IRRATIONALITY OF MOTIVIC ZETA FUNCTIONS

MICHAEL J. LARSEN and VALERY A. LUNTS

Abstract

Let Ko(Varg)[1/L] denote the Grothendieck ring of Q-varieties with the Lefschetz
class inverted. We show that there exists a K3 surface X over Q such that the motivic
zeta function {x (t) :=)_,[Sym" X]t" regarded as an element in Ko(Varg)[1/L][[¢]]
is not a rational function in t, thus disproving a conjecture of Denef and Loeser.

1. Introduction

Let k be a field. We denote by Ko (Varg) the Grothendieck group of k-varieties, that
is, the free abelian group generated by isomorphism classes of k-varieties modulo
the cutting-and-pasting relations [X] = [Y] + [X \ Y] for all pairs (X, Y') consisting
of a variety X and a closed subvariety Y. It is endowed with a commutative ring
structure characterized by [X][Y] = [X X Y]. Note that we use variety to mean a
reduced separated scheme of finite type over k, but the Grothendieck ring would not
be changed if we allowed nonreduced schemes or nonseparated schemes, or limited
ourselves to affine schemes (and closed subschemes with affine complement).

Following Kapranov [14], we define the motivic zeta function

Ex (1) =) [Sym" X" € Ko(Varg)[[1]],
n=0

where Sym” X is the symmetric nth power X"/ X%,,.

By a motivic measure, we mean a homomorphism p: Ko(Varg) — A, where A
is a commutative ring. We write (Cx (¢)) for the image of {x(¢) in A[[t]]. If k is a
finite field, then w: [X] +— | X (k)| defines a motivic measure with values in Z. The
image u(Cx(2)) € Z[[t]] is the usual zeta function of X and therefore rational as a
function of ¢ by Dwork’s theorem (see [8]). In [14, Remarks 1.3.5], Kapranov asked
whether this rationality holds for the motivic zeta function itself. He proved that this
is so when X is a curve with at least one k-point, even if k is not a finite field,
and Litt [20] generalized the result to all curves. (Since Ko(Varg) is not an integral
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domain by [23], there is a question of exactly what this means, which we settle for
the purposes of this paper by saying that {x (¢) rational means that there exists a
polynomial B(¢) =1 + byt + --- + b,t" such that B(¢){x (¢) € Ko(Varg)[t].)

In [16], we proved that, in general, {x(¢) is not rational when X is a surface.
This does not quite finish the question, since for many purposes (especially motivic
integration), the natural object to consider is not K¢(Vary) but Ko(Varg)[1/L], where
L := [A!]. It is known that L is a zero-divisor (see [4]; see also [26] for an analysis of
the annihilator of IL). One might still hope, therefore, that {x (¢) may be rational as a
power series over Kq(Varg)[1/LL]. No variant of the method of [16] can possibly test
this, since the motivic measures constructed in that paper are birationally invariant
and therefore vanish on L. This made possible the conjecture of Denef and Loeser
(see [7, Conjecture 7.5.1]) predicting that {x (¢) should satisfy this weaker rationality
condition. In this paper, we show that in general it does not.

To explain our strategy, we begin by discussing certain motivic measures which
cannot detect the irrationality of zeta functions. A reference for the following discus-
sion is [17]. We endow Kg(Varg) with the A-structure in which the [X] — [Sym” X]
operations play the role of symmetric powers; in other words, A" ([X]) is defined to
be the " coefficient of {x () ~!. If A is a finite A-ring (in the sense that every element
a € A can be written a = b — ¢, where A"b = A" ¢ = 0 for n sufficiently large), then
every A-homomorphism u: Ko(Varg) — A is a motivic measure for which u(¢x (¢))
is rational for all X/k.

Here is an example. Let K(Gg,Qy) denote the Grothendieck ring of (virtual)
finite-dimensional continuous representations of Gy, where, as usual, 0 — V; —
Vo — V3 — 0 implies [V>] = [V1] + [V3]. Then K(Gg, Qy) is a A-ring (even a special
A-ring), and

2dim X

X1~ Y (~D[H'(X.Q0)].

i=0

where H'(X,Qy) denotes the ith £-adic étale cohomology group of X as a G-
representation, defines a ring homomorphism p. It is a consequence of the Kiinneth
formula and the isomorphism

H' (Sym"X,Qq) — H' (X", Qg)*n

that @ is a A-homomorphism. Thus p({x(¢)) is rational in ¢ for all X, where the
degree of numerator and denominator depend only on the dimension of the cohomol-
ogy of X.

In particular, if X is a K3 surface, then p({x (¢)) ™! is a polynomial of degree 24,
the product of a degree 22 polynomial corresponding to the H2-term and the factors
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(1—=1)(1—p(IL)?t), corresponding to the H° and H* terms. We consider K3 surfaces
of Picard number 18, in which the H? factor further decomposes (1 — (L)1) '8 A(2).

We modify this construction in three ways. First, we consider coefficients in Fy
instead of Q. Second, we use a modified Grothendieck ring sz(Gk) of Galois rep-
resentations, in which we identify [V,] with [V1] + [V3] only when V, =~ V; @ V3 as
Gr-modules. This is essential, since the essence of our construction is to distinguish
IF¢-valued Galois representations which have the same semisimplification. Third, we
replace k by k({¢) in order to trivialize the cyclotomic character Gy — [ (so that
L maps to 1). Up to the ¢ coefficient, everything works as before, but the expression
for 11(Zx (7)) as a rational function breaks down at the ¢ coefficient. No one ¢ value
necessarily excludes the possibility of rationality, but by taking values of £ tending to
infinity, we can prove that {x () cannot be rational.

Assuming the characteristic of k is 0, we can define v, SO that for every non-
singular projective k-variety X, we have v, ([X]) = [H*(X,F,)] in the Grothendieck
ring sz(Gk(Q))- It is easy to calculate the semisimplification of H*(Sym” X ,F) as
a Gy (¢,)-representation, but as Sym” X is in general singular, we do not know when

v, ([Sym"X]) = [Sym" H*(X ,Fy)].

However, we show that this holds when all the cohomology of X is in even degree
and £ is sufficiently large compared to n. If £ is large compared to the degrees of
the numerator and denominator of {x (¢), then the linear recurrence satisfied by the
ve([Symi X)) ultimately implies that ve([SymeX ]) is noneffective. This is a result of
the breakdown of the correspondence between the (mod £) representation theory of
SL,(F;) and the complex representation theory of SL,(C) which occurs in dimen-
sion £.

Unfortunately, we do not know how to compute the value v, ( [SymeX ]) directly,
but, using a generalization to arbitrary fields of Gottsche’s relation [12] in K¢ (Varg)
between the classes [X [i]] of the Hilbert schemes of X and the classes of the sym-
metric powers of X, we can show that v, ([X [¢1]) is also noneffective. This is absurd,
since X4 is projective and nonsingular.

We remark that as this proof depends on showing that images of certain Galois
representations are ““as large as possible,” it breaks down for some fields k, especially
algebraically closed fields. It would be particularly interesting to have an argument
which works over C.

In Section 2, we discuss Grothendieck groups of representations of finite groups,
especially SL,(FFy) and SL,(IF;)2. In Section 3, we use the method of Bittner [2] to
construct v,. In Section 4, we discuss some variants of the category of Chow motives
which enable us to show that if £ is large compared to n, then Sym” X behaves like a
nonsingular variety as far as v, is concerned. In Section 5, we show that there exists a
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K3 surface over QQ with the desired Galois-theoretic properties. The proof of the main
theorem is in Section 6. The generalization of Gottsche’s theorem to an arbitrary base
field is given in the Appendix.

2. Grothendieck rings of representations

We fix an odd prime £ and an algebraic closure Fy of the prime field Fy, which we
regard as a space with the discrete topology. For any topological group G, we denote
by sz (G) the Grothendieck ring of the exact category given by split short exact
sequences of continuous F¢[G]-modules which are finite-dimensional over .

We claim that, as an additive group, sz (G) is the free Z-module on indecom-
posable continuous F;[G]-modules. To see this, recall from [15] that an additive
category is Krull-Schmidt if every object is a finite direct sum of indecomposable
objects whose endomorphism rings are local. As every finite-dimensional G-module
has finite length, the category of such modules is Krull-Schmidt (see [15, Section 5]).

By the Krull-Remak—Schmidt theorem, this implies that the factors appearing
in any decomposition into indecomposables, together with their multiplicities, are
uniquely determined. We say that an element of KZP(G) is effective if it is a nonneg-
ative linear combination of indecomposable classes.

Any continuous homomorphism G — H induces a restriction homomorphism
K,"(H) — K’ (G), which maps effective classes to effective classes. If G — H is
surjective, then Resg is injective because distinct indecomposable representations
restrict to distinct indecomposable representations of G. A class in KZP(H ) is effec-
tive if and only if its restriction to K,(G) is so.

If G is profinite, then K;"(G) is the direct limit of K,”(G/H) as H ranges
over open normal subgroups of G. In this section, we consider only finite groups
G endowed with the discrete topology, so the continuity condition will play no role.

PROPOSITION 2.1

If Hy and H, are finite groups, then the external tensor product defines an injective
homomorphism sz(Hl) ® KZP(HZ) — sz(Hl x Hp).

Proof

We need to show that if p;: H;y — GL(V7) and p,: H, — GL(V,) are indecom-
posable representations, then p12: H; x Hy — GL(V; X V5) is an indecomposable
representation of H; x H, and that, moreover, the isomorphism class of the represen-
tation V; X V, determines the isomorphism classes of V; and V5. The second claim
follows immediately by applying Krull-Remak—Schmidt to the restriction of V; X V,
to G x {1} and {1} x G;.
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To prove that py, is indecomposable, it suffices to prove that the centralizer Z,
of the F¢-span of p12(H; x H,) in End(V; ® V5) is a local F;-algebra. To commute
with p12(H; X H>) is the same as to commute with p12(Hp X {1}) and p12({1} %
H»). If Z; denotes the centralizer of p; (H;) in End(V;), and Z is any [F¢-linear
complement of Z; in End(V;), then the centralizer of p;2(Hy x {1}) is

Zl ®EHd(V2) = Zl ® (Zz b Zé) = Z] ® Zz (&) Zl ® Zé,
the centralizer of p;2 ({1} x H,) is
EHd(Vl) X Zz = (Zl (&) Z/l) ® Zz = Zl ® Zz (&) Zi ® Zz,

and the intersection of these two centralizers is Z1 ® Z,.

Each finite-dimensional representation is indecomposable if and only if its
endomorphism ring is local (see [15, Proposition 5.4]). The tensor product of finite-
dimensional local algebras over an algebraically closed field is again local (see [19,
Theorem 4]), and this proves the proposition. O

If V is a G-representation, then we define ¢y (1) € K,*(G)[[t]] as

Sy (1) = [Sym"V]i",

n=0
where Sym” V' denotes the space of X,,-coinvariants of the tensor product V®". Note
that if £ is a prime, X is any group of order prime to £, and V is a finite-dimensional
Y-representation over [y, then the map

5}—)200

geX

induces a natural isomorphism Vy — V¥, from coinvariants to invariants. We may
therefore identify the symmetric nth power with the symmetric tensors of rank » when
n</¥.

PROPOSITION 2.2
For every group G and every representation V,
dimV

(Z (—1)i[Al V]z")gv(z) =1 (mod ).
i=0

Proof
Equivalently, we claim that, for 1 <k </, we have

> DAY @ Sym/ V] =0. (2.1)
i+j=k
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For every object W of a A-ring, we have the identity

D AWM (W) =0

i+j=k

If W is a finite-dimensional complex vector space regarded as an object of the
representation ring of GL(W), then it is easy to see by the splitting principle that
(—=1)/ X7 (=W) corresponds to Sym’ W. If ¢; ; in the group ring Z[1/k!][Sk] denotes
the projector which maps W®k = W®G+7) onto AW ® Sym’ W, this implies

Y D=0 > (e =0.
i+j=k i+j=k

As k! is invertible (mod £), this reduces to the same identity over [y, which implies
the identity (2.1) for group representations in characteristic £. O

We will eventually be interested in the case G = SL,(FF;)?, but we start with
H = SL,(Fy). We denote by V; the i th symmetric power of the natural 2-dimensional
IF-representation of H (where the Oth symmetric power is understood to be the trivial
representation) and by W the representation V; ® Vy_;.

PROPOSITION 2.3

We define
Spany ([Vol. ... [Va]) ifn<t—1,
FuK}"(H) = { Spany([Vol,..., [Ve1], [W])  ifn =1,
KZP(H) ifn>{.

We have the following facts:
(1) The representation W is indecomposable.
2) The product on KZP(H ) is compatible with the filtration F; in the sense that

(F K (D) (Fy K () € Fre KP(D).

Proof

The representation V1 is the restriction of the tautological 2-dimensional representa-
tion V; of SL; (IF@) Applymg [1, Lemma 3.1, Proposition 3.3(iii)] with A = £ — 2,
we know that V1 & Sym 1V1 is indecomposable, and by [1, Lemma 4.1(a)], the
restriction W of this representation to SL, (IFy) is the injective hull of an irreducible
representation of SL,(F) and therefore indecomposable. (This fact can also be read
off from Table 1 of the same paper.) This gives claim (1).
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By [1, Lemma 2.5] (or Proposition 2.2), for 1 <i <{ — 2, we have
Vi® Vi =Vi1 @ Vigr. (2.2)

By induction on j, this implies that, for i,j >0 and i + j < — 1, we have the
Clebsch—Gordan formula

VieVizVitj@Vigj2®---@® Vji_j|.
Fori 4+ j =fand 0 <i < j, we claim that

i
Vi@ Vi=Wea D Vi (2.3)
k=2

The statement is trivial for i = 1, and fori > 2,
Via®@V;@Vi®V,=(ViaeV)®YV,
=1 @Vi-1®V))
2ViQ@WVim1® Vs @+ @ Vir1-2i)
WO (Vi ®Vi—a) @+ B (Viga—2i ® Vi—ai).

Vi@V, =V @ Vs @ B Vigaai,

Krull-Schmidt implies our claim, which in turn implies (2). O

Let
Ay, (t):=1—[Vi]t + 1> € K (H)[1].

The analogy between the (mod {) representation theory of H and the (complex) rep-
resentation theory of SL,(C) might suggest the possibility that ¢y, (£) = Ay, (£)" !,
that is, that the congruence in Proposition 2.2 is actually an equality, but this turns out
not to be true. Instead, (2.2) and (2.3) imply

Ay, (), (1) = 1+ (Viza] + [Ve] — [WI)tE (mod £5F1). (2.4)

Note that since W is indecomposable, the ¢ coefficient of A(f)¢ v, (¢) is nonzero.
This phenomenon, as it arises in the case of the representation V7 X V7 of SL, (Fy) x
SL;(Fy), is the key to our proof of irrationality.
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Henceforth, G = SL,(FF¢) x SL, (F). For nonnegative integers n, we define
FuK"(G) = Span,{[Vi ®V;]| 0 <i,j <n}.

By Proposition 2.3(2), we have
(FKP(G) (Fy KD (@) € Fiy KP(G) 2.5)

for all nonnegative integers i and ;.
We define Ag to be the set of power series ) ;.o ¢;t* with ¢; € F;K}*(G).

LEMMA 2.4

We have the following:

(1) Ag is a subring of K‘ZP(G)[[I]].

) 1+ thp(G)[[t]]) N Ag and 1 + tAg are multiplicative groups.

B) 1+ Y72 a;it" and 1 + Y 72, bit' are elements of Ag which represent the
same (1 + tAg)*-coset, then a; = b; (mod F,-_lKZP(G))for alli > 1.

Proof

Part (1) follows immediately from (2.5). For (2), the sets (141K ,"(G)[[t]]) N A and
1+t Ag are obviously both multiplicative monoids. To show that both sets admit mul-
tiplicative inverses, we note that the power series expansion for (1 + a)~! converges
t-adically whenever a € tK,”(G)[[1]], and both (1+1K,"(G)[[t]]) N g and 1 +1Ag
are closed in the 7-adic topology on K,*(G)[[t]]. For (3), if 1 + ta,1 +1f € Ag
belong to the same coset, then

(1+18) = (1 +ta)(1 +1y)

for some y € Ag, so B —a = (1 4+ ta)y, where ay € #Ag. This is equivalent to the
congruence condition a; = b; (mod Fj_1K,"(G)) for all i. O

PROPOSITION 2.5
For0<n</{—1, we have

[n/2]
Sym”"(V; X V) = Z Vieai R Vg
i=0

Proof
First of all, the symmetric power is a quotient of

RV =VE" RV,
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which by (2.2) and induction on 7 is a direct sum of expressions of the form V; X V;
with i, j <n. Thus Sym”(V; X V1) is itself a direct sum of such expressions. Writing

sym" (Vi RV = @ (FRV)“I,

0<i,j<n

it remains to prove that a; ; is 0 except when i = j e {n,n —2,n —4,...}, in which
caseitis 1.
Restricting to H x {1}, we obtain the isomorphism of H -modules

/2]
G+ -
B v asymmievyz @ Vee Ve @ VI @6
0<i,j<n a+b=n k=0

the last isomorphism following from (2.3). Thus, a; ; (j +1) <i + 1 foralli, j <n.
By symmetry, also a; ;(i + 1) < j + 1. Thus, a;,; <1 with equality only if i = j.
Comparing with (2.6), we see that a; ; = 1 exactly fori e {n,n —2,n—4,...}. O

PROPOSITION 2.6
Define

Avimy, (1) = 1= ViRVt + (V2 B Vol + [Vo R Vo)) 12 — [Vi B ]2 + 1%, (2.7)
Then
AV]&V] (l)é-V]XlVl (t) =1 (mOd lz).

Proof

This follows easily from Proposition 2.2. We may assume that £ > 2, so SL,(IFy) is
perfect, which implies that the top exterior power of Vi X V; is trivial. As V; X V)
is self-dual, it follows that it is equal to its own exterior cube. Finally, restricting to
H x1and 1 x H, we see that

ANVIRV) Vo RV @ Vo R Vs, O
We now come to the key proposition.

PROPOSITION 2.7

Let R be a ring containing KZP(G). Let A(t), B(t) € R[t] denote polynomials with
A(0) = B(0) =1, let k be a nonnegative integer, and let IF'IE denote the trivial repre-
sentation of G of dimension k. Fix M > max(deg A + k + 4,deg B), and assume that
£>M + 1.
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Ifa; € R foralli > 0,
A(t) = B(t)(ap + art + azt* +--+), (2.8)
and
a; = [Sym' (V1 B V) & Ff)] € K2 (G) (2.9)
fori <M, then
w .
A= Aymy, () ait’ =1 (2.10)

i=0
and

ag=[WEW] - [WK V]~ [Vi2 ®W] (mod F;—1 K,"(G)).

(2.11)
Proof
Combining (2.8) and (2.9), we obtain
> —_
A(t)=B(@) Y [Sym (R Vy) @ Ff)]  (mod M+, (2.12)
i=0
For any G -representation V' and any nonnegative integer n < £,
—_ n .
Sym*(V @ Fy) = @ Sym*V.
i=0
Thus,
o0 ) _ o
(1—0)) [Sym'(V @Fp]i' = [Sym' V]r'  (mod 19). (2.13)
i=0 i=0

Applying this for V' = V; X V; and iterating,

(1= [Sym (Vi B V) @ Ff)]e = [Sym' (ViR V)] (mod 1°).
i=0 i=0

Since £ > M + 1, (2.12) implies

oo

A1 =0 = B@O)(1=0* Y [sym (Vi B V) @ Ff) ¢!
i=0

= B() Y _[Sym' (ViR V)]’ (mod (MTh). (2.14)
i=0
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Multiplying (2.14) by Ay, &y, (¢), as defined in (2.7), we deduce

A1 =% Av,my, () = B Av,my, (1) Z[Symiﬂﬁ X V)]t
i=0

= B(¢) (mod tM*1) (2.15)

deg(A@)(1— ) Ay,my, (t) — B(t)) < max(deg A + k + 4,deg B) < M,
the congruence (2.15) implies
A =* Avmy, () = B().

SO

A(t)(l — (=% Ay, (1) iaiti) — A(t) — B(1) iaﬂi —0.
i=0

i=0

As A(t) is invertible, this implies (2.10).
By Lemma 2.4(2), Ay, my, (t)~! belongs to Ag. Let ¢; denote its t' coefficient.
Thus, ¢; € F; K,(G) forall i > 0, and the equation

o0
Avlgvl(l)zcili =1 (2.16)
i=0

shows that the terms ¢; satisfy a linear recurrence of degree 4. Matching ¢ coefficients
in (2.16), we get the recurrence relation

ce =cree—1 — ([Va2 B Vol + [Vo K Va])cg—z + c1¢4—3 — Co—a.
Modulo classes in Fy_; K,"(G), the right-hand side reads
Vi R VA][Vie1 B Viq] = ([Va R Vo + [Vo B V2]) [Viea B Vo],
which, by (2.3), further reduces modulo Fy_; K’ (G) to
(WX W] - [WX Vo] — [Vi—2 KW].
As1—1t e (1 +thAg)~, by (2.10), (2.16), and Lemma 2.4(3), we have

ar=ci=[WRW]—[WKR V][V W] (mod F,_ KF(G)). O
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PROPOSITION 2.8

Let R be a ring containing KZP(G), let k be a nonnegative integer, and let
bo,b1,bs, ... be elements of R. If £ > k + 5,

w .
D aitt =1 =) Ayri, (07"
i=0
and
o0 o0 o0 )
Yobitt =D as, (2.17)
i=0 r=1;=0

then b; € K‘EP(G)for alli >0, and

by =[WKW]—[WHK V] - [Vi—a ®W]  (mod F—1K;”(G)).

Proof
By Proposition 2.2,
i . .
Aviy, ()7 =) [Sym' (R V]! (mod 1Y),
i=0

and so applying (2.13) k times, (2.9) holds for 0 <i < £. Setting A(z) := 1, B(t) :=
1- t)kAVl &y, (t), and M := k + 4, the hypotheses of Proposition 2.7 are satisfied,
and so ay satisfies the congruence (2.11).

By Lemma 2.4(2), Z?C):o a;t’ € Ag. Therefore, for r > 2, Z;OZO a;t’ e (1+
tAg)*. As the product

o0 oo

4 JT
[T]Tas
r=2j=0

is ¢-adically convergent and (1 + zAg)™ is ¢-adically closed, it follows that this prod-
uct lies in (1 4+ tAg)™. By parts (1) and (3) of Lemma 2.4,

b¢=ay; (mod Fg_lK‘Zp(G)).
The proposition now follows from (2.11). U
We note for future reference that the relationship (2.17) between the a;’s and the

b;’s is significant because it expresses the relationship between the motives of the
symmetric powers of a surface X and the Hilbert schemes of X.
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3. A family of motivic measures
In this section, we construct the motivic measures needed for the proof of our main
theorem.

Let k be a field of characteristic 0, let k be an algebraic closure of k, and let
Gy = Gal(k/k). We define X := X Xspeck Speck for any variety X/k. We regard
the étale cohomology groups H' (X ,F;) and H b (X,Fy) as Gy-representations. They
are obtained by extension of scalars from the Gy-representations H'(X,Fy) and
HI(X,Fy), respectively.

Our construction depends on the Bittner construction (see [2]). In order to carry
it out, we make use of the following two results, which come from [13, Chapitre VII,
Théoreme 8.1] and [13, Chapitre VII, Corollaire 2.2.4]. We are grateful to the referee
for providing these references.

THEOREM 3.1

Let X be a nonsingular projective variety over k, let Y C X be a nonsingular closed
subvariety of codimension r, let X' be the blowup of X along Y, and let Y' be the
inverse image of Y in X'. Then for any q there is a natural isomorphism

r—1
HI(X'F)= HU(X.F) @ D H (V. Fe(=))-
j=1

PROPOSITION 3.2

Let Y be a smooth projective variety over k, and let & be a vector bundle of rank r
over Y. Let P(€) — Y be the corresponding projective bundle. Then for each q there
is a natural isomorphism

HY(P(&).F) =@ HI™ (V. Fo(—))).
Jj=0
where the summand for j = 0 is the image of the map p*: H1(Y ,F;) — HI(P(E),
Fy). This isomorphism is Gy-equivariant if both Y and & are defined over k.

THEOREM 3.3
For each prime € and every field k of characteristic 0, there exists a unique motivic
measure i, Ko(Varg) — sz(Gk) satisfying

2dim X

w (X)) = D [H' (X, Fp)],

i=0

for all projective nonsingular varieties X .
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Proof

By Bittner’s theorem (see [2, Theorem 3.1]), it suffices to prove that u,([X X Y]) =
o ([XDu,([Y]) whenever X and Y are nonsingular projective varieties, and that
whenever X is a nonsingular projective variety, Y is a nonsingular closed subvari-
ety, X’ is the blowup of X along Y, and Y’ is the inverse image of ¥ in X', we
have

M@([X/]) - Mz([x]) = Mz([Y,]) - /L(([Y])‘

The first property follows immediately from the Kiinneth formula (see [22, Chap-
ter VI, Corollary 8.13]). The second follows from Theorem 3.1 and Proposition 3.2.
O

Definition 3.4
We define the motivic measure v, : Ko(Varg) — sz(Gk(Q)) to be the composition
of j1, with the restriction map K,*(Gy) — K;"(Gr,))-

In the application to the main theorem, we will always take k = Q.

4. Chow motives and finite Galois modules

Fix a field k, and denote by V (k) the category of smooth, projective, irreducible k-
varieties and arbitrary morphisms of such varieties. Given X € V (k) of dimension d,
we consider the graded Chow ring A*(X) = @;1:0 A?77(X) of cycles on X mod-
ulo rational equivalence, where the group A% ~"(X) = A,(X) consists of classes of
cycles of dimension r (see [10]). Let us recall a version of the category of Chow
motives that is appropriate for our needs. First consider the additive category Cor(k)
whose objects are the objects of V' (k) and whose morphisms are the degree 0 Chow
correspondences. That is, given X, Y € Cor(k), X being of pure dimension d, we set

HomCor(k)(X’ Y) = Ad (X X Y)

The composition of morphisms is the composition of correspondences (see [21]). The
category Cor(k) is the “additivization” of the category V (k). Next, one defines the
category Chow(k) of Chow motives as the idempotent completion of Cor(k). Explic-
itly, the objects of Chow(k) are pairs (X, p), where X € V(k) and p € Endcor(x)(X)
is a projector: p? = p. Morphisms between (X, p) and (Y,q) form the group ¢ -
Homcer(k)(X,Y) - p. There is a canonical contravariant functor V (k) — Chow(k)
which sends X € V(k) to (X, 1) and a morphism f : X — Y toitsgraph 'y C ¥ x X.
Let e € Chow(k) be the image of Spec k. The category Chow(k) is a tensor category
with the product

X,p)@(Y,q9)=(XxY,p®q).
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There exists an object L € Chow(k), called the Tate motive, such that P! = e @ L
(see [21]). For (X, p) € Chow(k), we denote as usual the product (X, p) ® L by
(X, p)(=1).

Given a nonzero integer n, we denote by Chow(k)[1/n] the localization at n of
the additive category Chow(k); that is, for A, B € Chow(k), we have

Homcpow(k)[1/n](A, B) = Homcpow (k) (4, B) ®z Z[1/n].

So Chow(k)[1/n] is a Z[1/n]-linear tensor category. We also consider the category
Chow (k) of rational Chow motives constructed in a similar way.

Example 4.1

Let X € V(k) be a variety of pure dimension d with an action of a finite group G
of order n. Then p := %deG Iy € A9(X x X) ®z Z[1/n] is a projector. Hence
(X, p) € Chow(k)[1/n].

Given a field extension k C k’, we obtain the obvious functors V(k) — V(k'),
Cor(k) — Cor(k’), Chow(k) — Chow(k’), and so on induced by the extension of
scalars X — X = X xi k' of varieties (see [10, Example 6.2.9]). If k' = k, as usual,
we denote the variety X x; k by X. For a prime £ # char(k), let {; be a primitive {th
root of 1 in k.

PROPOSITION 4.2
Let n be a nonzero integer, and let £ be a prime number not dividing n and different
from the characteristic of the base field k. Then the assignment

X+ H*(X,F), XeVk),

extends to a tensor (contravariant) functor from the category Chow(k)[1/n] to the
abelian tensor category of finite-dimensional Fy-modules with a continuous Galy-
action:

@, : Chow(k)[1/n] — F¢-Galg-mod.

If k contains a primitive Lth root of unity ;, then the module ®y(L) is a 1-
dimensional trivial F¢-Galy -module.

We do not claim originality for this proposition, but, for lack of a reference, we
provide a proof.

Proof
Since the category Fy-Galy-mod is closed under idempotent completion and its local-
ization (F¢-Galg-mod)[1/n] is equivalent to [Fy-Galg-mod, it suffices to construct a
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functor from the additive category Cor(k) to F;-Galg-mod. We construct this func-
tor as the composition of the extension of scalars functor Cor(k) — Cor(k) with a
functor

Wy Cor(lg) — [Fy-vect,

where Fy-vect is the category of Fy-vector spaces. The functor W, is defined as fol-
lows. Let X and Y be smooth projective varieties (over k), X being of pure dimension
d,andlet C € A%(X x Y) be a correspondence of degree 0. Consider the projections

X Pxxy ™ Y. Then, given an element a € Hi(Y, IF@), we put
Wy(C)(a) = pxs(clxxy (C) U py (a)) € H (X.Fy),

where clyxy : AS(X x Y) — H2(X x Y, Fy) is the cycle map (see [6], [22, Chap-
ter VI, Section 9]) and p} and py. are the pullback and the pushforward maps on
cohomology (see [22, Chapter VI, Remark 11.6]). In order for W, to be a functor,
the cycle map has to satisfy the following properties for morphisms of smooth and
projective varieties:

. cl is a morphism of contravariant functors from V(lg) to the category of rings;

. cl commutes with exterior products;

. cl is a morphism of covariant functors from V(IE) to the category of abelian
groups.

The first two properties are proved in [6, Cycle, Remarque 2.3.9 and (2.3.8.3)],
and the last one is in [18, Theorem 6.1].

Once the functor W, is constructed, it is clear that its composition with the
extension of scalars Cor(k) — Cor(k) will give the desired functor @y, since for
X € Cor(k) the vector space H*(X,[Fy) is a Galg-module and morphisms in Cor(k)
act as morphisms of Galg-modules. Also, the last assertion of the proposition is obvi-
ous. This proves Proposition 4.2. O

Example 4.3
Let (X, p) € Chow(k)[1/n] be as in Example 4.1, let £ be prime to n, and let [ #
char(k). Then ®;((X, p)) = H*(X,Fy)C as F;-Galg-modules.

COROLLARY 4.4

Assume that in Chow(k)g we have an isomorphism of objects A ~ B. Then, for a
divisible enough integer n, the objects A and B belong to the essential image of the
category Chow(k)[1/n] and are isomorphic in Chow(k)[1/n]. Fix one such n, let £
be a prime not dividing n, and let | # char(k). Then the F¢-Galg -modules ®;(A) and
@y (B) are defined and are isomorphic.
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Proof

Indeed, an isomorphism in Chow(k)qg between A and B is witnessed by a finite dia-
gram of objects and correspondences with denominators. Hence this diagram exists in
Chow(k)[1/n] for a divisible enough n. So A ~ B in such a category Chow(k)[1/n].
The last assertion now follows from Proposition 4.2. O

We remark that the measures u, and v, defined in Section 4 factor through
Ko(Chow(k)[1/n]) if £ 1 n. Indeed, it follows from Bittner’s presentation of the
group Ko(Varg) in [2] that the correspondence X — (X, 1) for a smooth and pro-
jective X extends to a group homomorphism 6 : Ko (Varg) — Ko(Chow(k)), where
Ko(Chow(k)) is the Grothendieck group of the additive category Chow(k). Denote
by 6[1/n] the composition of 8 with the obvious homomorphism Ky(Chow(k)) —
Ko(Chow(k))[1/n]. Similarly for 6.

The additive functor ®; of Proposition 4.2 induces the group homomorphism

Ko(®¢) : Ko(Chow(k)[1/n]) — K7 (F¢-Gal)
such that we have the equality
iy = Ko(®¢) 0 0[1/n] : Ko(Varg) — K, (F-Galy) 4.1
and hence also

vy =Resgyf . 0 Ko(®¢) 0 0[1/n]: Ko(Var) — K7 (Fe-Galke,))-

Remark 4.5
For G, k, and (X, p) as in Example 4.1, we have

6o ([X/G]) = [(X. p)] € Ko(Chow(k)g). 4.2)
This follows from Corollary 2.4 in [5].

We obtain the following important corollary, which is used in the proof of our
main theorem (Theorem 6.1) below.

COROLLARY 4.6
Let X be a smooth projective variety over k with an action of a finite group G. Then
for all sufficiently large primes £, we have an equality

1, ([X/G)) = [H* (X, F¢)¢] € K} (F¢-Gal)
and therefore also

v(1X/G) = [H*(X.F)9] € K (Fe-Galge,))-
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Proof
By Remark 4.5 and Corollary 4.4 for a divisible enough m, we have

0[1/m]([X/G]) = [(X. p)] € Ko(Chow(k)[1/m]).

Choose one such m and a prime £ not dividing m. Then

1 ([X/G1) = Ko(®¢) 0 0[1/m]([X/ G]) = Ko(@0)([(X. p)])
= [®((X. p))] = [H*(X.F],

where the last equality is by Example 4.3. This proves the corollary. O

Remark 4.7

We believe that the assertions of Corollary 4.6 are true for any £ which does not divide
the order of the group G. To check this, one needs to consider a refinement of the cat-
egory Chow’(k)g with bounded denominators similar to the category Chow (k)[1/n].
Since Corollary 4.6 suffices for our needs, we decided not to do it.

5. Galois representations

PROPOSITION 5.1

There exist elliptic curves E1 and E, over Q such that for all sufficiently large primes
L, there exist linearly disjoint Galois extensions K; and K, of Q(¢g) such that the
(mod £) Galois representations of G, acting on H Y(E;,Fy) have kernels Gk;
and images isomorphic to SL,(IFy).

Proof

Fix primes ¢g,r > 5. Let E; and E; be any elliptic curves over QQ with multiplicative
reduction at g and such that E; and E, have, respectively, good ordinary reduc-
tion and good supersingular reduction at r. (For instance, if ¢ = 11 and r = 5, the
curves given in Cremona notation by E; := 33al and E, := 11al satisfy these
conditions.) Let ,of denote the homomorphism from the absolute Galois group Gg to
GL(H'(E;.Fy)) = GL,(Fy).

Neither E; nor E, can have complex multiplication, since every CM curve has
integral j-invariant (see [25, Chapter II, Theorem 6.1]), while an elliptic curve with
multiplicative reduction at g cannot have g-adically integral j-invariant (see [25,
Table 4.1]). By Serre’s theorem (see [24, Théoreme 2]), for £ sufficiently large, the
representations pf are surjective. As the determinant of p@ is the (mod ) cyclotomic
character, the image of Gg(,) in GL(H L(E;,Fy)) is SLo(F¢). We assume this holds
and that £ > 5. Let [)f: Gg — PGL,(F,) denote the composition of ,of with the quo-
tient map GL,(IF¢) — PGL, (IFy).
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Suppose that pf |Go( o = pg |G - As the common image of the two representa-
tions has trivial centralizer in PGL, (IFy), it follows that ﬁf = ﬁg. Thus, pf = pg ® x
for some character y of Gal(Q(¢,)/Q). Taking the determinant of both sides, we have
=1

The representations ,of are both unramified at r, so Tr(pf (Frob,)) is well defined,
and the two traces are related by a factor of y(Frob,) = %1. This is impossible since
the trace of Frob, is zero for E, but not for E;.

Now pf and pg together give an injective homomorphism pfz,

Gal(K1 Kz/@(é‘é)) - SLZ(FK) X SLZ(Fe)’

whose image projects onto SL; () on both factors. As the only normal subgroups
of SL,(Fy) are the group itself, {1}, and {1}, applying Goursat’s lemma to the
image of pllz, either this image is all of SL,(Fy) x SL,(Fy), in which case pfz is an
isomorphism, or p; and p, coincide on Gal(K; K>/Q(¢¢)). We have seen that the
latter is impossible, so the proposition follows. O

We remark that, assuming the Frey—Mazur conjecture is true, Proposition 5.1
is true (in fact, for all £ > 17) for any two non-CM elliptic curves which are not
isogenous over Q.

Note that if H®(X,Fy) is zero in odd degrees, then the action of X, is the usual
permutation action on tensor factors, and the symmetric nth power can therefore be
taken in the usual sense of Gg-representations. There is no distinction between the
alternating sum of cohomology and the total cohomology, so we can work with Galois
representations rather than virtual representations.

THEOREM 5.2
Let E1, E;, K1, K3 be as in Proposition 5.1. Let X denote the K3 surface obtained
by blowing up the nodes of the Kummer surface

X':=(E1 x E2)/{1),
where t is multiplication by —1. For { sufficiently large, the inclusion map
Gal(K1K2/Q(¢r)) — SLa(Fe) x SLa (Fy) (5.1)
is an isomorphism, and

SLy (F SLy (F G
v, ([X]) = ResGQz((Qf)x 2FO[R20 g vy )1y,

Proof
The action of ¢ on the £-torsion of E; X E» and therefore on
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HY(E| X E5,Fy) = Hom(E, [€] x E[€],Fy)

is by multiplication by —1; as the cohomology of every abelian variety is generated
by H!, ¢ acts on H4(E x E,,Fy) by multiplication by (—1)?. Assuming that £ is
sufficiently large, it follows from Corollary 4.6 that H4(X’,TFy) is zero for ¢ odd and
is

H*(E1 x E2,Fp) =Fo(1) ® H'(E1,F¢) ® H' (E2,Fy) @ Fy(1)

for ¢ = 2. For ¢ = 0 and ¢ = 4, we get F; and [F((2), respectively.

Let Y’ denote the set of 16 double points on X', and let Y be the inverse image
of Y’ in X, consisting of 16 copies of P!. Let U := X \ Y = X'\ Y. The excision
sequence for U C X' gives H: (U, Fy) = H'(X',[Fy) fori > 2, andif £ is sufficiently
large, then the excision sequence for U C X gives a short exact sequence of Gg-
modules (and therefore of Gg(¢,)-modules)

0— H*(X',Fy) > H*(X,Fy) > F,(1)'* -0
and therefore
0— HY(E,,Fo) R HY(E>,Fy) > H*(X,Fy) — Fe(1)'® — 0.

Regarding H2(X,F;) as a representation of Go(¢,)» it factors through the Galois
group Gal(K;K>/Q(&)), which is isomorphic to SL;(F¢)%. As an SL,(Fy)2-
representation, it is an extension of an 18-dimensional trivial representation by
Vi X Vy. If £ is sufficiently large, then this extension is trivial, since all indecom-
posable Fy-representations of SL,(IF¢) which are not irreducible have dimension
at least £ — 2 (see [1, Corollary 4.3]). As H°(X,F;) and H*(X,F,) are trivial
1-dimensional representations of Gg,) and H'(X,F;) = H3(X,F¢) = 0, the
theorem follows. O

6. The main theorem
In this section, we prove the main result of this paper.

THEOREM 6.1
For any K3 surface X /Q of the type in Theorem 5.2,

§x (1) € Ko[Varg][1/L][[t]]

is irrational in the sense that if Bno(t) is a polynomial with coefficients in
Ko[Varg][1/L][t] and Buoi(0) =1, then B (¢)x (t) is not a polynomial.
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Proof

Choose X to be the variety defined in Proposition 5.2. We assume that {x (¢) is a ratio-
nal function and choose By (t) With B (0) = 1 such that Apei(?) := Bmot(#)x (¢)
is a polynomial. Let

M := max(deg Ao + 24, deg Bmot).

We fix a prime £ > M sufficiently large such that:
(1)  The homomorphism (5.1) is an isomorphism; that is, Gal(K; K»/Q(&p)) is
isomorphic to G := SL,(FFy)2.
(2) Foralli <M, we have vz([SymiX]) = [Sym’ H*(X,Fy)].
For large enough £, (1) holds by Theorem 5.2, and

ve([Sym' X]) = v, ([X'/ Zi]) = [H*(X".F)™ | = [H* (X" . Fy)x, |
=[(H*(X.F)®)g ] = [Sym' H*(X,Fy)]

by the definition of Sym’ of a variety, Corollary 4.6, the semisimplicity of F¢[X;], the
Kiinneth formula, and the definition of Sym’ of a vector space.

We define R := KZP(GQ(;Z)). By condition (1) on £, we can identify K‘ZP(G) with
a subring of R via Resg(g). .

For all nonnegative integers i, we define a; := v,([Sym’ X]), which belongs to
this subring and satisfies

a; = Reng(q) [Sym'(F?° & Vi K V)]

for 0 <i < M by condition (2) on £ and Theorem 5.2. For all i > 0, we define
bi = v, (X [i1), where X1 denotes the Hilbert scheme of points of length i on X.
In particular, X 0] j5 defined to be Spec Q. Note that b; is effective for all i by Theo-
rem 3.3, since it is the class of a nonsingular projective variety.

Let A :=v,(Ano), and let B := v,(Bno). Thus, A(0) = B(0) =1, M >
max(deg(A4) + 24,deg(B)), and

B(1)Y ait’ = A(1).

i=0

Applying v, to both sides of the identity (A.1) proved in the Appendix, the ele-
ments dg,dy,ds,... and by, by, bs,... satisfy the identities (2.17). By Proposi-
tion 2.7, Y ;. pait’ = (1 —1)72°Ay,my, (1)~!. Proposition 2.8, then implies that
be=v,(X [¢1) Ties in KZP(G) and is not effective, which is a contradiction. O
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Appendix. Hilbert schemes of surfaces
This section is devoted to a proof of an identity relating the classes of the Hilbert
schemes of a nonsingular surface to those of symmetric powers of the surface.

THEOREM A.1
If X is a nonsingular surface over a field k, then we have an identity of power series
in Ko(Vary) as follows:

> Lxther l_lzx(ﬂf g (A1)
n=0

This theorem is due to Gottsche [12, Theorem 1.1] in the case that k is alge-
braically closed and of characteristic 0. Almost all of the proof goes through for arbi-
trary fields. We briefly recall his argument, ignoring the combinatorial details, which
do not depend on field.

Géttsche considers the Hilbert—-Chow morphism X[ — Sym”X and pulls
back the stratification of Sym”X by partitions of n. For each such partition
7 = (191...n%), he realizes the m-stratum of X[ as the open part of a stratifi-
cation of [];_; Sym% X ([’}, where X [} is the closed stratum of X1, that is, consists
of length i subschemes of X supported on a single point. Over any field, the natural
morphism X [ ] — X mapping a local subscheme to its point of support is Zariski-
locally tr1v1a1 w1th fiber R;, where R; denotes the ith punctual Hilbert scheme,
that is, the (reduced) Hilbert scheme of codimension i ideals of k[[x, y]] (see [11,
Lemma 2.1.4]). Thus, [X([ll;] = [R;][X].

For k = C, Ellingsrud and Strgmme [9, Theorem 1.1(iv)] give a decomposition of
R; into strata which are affine spaces. The proof uses the Biatynicki-Birula theorem,
which assumes that k is algebraically closed, so this needs to be checked for general
k. Gottsche, following an idea of Totaro, shows that [Sym? (A? x X)] = L**[Sym® X|;
this depends only on étale descent of vector bundles and the fact that Sym’ A! =~ A7,
both of which hold over arbitrary fields.

So what remains to be verified is the following.

PROPOSITION A.2

Let k be any field, and let n be any positive integer. Then R, has a stratification
into locally closed strata indexed by the set P(n) of partitions B of n such that the
stratum associated to B is isomorphic to A"l where |B| denotes the number of

parts of .
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We prove the proposition by giving an explicit “cell decomposition” of R, and
explicit parameterizations of the cells. Toward this end, we introduce the following
notation. Let 8 and A be mutually dual partitions (i.e., partitions whose Ferrers dia-
grams are transpose to one another) with

r:ﬂ12ﬂ22“'2,35>/3s+1:07

s=A =A== A > Ay =0.

Thus,

Bri+1<i =P

for1 <i <r,and
Agj+1 <J = A,

for 1 < j <s. For B (and therefore A) fixed, we define the polynomial ring
Ag = Z[tj;], where 1 <i <r and 1 < j < A;41, and we recursively define
(working from bottom right to top left as in the example, with A = (5,4,2,1,1),
B =(5,3,2,2,1), and r =5 =5, depicted below) the finite sequences of polyno-
mials Q1,02,...,0r41 =1 and Py =1, P,,... Ps in Ag[x,y] as follows: for
1<i<r,

Aig1
Qi =y M1 Qi+ ) 1P Py,
j=1

andforl1 <j <s,

—Ag . +1—1
P; = y‘] Bj+1 Qﬁj-i-l'
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Q1 =y0> +111x* Py + 112x? Py + t13xP3 + 114xPy

Ps= 05| Q2=y203+121x>P1 + t22xP,

Py=yQ3

P3= Q3 03=y04+131x2P;

Py =04 Q4= 0s5+1t41xP;
0s5=y0s¢

Pi=0Q¢| Qs=1

As B; >i 4+ 1 when j <A;4;, by descending induction, for 1 <i <r +1,
Qi € yM + (x),

and by (standard) induction it follows that
Pjey’™ +(x)

for1 <j <s.Forl1<i<r+ 1, wedefine

di = (0i,x0i41,x*Qit2, ..., x" 710, 41).

LEMMA A.3

For any field F and ring homomorphism ¢: Ag — F, Iy :=d1 Q¢ F isan (x,y)-
primary ideal of F[x, y] of codimension n. A linear complement for I, in F[x,y] is
given by

Span{x'"'y/ [1<i<r,0<j <A}

Moreover, every (x, y)-primary ideal of F[x, y] of codimension n satisfying
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dim(/, :xk)/(ll :xk_l) =A,k=1,...,r

arises from one and only one ¢.

Proof
Setting Iy 1= Ji 4,4 F, we have

I = 0k, X Qkg1, -, X" 71750, 10),
where Oy := QO ® 1 belongs to y** + (x) C F[x,y]. As
Ak+1 N
- B _ P
Ok =y/lk Ak+1Qk+1 + Z aijﬂl kyj Bj+1 Op, 41,
j=1
where a; 1= tx; ® 1 = ¢(tx;), we have

X0k € (X Qpgrs-o o X TR 1) = x4,

so RQy € x4 if and only if R € (x). This means that an element of I; belongs to
(x) if and only if it belongs to x I 4+1 C I; that is,

(Ir 2 x) = T4

for 1 <k <r. By induction, (I xl)= Iyyjforl <k <k+4+j<r+1.Asl4iis
the unit ideal, x” € I1, so the image of x in F[x, y]/I; is nilpotent. As y*1 is divisible
by x (mod I), it follows that y is nilpotent in F[x, y]/I;. Thus, I is (x, y)-primary.

The composition of maps Iy < F[x,y] = F[y] sends x’ Qx4; to 0 for i > 0
and sends Qy to y’lk . Thus, we have an isomorphism

Flx. y1/ (I + () = Fy)/ (*6). (A2)
We prove by descending induction that the span of
Ty k<i<r0<j <X} (A3)

is complementary to I in F[x, y]. This is trivial for k = r 4+ 1. Multiplication by x
gives an isomorphism

Flx,y1/ I+ = Flx, y]/ i 2 x) = (0)/ Ik N (x)).
By (A.2), the short exact sequence

0— (x)/(Ix N (x)) > Fx,y1/Ix > Flx,y]/(Ix + (x)) > 0
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can be rewritten as
0~ Flx. 31/l = Flx.y)/ I = Fy/(y*) = 0.
By induction,
dim Fx,y]/Ix = Ak + A1 + -+ Ar.

To prove that the image of (A.3) spans F|[x,y]/Ix, we assume the corresponding
statement for k + 1. Then

(R k4+1<i<r0<j <A}
spans (x)/(Ix+1 N (x)) and the image of
7 10<)j <}

spans F[y]/(y**), so the image of (A.3) spans F[x, y]/I.

Next we claim that /; determines ¢. Equivalently, /; determines a;; = ¢ (t;;).
We prove by descending induction that /; determines a;; for all i > k. This is trivial
for k > r 4+ 1. Assume it holds for k + 1. As Ix4+; = (Ig : x) determines a;; for
i >k + 1 (and therefore determines Qk+1,..., Qr+1), we need only consider the
case i = k. It suffices to prove that

I 0 Span{x?/ 7 P; | 1 < j < Agy1} =1{0}.
Indeed, if

Ak+1
Z ijﬂ-/_kPj eIy
Jj=1

and m := min{f; | ¢; # 0}, then this linear combination lies in I N (x" %) =
x™m=k . and we have

Am
ZCjX'Bj_mpj ely.
j=1
Reducing (mod x), we have a nontrivial linear combination of yj 1 for j<A B, = Am
belonging to (y*7), which is impossible.
Finally, we claim that every (x, y)-primary codimension-n ideal of in F[x, y]
can be expressed as I for some partition A of n and some ¢. Defining

Ay =dim(7 :x) /(1 XY,
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we have A1 > A, > --- since multiplication by x defines an injection
(XY xhy— (1 :x)/(:x"7Y,i > 1,

and > 72, A; = n since (I : x™) = F|[x, y] for m sufficiently large. This determines
A, and now we must show that the parameters a;; can be chosen so that /; = 1. We
use induction on the number of parts in the partition.

Given [ with associated partition A; > A, > ---, let J := (I : x), which is associ-
ated to A, > A3 > ---. By the induction hypothesis, there exist a;; € F for2 <i <r,
1 < j <Aj41 such that

I =(02,x03,....x" ' 0,41)

coincides with J. The image of / by the (mod (x)) reduction map F[x,y] — F[y]is
(y*1), 50 I =(01) + xI, for some Q; of the form y*1=*2 0, + xa, where

xxe(x)NJ =x)NI, =xI3;
that is, & € 5. On the other hand, if « — § € I5, then
(y’“_’12 0s + xa) + xI, = (y)“_sz_z + xB) + x1,.

It suffices to prove that every class in I3/1> is represented by some « of the form
Z?il aljxﬂ/_zyj_’lﬁj“ -1 Q_ﬂjH. Composing the map F*2 — 5 given by

Az

—2 J=Ag.+1—1 7
(a11,....a12,) = E ayxPim2y et Op;+1 €13
Jj=1

with the quotient map /3 — I3/1,, we get an injective map between vector spaces of
dimension A,, which must therefore be surjective. O

Now we can prove Proposition A.2.

Proof
It suffices to prove the equivalent form

[Ral= 3 A7),

AeP(n)

As d; contains (x,y)", if M denotes the free #g-module of polynomials in

Ag of degree < n, then we have an isomorphism of #Ag-modules M/M N d; 5
Aglx,y]/d1. The +Ag-linear map
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SpanAB{xiyj |0<i<r,0=<j<Aiy1}— Aglx,y]/d1

becomes an isomorphism after tensoring by any residue field of g, so by
Nakayama’s lemma, it must be an isomorphism. Thus g[x, y]/d is a free Ag-
module, and this remains true after tensoring over Z with k. If S = Spec Ag ®z k
and Z = Spec Ag[x, y]/d1 ®zk, then Z — § is flat and therefore defines an S-point
of the Hilbert scheme (A2), and since every geometric point of S corresponds to a
(x, y)-primary ideal, it follows that S maps to R,,. At the level of F-points, this map
gives a bijection between (x, y)-primary ideals associated to A and F-points of S.
The proposition now follows from the following lemma. U

LEMMA A .4
Let k be a field, and let ¢: Y — X be a morphism of k-varieties. If for all extension
fields F of k, ¢ defines a bijection from Y (F) to X (F), then [X] = [Y] in Ko(Varg).

Proof

Suppose that K is a field and that Z is a K-variety such that, for every extension field
L of K, there is a unique morphism Spec L — Z lifting Spec L — Spec K. If y1, y»
are points on Z with residue fields K; and K, over K, then we can choose a field
© in which K; and K, both embed as subfields, so Z has at least two distinct 2-
points, contrary to assumption. Thus Z has a single point, so it is affine: Z = Spec A
for some reduced K-algebra A. The nilradical corresponds to the unique maximal
ideal, and it is zero since Z is a variety, so A is a field extension L /K. On the other
hand, the identity map Spec K — Spec K lifts to Spec K — Spec L, so the extension
K — L has an inverse, which means it is trivial.

We apply this in the case that K is the residue field of the generic point 1 of a
component of X and Z := Y, is the fiber of ¥ over 5. The conclusion is that there
exists a point ' in Y over 7 for which ¢ gives an isomorphism of residue fields. Thus,
there exist open neighborhoods U of in X and U’ of  in Y such that ¢~} (U) = U’
and ¢ induces an isomorphism U’ — U. Replacing Y and X by Y \ U’ and X \ U,
respectively, the restriction of ¢ induces a map on F -points for all extensions F of &,
and the lemma follows by Noetherian induction. O
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