) be a non-constant rational function. We con-
sider “Waring’s Problem for f(z),” i.e., whether every element of Q can
be written as a bounded sum of elements of {f(a) | a € Q}. For ra-
tional functions of degree 2, we give necessary and sufficient conditions.
For higher degrees, we prove that every polynomial of odd degree and
every odd Laurent polynomial satisfies Waring’s Problem. We also con-
sider the “Easier Waring’s Problem”: whether every element of Q can be
represented as a bounded sum of elements of {£f(a) | a € Q}.

1. INTRODUCTION

The classical Waring’s Problem (WP) asks if, for every positive integer d,
there exists N such that every natural number can be written as the sum
of N dth powers of natural numbers. This was settled in the affirmative by
Hilbert [3]. Shortly afterward, Erich Kamke [4] proved that for every poly-
nomial f(z) € Z[x] with positive leading coefficient there exists N such that
every sufficiently large integer satisfying an obvious congruence condition
(depending on f(x)) can be written as a sum of N values of the form f(x;),
where the x; are natural numbers.

In this paper, we propose to consider the analogous problem for rational
functions. Since in this setting, we can in general only expect f(x;) to belong
to Q, we consider the question of whether every rational number, or every
sufficiently positive rational number, can be written as a sum of values f(z;),
x; € Q.

In 1934, Edward Wright [7] introduced the Easier Waring’s Problem (EWP):
to represent an integer as a sum or difference of a fixed number of dth powers,
ie,as+ad4+a2d.. .+ :vﬁlv

Bjorn Poonen |6 considered both the original WP and the EWP for ra-
tional functions over Q. He showed that if f has at most three poles, all
simple, and all in P!(Q), then f satisfies WP. Moreover if all the poles of
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f lie in P1(Q), then it at least satisfies EWP. The latter result holds more
generally for number fields.

We revisit this question, proving that every polynomial f of odd degree
satisfies WP, while for polynomials of even degree, either every sufficiently
positive rational or every sufficiently negative rational can be expressed as
a bounded sum of values of f. Laurent polynomials satisfy EWP over any
field of characteristic zero (for number fields, this is covered by [6]), so in
particular, odd Laurent polynomials satisfy WP. We use two different meth-
ods, one completely elementary, and one based on a theorem of Browning
and Heath-Brown [2] estimating the number of integral solutions of a system
of polynomial equations in a box.

This paper was written simultaneously with the paper [5] of the second
named author and Dong Quan Ngoc Nguyen on Waring’s Problem for unipo-
tent algebraic groups over number fields. Since a basic idea behind that pa-
per is that the proper setting for Waring-type problems is polynomial-valued
maps, the fact that one can prove such results for Laurent polynomials came
as something of a surprise to us.

We would like to thank Arno Fehm for calling our attention to [6]. The
second named author would like to acknowledge useful conversations with
Nguyen.

2. GENERALITIES

Throughout this section, X denotes a subset of Q.

Definition 2.1. We say X is a base (resp. positive base, negative base, or
open base) if for some positive integer N,

X+X+--+X
N

is all of Q (resp. contains (a,00) N Q for some a, contains (—oo,b) N Q for
some b, or contains (a,b) NQ for some a < b). We say X is a virtual base
if
X+ X4+ X =Q.
N

Clearly, all of these properties are invariant under translation of X or
multiplication of X by any positive rational scale factor. The following
properties are also immediate:

Lemma 2.2. For X C Q, we have

(a) If X is a base, it is both a positive base and a negative base.

(b) If X is a positive base or a negative base, then it is both an open base
and a virtual base.

(¢) If X is a positive base and unbounded below or a negative base and un-
bounded above, then it is a base.
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(d) If X is a base (resp. positive base, negative base, open base, or virtual
base), then —X is a base (resp. megative base, positive base, open base,
or virtual base).

The following lemma gives obvious obstructions to a set X being a base
(or positive base, etc.)

Lemma 2.3. For X C Q, we have

(a) If X is a positive base, it cannot be bounded above.

(b) If X is a negative base, it cannot be bounded below.

(¢) If X is a virtual base, it cannot be bounded.

(d) If X is any kind of base, it cannot be p-adically bounded for any prime

p-

If f(z) € Q(z) is a rational function and F' is any field of characteristic 0,
we denote by f(F) the set of values f(a) as a ranges over all elements of F’
which are not poles of f.

Definition 2.4. We say f satisfies WP if f(Q) is a base. We say it satisfies
the positive (resp. negative) WP if f(Q) is a positive (resp. negative) base.
We say it satisfies the EWP if f(Q) is a virtual base.

Proposition 2.5. If f(x) € Q(x) is a rational function then

(a) For f to satisfy WP, it is necessary for it to have at least two distinct
poles in RP' or one pole of odd order in RP!.

(b) If f(Q) is an open base and f has at least one pole of odd order in RP!,
then f satisfies WP.

(c) For f to satisfy the EWP, it is necessary for f to have a pole in RP'.

(d) For f to satisfy the EWP, it is necessary that for each prime p, f has a
pole in Qp]P’I.

Proof. Part (a) follows from parts (a) and (b) of Lemma 2.3. Parts (¢) and
(d) follow from parts (c¢) and (d) of Lemma 2.3 respectively. For part (b),
we note that if f has at least one pole of odd order in RP!, then the closure
of f(Q) contains a neighborhood of oo in RP!, i.e., contains all real numbers
of absolute value > B for some B. If

(@,0)NQC f(Q) +---+ f(Q)
N
and M (b — a) > 2B, then setting Y := f(Q) N (—o0, —B) and Z := f(Q) N
(B, ), we have
QS (YU2Z)+ (Ma,Mb)NQ) € f(Q) +---+ f(Q).
1+MN

0

The following proposition shows that the property of being a base is not
affected by any finite subset of elements.
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Proposition 2.6. If X, Y CQ and X \Y and Y \ X are finite, then X is
a base if and only if Y is a base.

Proof. Without loss of generality, we may assume Y = X U{y}. Translating,
we may assume y = (. The non-trivial direction is that if Y is a base, the
same is true for X. Let

Xp=X4+X++X,) Y, =Y+Y+---4+Y.
n n
As Y is a base, Yy = Q for some N > 0. Let x € X be any non-zero
element. For any positive integer m, —z/m € Yy, so —z/m € X; for some
positive integer i < N, and this implies 0 = z+m(—z/m) € Xi1y,. Letting
M := 1+ im, and applying the same reasoning to —z/M € Yy, we see that
0 € X4 um for some positive integer j. The set of positive integers k such
that 0 € X} is a semigroup, and it contains the relatively prime elements M
and 1+ jM, so it contains all integers > K for some integer K. Thus,

XK+ND{0}UX1U"-UXN:YN:Q.

O

Corollary 2.7. If g(x) € Q(z) is a fractional linear transformation, then
f(g(Q)) is a base if and only if f(Q) is a base.

Proof. As g(Q)\Q and Q\ g(Q) have at most one element each, the corollary
follows immediately. O

3. THE EWP FOR LAURENT POLYNOMIALS IN CHARACTERISTIC 0

Throughout this section, K will denote a field of characteristic 0. Our
main result is the following theorem.

Theorem 3.1. If f(z) € K [x, %] is a non-constant Laurent polynomial,
then there exists a positive integer N such that
LF(K) & f(K) £+ [(K) = K.
N
In particular, f(x) satisfies the EWP.

In fact, we prove the following stronger result.

Theorem 3.2. Let S be a finite set of non-zero integers. Let K° denote
the K -algebra of functions S — K and g% : K* — K% denote the function
defined by
g%(x) = s — z°.

Let

Xi =g (K) 4+ g% (K*) —g%(K*) — - — g%(K").

k k

Then, there exists a positive integer N such that

X5 =K".
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In particular, we can take

N < 372+2\S|maxses |s|

We defer the proof of Theorem 3.2, starting instead with the following
proposition:

Proposition 3.3. Theorem 3.2 implies Theorem 3.1.

Proof. Foragiven f(z) € K [:z, %] , let S denote the set of non-zero exponents
of monomials occurring in f(x). As f(x) is not constant, S is non-empty.
We write

f(x) =ao+ Zasxsa

seS
where ag may be zero but a, # 0 for all s € S. For x;,y; € K* and c € K,
N

> fa) = fly) =,

=1 7=1

if and only if

N N
(1) Zas Zﬂvf—Zyj =c.
1 j=1

seS i=

Choose ¢, € K for each s € S such that
@ Yo —c
SES

If we assume that Theorem 3.2 is true for some positive integer N, then
there exist x;,y; € K* such that for all s € S,

N N
(3) cS:Z:Uf—Zyj.
i=1 j=1

Thus, (1) follows from (2) and (3). This proves Theorem 3.1. O

To prove Theorem 3.2, we need the following lemma.

Lemma 3.4. Following the notations in Theorem 3.2,
(a) X} + X =X},

(b) XP — X7 =X7.,.

(0) XPXJ C X3
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Proof. Parts (a) and (b) are trivial. For (c),

i=1r=1 j=1s=1
k k¢
(g + 3 ) 8w |
j=1r=1 i=1 s=1
which is in Xﬁqké. ([l

Proof of Theorem 3.2. We use induction on |S|.

If|1S|=1,1e. S={s},s#0,and {a®* |a € K*} ={a"®|a € K*}, so
without loss of generality we may assume s is a positive integer. We claim
Xf, = K for N = 3272, If s = 1, then clearly

XY =K.
So we assume that s > 2. Let §: K[z, 1/x] — K|z, 1/z] denote the difference
operator:

0f)(x) = flz+1) = f(z).
By induction on s, we see that for f(x) :=

) = st D

Thus,
| +(s—1)s! Sil( 1) s—1 (2 + 1) e X5
sle + —— = - r+s—1—1 2
2 gl i r

as long as ¢ ¢ {0,—1,—2,...,1 — s}. In particular, K \ Z C Xégs,g. Since
X¥ is not contained in a single Z-coset of K (for instance, it contains 0 and
1—(1/2)%), it follows that

K g Xig —'I_ Xés.vs72 == Xf+2572 - X§92572'

Suppose the claim of the theorem is true for some S, and let us prove it
for SU{t}. We know that for

_ [S] — |S] _
(4) N .= 3—2+27 maxsesuqey || > max(3 242 maXseS|5|’3 2+2|t|)’

we have
Xy =K5and X! = K.

Let Ps’ti X;fu{t} — X,f and q,‘j’t: X,fu{t} — X,;{t} denote projection maps.
In particular, pf’t and qks’t are surjective for k > N.
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Then we have two cases:
Case 1. There exist v, w € lefi{lt} such that v # w but

St St
pN+1(U) = pN+1(w)-

Case 2. No such v,w € Xf,i{f } exist, or (equivalently), pi}il is injective

(and therefore bijective).

InCase 1,0 #£v—w € Xfﬁg’ and p‘;}ffﬁ(v —w) = 0. Regarding v —w as
a function f: SU{t} — K, we have f(s) =0 for all s € S but f(t) #0. As
SU{t}
2N(2N+2)
contains all functions S U {¢} — K which vanish identically on S. Since
Xf, = K7, it follows that

SU{t} _ 7S
X2N(2N+2)+N = KoV,

qi,’t maps onto K, multiplying Xffu{t} by v—w € XQS;:{:Q}, the set X

By (4),
3—2+2\S|U{t} maxgesuft} s — 9N2 > 4N2 +5N = 2N(2N+ 2) + N,

we obtain Theorem 3.2 for S U {t}.

It therefore suffices to consider Case 2. Now Xf]u{t} C Xi,i{f Yo equality

does not hold, since p%t is surjective, there exist v € Xf,u{t} and w €

Xf,i{f} \Xf,u{t} with p%il(v) = p}g\}il(w). This is impossible in Case 2.

Thus, Xf,u{t} = Xf,i{f}. Then, by Lemma 3.4, we have that

SU{t SU{t SU{t SU{t
SO by induction we have

X = xS for all k > N

We set XUt .= Xffu{t} and write ps’t (resp. qs’t) for the projection map
pi}t (resp. qi;t). By Lemma 3.4, XY} is closed under addition, subtraction
and multiplication, i.e., it is a (possibly non-unital) ring. As we are in Case
2, p>* is an isomorphism of non-unital rings, and it follows that XSY{t} is a
unital ring and p>? is an isomorphism of unital rings.

Now, ¢>t: X5t} — X{t} = K is a surjective non-unital homomorphism
of rings and therefore a ring homomorphism. Composing it with the inverse
of p>*, we obtain a ring homomorphism ¢ : K° — K which expresses the
value of f € XY at ¢ in terms of the restriction of f to S. Letting ey
denote the idempotent of K which is 0 on S\ {s} and 1 on s, ¢(es) €
{0,1} for all s, and as ¢ maps the multiplicative identity ) . qes to 1, it
follows that ¢(es) = 1 for some s € S. This implies that ¢(f) = ¢(fes) for
all f € K¥, i.e., that the homomorphism ¢ factors through the projection
K% — K given by evaluation at s. Thus, there exists an endomorphism 1)
of K such that ¢(f) = 9(f(s)), and X5 must consist of all functions
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f: SuU{t} — K such that f(t) = 9¥(f(s)). This is absurd because, for
instance, f := gt (2) — g"V1tH (1) € XSV satisfies

2~ 1= f(t) = ¥(f(s)) = (2 — 1) =2 — 1

although t > s.
O

Corollary 3.5. Ower every characteristic 0 field, every odd Laurent polyno-
mial satisfies WP.

4. WARING’S PROBLEM FOR POLYNOMIALS OVER Q

The main result in this section is the following:

Theorem 4.1. Let f(x) € Q[z]| be a non-constant polynomial. If f is of odd
degree, it satisfies WP. If f is of even degree, f(Q) is a positive base or a
negative base, according to whether the leading coefficient of f is positive or
negative.

Let g: Q — Q7 denote the map g(z) = (z,22,...,2%). We begin with the
following lemma:

Proposition 4.2. Let m, d, and r denote positive integers, m > d + r. Let
a=(ay,...,am) € R™, and let ¥ = (F,..., F,) denote an r-tuple of linear
forms in x = (x1,...,2y). For fized a satisfying

(5) |{a1,...,am}|> d,
the set of F such that the morphism A™ — A" = A% x A” given by

x> (3 (i) F(x)

is smooth at a forms a dense open subset of the variety A™™ of r-tuples of
linear forms in m variables.

Proof. By (5), without loss of generality we may assume that ay,...,aq are
pairwise distinct. Thus the Vandermonde determinant
1 1 ... 1
a/l a2 .. ad
det .
ail_l ag_l ag_l

is non-zero, and
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has rank d. It follows that for a generic choice of r x m matrices b;;, the
matrix

1 1 1
ai ag Am
d—1 d—1 d—1

ay ) A,
bin b1 bim
brl br2 brm

has rank d + r. The proposition now follows from the Jacobian condition for
smoothness. ([l

Proof of Theorem 4.1. Let d := deg f, and let m be an integer greater than

d. Fix pairwise distinct rational numbers ai,...,a,, and let b; = iaf.

Let b denote the vector (b1, ...,bs). Consider the closed subscheme V' of P™
over Spec Q[t1,...,t4] defined by the system of d homogeneous equations

Xy 44 X = 11 X0
X2 4+ X2 =t X2
X4 4 X4 =t4X8.

Let V¢ denote the fiber of V over ¢ = (c1,...,¢q).
Using the Jacobian criterion for smoothness and the Vandermonde deter-

minant as before, (Xg : --- : X,;,) is a non-singular point of V¢ as long as
there are at least d + 1 distinct values among X, ..., X,,. Thus, for all c,
the singular locus of V¢ has dimension at most d — 1, and (1 : a1 : -+ : an)

is a non-singular point of VP,

By Bertini’s theorem as formulated by Zariski [8], the intersection of V¢
with a generic hyperplane G; = 0 in P™ can be singular only at a subvariety
of V¢ of dimension less than that of Sing(V¢). We may choose G} to have
coefficients in Q since the rational hyperplanes are dense in the projective
space of all real hyperplanes in the real topology and therefore in the Zariski
topology. Iteratively choosing G, ..., G4 generically, the intersection W§ of

V¢ with the locus G; = - -- = G4 = 0 is non-singular.
Writing G; = bjoXo + b1 X1 + -+ - + by X, we define F; := bjyx1 + -+ - +
bimTm, where the x; := X;/X( are affine coordinates on the affine open

subset A™ of P™ given by Xy # 0. Fixing b;; for 7 > 1 and letting by vary,
for a generic d-tuple (byo,...,bq0) and generic ¢, W§& is non-singular; the
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complement of Xy = 0 is then given by the system of equations

1+ -+ Tm=cl

2 2
af 4t ak =

Fl(l‘l, e ,.’Em) = *blo

Fd(l'l, ce ,.%'m) = _de-
Applying Proposition 4.2 and the implicit function theorem, we conclude
that there is a d-tuple G and a non-empty open set U C R such that for all
c € U, W§ has a real point.

If dim W& = m—2d is large enough, by a theorem of Brauer [1|, W&(Z,) =
WE&(Qp) is non-empty. By a theorem of Timothy Browning and Roger
Heath-Brown [2, Theorem 1.7|, this implies that W&(Q) c V¢(Q) is non-
empty.

If f(x) =ap+arx+ ...+ aqz?,

{aom + arc1 + -+ agea | c€ UNQY C F(Q +--- + f(Q).
Thus f(Q) is an open base. If d is odd, then f(Q) is dense in (—oo, —B) U
(B, c0) for some B, and it follows as in the proof of Proposition 2.5 that
f(Q) is a base. If d is even and ag > 0 (resp. aq < 0), then f(Q) is dense in
(B, 0) (resp. (—oo,—B)) for some B, and it follows that f(Q) is a positive
(resp. negative) base.

0

Theorem 4.3. If f(z) € Q(x) is a rational function of degree 2, then we
have the following:

(a) If f has two distinct poles in QP', it satisfies WP.

(b) If f has one pole in QP! it satisfies the EWP but not WP.

(c) If f has no pole in QP', it does not satisfy even the EWP.

Note that (a) is a special case of [6, Theorem 1.2].

Proof. Let g be a fractional linear transformation over Q mapping 0 and
oo to the two poles of f. Then f(g(x)) is a rational function of degree
two with poles 0 and oo and must therefore be of the form azthete e
h(z) = f(g9(z)) — b = ax + ¢/z. By Corollary 3.5, there exists N such that
every rational number is a sum of N terms in A(Q). It follows that every
rational number is a sum of N terms of f(g(z)). Thus h(Q) is a base, and
by Corollary 2.7, the same is true of f(Q).

For part (b), let g be a fractional linear transformation over QQ mapping oo

to the pole of f (which must be double). Then h(z) = f(g(z)) = azx®+ bz +c
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for some a,b,c € Q. Rescaling and translating, we may assume h(zx) is of
the form 22 + d. Now, h(Q) is bounded below, so h(Q) is not a base, and
therefore that f(Q) is not a base. On the other hand, every value of h(Q)
except d is achieved twice, so either f(Q) = h(Q) or f(Q) = h(Q) \ {d}.
Since every positive rational number is the sum of four squares of positive
rationals, it follows that A(Q) + A(Q) + h(Q) + ~(Q) contains all rational
numbers in (4d, 00).

For part (c), let K be the quadratic extension of Q generated by the poles
of f. By Chebotarev density, there exists a prime p such that the prime p is
inert in K and therefore f has no pole in Q,. Thus f(Q,) is bounded, and
by Lemma 2.3, f(Q) is not a virtual base. O
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