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Abstract
Let K0.VarQ/Œ1=L� denote the Grothendieck ring of Q-varieties with the Lefschetz
class inverted. We show that there exists a K3 surface X over Q such that the motivic
zeta function �X .t/ WD

P
nŒSymnX�tn regarded as an element in K0.VarQ/Œ1=L�ŒŒt ��

is not a rational function in t , thus disproving a conjecture of Denef and Loeser.

1. Introduction
Let k be a field. We denote by K0.Vark/ the Grothendieck group of k-varieties, that
is, the free abelian group generated by isomorphism classes of k-varieties modulo
the cutting-and-pasting relations ŒX�D ŒY �C ŒX n Y � for all pairs .X;Y / consisting
of a variety X and a closed subvariety Y . It is endowed with a commutative ring
structure characterized by ŒX�ŒY � D ŒX � Y �. Note that we use variety to mean a
reduced separated scheme of finite type over k, but the Grothendieck ring would not
be changed if we allowed nonreduced schemes or nonseparated schemes, or limited
ourselves to affine schemes (and closed subschemes with affine complement).

Following Kapranov [14], we define the motivic zeta function

�X .t/ WD

1X
nD0

ŒSymnX�tn 2K0.Vark/ŒŒt ��;

where SymnX is the symmetric nth power Xn=†n.
By a motivic measure, we mean a homomorphism � W K0.Vark/! A, where A

is a commutative ring. We write �.�X .t// for the image of �X .t/ in AŒŒt ��. If k is a
finite field, then � W ŒX� 7! jX.k/j defines a motivic measure with values in Z. The
image �.�X .t// 2 ZŒŒt �� is the usual zeta function of X and therefore rational as a
function of t by Dwork’s theorem (see [8]). In [14, Remarks 1.3.5], Kapranov asked
whether this rationality holds for the motivic zeta function itself. He proved that this
is so when X is a curve with at least one k-point, even if k is not a finite field,
and Litt [20] generalized the result to all curves. (Since K0.Vark/ is not an integral
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domain by [23], there is a question of exactly what this means, which we settle for
the purposes of this paper by saying that �X .t/ rational means that there exists a
polynomial B.t/D 1C b1t C � � � C bntn such that B.t/�X .t/ 2K0.Vark/Œt �.)

In [16], we proved that, in general, �X .t/ is not rational when X is a surface.
This does not quite finish the question, since for many purposes (especially motivic
integration), the natural object to consider is notK0.Vark/ butK0.Vark/Œ1=L�, where
L WD ŒA1�. It is known that L is a zero-divisor (see [4]; see also [26] for an analysis of
the annihilator of L). One might still hope, therefore, that �X .t/ may be rational as a
power series over K0.Vark/Œ1=L�. No variant of the method of [16] can possibly test
this, since the motivic measures constructed in that paper are birationally invariant
and therefore vanish on L. This made possible the conjecture of Denef and Loeser
(see [7, Conjecture 7.5.1]) predicting that �X .t/ should satisfy this weaker rationality
condition. In this paper, we show that in general it does not.

To explain our strategy, we begin by discussing certain motivic measures which
cannot detect the irrationality of zeta functions. A reference for the following discus-
sion is [17]. We endow K0.Vark/ with the �-structure in which the ŒX�! ŒSymnX�

operations play the role of symmetric powers; in other words, �n.ŒX�/ is defined to
be the tn coefficient of �X .t/�1. If A is a finite �-ring (in the sense that every element
a 2 A can be written aD b � c, where �nb D �nc D 0 for n sufficiently large), then
every �-homomorphism � W K0.Vark/!A is a motivic measure for which �.�X .t//
is rational for all X=k.

Here is an example. Let K.Gk;Q`/ denote the Grothendieck ring of (virtual)
finite-dimensional continuous representations of Gk , where, as usual, 0! V1 !

V2! V3! 0 implies ŒV2�D ŒV1�C ŒV3�. Then K.Gk;Q`/ is a �-ring (even a special
�-ring), and

ŒX� 7!

2dimXX
iD0

.�1/i
�
H i . NX;Q`/

�
;

where H i . NX;Q`/ denotes the i th `-adic étale cohomology group of NX as a Gk-
representation, defines a ring homomorphism �. It is a consequence of the Künneth
formula and the isomorphism

H i .Symn NX;Q`/
�
�!H i . NXn;Q`/

†n

that � is a �-homomorphism. Thus �.�X .t// is rational in t for all X , where the
degree of numerator and denominator depend only on the dimension of the cohomol-
ogy of NX .

In particular, if X is a K3 surface, then �.�X .t//�1 is a polynomial of degree 24,
the product of a degree 22 polynomial corresponding to the H 2-term and the factors
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.1� t /.1��.L/2t /, corresponding to theH 0 andH 4 terms. We consider K3 surfaces
of Picard number 18, in which the H 2 factor further decomposes .1��.L/t/18ƒ.t/.

We modify this construction in three ways. First, we consider coefficients in NF`
instead of Q`. Second, we use a modified Grothendieck ring Ksp

`
.Gk/ of Galois rep-

resentations, in which we identify ŒV2� with ŒV1�C ŒV3� only when V2 Š V1 ˚ V3 as
Gk-modules. This is essential, since the essence of our construction is to distinguish
NF`-valued Galois representations which have the same semisimplification. Third, we
replace k by k.�`/ in order to trivialize the cyclotomic character Gk ! F�

`
(so that

L maps to 1). Up to the t` coefficient, everything works as before, but the expression
for �.�X .t// as a rational function breaks down at the t` coefficient. No one ` value
necessarily excludes the possibility of rationality, but by taking values of ` tending to
infinity, we can prove that �X .t/ cannot be rational.

Assuming the characteristic of k is 0, we can define �
`

so that for every non-
singular projective k-variety X , we have �

`
.ŒX�/D ŒH �. NX; NF`/� in the Grothendieck

ring Ksp
`
.Gk.�`//. It is easy to calculate the semisimplification of H �.SymnX; NF`/ as

a Gk.�`/-representation, but as SymnX is in general singular, we do not know when

�`
�
ŒSymnX�

�
D
�
SymnH �. NX; NF`/

�
:

However, we show that this holds when all the cohomology of X is in even degree
and ` is sufficiently large compared to n. If ` is large compared to the degrees of
the numerator and denominator of �X .t/, then the linear recurrence satisfied by the
�
`
.ŒSymiX�/ ultimately implies that �

`
.ŒSym`X�/ is noneffective. This is a result of

the breakdown of the correspondence between the (mod `) representation theory of
SL2.F`/ and the complex representation theory of SL2.C/ which occurs in dimen-
sion `.

Unfortunately, we do not know how to compute the value �
`
.ŒSym`X�/ directly,

but, using a generalization to arbitrary fields of Göttsche’s relation [12] in K0.Vark/
between the classes ŒX Œi�� of the Hilbert schemes of X and the classes of the sym-
metric powers of X , we can show that �

`
.ŒX Œ`��/ is also noneffective. This is absurd,

since X Œ`� is projective and nonsingular.
We remark that as this proof depends on showing that images of certain Galois

representations are “as large as possible,” it breaks down for some fields k, especially
algebraically closed fields. It would be particularly interesting to have an argument
which works over C.

In Section 2, we discuss Grothendieck groups of representations of finite groups,
especially SL2.F`/ and SL2.F`/2. In Section 3, we use the method of Bittner [2] to
construct �

`
. In Section 4, we discuss some variants of the category of Chow motives

which enable us to show that if ` is large compared to n, then SymnX behaves like a
nonsingular variety as far as �

`
is concerned. In Section 5, we show that there exists a



4 LARSEN and LUNTS

K3 surface over Q with the desired Galois-theoretic properties. The proof of the main
theorem is in Section 6. The generalization of Göttsche’s theorem to an arbitrary base
field is given in the Appendix.

2. Grothendieck rings of representations
We fix an odd prime ` and an algebraic closure NF` of the prime field F`, which we
regard as a space with the discrete topology. For any topological group G, we denote
by Ksp

`
.G/ the Grothendieck ring of the exact category given by split short exact

sequences of continuous NF`ŒG�-modules which are finite-dimensional over NF`.
We claim that, as an additive group, Ksp

`
.G/ is the free Z-module on indecom-

posable continuous NF`ŒG�-modules. To see this, recall from [15] that an additive
category is Krull–Schmidt if every object is a finite direct sum of indecomposable
objects whose endomorphism rings are local. As every finite-dimensional G-module
has finite length, the category of such modules is Krull–Schmidt (see [15, Section 5]).

By the Krull–Remak–Schmidt theorem, this implies that the factors appearing
in any decomposition into indecomposables, together with their multiplicities, are
uniquely determined. We say that an element of Ksp

`
.G/ is effective if it is a nonneg-

ative linear combination of indecomposable classes.
Any continuous homomorphism G ! H induces a restriction homomorphism

K
sp
`
.H/! K

sp
`
.G/, which maps effective classes to effective classes. If G!H is

surjective, then ResHG is injective because distinct indecomposable representations
restrict to distinct indecomposable representations of G. A class in Ksp

`
.H/ is effec-

tive if and only if its restriction to Ksp
`
.G/ is so.

If G is profinite, then Ksp
`
.G/ is the direct limit of Ksp

`
.G=H/ as H ranges

over open normal subgroups of G. In this section, we consider only finite groups
G endowed with the discrete topology, so the continuity condition will play no role.

PROPOSITION 2.1
If H1 and H2 are finite groups, then the external tensor product defines an injective
homomorphism K

sp
`
.H1/˝K

sp
`
.H2/!K

sp
`
.H1 �H2/.

Proof
We need to show that if �1 W H1 ! GL.V1/ and �2 W H2 ! GL.V2/ are indecom-
posable representations, then �12 W H1 �H2! GL.V1 � V2/ is an indecomposable
representation ofH1�H2 and that, moreover, the isomorphism class of the represen-
tation V1 � V2 determines the isomorphism classes of V1 and V2. The second claim
follows immediately by applying Krull–Remak–Schmidt to the restriction of V1�V2
to G1 � ¹1º and ¹1º �G2.
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To prove that �12 is indecomposable, it suffices to prove that the centralizer Z12
of the NF`-span of �12.H1 �H2/ in End.V1˝ V2/ is a local NF`-algebra. To commute
with �12.H1 �H2/ is the same as to commute with �12.H1 � ¹1º/ and �12.¹1º �
H2/. If Zi denotes the centralizer of �i .Hi / in End.Vi /, and Z0i is any NF`-linear
complement of Zi in End.Vi /, then the centralizer of �12.H1 � ¹1º/ is

Z1˝ End.V2/DZ1˝ .Z2˚Z
0
2/DZ1˝Z2˚Z1˝Z

0
2;

the centralizer of �12.¹1º �H2/ is

End.V1/�Z2 D .Z1˚Z
0
1/˝Z2 DZ1˝Z2˚Z

0
1˝Z2;

and the intersection of these two centralizers is Z1˝Z2.
Each finite-dimensional representation is indecomposable if and only if its

endomorphism ring is local (see [15, Proposition 5.4]). The tensor product of finite-
dimensional local algebras over an algebraically closed field is again local (see [19,
Theorem 4]), and this proves the proposition.

If V is a G-representation, then we define �V .t/ 2K
sp
`
.G/ŒŒt �� as

�V .t/D

1X
nD0

ŒSymnV �tn;

where SymnV denotes the space of †n-coinvariants of the tensor product V ˝n. Note
that if ` is a prime, † is any group of order prime to `, and V is a finite-dimensional
†-representation over NF`, then the map

Nv 7!
X
�2†

�v

induces a natural isomorphism V†! V †, from coinvariants to invariants. We may
therefore identify the symmetric nth power with the symmetric tensors of rank nwhen
n < `.

PROPOSITION 2.2
For every group G and every representation V ,

�dimVX
iD0

.�1/i Œ^iV �t i
�
�V .t/� 1 .mod t`/:

Proof
Equivalently, we claim that, for 1� k < l , we haveX

iCjDk

.�1/i Œ^iV ˝ SymjV �D 0: (2.1)
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For every object W of a �-ring, we have the identity
X
iCjDk

�i .W /�j .�W /D 0:

If W is a finite-dimensional complex vector space regarded as an object of the
representation ring of GL.W /, then it is easy to see by the splitting principle that
.�1/j�j .�W / corresponds to SymjW . If 	i;j in the group ring ZŒ1=kŠ�ŒSk� denotes
the projector which maps W ˝k DW ˝.iCj / onto ^iW ˝ SymjW , this implies

X
iCjDk

.�1/i	i;j D .�1/
iCj

X
iCjDk

.�1/j 	i;j D 0:

As kŠ is invertible (mod `), this reduces to the same identity over F`, which implies
the identity (2.1) for group representations in characteristic `.

We will eventually be interested in the case G D SL2.F`/2, but we start with
H D SL2.F`/. We denote by Vi the i th symmetric power of the natural 2-dimensional
NF`-representation ofH (where the 0th symmetric power is understood to be the trivial
representation) and by W the representation V1˝ V`�1.

PROPOSITION 2.3
We define

FnK
sp
`
.H/D

8̂
<̂
ˆ̂:

SpanZ.ŒV0�; : : : ; ŒVn�/ if n� `� 1,

SpanZ.ŒV0�; : : : ; ŒV`�1�; ŒW�/ if nD `,

K
sp
`
.H/ if n > `.

We have the following facts:
(1) The representation W is indecomposable.
(2) The product on Ksp

`
.H/ is compatible with the filtration Fi in the sense that

�
FiK

sp
`
.H/

��
FjK

sp
`
.H/

�
� FiCjK

sp
`
.H/:

Proof
The representation V1 is the restriction of the tautological 2-dimensional representa-
tion QV1 of SL2. NF`/. Applying [1, Lemma 3.1, Proposition 3.3(iii)] with �D ` � 2,
we know that QV1 ˝ Sym`�1 QV1 is indecomposable, and by [1, Lemma 4.1(a)], the
restriction W of this representation to SL2.F`/ is the injective hull of an irreducible
representation of SL2.F`/ and therefore indecomposable. (This fact can also be read
off from Table 1 of the same paper.) This gives claim (1).
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By [1, Lemma 2.5] (or Proposition 2.2), for 1� i � `� 2, we have

Vi ˝ V1 Š Vi�1˚ ViC1: (2.2)

By induction on j , this implies that, for i; j � 0 and i C j � ` � 1, we have the
Clebsch–Gordan formula

Vi ˝ Vj Š ViCj ˚ ViCj�2˚ � � � ˚ Vji�j j:

For i C j D ` and 0 < i < j , we claim that

Vi ˝ Vj DW˚
iM

kD2

V`�2k : (2.3)

The statement is trivial for i D 1, and for i � 2,

Vi�2˝ Vj ˚ Vi ˝ Vj Š .Vi�2˚ Vi /˝ Vj

Š V1˝ .Vi�1˝ Vj /

Š V1˝ .V`�1˚ V`�3˚ � � � ˚ V`C1�2i /

ŠW˚ .V`�2˚ V`�4/˚ � � � ˚ .V`C2�2i ˚ V`�2i /:

As

Vi�2˝ Vj D V`�2˚ V`�4˚ � � � ˚ V`C2�2i ;

Krull–Schmidt implies our claim, which in turn implies (2).

Let

ƒV1.t/ WD 1� ŒV1�t C t
2 2K

sp
`
.H/Œt �:

The analogy between the (mod `) representation theory of H and the (complex) rep-
resentation theory of SL2.C/ might suggest the possibility that �V1.t/D ƒV1.t/

�1,
that is, that the congruence in Proposition 2.2 is actually an equality, but this turns out
not to be true. Instead, (2.2) and (2.3) imply

ƒV1.t/�V1.t/� 1C
�
ŒV`�2�C ŒV`�� ŒW�

�
t` .mod t`C1/: (2.4)

Note that since W is indecomposable, the t` coefficient of ƒ.t/�V1.t/ is nonzero.
This phenomenon, as it arises in the case of the representation V1 � V1 of SL2.F`/�
SL2.F`/, is the key to our proof of irrationality.
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Henceforth, G D SL2.F`/� SL2.F`/. For nonnegative integers n, we define

FnK
sp
`
.G/D SpanZ

®
ŒVi � Vj �

ˇ̌
0� i; j � n

¯
:

By Proposition 2.3(2), we have

�
FiK

sp
`
.G/

��
FjK

sp
`
.G/

�
� FiCjK

sp
`
.G/ (2.5)

for all nonnegative integers i and j .
We define AG to be the set of power series

P
i�0 ci t

t with ci 2 FiK
sp
`
.G/.

LEMMA 2.4
We have the following:
(1) AG is a subring of Ksp

`
.G/ŒŒt ��.

(2) .1C tK
sp
`
.G/ŒŒt ��/\AG and 1C tAG are multiplicative groups.

(3) If 1C
P1
iD1 ai t

i and 1C
P1
iD1 bi t

i are elements of AG which represent the
same .1C tAG/

�-coset, then ai � bi .mod Fi�1K
sp
`
.G// for all i � 1.

Proof
Part (1) follows immediately from (2.5). For (2), the sets .1C tKsp

`
.G/ŒŒt ��/\AG and

1C tAG are obviously both multiplicative monoids. To show that both sets admit mul-
tiplicative inverses, we note that the power series expansion for .1C a/�1 converges
t -adically whenever a 2 tKsp

`
.G/ŒŒt ��, and both .1C tKsp

`
.G/ŒŒt ��/\AG and 1C tAG

are closed in the t -adic topology on Ksp
`
.G/ŒŒt ��. For (3), if 1 C t˛; 1 C tˇ 2 AG

belong to the same coset, then

.1C tˇ/D .1C t˛/.1C t
/

for some 
 2AG , so ˇ � ˛ D .1C t˛/
 , where ˛
 2AG . This is equivalent to the
congruence condition ai � bi .mod Fi�1K

sp
`
.G// for all i .

PROPOSITION 2.5
For 0� n� `� 1, we have

Symn.V1 � V1/Š

bn=2cX
iD0

Vn�2i � Vn�2i :

Proof
First of all, the symmetric power is a quotient of

.V1 � V1/
˝n D V ˝n1 � V ˝n1 ;
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which by (2.2) and induction on n is a direct sum of expressions of the form Vi � Vj

with i; j � n. Thus Symn.V1�V1/ is itself a direct sum of such expressions. Writing

Symn.V1 � V1/D
M

0�i;j�n

.Vi � Vj /
ai;j ;

it remains to prove that ai;j is 0 except when i D j 2 ¹n;n� 2;n� 4; : : :º, in which
case it is 1.

Restricting to H � ¹1º, we obtain the isomorphism of H -modules

M
0�i;j�n

V
ai;j .jC1/

i Š Symn.V1˚ V1/Š
M
aCbDn

Va ˝ Vb Š

bn=2cM
kD0

V n�2kC1
n�2k

; (2.6)

the last isomorphism following from (2.3). Thus, ai;j .j C 1/� i C 1 for all i; j � n.
By symmetry, also ai;j .i C 1/ � j C 1. Thus, ai;j � 1 with equality only if i D j .
Comparing with (2.6), we see that ai;i D 1 exactly for i 2 ¹n;n� 2;n� 4; : : :º.

PROPOSITION 2.6
Define

ƒV1�V1.t/ WD 1� ŒV1�V1�t C
�
ŒV2�V0�C ŒV0�V2�

�
t2� ŒV1�V1�t3C t4: (2.7)

Then

ƒV1�V1.t/�V1�V1.t/� 1 .mod t`/:

Proof
This follows easily from Proposition 2.2. We may assume that ` > 2, so SL2.F`/ is
perfect, which implies that the top exterior power of V1 � V1 is trivial. As V1 � V1

is self-dual, it follows that it is equal to its own exterior cube. Finally, restricting to
H � 1 and 1�H , we see that

^2.V1 � V1/Š V2 � V0˚ V0 � V2:

We now come to the key proposition.

PROPOSITION 2.7
Let R be a ring containing Ksp

`
.G/. Let A.t/;B.t/ 2 RŒt� denote polynomials with

A.0/D B.0/D 1, let k be a nonnegative integer, and let NFk
`

denote the trivial repre-
sentation of G of dimension k. FixM �max.degACkC4;degB/, and assume that
`�M C 1.
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If ai 2R for all i � 0,

A.t/DB.t/.a0C a1t C a2t
2C � � � /; (2.8)

and

ai D
�
Symi

�
.V1 � V1/˚ NF

k
`

��
2K

sp
`
.G/ (2.9)

for i �M , then

.1� t /kƒV1�V1.t/
1X
iD0

ai t
i D 1 (2.10)

and

a` � ŒW � W�� ŒW � V`�2�� ŒV`�2 � W� .mod F`�1K
sp
`
.G//: (2.11)

Proof
Combining (2.8) and (2.9), we obtain

A.t/�B.t/

1X
iD0

�
Symi

�
.V1 � V1/˚ NF

k
`

��
.mod tMC1/: (2.12)

For any G-representation V and any nonnegative integer n < `,

Symn.V ˚ NF`/Š

nM
iD0

SymiV:

Thus,

.1� t /

1X
iD0

�
Symi .V ˚ NF`/

�
t i �

1X
iD0

ŒSymiV �t i .mod t`/: (2.13)

Applying this for V D V1 � V1 and iterating,

.1� t /k
1X
iD0

�
Symi

�
.V1 � V1/˚ NF

k
`

��
t i �

1X
iD0

�
Symi .V1 � V1/

�
t i .mod t`/:

Since `�M C 1, (2.12) implies

A.t/.1� t /k �B.t/.1� t /k
1X
iD0

�
Symi

�
.V1 � V1/˚ NF

k
`

��
t i

�B.t/

1X
iD0

�
Symi .V1 � V1/

�
t i .mod tMC1/: (2.14)
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Multiplying (2.14) by ƒV1�V1.t/, as defined in (2.7), we deduce

A.t/.1� t /kƒV1�V1.t/�B.t/ƒV1�V1.t/
1X
iD0

�
Symi .V1 � V1/

�
t i

�B.t/ .mod tMC1/: (2.15)

As

deg
�
A.t/.1� t /kƒV1�V1.t/�B.t/

�
�max.degAC kC 4;degB/�M;

the congruence (2.15) implies

A.t/.1� t /kƒV1�V1.t/DB.t/;

so

A.t/
�
1� .1� t /kƒV1�V1.t/

1X
iD0

ai t
i
�
DA.t/�B.t/

1X
iD0

ai t
i D 0:

As A.t/ is invertible, this implies (2.10).
By Lemma 2.4(2), ƒV1�V1.t/

�1 belongs to AG . Let ci denote its t i coefficient.
Thus, ci 2 FiK

sp
`
.G/ for all i � 0, and the equation

ƒV1�V1.t/
1X
iD0

ci t
i D 1 (2.16)

shows that the terms ci satisfy a linear recurrence of degree 4. Matching t` coefficients
in (2.16), we get the recurrence relation

c` D c1c`�1 �
�
ŒV2 � V0�C ŒV0 � V2�

�
c`�2C c1c`�3 � c`�4:

Modulo classes in F`�1K
sp
`
.G/, the right-hand side reads

ŒV1 � V1�ŒV`�1 � V`�1��
�
ŒV2 � V0�C ŒV0 � V2�

�
ŒV`�2 � V`�2�;

which, by (2.3), further reduces modulo F`�1K
sp
`
.G/ to

ŒW � W�� ŒW � V`�2�� ŒV`�2 � W�:

As 1� t 2 .1C tAG/
�, by (2.10), (2.16), and Lemma 2.4(3), we have

a` � c` � ŒW � W�� ŒW � V`�2�� ŒV`�2 � W� .mod F`�1K
sp
`
.G//:
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PROPOSITION 2.8
Let R be a ring containing K

sp
`
.G/, let k be a nonnegative integer, and let

b0; b1; b2; : : : be elements of R. If `� kC 5,

1X
iD0

ai t
i D .1� t /�kƒV1�V1.t/

�1;

and

1X
iD0

bi t
i D

1Y
rD1

1X
jD0

aj t
jr ; (2.17)

then bi 2K
sp
`
.G/ for all i � 0, and

b` � ŒW � W�� ŒW � V`�2�� ŒV`�2 � W� .mod F`�1K
sp
`
.G//:

Proof
By Proposition 2.2,

ƒV1�V1.t/
�1 �

1X
iD0

�
Symi .V1 � V1/

�
t i .mod t`/;

and so applying (2.13) k times, (2.9) holds for 0� i < `. Setting A.t/ WD 1, B.t/ WD
.1� t /kƒV1�V1.t/, and M WD kC 4, the hypotheses of Proposition 2.7 are satisfied,
and so a` satisfies the congruence (2.11).

By Lemma 2.4(2),
P1
jD0 aj t

j 2AG . Therefore, for r � 2,
P1
jD0 aj t

jr 2 .1C

tAG/
�. As the product

1Y
rD2

1Y
jD0

aj t
jr

is t -adically convergent and .1C tAG/
� is t -adically closed, it follows that this prod-

uct lies in .1C tAG/
�. By parts (1) and (3) of Lemma 2.4,

b` � a` .mod F`�1K
sp
`
.G//:

The proposition now follows from (2.11).

We note for future reference that the relationship (2.17) between the ai ’s and the
bi ’s is significant because it expresses the relationship between the motives of the
symmetric powers of a surface X and the Hilbert schemes of X .
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3. A family of motivic measures
In this section, we construct the motivic measures needed for the proof of our main
theorem.

Let k be a field of characteristic 0, let Nk be an algebraic closure of k, and let
Gk WD Gal. Nk=k/. We define NX WD X �Speck Spec Nk for any variety X=k. We regard
the étale cohomology groupsH i . NX; NF`/ and H i

c .
NX; NF`/ as Gk-representations. They

are obtained by extension of scalars from the Gk-representations H i . NX;F`/ and
H i
c .
NX;F`/, respectively.

Our construction depends on the Bittner construction (see [2]). In order to carry
it out, we make use of the following two results, which come from [13, Chapitre VII,
Théorème 8.1] and [13, Chapitre VII, Corollaire 2.2.4]. We are grateful to the referee
for providing these references.

THEOREM 3.1
Let X be a nonsingular projective variety over k, let Y 	X be a nonsingular closed
subvariety of codimension r , let X 0 be the blowup of X along Y , and let Y 0 be the
inverse image of Y in X 0. Then for any q there is a natural isomorphism

H q. NX 0; NF`/DH
q. NX; NF`/˚

r�1M
jD1

H q�2j
�
NY ; NF`.�j /

�
:

PROPOSITION 3.2
Let NY be a smooth projective variety over Nk, and let E be a vector bundle of rank r
over NY . Let P.E/! NY be the corresponding projective bundle. Then for each q there
is a natural isomorphism

H q
�
P.E/; NF`

�
D
M
j�0

H q�2j
�
NY ; NF`.�j /

�
;

where the summand for j D 0 is the image of the map p� W H q. NY ; NF`/!H q.P.E/;
NF`/. This isomorphism is Gk-equivariant if both NY and E are defined over k.

THEOREM 3.3
For each prime ` and every field k of characteristic 0, there exists a unique motivic
measure �

`
W K0.Vark/!K

sp
`
.Gk/ satisfying

�`
�
ŒX�

�
D

2dimXX
iD0

�
H i . NX; NF`/

�
;

for all projective nonsingular varieties X .
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Proof
By Bittner’s theorem (see [2, Theorem 3.1]), it suffices to prove that �

`
.ŒX � Y �/D

�
`
.ŒX�/�

`
.ŒY �/ whenever X and Y are nonsingular projective varieties, and that

whenever X is a nonsingular projective variety, Y is a nonsingular closed subvari-
ety, X 0 is the blowup of X along Y , and Y 0 is the inverse image of Y in X 0, we
have

�`
�
ŒX 0�

�
��`

�
ŒX�

�
D �`

�
ŒY 0�

�
��`

�
ŒY �
�
:

The first property follows immediately from the Künneth formula (see [22, Chap-
ter VI, Corollary 8.13]). The second follows from Theorem 3.1 and Proposition 3.2.

Definition 3.4
We define the motivic measure �

`
W K0.Vark/! K

sp
`
.Gk.�`// to be the composition

of �
`

with the restriction map Ksp
`
.Gk/!K

sp
`
.Gk.�`//.

In the application to the main theorem, we will always take k DQ.

4. Chow motives and finite Galois modules
Fix a field k, and denote by V.k/ the category of smooth, projective, irreducible k-
varieties and arbitrary morphisms of such varieties. Given X 2 V.k/ of dimension d ,
we consider the graded Chow ring A�.X/D

Ld
rD0A

d�r.X/ of cycles on X mod-
ulo rational equivalence, where the group Ad�r.X/D Ar .X/ consists of classes of
cycles of dimension r (see [10]). Let us recall a version of the category of Chow
motives that is appropriate for our needs. First consider the additive category Cor.k/
whose objects are the objects of V.k/ and whose morphisms are the degree 0 Chow
correspondences. That is, given X;Y 2 Cor.k/, X being of pure dimension d , we set

HomCor.k/.X;Y / WDA
d .X � Y /:

The composition of morphisms is the composition of correspondences (see [21]). The
category Cor.k/ is the “additivization” of the category V.k/. Next, one defines the
category Chow.k/ of Chow motives as the idempotent completion of Cor.k/. Explic-
itly, the objects of Chow.k/ are pairs .X;p/, where X 2 V.k/ and p 2 EndCor.k/.X/

is a projector: p2 D p. Morphisms between .X;p/ and .Y; q/ form the group q �
HomCor.k/.X;Y / � p. There is a canonical contravariant functor V.k/! Chow.k/
which sendsX 2 V.k/ to .X;1/ and a morphism f WX! Y to its graph �f 	 Y �X .
Let e 2 Chow.k/ be the image of Speck. The category Chow.k/ is a tensor category
with the product

.X;p/˝ .Y; q/D .X � Y;p˝ q/:
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There exists an object L 2 Chow.k/, called the Tate motive, such that P1 D e ˚ L
(see [21]). For .X;p/ 2 Chow.k/, we denote as usual the product .X;p/ ˝ L by
.X;p/.�1/.

Given a nonzero integer n, we denote by Chow.k/Œ1=n� the localization at n of
the additive category Chow.k/; that is, for A;B 2 Chow.k/, we have

HomChow.k/Œ1=n�.A;B/DHomChow.k/.A;B/˝Z ZŒ1=n�:

So Chow.k/Œ1=n� is a ZŒ1=n�-linear tensor category. We also consider the category
Chow.k/Q of rational Chow motives constructed in a similar way.

Example 4.1
Let X 2 V.k/ be a variety of pure dimension d with an action of a finite group G
of order n. Then p WD 1

n

P
g2G �g 2 A

d .X � X/˝Z ZŒ1=n� is a projector. Hence
.X;p/ 2 Chow.k/Œ1=n�.

Given a field extension k 	 k0, we obtain the obvious functors V.k/! V.k0/,
Cor.k/! Cor.k0/, Chow.k/! Chow.k0/, and so on induced by the extension of
scalarsX 7!Xk0 DX �k k

0 of varieties (see [10, Example 6.2.9]). If k0 D Nk, as usual,
we denote the variety X �k k by NX . For a prime `¤ char.k/, let �` be a primitive `th
root of 1 in Nk.

PROPOSITION 4.2
Let n be a nonzero integer, and let ` be a prime number not dividing n and different
from the characteristic of the base field k. Then the assignment

X 7!H �. NX; NF`/; X 2 V.k/;

extends to a tensor (contravariant) functor from the category Chow.k/Œ1=n� to the
abelian tensor category of finite-dimensional NF`-modules with a continuous Galk-
action:

ˆ` W Chow.k/Œ1=n�! NF`-Galk-mod:

If k contains a primitive `th root of unity �`, then the module ˆ`.L/ is a 1-
dimensional trivial NF`-Galk-module.

We do not claim originality for this proposition, but, for lack of a reference, we
provide a proof.

Proof
Since the category NF`-Galk-mod is closed under idempotent completion and its local-
ization . NF`-Galk-mod/Œ1=n� is equivalent to NF`-Galk-mod, it suffices to construct a
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functor from the additive category Cor.k/ to NF`-Galk-mod. We construct this func-
tor as the composition of the extension of scalars functor Cor.k/! Cor. Nk/ with a
functor

‰` W Cor. Nk/! NF`-vect;

where NF`-vect is the category of NF`-vector spaces. The functor ‰` is defined as fol-
lows. LetX and Y be smooth projective varieties (over Nk),X being of pure dimension
d , and let C 2Ad .X �Y / be a correspondence of degree 0. Consider the projections

X
pX
 X � Y

pY
! Y . Then, given an element a 2H i .Y; NF`/, we put

‰`.C /.a/D pX�
�
clX�Y .C /[ p

�
Y .a/

�
2H i .X; NF`/;

where clX�Y W As.X � Y /!H 2s.X � Y; NF`/ is the cycle map (see [6], [22, Chap-
ter VI, Section 9]) and p�Y and pX� are the pullback and the pushforward maps on
cohomology (see [22, Chapter VI, Remark 11.6]). In order for ‰` to be a functor,
the cycle map has to satisfy the following properties for morphisms of smooth and
projective varieties:
� cl is a morphism of contravariant functors from V. Nk/ to the category of rings;
� cl commutes with exterior products;
� cl is a morphism of covariant functors from V. Nk/ to the category of abelian

groups.
The first two properties are proved in [6, Cycle, Remarque 2.3.9 and (2.3.8.3)],

and the last one is in [18, Theorem 6.1].
Once the functor ‰` is constructed, it is clear that its composition with the

extension of scalars Cor.k/! Cor. Nk/ will give the desired functor ˆ`, since for
X 2 Cor.k/ the vector space H �. NX; NF`/ is a Galk-module and morphisms in Cor.k/
act as morphisms of Galk-modules. Also, the last assertion of the proposition is obvi-
ous. This proves Proposition 4.2.

Example 4.3
Let .X;p/ 2 Chow.k/Œ1=n� be as in Example 4.1, let ` be prime to n, and let l ¤
char.k/. Then ˆ`..X;p//DH �. NX; NF`/G as NF`-Galk-modules.

COROLLARY 4.4
Assume that in Chow.k/Q we have an isomorphism of objects A ' B . Then, for a
divisible enough integer n, the objects A and B belong to the essential image of the
category Chow.k/Œ1=n� and are isomorphic in Chow.k/Œ1=n�. Fix one such n, let `
be a prime not dividing n, and let l ¤ char.k/. Then the NF`-Galk-modules ˆ`.A/ and
ˆ`.B/ are defined and are isomorphic.
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Proof
Indeed, an isomorphism in Chow.k/Q between A and B is witnessed by a finite dia-
gram of objects and correspondences with denominators. Hence this diagram exists in
Chow.k/Œ1=n� for a divisible enough n. So A'B in such a category Chow.k/Œ1=n�.
The last assertion now follows from Proposition 4.2.

We remark that the measures �
`

and �
`

defined in Section 4 factor through
K0.Chow.k/Œ1=n�/ if ` � n. Indeed, it follows from Bittner’s presentation of the
group K0.Vark/ in [2] that the correspondence X 7! .X;1/ for a smooth and pro-
jective X extends to a group homomorphism � WK0.Vark/!K0.Chow.k//, where
K0.Chow.k// is the Grothendieck group of the additive category Chow.k/. Denote
by �Œ1=n� the composition of � with the obvious homomorphism K0.Chow.k//!
K0.Chow.k//Œ1=n�. Similarly for �Q.

The additive functor ˆ` of Proposition 4.2 induces the group homomorphism

K0.ˆ`/ WK0
�
Chow.k/Œ1=n�

�
!K

sp
`
. NF`-Galk/

such that we have the equality

�` DK0.ˆ`/ ı �Œ1=n� WK0.Vark/!K
sp
`
. NF`-Galk/ (4.1)

and hence also

�` D ResGalk
Galk.�`/

ıK0.ˆ`/ ı �Œ1=n� WK0.Vark/!K
sp
`
. NF`-Galk.�`//:

Remark 4.5
For G, k, and .X;p/ as in Example 4.1, we have

�Q
�
ŒX=G�

�
D
�
.X;p/

�
2K0

�
Chow.k/Q

�
: (4.2)

This follows from Corollary 2.4 in [5].

We obtain the following important corollary, which is used in the proof of our
main theorem (Theorem 6.1) below.

COROLLARY 4.6
Let X be a smooth projective variety over k with an action of a finite group G. Then
for all sufficiently large primes `, we have an equality

�`
�
ŒX=G�

�
D
�
H �. NX; NF`/

G
�
2K

sp
`
. NF`-Galk/

and therefore also

�`
�
ŒX=G�

�
D
�
H �. NX; NF`/

G
�
2K

sp
`
. NF`-Galk.�`//:
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Proof
By Remark 4.5 and Corollary 4.4 for a divisible enough m, we have

�Œ1=m�
�
ŒX=G�

�
D
�
.X;p/

�
2K0

�
Chow.k/Œ1=m�

�
:

Choose one such m and a prime ` not dividing m. Then

�`
�
ŒX=G�

�
DK0.ˆ`/ ı �Œ1=m�

�
ŒX=G�

�
DK0.ˆ`/

��
.X;p/

��

D
�
ˆ`
�
.X;p/

��
D
�
H �. NX; NF`/

G
�
;

where the last equality is by Example 4.3. This proves the corollary.

Remark 4.7
We believe that the assertions of Corollary 4.6 are true for any ` which does not divide
the order of the group G. To check this, one needs to consider a refinement of the cat-
egory Chow0.k/Q with bounded denominators similar to the category Chow.k/Œ1=n�.
Since Corollary 4.6 suffices for our needs, we decided not to do it.

5. Galois representations

PROPOSITION 5.1
There exist elliptic curves E1 and E2 over Q such that for all sufficiently large primes
`, there exist linearly disjoint Galois extensions K1 and K2 of Q.�`/ such that the
(mod `) Galois representations of GQ.�`/ acting on H 1. NEi ;F`/ have kernels GKi
and images isomorphic to SL2.F`/.

Proof
Fix primes q; r � 5. Let E1 and E2 be any elliptic curves over Q with multiplicative
reduction at q and such that E1 and E2 have, respectively, good ordinary reduc-
tion and good supersingular reduction at r . (For instance, if q D 11 and r D 5, the
curves given in Cremona notation by E1 WD 33a1 and E2 WD 11a1 satisfy these
conditions.) Let �`i denote the homomorphism from the absolute Galois group GQ to
GL.H 1. NEi ;F`//ŠGL2.F`/.

Neither E1 nor E2 can have complex multiplication, since every CM curve has
integral j -invariant (see [25, Chapter II, Theorem 6.1]), while an elliptic curve with
multiplicative reduction at q cannot have q-adically integral j -invariant (see [25,
Table 4.1]). By Serre’s theorem (see [24, Théorème 2]), for ` sufficiently large, the
representations �`i are surjective. As the determinant of �i

`
is the (mod `) cyclotomic

character, the image of GQ.�`/ in GL.H 1. NEi ;F`// is SL2.F`/. We assume this holds
and that `� 5. Let N�`i W GQ! PGL2.F`/ denote the composition of �`i with the quo-
tient map GL2.F`/! PGL2.F`/.
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Suppose that �`1jGQ.�`/
D �`2jGQ.�`/

. As the common image of the two representa-

tions has trivial centralizer in PGL2.F`/, it follows that N�`1 D N�
`
2. Thus, �`1 D �

`
2 ˝ 


for some character 
 of Gal.Q.�`/=Q/. Taking the determinant of both sides, we have

2 D 1.

The representations �`i are both unramified at r , so Tr.�`i .Frobr// is well defined,
and the two traces are related by a factor of 
.Frobr/D˙1. This is impossible since
the trace of Frobr is zero for E2 but not for E1.

Now �`1 and �`2 together give an injective homomorphism �`12,

Gal
�
K1K2=Q.�`/

�
! SL2.F`/� SL2.F`/;

whose image projects onto SL2.F`/ on both factors. As the only normal subgroups
of SL2.F`/ are the group itself, ¹˙1º, and ¹1º, applying Goursat’s lemma to the
image of �l12, either this image is all of SL2.F`/ � SL2.F`/, in which case �`12 is an
isomorphism, or N�1 and N�2 coincide on Gal.K1K2=Q.�`//. We have seen that the
latter is impossible, so the proposition follows.

We remark that, assuming the Frey–Mazur conjecture is true, Proposition 5.1
is true (in fact, for all ` � 17) for any two non-CM elliptic curves which are not
isogenous over NQ.

Note that if H �. NX; NF`/ is zero in odd degrees, then the action of †n is the usual
permutation action on tensor factors, and the symmetric nth power can therefore be
taken in the usual sense of Gk-representations. There is no distinction between the
alternating sum of cohomology and the total cohomology, so we can work with Galois
representations rather than virtual representations.

THEOREM 5.2
Let E1, E2, K1, K2 be as in Proposition 5.1. Let X denote the K3 surface obtained
by blowing up the nodes of the Kummer surface

X 0 WD .E1 �E2/=h�i;

where � is multiplication by �1. For ` sufficiently large, the inclusion map

Gal
�
K1K2=Q.�`/

�
! SL2.F`/� SL2.F`/ (5.1)

is an isomorphism, and

�`
�
ŒX�

�
D ResSL2.F`/�SL2.F`/

GQ.�`/
Œ NF20` ˚ V1 � V1�:

Proof
The action of � on the `-torsion of E1 �E2 and therefore on
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H 1.E1 �E2; NF`/
�
�!Hom

�
NE1Œ`�� NE2Œ`�; NF`

�

is by multiplication by �1; as the cohomology of every abelian variety is generated
by H 1, � acts on H q.E1 �E2; NF`/ by multiplication by .�1/q . Assuming that ` is
sufficiently large, it follows from Corollary 4.6 that H q. NX 0; NF`/ is zero for q odd and
is

H 2.E1 �E2; NF`/Š NF`.1/˚H
1. NE1; NF`/˝H

1. NE2; NF`/˚ NF`.1/

for q D 2. For q D 0 and q D 4, we get NF` and NF`.2/, respectively.
Let Y 0 denote the set of 16 double points on X 0, and let Y be the inverse image

of Y 0 in X , consisting of 16 copies of P1. Let U WD X n Y Š X 0 n Y 0. The excision
sequence forU 	X 0 givesH i

c .
NU ; NF`/

�
�!H i . NX 0; NF`/ for i � 2, and if ` is sufficiently

large, then the excision sequence for U 	 X gives a short exact sequence of GQ-
modules (and therefore of GQ.�`/-modules)

0!H 2. NX 0; NF`/!H 2. NX; NF`/! NF`.1/
16! 0

and therefore

0!H 1. NE1; NF`/�H 1. NE2; NF`/!H 2. NX; NF`/! NF`.1/
18! 0:

Regarding H 2. NX; NF`/ as a representation of GQ.�`/, it factors through the Galois
group Gal.K1K2=Q.�`//, which is isomorphic to SL2.F`/2. As an SL2.F`/2-
representation, it is an extension of an 18-dimensional trivial representation by
V1 � V1. If ` is sufficiently large, then this extension is trivial, since all indecom-
posable NF`-representations of SL2.F`/ which are not irreducible have dimension
at least ` � 2 (see [1, Corollary 4.3]). As H 0. NX; NF`/ and H 4. NX; NF`/ are trivial
1-dimensional representations of GQ.�`/ and H 1. NX; NF`/ D H 3. NX; NF`/ D 0, the
theorem follows.

6. The main theorem
In this section, we prove the main result of this paper.

THEOREM 6.1
For any K3 surface X=Q of the type in Theorem 5.2,

�X .t/ 2K0ŒVarQ�Œ1=L�ŒŒt ��

is irrational in the sense that if Bmot.t/ is a polynomial with coefficients in
K0ŒVarQ�Œ1=L�Œt � and Bmot.0/D 1, then Bmot.t/�X .t/ is not a polynomial.
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Proof
ChooseX to be the variety defined in Proposition 5.2. We assume that �X .t/ is a ratio-
nal function and choose Bmot.t/ with Bmot.0/D 1 such that Amot.t/ WD Bmot.t/�X .t/

is a polynomial. Let

M WDmax.degAmotC 24;degBmot/:

We fix a prime ` >M sufficiently large such that:
(1) The homomorphism (5.1) is an isomorphism; that is, Gal.K1K2=Q.�`// is

isomorphic to G WD SL2.F`/2.
(2) For all i �M , we have �

`
.ŒSymiX�/D ŒSymiH �. NX; NF`/�.

For large enough `, (1) holds by Theorem 5.2, and

�`
�
ŒSymiX�

�
D �`

�
ŒX i=†i �

�
D
�
H �. NX i ; NF`/

†i
�
D
�
H �. NX i ; NF`/†i

�

D
��
H �. NX; NF`/

˝i
�
†i

�
D
�
SymiH �. NX; NF`/

�

by the definition of Symi of a variety, Corollary 4.6, the semisimplicity of NF`Œ†i �, the
Künneth formula, and the definition of Symi of a vector space.

We defineR WDKsp
`
.GQ.�`//. By condition (1) on `, we can identifyKsp

`
.G/ with

a subring of R via ResG
Q.�`/

.

For all nonnegative integers i , we define ai WD �`.ŒSymiX�/, which belongs to
this subring and satisfies

ai D ResGGQ.�`/

�
Symi . NF20` ˚ V1 � V1/

�

for 0 � i � M by condition (2) on ` and Theorem 5.2. For all i � 0, we define
bi D �`.X

Œi�/, where X Œi� denotes the Hilbert scheme of points of length i on X .
In particular, X Œ0� is defined to be SpecQ. Note that bi is effective for all i by Theo-
rem 3.3, since it is the class of a nonsingular projective variety.

Let A WD �
`
.Amot/, and let B WD �

`
.Bmot/. Thus, A.0/ D B.0/ D 1, M �

max.deg.A/C 24;deg.B//, and

B.t/

1X
iD0

ai t
i DA.t/:

Applying �
`

to both sides of the identity (A.1) proved in the Appendix, the ele-
ments a0; a1; a2; : : : and b0; b1; b2; : : : satisfy the identities (2.17). By Proposi-
tion 2.7,

P
i�0 ai t

i D .1 � t /�20ƒV1�V1.t/
�1. Proposition 2.8, then implies that

b` D �`.X
Œ`�/ lies in Ksp

`
.G/ and is not effective, which is a contradiction.
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Appendix. Hilbert schemes of surfaces
This section is devoted to a proof of an identity relating the classes of the Hilbert
schemes of a nonsingular surface to those of symmetric powers of the surface.

THEOREM A.1
If X is a nonsingular surface over a field k, then we have an identity of power series
in K0.Vark/ as follows:

1X
nD0

ŒX Œn��tn D

1Y
iD1

�X .L
i�1t i /: (A.1)

This theorem is due to Göttsche [12, Theorem 1.1] in the case that k is alge-
braically closed and of characteristic 0. Almost all of the proof goes through for arbi-
trary fields. We briefly recall his argument, ignoring the combinatorial details, which
do not depend on field.

Göttsche considers the Hilbert–Chow morphism X Œn� ! SymnX and pulls
back the stratification of SymnX by partitions of n. For each such partition
� D .1a1 � � �nan/, he realizes the �-stratum of X Œn� as the open part of a stratifi-
cation of

Qn
iD1 SymaiX

Œi�

.i/
, where X Œi�

.i/
is the closed stratum of X Œi�, that is, consists

of length i subschemes of X supported on a single point. Over any field, the natural
morphism X

Œi�

.i/
! X mapping a local subscheme to its point of support is Zariski-

locally trivial with fiber Ri , where Ri denotes the i th punctual Hilbert scheme,
that is, the (reduced) Hilbert scheme of codimension i ideals of kŒŒx; y�� (see [11,
Lemma 2.1.4]). Thus, ŒX Œi�

.i/
�D ŒRi �ŒX�.

For k DC, Ellingsrud and Strømme [9, Theorem 1.1(iv)] give a decomposition of
Ri into strata which are affine spaces. The proof uses the Białynicki-Birula theorem,
which assumes that k is algebraically closed, so this needs to be checked for general
k. Göttsche, following an idea of Totaro, shows that ŒSyma.Ab�X/�D LabŒSymaX�;
this depends only on étale descent of vector bundles and the fact that SymiA1 Š Ai ,
both of which hold over arbitrary fields.

So what remains to be verified is the following.

PROPOSITION A.2
Let k be any field, and let n be any positive integer. Then Rn has a stratification
into locally closed strata indexed by the set P.n/ of partitions ˇ of n such that the
stratum associated to ˇ is isomorphic to An�jˇ j, where jˇj denotes the number of
parts of ˇ.
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We prove the proposition by giving an explicit “cell decomposition” of Rn and
explicit parameterizations of the cells. Toward this end, we introduce the following
notation. Let ˇ and � be mutually dual partitions (i.e., partitions whose Ferrers dia-
grams are transpose to one another) with

r D ˇ1 � ˇ2 � � � � � ˇs > ˇsC1 D 0;

s D �1 � �2 � � � � � �r > �rC1 D 0:

Thus,

ˇ�iC1 < i � ˇ�i

for 1� i � r , and

�ˇjC1 < j � �ˇj

for 1 � j � s. For ˇ (and therefore �) fixed, we define the polynomial ring
Aˇ WD ZŒtij �, where 1 � i < r and 1 � j � �iC1, and we recursively define
(working from bottom right to top left as in the example, with � D .5; 4; 2; 1; 1/,
ˇ D .5; 3; 2; 2; 1/, and r D s D 5, depicted below) the finite sequences of polyno-
mials Q1;Q2; : : : ;QrC1 D 1 and P1 D 1;P2; : : :Ps in Aˇ Œx; y� as follows: for
1� i � r ,

Qi WD y
�i��iC1QiC1C

�iC1X
jD1

tijx
ˇj�iPj ;

and for 1� j � s,

Pj WD y
j��ˇjC1�1QˇjC1:
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Q6 D 1

Q5 D yQ6

Q4 DQ5C t41xP1

Q3 D yQ4C t31x
2P1

Q2 D y
2Q3C t21x

3P1C t22xP2

Q1 D yQ2C t11x
4P1C t12x

2P2C t13xP3C t14xP4

P1 DQ6

P2 DQ4

P3 DQ3

P4 D yQ3

P5 DQ2

As ˇj � i C 1 when j � �iC1, by descending induction, for 1� i � r C 1,

Qi 2 y
�i C .x/;

and by (standard) induction it follows that

Pj 2 y
j�1C .x/

for 1� j � s. For 1� i � r C 1, we define

Ii D .Qi ; xQiC1; x
2QiC2; : : : ; x

rC1�iQrC1/:

LEMMA A.3
For any field F and ring homomorphism � W Aˇ ! F , I1 WD I1˝Aˇ ;�F is an .x; y/-
primary ideal of F Œx;y� of codimension n. A linear complement for I1 in F Œx;y� is
given by

Span¹xi�1yj j 1� i � r; 0� j < �iº:

Moreover, every .x; y/-primary ideal of F Œx;y� of codimension n satisfying
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dim.I1 W x
k/=.I1 W x

k�1/D �k; k D 1; : : : ; r

arises from one and only one �.

Proof
Setting Ik WD Ik ˝A;� F , we have

Ik D . NQk; x NQkC1; : : : ; x
rC1�k NQrC1/;

where NQk WDQk ˝ 1 belongs to y�k C .x/	 F Œx;y�. As

NQk D y
�k��kC1 NQkC1C

�kC1X
jD1

akjx
ˇj�ky

j��ˇjC1�1 NQˇjC1;

where akj WD tkj ˝ 1D �.tkj /, we have

x NQk 2 .x NQkC1; : : : ; x
rC1�k NQrC1/D xIkC1;

so R NQk 2 xIkC1 if and only if R 2 .x/. This means that an element of Ik belongs to
.x/ if and only if it belongs to xIkC1 	 Ik ; that is,

.Ik W x/D IkC1

for 1� k � r . By induction, .Ik W xj /D IkCj for 1� k < kC j � r C 1. As IrC1 is
the unit ideal, xr 2 I1, so the image of x in F Œx;y�=I1 is nilpotent. As y�1 is divisible
by x (mod I1), it follows that y is nilpotent in F Œx;y�=I1. Thus, I1 is .x; y/-primary.

The composition of maps Ik ,! F Œx;y�� F Œy� sends xi NQkCi to 0 for i > 0
and sends NQk to y�k . Thus, we have an isomorphism

F Œx;y�=
�
Ik C .x/

� �
�! F Œy�=.y�k /: (A.2)

We prove by descending induction that the span of

¹xi�kyj j k � i � r; 0� j < �iº (A.3)

is complementary to Ik in F Œx;y�. This is trivial for k D r C 1. Multiplication by x
gives an isomorphism

F Œx;y�=IkC1 D F Œx;y�=.Ik W x/! .x/=
�
Ik \ .x/

�
:

By (A.2), the short exact sequence

0! .x/=
�
Ik \ .x/

�
! F Œx;y�=Ik! F Œx;y�=

�
Ik C .x/

�
! 0
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can be rewritten as

0! F Œx;y�=IkC1! F Œx;y�=Ik! F Œy�=.y�k /! 0:

By induction,

dimF Œx;y�=Ik D �k C �kC1C � � � C �r :

To prove that the image of (A.3) spans F Œx;y�=Ik , we assume the corresponding
statement for kC 1. Then

¹xi�kyj j kC 1� i � r; 0� j < �iº

spans .x/=.IkC1 \ .x// and the image of

¹yj j 0� j < �kº

spans F Œy�=.y�k /, so the image of (A.3) spans F Œx;y�=Ik .
Next we claim that I1 determines �. Equivalently, I1 determines aij D �.tij /.

We prove by descending induction that Ik determines aij for all i � k. This is trivial
for k � r C 1. Assume it holds for k C 1. As IkC1 D .Ik W x/ determines aij for
i � k C 1 (and therefore determines NQkC1; : : : ; NQrC1), we need only consider the
case i D k. It suffices to prove that

Ik \ Span¹xˇj�k NPj j 1� j � �kC1º D ¹0º:

Indeed, if

�kC1X
jD1

cjx
ˇj�k NPj 2 Ik

and m WD min¹ˇj j cj ¤ 0º, then this linear combination lies in Ik \ .xm�k/ D
xm�kIm, and we have

�mX
jD1

cjx
ˇj�m NPj 2 Im:

Reducing (mod x), we have a nontrivial linear combination of yj�1 for j � �ˇj � �m
belonging to .y�m/, which is impossible.

Finally, we claim that every .x; y/-primary codimension-n ideal of in F Œx;y�
can be expressed as I1 for some partition � of n and some �. Defining

�i D dim.I W xi /=.I W xi�1/;
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we have �1 � �2 � � � � since multiplication by x defines an injection

.I W xiC1/=.I W xi / ,! .I W xi /=.I W xi�1/; i � 1;

and
P1
iD1 �i D n since .I W xm/D F Œx;y� for m sufficiently large. This determines

�, and now we must show that the parameters aij can be chosen so that I1 D I . We
use induction on the number of parts in the partition.

Given I with associated partition �1 � �2 � � � � , let J WD .I W x/, which is associ-
ated to �2 � �3 � � � � . By the induction hypothesis, there exist aij 2 F for 2� i < r ,
1� j � �iC1 such that

I2 D . NQ2; x NQ3; : : : ; x
r�1 NQrC1/

coincides with J . The image of I by the (mod .x/) reduction map F Œx;y�! F Œy� is
.y�1/, so I D . NQ1/C xI2 for some NQ1 of the form y�1��2 NQ2C x˛, where

x˛ 2 .x/\ J D .x/\ I2 D xI3I

that is, ˛ 2 I3. On the other hand, if ˛ � ˇ 2 I2, then

.y�1��2 NQ2C x˛/C xI2 D .y
�1��2 NQ2C xˇ/C xI2:

It suffices to prove that every class in I3=I2 is represented by some ˛ of the formP�2
jD1 a1jx

ˇj�2y
j��ˇjC1�1 NQˇjC1. Composing the map F �2! I3 given by

.a11; : : : ; a1�2/ 7!

�2X
jD1

a1jx
ˇj�2y

j��ˇjC1�1 NQˇjC1 2 I3

with the quotient map I3 � I3=I2, we get an injective map between vector spaces of
dimension �2, which must therefore be surjective.

Now we can prove Proposition A.2.

Proof
It suffices to prove the equivalent form

ŒRn�D
X

�2P.n/

ŒAn��1 �:

As I1 contains .x; y/n, if M denotes the free Aˇ -module of polynomials in

Aˇ of degree < n, then we have an isomorphism of Aˇ -modules M=M \ I1
�
�!

Aˇ Œx; y�=I1. The Aˇ -linear map



28 LARSEN and LUNTS

SpanAˇ¹x
iyj j 0� i < r; 0� j < �iC1º!Aˇ Œx; y�=I1

becomes an isomorphism after tensoring by any residue field of Aˇ , so by
Nakayama’s lemma, it must be an isomorphism. Thus Aˇ Œx; y�=I1 is a free Aˇ -
module, and this remains true after tensoring over Z with k. If S D Spec Aˇ ˝Z k

andZ D Spec Aˇ Œx; y�=I1˝Z k, thenZ! S is flat and therefore defines an S -point
of the Hilbert scheme .A2/Œn�, and since every geometric point of S corresponds to a
.x; y/-primary ideal, it follows that S maps to Rn. At the level of F -points, this map
gives a bijection between .x; y/-primary ideals associated to � and F -points of S .
The proposition now follows from the following lemma.

LEMMA A.4
Let k be a field, and let � W Y !X be a morphism of k-varieties. If for all extension
fields F of k, � defines a bijection from Y.F / to X.F /, then ŒX�D ŒY � in K0.Vark/.

Proof
Suppose thatK is a field and that Z is a K-variety such that, for every extension field
L of K , there is a unique morphism SpecL!Z lifting SpecL! SpecK . If y1, y2
are points on Z with residue fields K1 and K2 over K , then we can choose a field
� in which K1 and K2 both embed as subfields, so Z has at least two distinct �-
points, contrary to assumption. Thus Z has a single point, so it is affine: Z D SpecA
for some reduced K-algebra A. The nilradical corresponds to the unique maximal
ideal, and it is zero since Z is a variety, so A is a field extension L=K . On the other
hand, the identity map SpecK! SpecK lifts to SpecK! SpecL, so the extension
K!L has an inverse, which means it is trivial.

We apply this in the case that K is the residue field of the generic point � of a
component of X and Z WD Y� is the fiber of Y over �. The conclusion is that there
exists a point �0 in Y over � for which � gives an isomorphism of residue fields. Thus,
there exist open neighborhoods U of � inX and U 0 of �0 in Y such that ��1.U /DU 0

and � induces an isomorphism U 0! U . Replacing Y and X by Y nU 0 and X n U ,
respectively, the restriction of � induces a map on F -points for all extensions F of k,
and the lemma follows by Noetherian induction.

Acknowledgments. We would like to thank both referees for their careful reading of
this manuscript and many helpful suggestions. Among other interesting things, we
learned from them the result of Mikhail Bondarko [3] that the conservativity con-
jecture implies the rationality of the motivic zeta-function of any variety in charac-
teristic 0 with values in the K-group of numerical motives. We would also like to
gratefully acknowledge helpful conversations with Pierre Deligne, Vladimir Drin-
feld, Lothar Göttsche, Luc Illusie, Mircea Mustaţă, and Geordie Williamson. In addi-
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