
MAXIMALITY OF GALOIS ACTIONS FOR
ABELIAN AND HYPER-KÄHLER VARIETIES

CHUN YIN HUI and MICHAEL LARSEN

Abstract
Let ¹�`º` be the system of `-adic representations arising from the i th `-adic cohomol-
ogy of a proper smooth variety X defined over a number field K. Let �` and G` be,
respectively, the image and the algebraic monodromy group of �`. We prove that the
reductive quotient of Gı

`
is unramified over every degree 12 totally ramified extension

of Q` for all sufficiently large `. We give a necessary and sufficient condition .�/ on
¹�`º` such that, for all sufficiently large `, the subgroup �` is in some sense maximal
compact in G`.Q`/. This is used to deduce Galois maximality results for `-adic
representations arising from abelian varieties (for all i ) and hyper-Kähler varieties
(i D 2) defined over finitely generated fields over Q.

1. Introduction

1.1. Galois maximality conjecture
The starting point of this article is the well-known theorem of Serre [33, Théorème 2]
asserting that, for every elliptic curve E defined over a number field K with
EndK.E/ D Z, the `-adic Galois representation GalK ! GL2.Z`/, given by the
Galois action on the `-adic Tate module T`.E/, is surjective for all ` sufficiently
large. In his 1984–1985 Collège de France course [39], Serre extended this result to
abelian varietiesX of dimension g with EndK.X/D Z, when g is odd (or g 2 ¹2; 6º).
For `� 0, the image of GalK in Aut.T`.X// is then GSp2g.Z`/. The hypothesis
on g ensures that the only semisimple group admitting an irreducible, minuscule,
symplectic representation of degree 2g is Sp2g , and the only representation of this
form is the standard one. (The relevance of this to abelian varieties is due, to the best
of our knowledge, to Ribet in [32].) When g D 4m, for example, Sp2m � SL2 � SL2
has an irreducible, minuscule, symplectic representation of degree 2g, namely, the

DUKE MATHEMATICAL JOURNAL
Vol. 169, No. 6, © 2020 DOI 10.1215/00127094-2019-0054
Received 22 September 2017. Revision received 13 May 2019.
First published online 1 April 2020.
2010 Mathematics Subject Classification. Primary 11F80; Secondary 11G10, 20G30.

1163

https://doi.org/10.1215/00127094-2019-0054


1164 HUI and LARSEN

external tensor product of the natural representations of the three factors, and a new
idea is needed.

Wintenberger in [44, Théorème 2] succeeded in proving a general result for
abelian varieties, which can be formulated as follows. Let X be an abelian variety
of dimension g over a number field K . Let �` be the image of GalK in Aut.T`.X//,
and let G` be the Zariski closure of �` in GL2g over Q`. Let Gsc

`
denote the univer-

sal covering group of the derived group of the identity component Gı
`
. Then for all

sufficiently large `, the group �` contains the image of a hyperspecial maximal com-
pact subgroup of Gsc

`
.Q`/. A key ingredient in Wintenberger’s argument was Falting’s

proof of Tate’s conjecture for abelian varieties (see [14, Satz 4]), which guarantees the
existence of certain algebraic cycles predicted by Tate’s general conjecture.

Our goal in the following is to show that it is feasible to prove theorems of this
type with less powerful information from arithmetic geometry: instead of assuming
that certain algebraic cycles exist, it is enough to assume equality between certain
dimensions of `-adic and (mod `) Tate cycles or to deduce new cases from known
cases by establishing suitable Tate cycles. This not only gives a new proof of Win-
tenberger’s theorem for abelian varieties (where we know the needed algebraic cycles
exist, as graphs of endomorphisms), but it gives new Galois maximality results (e.g.,
for hyper-Kähler varieties), where we do not know it. Beyond these special cases, it
offers a general approach to proving the maximality of Galois images without first
proving a version of the Tate conjecture or the Mumford–Tate conjecture. The price
for doing this is harder work on the group theory side.

Let X be a proper smooth variety X defined over a finitely generated subfield
K � C. Let K denote the algebraic closure of K in C, and let XK WD X �K K .
For a fixed nonnegative integer i and a varying rational prime `, each `-adic étale
cohomology group H i .XK ;Q`/ is a Q`-vector space with a continuous GalK WD
Gal.K=K/-action. Let n be the common dimension of H i .XK ;Q`/ for all `. We
obtain a system of `-adic representations®

�` WGalK!GLn.Q`/
¯
`
; (1)

which in the case that K is a number field is (by the main theorem of Deligne from
[12]) a strictly compatible system in the sense of Serre from [36, Chapter 1]. The
image �` WD �`.GalK/ is called the monodromy group of �`; it is a compact `-adic
Lie subgroup of GLn.Q`/.

The algebraic monodromy group of �`, denoted by G`, is defined to be the Zariski
closure of �` in GLn;Q` . There exists a finite extension L=K such that �`.GalL/ �
Gı
`
.Q`/ for all ` (see [37, pp. 6, 17], [39, Section 2.2.3]). WhenX=K is projective, the

conjectural theory of motives, together with the celebrated conjectures of Hodge, of
Tate, and of Mumford–Tate, predicts the existence of a common connected reductive
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Q-form GQ of Gı
`

for all ` (see [35, Section 3]). Then Serre’s conjectures on maximal
motives in [35, Conjectures 11.4, 11.8] imply that, if G denotes any extension of GQ to
a group scheme over ZŒ1=N � for some nonzero integerN , then the compact subgroup
�`.GalL/ is in a suitable sense maximal in G .Z`/ if ` is sufficiently large.

Denote �` \Gı
`
.Q`/ by �ı

`
, denote the derived group of Gı

`
by Gder

`
, denote the

intersection �` \Gder
`
.Q`/ by �der

`
, denote the quotient of Gı

`
by its radical by Gss

`
,

and denote the image of �ı
`

under the quotient map Gı
`
.Q`/!Gss

`
.Q`/ by �ss

`
. Since

Gss
`

is connected semisimple, it has a universal covering group, which we denote
Gsc
`

; we write �sc
`

for the preimage of �ss
`

under the map Gsc
`
.Q`/! Gss

`
.Q`/. The

following statement, due to the second author, is a weak version of Serre’s maximality
conjecture with the feature that it can be formulated without assuming the Mumford–
Tate conjecture. The connections between these conjectures are explored further in
[23].

CONJECTURE 1.1 (see [26])
Let ¹�`º` be the system of `-adic representations arising from the i th `-adic cohomol-
ogy of a proper smooth variety X=K . Then the `-adic Lie group �sc

`
is a hyperspecial

maximal compact subgroup of Gsc
`
.Q`/ for all sufficiently large `.

It is proved in [26, Theorem 3.17] that the assertion on �sc
`

holds for a density 1
subset of primes `. These primes lie in an infinite union of sets defined by Chebotarev-
type conditions, and there seems no hope of showing by this method that this thin
set of possible exceptional primes is in fact finite. In [22, Theorem 1], we proved
Conjecture 1.1 for “type A” Galois representations. What is special about type A is
that semisimple groups of this type contain no proper semisimple subgroups of equal
rank. For instance, a new idea would be needed to rule out possibilities like

�sc
` D

®
� 2 Sp2n.Z`/

ˇ̌
N� 2 Sp2m.F`/� Sp2n�2m.F`/

¯
;

where N� denotes (mod `) reduction. To rule out this kind of behavior, we introduce a
new hypothesis (�) below.

1.2. Main results of the paper
It is convenient to replace K with a finite extension so that we may assume that G`

is connected for all `. Denote by �ss
`

the semisimplification of �`, and denote by Gred
`

the quotient of Gı
`

by its unipotent radical. The group Gred
`

is also the image of Gı
`

under the semisimplification of H i .XK ;Q`/. The image of H i .XK ;Z`/ is a lattice
in H i .XK ;Q`/. Let

N�ss
` WGalK!GLn.F`/
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be the semisimple reduction of �`, that is, the semisimplification of the representa-
tion obtained by reducing �` modulo `, and denote the image of N�ss

`
by G`. By the

Brauer–Nesbitt theorem, this does not depend on the choice of lattice. For every suf-
ficiently large `, there exists a connected reductive subgroup G` (called the algebraic
envelope1 of G`) of GLn;F` such that G` is a subgroup of G`.F`/ of index bounded
above by a constant independent of ` (see Section 4.1).

The central result of the present article is Theorem 1.2, which gives an arithmetic
condition equivalent to Conjecture 1.1.

THEOREM 1.2
Let ¹�`º` be the system of `-adic representations arising from the i th `-adic coho-
mology of a proper smooth variety X defined over a number field K such that G` is
connected for all `. Then for sufficiently large `, the subgroup �sc

`
is a hyperspecial

maximal compact subgroup in Gsc
`
.Q`/ (and Gred

`
is unramified) for all sufficiently

large ` if and only if the commutants of � D �ss
`
.GalK/ and G D N�ss

`
.GalK/ on the

ambient spaces have the same dimension:

dimQ`

�
End�.Q

n
` /
�
D dimF`

�
EndG.F

n
` /
�
: (�)

An even-dimensional, projective smooth, simply connected variety Y defined
over K is said to be hyper-Kähler if the space of holomorphic 2-forms H 0.Y.C/;

�2
Y.C/

/ is of dimension 1 and is generated by a form that is nondegenerate everywhere
on Y.C/. Examples include Hilbert schemes of points on K3 surfaces (including K3
surfaces themselves) and generalized Kummer varieties. By using Theorem 1.2, we
prove the following.

THEOREM 1.3
Let ¹�`º` be the system of `-adic representations arising from the i th `-adic coho-
mology of a proper smooth variety X defined over a subfield K of C that is finitely
generated over Q. For all sufficiently large `, the group �sc

`
is a hyperspecial maximal

compact subgroup of Gsc
`
.Q`/ and Gı

`
is reductive and unramified under either of the

following hypotheses:
(a) X is an abelian variety,
(b) X is a hyper-Kähler variety and i D 2.

Remark 1.4
For the special case that Serre originally considered in [33], additional work is needed
to deduce his result from Theorem 1.3(a). Namely, one must translate between the

1The algebraic envelope is denoted by NG` in [20]. Here we follow the notation of [38].
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Galois action on the Tate module and the dual action on H 1, note that N�` D N�ss
`

for all
` sufficiently large, and check that det�` is surjective. Serre also presented his `-adic
result as a consequence of an “adelic openness” result: the image of GalK in GL2. OZ/
is open. Theorem 1.3 also has an “adelic” version, which requires some care to state
since we do not know that the groups G` come from a common algebraic group over
Q. (Details are given in [23].)

We have already mentioned that Wintenberger proved Theorem 1.3(a) in the key
case where K is a number field and i D 1. In the case of K3 surfaces, Theorem 1.3(b)
is due to Cadoret and Moonen from [8, Theorem B], conditional on the Mumford–
Tate conjecture.

1.3. Ingredients and structure
The key ingredient in proving Theorem 1.2 is the following purely group-theoretic
result.

THEOREM 1.5
Let G� GLn;Q` be a connected reductive subgroup, let G � GLn;F` be a connected
reductive subgroup with Gder as derived group and Z as connected center, let � be
a closed subgroup of G.Q`/ \ GLn.Z`/, and let � W � ! GLn.F`/ be a semisimple
continuous representation with G WD �.�/ � G.F`/. Assume that this data satisfies
the following conditions.
(a) The subgroup � is Zariski-dense in G.
(b) There is an equality of semisimple ranks: rank Gder D rankGder.
(c) The derived group Gder is exponentially generated (see Section 2.1).
(d) For all � 2 � , the (mod `) reduction of the characteristic polynomial of � is

the characteristic polynomial of �.�/.
(e) The index ŒG.F`/ WG� is bounded by k 2N.
(f) The formal character of .Z;Fn

`
/ is bounded by N 2 N, where Z is the con-

nected center of G (see Section 2.6).
(g) Condition (�) holds for � and G, that is,

dimQ`

�
End�.Q

n
` /
�
D dimF`

�
EndG.F

n
` /
�
:

If ` is sufficiently large in terms of the data in (a)–(g), then the reduction representa-
tion � ,!GLn.Z`/!GLn.F`/ and � are conjugate, �sc is a hyperspecial maximal
compact subgroup of Gsc.Q`/, and Gder is unramified. Hypotheses (a)–(f) of Theo-
rem 1.5 suffice to imply that Gder splits over some finite unramified extension of Q`
and is unramified over every degree 12 totally ramified extension of Q`.
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Once Theorem 1.5 is established, Theorem 1.2 follows by checking that (after
restricting �` to some open subgroup GalL of GalK and semisimplifying) there exist
n;k;N 2 N such that the conditions (a)–(f) in Theorem 1.5 are verified for the mon-
odromy group � WD �`.GalL/, G WD �ss

`
.GalL/, G WD Gı

`
, and G is the algebraic

envelope of �ss
`
.GalL/ if ` is sufficiently large. This verification uses the main results

in [20]. Unfortunately, condition (g) is in a different category, and further progress on
Conjecture 1.1 seems to require it.

Theorem 1.3(a) is a consequence of Theorem 1.2, a (mod `) version of the Tate
conjecture for abelian varieties for `� 0 proved by Faltings in [15, Theorem 4.2]
for the condition .�/ in Theorem 1.2, and an `-independence result of algebraic
monodromy groups under specialization (see [18, Corollary 2.7]). Theorem 1.3(b) is
mainly a consequence of Theorem 1.3(a), the Kuga–Satake construction, and André’s
results on motivated cycles from [1] and [2]. In fact, we will see that the condition
that (�) holds for all sufficiently large ` is stable under duals, tensor products, and
passage to subrepresentations (see Lemma 4.7 and the proof of Theorem 1.2).

The last claim of Theorem 1.5 is obtained mainly by Bruhat–Tits theory, which
determines the possibilities for a connected semisimple group G=Q` whose group of
Q`-points contains a maximal compact subgroup whose total `-rank (see Section 2.3)
equals the rank of G.

To indicate the idea behind the rest of Theorem 1.5, we consider a particularly
favorable case. Suppose that nD 2g is even and that � �GSp2g.Z`/ is Zariski-dense
in GD GSp2g;Q` . We note that not all maximal compact subgroups of GSp2g.Q`/
are of this form GSp2g.Z`/; in general, we can achieve an embedding of � in a
maximal compact subgroup of this kind only after passing to a (totally ramified) finite
extension of Q`, but we assume this for the purpose of illustration. We further assume
that the (mod `) reduction � ! GL2g.F`/ is semisimple, so the reduction map can
be identified, after conjugation, with �. The goal is to show that the inclusion � 0 WD
Œ�;�� � Sp2g.Z`/ is an equality if ` is large enough with respect to n. By reducing
(mod `), we obtain G0 � Sp2g.F`/.

By applying Nori’s theory to G0 (see Section 2.1), we obtain a connected alge-
braic group

S � Sp2g;F`

such that G0 is of bounded index, independent of `, in S.F`/. However, Theo-
rem 1.5(e) implies that G0 is also of bounded index in Gder.F`/, and this, given that
both S and Gder are generated by additive algebraic groups (S by construction, Gder

by Theorem 1.5(c)) and therefore connected and also, in some sense, of bounded
complexity, implies that S DGder if ` is sufficiently large.
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By Theorem 1.5(b), the ranks of Gder and Gder D Sp2g;Q` coincide, so both must

be g � 1. Since � is Zariski-dense in GSp2g;Q` , which acts irreducibly on Q2g
`

, the

group G acts irreducibly on F2g
`

by (�). It follows that G and therefore Gder D S also
act irreducibly.

In the inclusion of connected semisimple groups S � Sp2g;F` , both have the same
rank by Theorem 1.5(b) and the same commutant in End2g;F` , namely, the scalars.
In characteristic 0, the equality S D Sp2g;F` would be an immediate consequence
of the Borel–de Siebenthal theorem from [3]; this is known to hold also in positive
characteristic except for characteristic 2 and 3 (see [16]).

Now S D Sp2g;F` is simply connected, so it has no proper subgroups of bounded
index as ` grows without bound. Thus, for sufficiently large `, we obtain

G0 D S.F`/D Sp2g.F`/: (2)

Finally, the result of Serre [38, Lemme 1], subsequently generalized by Vasiu in [43],
asserts that any closed subgroup of Sp2g.Z`/ which maps onto Sp2g.F`/ is all of
Sp2g.Z`/. Applying this to � 0, we get the theorem in this case.

Various group-theoretic technicalities arise in implementing this idea in the gen-
eral case. The condition .�/ gives a loose comparison between the reductive groups
G and G, whereas what is needed for the Borel–de Siebenthal theorem is a compar-
ison between some semisimple groups S and I , where the first comes from G0 via
Nori’s construction and the second comes from Gder via Bruhat–Tits theory. Bruhat–
Tits theory works best for simply connected semisimple groups, but it is also useful
for the groups we work with to be subgroups of GLn. Much of the technical work here
justifies moving back and forth between a reductive group, its derived group, and the
universal cover of the derived group.

Section 2 assembles results from group theory that are needed in Section 3,
including Nori’s theory, our theory of `-dimensions and `-ranks, Bruhat–Tits theory,
and some results about centralizers, formal characters, and regular elements. Section 3
proves the purely group-theoretic Theorem 1.5. Section 4 presents the main results on
the algebraic envelopes G` and proves Theorems 1.2 and 1.3.

Conventions for schemes and groups
The symbol ` always denotes a rational prime. Suppose that R! S is a homomor-
phism of commutative rings with unity, and suppose that X is a scheme over Spec.R/
(or simply R). Denote the fiber product X �R S WDX �Spec.R/ Spec.S/ also by XS .

A semisimple algebraic group will always be assumed to be connected. A simple
algebraic group over F is a semisimple group over F which has no proper, connected,
closed, normal subgroup defined over F .
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In order to keep track of the various kinds of groups that arise in this paper, we
use the following system. An algebraic group over a field F is always assumed to
be a smooth affine group variety over F . The bold letters, for example, G, H, S,
denote algebraic groups over fields of characteristic 0 unless otherwise stated. The
underlined letters, for example, G, H , S , always denote algebraic groups over finite
fields. Given a homomorphism f W G ! H , we denote by f .G/ the image of f
in H endowed with the unique structure of reduced closed subscheme; the induced
morphism G ! f .G/ is assumed to be smooth in this paper. Group schemes over
rings of dimension 1 (e.g., Z, Z`) are denoted by G and H . Capital Greek letters
denote infinite groups, which are generally `-adic Lie groups, whereas capital Roman
letters denote finite groups.

Simple complex Lie algebras are denoted by g and h. We identify such algebras
with their Dynkin diagrams, so instead of saying that SLn.Fq/ and SUn.Fq/ are both
of type An�1, we may say they are of type gD sln. Let G denote an algebraic group
over a field F of any characteristic, and let � �G.F / denote a subgroup. The rank of
G, denoted by rank G, always means the dimension of a maximal torus of G �F F .
We denote by

Gder the derived group of G,
Gı the identity component of G,
Gss the quotient of Gı by its radical,
Gsc the universal cover of Gss,
Gred the quotient of Gı by its unipotent radical,

dim G the dimension of G as an F -variety,
rkg the rank of the simple Lie algebra g,

dimg the dimension of g as a C-vector space,
�ss the image of �ı WD � \Gı.F / under the quotient map Gı!Gss,
�sc the preimage of �ss under the map Gsc.F /!Gss.F /,

Mn.R/ the ring of n� n matrices with entries in a ring R,
GLn.R/ the group of units of Mn.R/.

2. Group-theoretic preliminaries

2.1. Nori’s theory
Let n be a positive integer, and suppose that `� n. Let G be a subgroup of GLn.F`/.
Nori’s theory from [31] produces a connected F`-algebraic subgroup S of GLn;F`
that approximates G if ` is larger than a constant depending only on n.

Let GŒ`� WD ¹x 2G j x` D 1º. The subgroup of G generated by GŒ`� is denoted
by GC and is normal in G. Define exp and log by
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exp.x/ WD
`�1X
iD0

xi

i Š
and log.x/ WD �

`�1X
iD1

.1� x/i

i
:

Denote by S the (connected) algebraic subgroup of GLn;F` , defined over F`, gener-
ated by the one-parameter subgroups

t 7! xt WD exp
�
t � log.x/

�
(3)

for all x 2 GŒ`�. The F`-subgroup S is called the Nori group of G � GLn.F`/. An
algebraic subgroup of GLn;F` is said to be exponentially generated if it is generated
by the one-parameter subgroups xt in (3) for some set of unipotent elements x 2
GLn.F`/. Since S is exponentially generated, S is an extension of a semisimple group
by a unipotent group (see [31, Section 3]). If y 2Mn.F`/ commutes with x, then it
also commutes with logx and therefore with the algebraic group xt . Thus,

ZGC
�
Mn.F`/

�
DZS.F`/

�
Mn.F`/

�
DZS.F`/

�
Mn.F`/

�
\Mn.F`/: (4)

The following theorem approximates GC by S.F`/.

THEOREM 2.1
There is a constant C1.n/ depending only on n such that if ` > C1.n/ and G is a
subgroup of GLn.F`/, then the following assertions hold.
(i) If S is the Nori group of G, then GC D S.F`/C.
(ii) If S is a Nori group, the quotient S.F`/=S.F`/C is a commutative group of

order at most 2n�1.
(iii) If G �GLn;F` is exponentially generated, then the Nori group of G DG.F`/

is G.

Proof
This is due to Nori: parts (i) and (iii) come from [31, Theorem B] and part (ii) comes
from [31, Remark 3.6].

A theorem of Jordan [25, p. 91] says that every finite subgroup G of GLn.C/ has
an abelian subgroup Z such that the index ŒG WZ� is bounded by a constant depend-
ing only on n. The following theorem is a variant of Jordan’s theorem in positive
characteristic.

THEOREM 2.2 ([31, Theorem C])
Let G be a subgroup of GLn.F/, where F is a finite field of characteristic `� n. Then
G has a commutative subgroup Z of prime to ` order such that Z �GC is normal in
G and
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ŒG WZ �GC�	 C2.n/;

where C2.n/ is a constant depending only on n (and not on F, `, G).

Note that the statement of [31, Theorem C] does not explicitly assert that the
order of Z is prime to `, but that fact is stated in the Introduction to Nori’s article
and it is immediate from the construction of Z (see [31, p. 270]). Nori’s theory does
a good job of algebraically approximating the “semisimple” and “unipotent” parts of
a finite subgroup of GLn.F`/, but not the toric part; in general, there is no reason to
expect, for large `, that Z will be well approximated by the F`-points of any torus in
GLn;F` . For Theorem 1.5, we hypothesize that it can be well approximated, moreover,
by a torus whose complexity is bounded in a sense to be made precise in Section 2.6.
For images of (mod `) Galois representations arising from cohomology of a given
projective nonsingular variety, we will see that this additional hypothesis holds.

We have the following result due to Serre for S if G acts semisimply on the
ambient space.

PROPOSITION 2.3 ([20, Proposition 2.1.2])
Suppose that G acts semisimply on Fn

`
. There is a constant C3.n/ depending only on

n such that if ` > C3.n/, then the following assertions hold.
(i) The Nori group S is a semisimple F`-subgroup of GLn;F` .
(ii) The representation S!GLn;F` is semisimple.

2.2. Galois cohomology
We begin with an estimate in Galois cohomology.

PROPOSITION 2.4
For k 2N there exists a constant C4.k/ depending only on k such that, if F is a finite
extension of Q` with ` > k and C is a finite commutative group scheme over F with
jC.F /j 	 k, then ˇ̌

H 1
�
F;C.F /

�ˇ̌
	 C4.k/:

Proof
Consider the inflation-restriction sequence

1!H 1
�
Gal.L=F /;C.F /

�
!H 1

�
F;C.F /

�
!H 1

�
L;C.F /

�
where GalL acts trivially on C.F / and ŒL W F �	 kŠ. Since the size ofH 1.Gal.L=F /;
C.F // is bounded above by some constant depending only on k, it suffices to bound
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H 1.L;C.F //. Let S be the set of abelian extensions of L of degree bounded above
by k. For every element � of

H 1
�
L;C.F /

�
ŠHom

�
GalL;C.F /

�
ŠHom

�
Galab

L ;C.F /
�
;

ker� corresponds to an element of S . Since jC.F /j 	 k, we haveˇ̌
Hom

�
Galab

L ;C.F /
�ˇ̌
	 jS j � kŠ:

Let Fq be the residue field of L. By local class field theory, S corresponds to the set
of open subgroups U of

L� DO�L �ZD pro-`� F�q �Z

such that ŒL� W U � 	 k. Hence, the possibilities of U are bounded above by some
constant depending only on k if ` > k.

COROLLARY 2.5
Let F be a finite extension of Q`, and let ˛ WG!H be a central isogeny of degree at
most k of connected reductive groups over F . If � is a subgroup of H.F /, then the
quotient

�=˛
�
˛�1.�/\G.F /

�
is an abelian group with size bounded above by C4.k/ if ` > k.

Proof
Consider the long exact sequence in Galois cohomology

1!C.F /!G.F /!H.F /!H 1
�
F;C.F /

�
! � � � ;

where C WD ker˛. The claim is an immediate consequence of Proposition 2.4.

PROPOSITION 2.6
Let G be a simply connected semisimple group that is an inner twist of a split group
over a finite extension F of Q`, and let d denote the order of the center of G.F /. For
every finite extension F 0 of F of degree divisible by d , the group G splits over F 0.

Proof
Let G0 be the split form of G, and let C0 denote the center of G0. Now G is the twist
of G0 by a class in H 1.F;G0.F /=C0.F //. The nonabelian cohomology sequence of
the central extension
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1!C0.F /!G0.F /!G0.F /=C0.F /! 1

gives an exact sequence

H 1
�
F;G0.F /

�
!H 1

�
F;G0.F /=C0.F /

�
!H 2

�
F;C0.F /

�
:

Thus, sinceH 1.F;G0.F //D 0 by [4, Théorème 4.7], it suffices to prove that d divid-
ing ŒF 0 W F � implies that

H 2
�
F;C0.F /

�
!H 2

�
F 0;C0.F /

�
is the zero map. As G0 is split, C0 is a product of groups of the form �n, where n
divides d . Thus, it suffices to prove that every class in Br.F /n lies in ker.Br.F /!
Br.F 0// for every extension F 0=F such that d divides ŒF 0 W F �. This follows from
the fact (see [34, Section XIII, Proposition 7]) that, at the level of invariants, the map
Br.F /! Br.F 0/ is just multiplication by ŒF 0 W F �.

2.3. `-Dimension and `-ranks
In this section, we review the definitions of the `-dimension and the `-ranks (i.e., the
total `-ranks and the h-type `-rank for varying simple Lie type h) of finite groups and
profinite groups with open prosolvable subgroups (see [20], [22]) and state the results
relating the dimension and the ranks of an algebraic group G=Fq to, respectively, the
`-dimension and the `-ranks of G.Fq/ (see [22]).

2.3.1
Let G be a finite simple group of Lie type in characteristic ` � 5. The condition on
` rules out the possibility of Suzuki or Ree groups, so there exists a (unique) adjoint
simple group G=F`f so that

G D
�
G.F`f /;G.F`f /

�
D im

�
Gsc.F`f /!G.F`f /

�
:

We define the `-dimension of G to be

dim`G WD f � dimG:

Let g denote the unique simple complex Lie algebra whose root system is a factor
of the root system of GF`

. If h is a simple complex Lie algebra, the h-type `-rank of
G is

rkh

`
G WD

´
f � rankG if hD g;

0 otherwise.

For example, G D PSLn.F`f / (resp., PSUn.F`f /) has f .n2 � 1/ as the `-dimension
and f .n� 1/ as An�1-type `-rank.
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For simple groups which are not of Lie type in characteristic ` (including simple
groups of order less than ` and abelian simple groups like Z=`Z), we define the `-
dimension and h-type `-rank to be 0. We extend the definitions to arbitrary finite
groups G by defining the `-dimension (resp., h-type `-rank) to be the sum of the
`-dimensions (resp., h-type `-ranks) of its composition factors. We define the total
`-rank of G to be

rk`G WD
X
h

rkh

`
;

where the sum is taken over all simple complex Lie algebras.
This makes it clear that dim`, rkh

`
, and rk` are additive on short exact sequences

of groups. In particular, the `-dimension and the total `-rank of every solvable finite
group are 0, and neither passing to a central extension nor to the derived group affects
the `-dimension or any `-rank. For instance the `-dimension and `-rank of GLn.F`f /,
PGLn.F`f /, and PSLn.F`f / are all the same.

Our basic results on dim`, rkh

`
, and rk` of finite groups are the following.

LEMMA 2.7
For k 2N there exists a constant C5.k/ such that, if ` > C5.k/ and H is a subgroup
of G of index at most k, then the `-dimension and `-ranks of G and H are the same.

Proof
At the cost of replacing k by kŠ, we may assume that H is normal in G. If ` is large
enough, then the `-dimension and `-ranks of G=H are 0, and the lemma follows by
additivity.

PROPOSITION 2.8
Let G be a subgroup of GLn.F`/, and let S be the Nori group of G. There exists a
constant C6.n/ depending only on n such that if ` > C6.n/, then the `-dimension and
the `-rank of G and S.F`/ are identical.

Proof
The assertion follows directly from Theorems 2.1 and 2.2 and Lemma 2.7.

PROPOSITION 2.9 ([22, Proposition 4]2)
Let G be a connected algebraic group over F`f with `� 5. The composition factors
of G.F`f / are cyclic groups and finite simple groups of Lie type in characteristic

2The rank of an algebraic group G=F in [22] is defined to be the usual rank of Gss �F F (see [22, Section 2]).
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`. Moreover, let mg be the number of factors of Gsc
F`

of type g. Then the following
equations hold:
(i) rkg

`
.G.F`f //Dmgf � rkg,

(ii) rk`.G.F`f //D f � rankGss,
(iii) dim`.G.F`f //D f

P
g.mg � dimg/D f � dimGss.

2.3.2
Let F be a finite extension of Q` with the ring of integers OF and the residue field
Fq . The definitions above are extended to certain infinite profinite groups, including
compact subgroups of GLn.F /, as follows. If � is a finitely generated profinite group
which contains an open prosolvable subgroup, then we define

dim` � WD dim`.�=	/; rkh

`
� WD rkh

`
.�=	/; and rk`� WD rk`.�=	/

for any normal, pro-`, open subgroup 	 of � . The `-dimension and `-rank of every
pro-` group is 0. (So, in particular, the `-dimension of an `-adic Lie group can be
strictly smaller than its dimension in the sense of `-adic manifolds.) By additivity,

dim` � D dim`G; rkh

`
� D rkh

`
G; and rk`� D rk`G;

where G denotes the image in GLn.Fq/ under the reduction of � with respect to an
OF -lattice in F n stabilized by � . If � is a compact subgroup of GLn.F / and 	 is a
closed normal subgroup, then

dim`� D dim`	C dim`.�=	/;

rkh

`
� D rkh

`
	C rkh

`
.�=	/;

and

rk`� D rk`	C rk`.�=	/:

LEMMA 2.10
Let � 
… be compact subgroups of GLn.Q`/ (resp., GLn.F`/). There exists a con-
stant C7.n/ depending only on n such that if ` > C7.n/, then

rk` � 	 rk`…;

dim` � 	 dim`…:

Proof
Fix a …-stable lattice ƒ in Qn

`
. By the fact that the `-ranks of prosolvable groups

are 0, it suffices to prove the same inequality for the finite groups G 
 P 
GLn.F`/
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obtained by reducing modulo ƒ. The Nori group of G is generated by a subset of
the collection of unipotent groups generating the Nori group of P and is therefore
a closed subgroup of that algebraic group. Both the dimension and semisimple rank
of a subgroup of any algebraic group are less than or equal to those of the ambient
group, so the lemma follows from Propositions 2.8 and 2.9.

2.4. Bruhat–Tits theory
We briefly recall some basic facts from Bruhat–Tits theory, mainly from [42]. The
main goal of this section is Theorem 2.11.

2.4.1
Let F be a finite extension of Q` with residue field Fq , and let G be a connected,
semisimple algebraic group defined over F . The Bruhat–Tits building B.G;F / is a
polysimplicial complex (see [42, Section 2.2.1]), endowed with a G.F /-action that
is linear on each facet. If F 0 is a finite extension of F , then there is a corresponding
continuous injection of buildings


F 0;F WB.G;F /!B.G;F 0/;

which is equivariant with respect to G.F /�G.F 0/ and maps vertices of B.G;F / to
vertices of B.G;F 0/. If F � F 0 � F 00 are finite extensions of fields, then


F 00;F 0 ı 
F 0;F D 
F 00;F :

For every point x 2 B.G;F /, the stabilizer G.F /x is a compact subgroup of
G.F /. There exist a smooth affine group scheme Gx over the ring of integers OF of
F and an isomorphism i from the generic fiber of Gx to G such that i.Gx.OF //D
G.F /x and if F 0 is a finite unramified extension of F , then (see [42, Section 3.4.1])

i
�
Gx.OF 0/

�
DG.F 0/�F 0;F .x/:

If the special fiber Gx;Fq of Gx is reductive, we say that x is hyperspecial and G.F /x

is a hyperspecial maximal compact subgroup (or simply hyperspecial) of G.F / (see
[42, Section 3.8.1]).

Every maximal compact subgroup of G.F / is the stabilizer G.F /x of a point
x 2B.G;F / by [42, Section 3.2]. We may always take x to be the centroid of some
facet. Moreover, if G is in addition simply connected, then x is a vertex (see [42,
Section 3.2]) and the special fiber Gx;Fq is connected (see [42, Section 3.5.2]).

2.4.2
Let F nr be the maximal unramified extension of F in F . The group G determines
a map of Gal.F nr=F /-diagrams: the relative local Dynkin diagram 	F (i.e., the
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local Dynkin diagram of G=F ) with trivial Gal.F nr=F /-action, the absolute local
Dynkin diagram 	F nr (i.e., the local Dynkin diagram of GF nr=F nr) with an action
of Gal.F nr=F /, and a Gal.F nr=F /-map 	F nr ! 	F (see [42, Section 1.11]). The
Dynkin diagram of G red

x;F`
(the reductive quotient of Gx;F` , see conventions for groups)

can be constructed by deleting from 	F nr all the vertices (together with all the edges
connected to them) mapping to the vertices in 	F associated to x. Moreover, if the
minimal facet containing x is a chamber (e.g., when G=F is anisotropic, in which
case 	F is empty), then G red

x;Fq
is a torus (see [42, Section 3.5.2]).

A semisimple group G over a local field F is unramified if G has a Borel sub-
group over F and G splits over an unramified extension of F . The group G is unram-
ified if and only if B.G;F / has a hyperspecial point (see [42, Section 1.10.2] for the
“only if” part and [10, Corollary 5.2.14] for the “if” part). And the latter condition
is equivalent to the local Dynkin diagram 	F having a hyperspecial vertex (see [42,
Sections 1.9, 1.10]).

2.4.3
The main theorem of this section is as follows.

THEOREM 2.11
Let F be a finite extension of Q` with residue degree f WD ŒFq W F`�, and let ` � 5.
Let G be a semisimple group of rank r over F , and let … be a maximal compact
subgroup of G.F /. Then the following assertions hold.
(i) The total `-rank of … is at most f r .
(ii) If rk`…D f r , then G splits over a finite unramified extension of F .
(iii) If rk`… D f r , then G is unramified over every degree 12 totally ramified

extension F t=F .
(iv) If rk`…D f r , then there exist a totally ramified extension F 0=F and a hyper-

special maximal compact subgroup ��G.F 0/ such that …��.

Proof
Since …sc is maximal compact in Gsc.F / and the total `-ranks of … and …sc are
equal, we may assume that G is simply connected. It therefore factors as a product
of groups Gi which are simply connected and simple. Let x denote a vertex of the
building B.G;F / stabilized by …, and let Gx denote the smooth affine group scheme
over OF in Section 2.4.1. The building of G is the product of the buildings of the
Gi ’s (see [42, Section 2.1]), so the vertex x D .x1; : : : ; xk/, and

Gx D
Y
i

.Gi /xi :

As rank is additive in products, it suffices to prove the theorem in the simple case.
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Thus, there exist a finite extension F 0=F and an absolutely simple group G0=F 0

such that G D ResF 0=F G0. Then … is a maximal compact subgroup of G0.F 0/ D
G.F /. Denote the rank of G0 by r 0, the order of the residue field of F 0 by `f

0

, and
the ramification degree of F 0=F by e. Since we have

r D ŒF 0 W F �r 0 D e.f 0=f /r 0;

the inequality rk`… 	 f 0r 0 implies that rk`… 	 f r , with strict inequality if e > 1.
Let F t=F be the totally ramified extension described in (iii). If eD 1, then it follows
that
� F 0=F is unramified,
� the composition F 0F t is totally ramified over F 0 of degree 12, and
� GF t D .ResF 0=F G0/�F F t D ResF 0F t=F t.G0 �F 0 F 0F t/.
Hence, if G0 splits over an unramified extension F 00 of F 0, then G (resp:;GF t ) also
splits over F 00 (resp:; F 00F t), which is unramified over F (resp:; F t). If G0 is quasisplit
over F 0F t, then it has a Borel subgroup B0 defined over F 0F t, and the restriction of
scalars ResF 0F t=F t B0 is a Borel subgroup of GF t . Thus, if (i)–(iii) hold for .G0;F 0/,
they hold for .G;F /, and without loss of generality, we may assume that G is abso-
lutely simple.

As the kernel of Gx.OF /! Gx.Fq/ is pro-`, the total `-ranks of … and Gx.Fq/

are equal. Since G is simply connected;Gx.Fq/ is the group of Fq-points of an alge-
braic group which is the extension of the reductive group G red

x;Fq
by a unipotent group.

Thus; rk`.Gx.Fq// is f times rank G ss
x;Fq

, the semisimple rank of G red
x;Fq

. We claim that
this is less than or equal to f r , or equivalently,

rank G ss
x;Fq
	 r; (5)

with equality only if G splits over an unramified extension and has a Borel subgroup
over F t in (iii).

Since rank G red
x;Fq

and the relative rank of GF nr (the rank of a maximal F nr-split
torus of GF nr ) are equal (see [42, Section 3.5]), the inequality (5) holds in general,
which is assertion (i), and the equality holds only if G splits over F nr, which is asser-
tion (ii). Let Gsp=F be a split form of G. By definition, the number of vertices in the
absolute local Dynkin diagram 	F nr of G is 1 greater than the relative rank of GF nr .
If the equality in (5) holds, then it follows by (ii) and Section 2.4.2 that
(A) 	F nr coincides with the (relative) local Dynkin diagram of Gsp=F ,
(B) 	F nr contains at least one Gal.F nr=F /-stable vertex, and
(C) G is not anisotropic; that is;	F ¤;.

To list the cases when the conditions (A), (B), and (C) hold, we consult the tables
from [42, Sections 4.2, 4.3]; the possible types are all split types in [42, Section 4.2]
together with the following possibilities in [42, Section 4.3]:
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2A0n;
2Bs;

2C2m;
2Dt ;

2D0t ;
2D002s;

3D4;
4D2n;

2E6;
3E6;

2E7;

wherem� 1, n� 2, s � 3, and t � 4 are integers. From the tables, every split type has
a hyperspecial vertex in 	F and is thus unramified. Similarly, the groups 2A0n, 2Dt ,
3D4, and 2E6 also have hyperspecial vertices in 	F and are therefore unramified.

The cases 2C2m and 2E7 are inner forms of split groups of types C2m and E7,
respectively, by (A) and the fact that C2m and E7 have no nontrivial outer automor-
phisms. They therefore split over every even-degree extension by Proposition 2.6,
because their F -centers are of order 2.

Similarly; 3E6 is an inner form of a split group of typeE6 by (A) and the fact that
its index 1E166;2 has presuperscript 1 (see [42, Section 4.3]; meaning that the image of
Gal.F nr=F /!Aut.	F nr/ is of order 1 by [41, Table II: Indices]). Thus, it splits over
every extension whose degree is divisible by 3 by Proposition 2.6 since its F -center
is of order 3.

To see that, in the remaining cases 2Bs , 2D0t ,
2D002s ,

4D2n, the group G becomes
unramified over every F t in (iii), we examine the explicit descriptions from [42, Sec-
tion 4.4] which classify every central isogeny class of absolutely simple groups over
F . The quaternionic orthogonal groups 2D002s and 4D2n become ordinary orthogonal
groups after passage to any ramified quadratic extension of F since each such exten-
sion splits the quaternion algebra over F . This leaves the cases of orthogonal groups
of quadratic forms including 2Bs and 2D0t .

By passing to any ramified quadratic extension F 0=F , we may assume that the
form Q defining G is u1x21 C � � � C unx

2
n, where the ui ’s are units in OF 0 . We claim

that there exists a plane hyperbolic with respect to Q contained in the 3-dimensional
locus x4 D x5 D � � � D xn D 0. Indeed, the quadratic form u1x

2
1 C u2x

2
2 C u3x

2
3

defines a form of SO.3/; the space .F 0/3 of triples .x1; x2; x3/ contains a hyperbolic
plane if and only if this form is split, that is, if and only if there is a nonzero isotropic
vector. A nontrivial solution of the equation Nu1x21C Nu2x

2
2C Nu3x

2
3 D 0 over the residue

field Fq0 of F 0 exists by Chevalley–Warning, which lifts by Hensel’s lemma to a
nonzero isotropic vector in .F 0/3. It follows by induction that Q defines a quadratic
form of Witt index n0 � n=2� 1. Hence;GF 0 can only be Dn0 , Bn0 , 2Dn0C1 by [42,
Section 4.4] and (A), and it is thus unramified, as its relative local Dynkin diagram
has a hyperspecial vertex (see [42, Section 4.2, 4.3]).

Since `� 5, every degree 12 totally ramified extension F t of F is tame and thus
contains subextensions of all possible degrees dividing 12. We conclude that G is
unramified over F t, and (iii) is obtained.

For assertion (iv), let F t be a field in (iii), and let xt be the centroid of a facet
of B.GF t ;F t/ whose stabilizer is a maximal compact subgroup of G.F t/ containing
…. Since GF t is semisimple and unramified by (iii), there exists a totally ramified
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extension F 0 of F t such that x0 WD 
F 0;F t.xt/ is a hyperspecial point of B.GF 0 ;F
0/

(see [26, Lemma 2.4]). The stabilizer G.F 0/x
0

is the desired group �.

2.5. Commutants and semisimplicity
Let F=Q` be a finite field extension, let V be an n-dimensional F -vector space, let
ƒ be an OF -lattice in V , and let � be a closed subgroup of GL.ƒ/Š GLn.OF / �
GLn.F /ŠGL.V /. If F 0 is a finite extension of F , we can regard � also as a subgroup
of GL.ƒ0/ŠGLn.OF 0/, whereƒ0 Dƒ˝OF OF 0 . Let � (resp:; � 0) be a uniformizer
of OF (resp:;OF 0 ), and define V 0 WD V ˝F F 0. We have the following results in this
setting.

LEMMA 2.12
The group � acts semisimply on V 0 if and only if it acts semisimply on V , in which
case we have

dimF 0.End� V
0/D dimF .End� V /:

Likewise; � acts semisimply on the reduction L WD ƒ=�ƒ if and only if it acts
semisimply on L0 WDƒ0=� 0ƒ0, in which case we have

dimOF =.�/.End� L/D dimOF 0=.�
0/.End� L0/:

Proof
The proof is clear.

LEMMA 2.13
Let M be a free OF -module of finite rank, and let � be a subgroup of AutOF M .
Then for all k � 1, the inclusion

M�=�kM� � .M=�kM/�

is either proper for all k � 1 or is an equality for all k � 1.

Proof
We use the following diagram of cohomology sequences:

0 M�
�

1

M�

�k�1

.M=�M/�

�k�1

H 1.�;M/

1

0 M�
�k

M� .M=�kM/� H 1.�;M/:
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The inclusion follows from the second row. As the rightmost vertical arrow is an
isomorphism;M�=�M� � .M=�M/� implies that M�=�kM� � .M=�kM/� for
all k � 1. Conversely, if M�=�M� D .M=�M/� , then the cohomology sequence

0! .M=�M/�! .M=�kM/�! .M=�k�1M/� ! � � �

implies by induction on k that

ˇ̌
.M=�kM/�

ˇ̌
	
ˇ̌
.M=�M/�

ˇ̌k
D jM�=�M� jk D jM�=�kM� j

for all k � 1, which implies that .M=�kM/� DM�=�kM� .

LEMMA 2.14
Let V be a finite-dimensional vector space over a field F , and let H �G � GL.V /
be subgroups. Let V ss be the semisimplification of G on V . The following assertions
hold.
(i) dimF .EndG V /	 dimF .EndG V ss/.
(ii) If dimF .EndG V /D dimF .EndG V ss/, then G acts semisimply on V .
(iii) If H acts semisimply on V and dimF .EndG V / D dimF .EndH V /, then G

acts semisimply on V .
(iv) If H acts semisimply on V and dimF .EndG V /D dimF .EndH V /, then H is

absolutely irreducible on every absolutely irreducible subrepresentation W 	
V of G.

Proof
Assertions (i) and (ii) are just [7, Lemma 3.6.1.1]. Let H red and Gred be the images
of H and G, respectively, in GL.V ss/. Since H acts semisimply on V , the represen-
tations H !GL.V / and H red!GL.V ss/ are isomorphic. This implies that

dimF .EndG V /D dimF .EndH V /D dimF .EndH red V ss/

� dimF .EndGred V ss/:

Then (iii) follows from (i) and (ii).
For assertion (iv);G is semisimple on V by (iii). The absolute irreducibility of

W and the condition dimF .EndG V /D dimF .EndH V / force 1D dimF .EndGW /D
dimF .EndH W /. We are done since H is semisimple on W .

PROPOSITION 2.15
Let F be a characteristic 0 local field with valuation ring OF and residue field Fq .
Let V be a finite-dimensional vector space over F , and let � be a compact subgroup
of GL.V / which acts semisimply on V . The following assertions are equivalent.
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(i) For some �-stable lattice ƒ of V , we have

dimF .End� V /D dimFq

�
End�.ƒ˝OF Fq/

ss
�
:

(ii) For every �-subrepresentation W of V and every �-stable lattice ƒW of W ,
ƒW ˝OF Fq is semisimple, and

dimF .End�W /D dimFq

�
End�.ƒW ˝OF Fq/

�
:

(iii) The following two assertions hold.
(a) IfW is an irreducible �-subrepresentation of V , andƒW is a �-stable

lattice of W , then ƒW ˝OF Fq is semisimple and

dimF .End�W /D dimFq

�
End�.ƒW ˝OF Fq/

�
:

(b) If W1 and W2 are nonisomorphic irreducible �-subrepresentations of
V and ƒ1 and ƒ2 are �-stable lattices of W1 and W2, respectively,
then ƒ1 ˝OF Fq and ƒ2 ˝OF Fq have no common irreducible �-
subrepresentation.

Proof
Assume assertion (i), let W and W 0 be any subrepresentations of V , and let ƒ and
ƒ0 be stable lattices in W and W 0, respectively. Applying and Lemma 2.13 to M D
HomOF .ƒ;ƒ

0/�Hom�.W;W
0/, we obtain

dimF

�
Hom�.W;W

0/
�
D rkOF

�
Hom�.ƒ;ƒ

0/
�

	 dimFq

�
Hom�.ƒ˝OF Fq;ƒ

0˝OF Fq/
�
: (6)

Let W1 and W2 be, respectively, complementary �-subrepresentations of V with �-
stable lattices ƒ1 and ƒ2. The Brauer–Nesbitt theorem implies that .ƒ˝OF Fq/

ss is
the semisimplification of .ƒ1˚ƒ2/˝OF Fq . It follows by (i) that

dimFq

�
End�.ƒ˝OF Fq/

ss
�
� dimFq

�
End�

�
.ƒ1˚ƒ2/˝OF Fq

��
D

2X
iD1

2X
jD1

dimFq

�
Hom�.ƒi ˝OF Fq;ƒj ˝OF Fq/

�

�

2X
iD1

2X
jD1

dimF

�
Hom�.ƒi ˝OF F;ƒj ˝OF F /

�

D dimF .End� V /;
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where equality holds only if .ƒ1 ˚ƒ2/˝OF Fq D .ƒ1 ˝OF Fq/˚ .ƒ2 ˝OF Fq/

is semisimple (by Lemma 2.14(ii)) and equality holds in (6) for W DW 0 DW1 and
W DW 0 DW2. This implies (ii).

Assertion (ii) implies (iii.a) trivially and (iii.b) by setting W DW1CW2.
Given assertion (iii), if W a1

1 ˚ � � � ˚W
ak
k

is a decomposition of V into pairwise
nonisomorphic �-representations, then choosing for each summand W ai

i a �-stable
lattice of the form ƒ

ai
i and setting ƒD

P
i ƒ

ai
i , we see that ƒ˝OF Fq is a direct

sum of isotypic semisimple representations .ƒi ˝OF Fq/
ai , where the representa-

tions ƒi ˝OF Fq are pairwise without common irreducible factor. Thus;ƒ˝OF Fq
is semisimple, and

dimF .End� V /D
kX
iD1

a2i dimF .End�Wi /D
kX
iD1

a2i dimFq

�
End�.ƒi ˝OF Fq/

�
D dimFq

�
End�.ƒ˝OF Fq/

�
:

COROLLARY 2.16
Let V be a finite-dimensional vector space over Q`, and let � be a compact subgroup
of GL.V / which acts semisimply on V . The following assertions are equivalent.
(i) For some �-stable lattice ƒ of V , we have

dimQ`.End� V /D dimF`

�
End�.ƒ˝ F`/

ss
�
:

(ii) If F is a finite extension of Q` with residue field Fq such that every irreducible
�-subrepresentation of V ˝F is absolutely irreducible, then the following two
assertions hold.
(a) If W is an irreducible �-subrepresentation of V ˝ F and ƒW is a

�-stable OF -lattice of W , then ƒW ˝OF Fq is absolutely irreducible.
(b) If W1 and W2 are nonisomorphic irreducible �-subrepresentations of

V ˝F andƒ1 andƒ2 are �-stableOF -lattices ofW1 andW2, respec-
tively, then ƒ1˝OF Fq and ƒ2˝ Fq are not isomorphic.

Proof
Let F be the finite extension of Q` in assertion (ii). Tensoring by OF over Z`, we
see by Lemma 2.12 that assertion (i) is equivalent to assertion (i) of Proposition 2.15.
Regarding � as a subgroup of AutF .V ˝ F /, by absolute irreducibility, assertions
(iii.a) and (iii.b) of Proposition 2.15 correspond to assertions (ii.a) and (ii.b), respec-
tively.

LEMMA 2.17
Let F be a finite totally ramified extension of Q` with ring of integersOF and residue
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field F`, let ƒ be a finitely generated free OF -module, and let � � AutOF ƒ be a
closed subgroup such that the action of � on ƒ˝ F` is semisimple. Then

ker
�
�!AutF`.ƒ˝ F`/

�
is the maximal normal pro-` subgroup of � .

Proof
The kernel is a closed subgroup of the pro-` group

ker
�
AutOF ƒ!AutF`.ƒ˝ F`/

�
and, therefore, is again pro-`. So it suffices to prove it is maximal among normal pro-`
subgroups of � . If not, the image of any normal pro-` subgroup not contained in the
kernel is a nontrivial normal `-subgroup of the image of �!AutF`.ƒ˝ F`/. How-
ever, a subgroup of GLn.F`/ which acts semisimply cannot have a nontrivial normal
`-subgroup, since a semisimple representation of an `-group over F` is necessarily
trivial.

2.6. Formal characters and regular elements

2.6.1
We work over a field F of any characteristic. Suppose at first that F is algebraically
closed. Let T� GLn be a torus of rank r . By weights of T, we mean the weights of
the ambient representation T! GLn, that is, the characters � 2X�.T/ appearing in
the decomposition of the ambient representation into irreducible factors. We define
m� to be the multiplicity of the weight � and

P
�m�Œ�� 2 ZŒX

�.T/� to be the formal
character of T (as a subgroup of GLn).

For N 2 N, let IN denote the set of integers in the interval Œ�N;N �. Given an
isomorphism i W Zr !X�.T/, the formal character is bounded by N with respect to
i if m� > 0 only for � 2 i.I rN /. We say it is bounded by N if this is true for some
choice of i (see [20, Definition 4]). In this case we say that T is an N -bounded torus.

For any connected algebraic subgroup G of GLn;F , we define the formal char-
acter of G as the formal character of any maximal torus T � G, and we say that
G is N -bounded if T is N -bounded; since the maximal tori of G are conjugate to
one another, this does not depend on the choice of T. We say the formal characters
of connected algebraic subgroups G1 � GLn;F1 and G2 � GLn;F2 (where F1 and
F2 may even have different characteristics) are the same if there exist maximal tori
T1, T2 (of G1, G2, respectively) and an isomorphism X�.T1/! X�.T2/ mapping
the formal character of T1 � GLn;F1 to that of T2 � GLn;F2 . This is equivalent to
the existence of g1 2 GLn.F1/ and g2 2 GLn.F2/ such that g�11 T1g1 � Gnm;F1 and
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g�12 T2g2 �Gnm;F2 are diagonal tori cut out by the same set of characters in X�.Gnm/
(see [20, Proposition 2.0.1]). If F is not algebraically closed, the formal character of
G � GLn;F is defined to be the formal character of GF � GLn;F , and we say the
former is N -bounded if the latter is N -bounded.

2.6.2
Let T � Gnm be a rank r diagonal torus over a field F . The corresponding map
of character groups f W Zn D X�.Gnm/ ! X�.T/ determines an ordered n-tuple
.f .e1/; : : : ; f .en// 2X

�.T/n, where the ei ’s are the standard generators of Zn. The
number of occurrences of a character � 2X�.T/ in this n-tuple equalsm�, so T deter-
mines the element of X�.T/n up to permutation. As kerf is finitely generated, there
exists M 2N such that I nM \ kerf generates kerf . This is equivalent to the fact that
T is the intersection in Gnm of ker� over some collection of � 2 I nM � Zn DX�.Gnm/.
There are finitely many homomorphisms Zn! Zr sending each ei to an element of
I rN , so there exists a constant C8.n;N / depending only on n;N 2N (independent of
the field F ) such that this property holds for all N -bounded subtori of Gnm whenever
M � C8.n;N /.

Let T � GLn;F be a torus, and let t 2 T.F /. There exists g 2 GLn.F / such
that g�1Tg � Gnm is a diagonal torus. If h 2 GLn.F / is another element such that
h�1Th�Gnm, then a permutation of coordinates of Gnm maps g�1Tg to h�1Th. We
say that t 2 T.F / ism-regular if whenever � 2 I nm �X

�.Gnm/ is a character such that
g�1tg 2 ker�, then g�1Tg � ker�. As I nm is stable under permutation of coordinates,
this does not depend on the choice of g conjugating T into a diagonal torus.

If T is a maximal torus of a connected reductive subgroup G � GLn;F and t 2
T.F / is 1-regular, then t is a regular semisimple element of G; this follows from the
fact that the adjoint representation of G is a subrepresentation of the restriction to G
of the adjoint representation of GLn;F . If t 2 G.F / is regular semisimple, we say
that t is m-regular if t is m-regular with respect to the unique maximal torus T�G
(defined over F ) containing t . The following lemmas are fundamental.

LEMMA 2.18
Let F1, F2 be fields, and let M � C8.n;N / be an integer. If T1 �Gnm;F1 and T2 �
Gnm;F2 areN -bounded diagonal tori of the same rank and t 2 T1.F1/ is anM -regular
element such that, for all � 2 I nM \ X

�.Gnm/, the inclusion T2 � ker� implies that
�.t/D 1, then T1 and T2 are cut out by the same set of characters in I nM \X

�.Gnm/.

Proof
The proof is immediate.
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LEMMA 2.19
Let F be a field, and let M � C8.n;N / be an integer. If T1 and T2 are N -bounded
tori of GLn;F and t 2 T1.F /\T2.F / is M -regular for T1, then T1 � T2.

Proof
Without loss of generality, we may assume that F is algebraically closed;T2 �Gnm,
and g�1T1g �Gnm for some g 2 GLn.F /. As g�1tg and t are both diagonal; g can
be written as zh, where z commutes with t and h normalizes Gnm in GLn. Thus, we
may take gD z. Since t 2 z�1T1z �Gnm is at least 1-regular, it follows that T1 is also
diagonal. Since t is M -regular, every character � 2 I nM \X

�.Gnm/ which annihilates
T2 sends t to 1 and is therefore trivial on T1. By the definition of M , we obtain
T1 � T2.

2.6.3
Let A be an abelian group, and let B be a subgroup of A. The saturation of B is the
subgroup of elements a 2A such that ma 2B for some nonzero m 2 Z. If B is equal
to its saturation, then B is said to be saturated. We focus on algebraic groups over
finite fields F`.

PROPOSITION 2.20
If ` and N are sufficiently large in terms of n, then every exponentially generated
subgroup of GLn;F` has N -bounded formal character.

Proof
Let T � Gnm be a torus of rank r over an algebraically closed field F with f W
X�.Gnm/! X�.T/. For † � ¹1; : : : ; nº of cardinality r , let T† � Gnm be the rank
n� r torus with 1 in the 
 -coordinate for all 
 2† with f† W X�.Gnm/!X�.T†/.
The fiber product over Gnm of two subtori is cut out by the sum of the subgroups of
X�.Gnm/ cutting out each of the tori. The closed subscheme C of Gnm cut out by a sub-
group of X�.Gnm/ of index D is reduced and satisfies jC.F /j DD if and only if D is
not divisible by the characteristic of F . If T�Gnm T† is reduced, then jT.F /\T†.F /j
and the index �

ƒnX�.Gnm/ Wƒ
r.kerf /^ƒn�r.kerf†/

�
have the same cardinality. Thus, if B is fixed;T �Gnm T† is reduced for all †, and
jT.F /\T†.F /j 	B for all † for which the intersection is finite, then there are only
a finite number of possibilities for the top exterior power ƒr.kerf / � ƒrX�.Gnm/
and therefore a finite number of possibilities for .kerf / ˝ Q as a subspace of
X�.Gnm/ ˝ Q D Qn. As kerf is saturated; .kerf / ˝ Q determines kerf as a
subgroup of X�.Gnm/ and therefore determines the formal character of T.
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By [28, Proposition 3] and the fact that Hilbert schemes are of finite type, the
exponentially generated subgroups of GLn;F` for all sufficiently large ` form a con-
structible family G � GLn;S in the sense of [30]; that is;G is a closed subscheme of
the general linear scheme over a scheme S of finite type over SpecZ and, for every
algebraically closed field F of characteristic 0 or sufficiently large positive character-
istic, every exponentially generated subgroup of GLn;F is of the form Gx for some
x 2 S.F /.

Let T denote the closed subscheme of GLn;S consisting of diagonal matrices,
and for any subset † � ¹1; 2; : : : ; nº, let T† denote the closed subscheme of T for
which the 
 -coordinate is 1 for all 
 2†. The fiber product G �GLn;S T† is a group
scheme over S and, therefore, reduced over every point in characteristic 0 and,
therefore, reduced over every point in sufficiently large finite characteristic (see [17,
Théorème 9.7.7(iii)]). Moreover, by [17, Corollaire 9.7.9], there is an upper bound
for the cardinality of any finite fiber, and this implies that there are only finitely many
possibilities for the formal character of any fiber of G .

PROPOSITION 2.21
There exists a constant C9.r; k;N / depending only on r; k;N 2 N such that, if T is
a rank r torus over F` with ` > C9.r; k;N / and the GalF` -orbit of � 2 X�.T F`

/ is
N -bounded with respect to some isomorphism i W Zr !X�.T F`

/, thenˇ̌®
t 2 T .F`/

ˇ̌
�.t/D 1

¯ˇ̌
< k�1

ˇ̌
T .F`/

ˇ̌
: (7)

Proof
Let X be the subgroup of X�.T F`

/ generated by the Galois orbit O� of �. Then the
number of possibilities for i�1.X/ is bounded by a constant depending only on N
and r . Therefore, there exists a positive integer s, depending only on N and r , such
that, for all � in the saturation of X , we have s� 2X . It follows that if t 2

T
�2X ker � ,

then t s belongs to the subtorus TO� of TF`
cut out by the saturation of X . Since any

element of T .F`/ in ker� is in ker�� for all �� 2 O�, it follows that ¹t 2 T .F`/ j
�.t/D 1º lies in the union of at most sr translates of a proper F`-subtorus of T . A
proper subtorus has at most .`C 1/r�1 F`-points, while jT .F`/j � .`� 1/r , and the
proposition follows.

COROLLARY 2.22
There exists a constant C10.�;m;n;N / depending only on � > 0 and m;n;N 2 N

such that if T � GLn;F` is an N -bounded torus with ` > C10.�;m;n;N /, then the
number of elements of T .F`/ which fail to be m-regular is less than �jT .F`/j.
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Proof
By taking

C10.�;m;n;N /D max
0�r�n

C9
�
r;
˙
jI nmj=�

�
;mN

�
;

this follows immediately.

PROPOSITION 2.23
There exists a constant C11.�; n;N / depending only on � > 0 and n;N 2N such that
if G1 and G2 are N -bounded connected subgroups of GLn;F` with G1 reductive; ` >
C11.�; n;N /, and ˇ̌

G1.F`/\G2.F`/
ˇ̌
> �

ˇ̌
G1.F`/

ˇ̌
;

then G1 �G2.

Proof
Let r be the rank of G1, and let M � C8.n;N / be an integer. By Corollary 2.22,
every maximal torus T of G1 defined over F` contains o..`C 1/r/ elements which
fail to be M -regular. Each regular semisimple element belongs to a unique T , so the
number of maximal tori containing a regular semisimple element defined over F` is
O.`�r jG1.F`/j/. Thus, the number of regular semisimple elements of G1.F`/ which
are not M -regular is o.jG1.F`/j/. By Lang–Weil and the fact that the root datum of
the connected reductive G1;F` has finitely many possibilities (depending on n), the
number of elements of G1.F`/ which are not regular semisimple is also o.jG1.F`/j/.
We conclude that if ` is sufficiently large, then more than .1� �=2/jG1.F`/j elements
x of G1.F`/ are regular semisimple and are M -regular and, therefore, do not lie in
G2.F`/ unless the unique maximal torus of G1 containing x is contained in some
maximal torus of G2 by Lemma 2.19.

It follows thatG1 andG2 have at least .�=3/jG1.F`/j elements in common which
are regular semisimple and M -regular for G1 if ` is sufficiently large. The group
generated by the unique maximal tori of G1 containing these elements is a closed
connected subgroup of G1 \G2 containing at least .�=3/jG1.F`/j regular semisim-
ple elements. However, if it is a proper subgroup of G1, its dimension is at most
dimG1 � 1, so if ` is sufficiently large, it contains less than .2=`/jG1.F`/j elements.
Thus;G1 �G2.

3. Maximality of compact subgroups

3.1. Theorem 1.5
The main goal of this section is to establish the following theorem.
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THEOREM 1.5
Let G� GLn;Q` be a connected reductive subgroup, let G � GLn;F` be a connected
reductive subgroup with Gder as derived group and Z as connected center, let � be
a closed subgroup of G.Q`/ \ GLn.Z`/, and let � W � ! GLn.F`/ be a semisimple
continuous representation with G WD �.�/ � G.F`/. Assume that this data satisfies
the following conditions.
(a) The subgroup � is Zariski-dense in G.
(b) There is an equality of semisimple ranksW rank Gder D rankGder.
(c) The derived group Gder is exponentially generated.
(d) For all � 2 � , the (mod `) reduction of the characteristic polynomial of � is

the characteristic polynomial of �.�/.
(e) The index ŒG.F`/ WG� is bounded by k 2N.
(f) The formal character of .Z;Fn

`
/ is bounded by N 2 N, where Z is the con-

nected center of G.
(g) Condition (�) holds for � and G; that is,

dimQ`

�
End�.Q

n
` /
�
D dimF`

�
EndG.F

n
` /
�
:

If ` is sufficiently large in terms of the data in (a)–(g), then the reduction representa-
tion � ,! GLn.Z`/! GLn.F`/ and � are conjugate; �sc is a hyperspecial maximal
compact subgroup of Gsc.Q`/, and Gder is unramified. Hypotheses (a)–(f) of Theo-
rem 1.5 suffice to imply that Gder splits over some finite unramified extension of Q`
and is unramified over every degree 12 totally ramified extension of Q`.

3.2. The condition .�/
Suppose the conditions (a)–(f) of Theorem 1.5 hold. The goal of this section is reduce
the condition .�/ of Theorem 1.5(g) to the semisimple part, that is, the condition (�0)
in Proposition 3.2.

PROPOSITION 3.1
There exists a constant C12.k; n;N / depending only on k;n;N 2N such that, if G �
GLn;F` is an N -bounded connected reductive subgroup with ` > C12.k; n;N / and
derived groupGder alsoN -bounded;G is a subgroup of index bounded by k inG.F`/,
and S is the Nori group of G, then the following assertions hold.
(i) The ambient representation G!GLn.F`/ is semisimple.
(ii) The ambient representation G!GLn;F` is semisimple.
(iii) The derived group of G is S .
(iv) The commutant of G in Mn.F`/ consists of the F`-points of the commutant of

G in Mn;F` .
Parts (i) and (ii) hold without the N -bounded assumption.
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Proof
If ` > k, then G \ Gder.F`/ contains Gder.F`/Œ`� and therefore Gder.F`/

C. If ` is
sufficiently large in terms of n, then every characteristic ` representation of G.F`/
is semisimple (see [24]). The restriction of a semisimple representation to a normal
subgroup is always semisimple, so Gder.F`/

C acts semisimply on Fn
`

. As Gder.F`/
C

is normal in G \Gder.F`/ and of prime-to-` index, by [11, Section 10, Exercise 8],
the latter also acts semisimply on Fn

`
. On the other hand;G\Gder.F`/ is the kernel of

a homomorphism fromG to the group of F`-points of the torusG=Gder. It is therefore
a normal subgroup of prime-to-` index in G, so by applying [11, Section 10, Exercise
8] again;G acts semisimply on Fn

`
, proving (i).

Part (ii) is true for any connected reductive algebraic group if ` is large compared
to n (see [27, Theorem 3.5] when S is semisimple and [24] in general).

For part (iii), we note that the formal character of Gder is bounded by hypothesis,
while the formal character of S is bounded by Proposition 2.20. As Gder.F`/

C D

S.F`/
C, this group is of bounded index in both Gder.F`/ and S.F`/. By Lemma 2.7

and Proposition 2.9(iii), this implies that

dim.Gder/D dim`

�
Gder.F`/

�
D dim`

�
S.F`/

C
�
D dim`

�
S.F`/

�
D dimS

for sufficiently large `. Thus, Proposition 2.23 gives Gder D S .
Let x 2Mn.F`/ commute with G, and let its centralizer in GLn;F` be Zx . Then

G � G.F`/ \ Zx.F`/. Now;Zx is the complement in a linear subvariety of n � n
matrices of the zero locus of the determinant, so it is irreducible. Moreover, centraliz-
ers form a constructible family, so their formal characters areN -bounded (e.g., by the
proof of Proposition 2.20). Part (iv) follows by applying Proposition 2.23 as G1 DG
and G2 ranges over all groups Zx .

PROPOSITION 3.2
Under the hypotheses of Theorem 1.5, there exists a constant C13.k; n;N / depending
only on k;n;N 2N such that, if ` > C13.k; n;N /, then the following statements hold.
(i) For any finite extension F of Q` with uniformizer � and residue field F`f and

any OF -latticeƒ of F n WDQn
`
˝Q` F fixed by � , the reduction representation

� ,!GL.ƒ/!GL.ƒ=�ƒ/

is isomorphic to � ˝ F`f and thus semisimple.
(ii) The formal characters of Gder and Gder coincide.
(iii) The commutator subgroup G0 acts semisimply on Fn

`
and

dimQ`

�
End�0.Q

n
` /
�
D dimF`

�
EndG0.F

n
` /
�
; (�0)

where � 0 is the commutator subgroup of � , that is, the closure of the group
generated by commutators.
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Proof
For assertion (i), the Brauer–Nesbitt theorem and Theorem 1.5(d) imply that the
semisimplification of .�;ƒ=�ƒ/ is isomorphic to � ˝ F`f . Lemma 2.13 (for k D 1)
and Lemma 2.14(i) produce the inequalities

dim
�
End�.F

n/
�
	 dim

�
End�.ƒ=�ƒ/

�
	 dim

�
EndG.F

n
`f
/
�
;

which, by Lemma 2.12 and (�), are actually equalities. Then the F`f -representation
ƒ=�ƒ of � is semisimple by Lemma 2.14(ii).

For parts (ii) and (iii), we first note that, for some N 0 depending only on n and
N , the three groups Gder, G, and Gder are N 0-bounded. Indeed, the N 0-boundedness
of the first is due to Theorem 1.5(c) and Proposition 2.20; the N 0-boundedness of the
second is due to the N 0-boundedness of the first and Theorem 1.5(f); and the N 0-
boundedness of the third follows since, in characteristic 0, by the Weyl dimension
formula, there are only finitely many possibilities for formal characters of semisimple
groups which admit a faithful n-dimensional representation.

Now for (ii), choose an integer M � C8.n;N 0/ (defined in Section 2.6.2). Let
T be a maximal torus of Gder. Then the index ŒT .F`/ W T .F`/\G0� is bounded by a
constant depending only on k and n. By Corollary 2.22, if ` is sufficiently large in
terms of n, N 0, M , and k, then there exists g 2 T .F`/ \G0 which is M -regular in
T . Let � 2 � 0 � Gder.Q`/ be any lift of g, and let �ss 2 Gder.Q`/ be its semisimple
part. Let T denote a maximal torus of Gder which contains �ss. Let TGL be a maximal
torus of GLn;Q` containing T, and let h 2GLn.Q`/ be an element such that h�1TGLh

is diagonal. Thus,

h�1�sshD diag.�1; : : : ; �n/; (8)

where the �i ’s are the eigenvalues of �ss. They are integral over Z`, so they reduce to
N�1; : : : ; N�n 2 F`, the eigenvalues of g. Define

T2 WD h�1Th (9)

as the diagonal torus, and define T1 to be some diagonalization of T F`
so that g 2

T .F`/ goes to diag. N�1; : : : ; N�n/. Since T1 and T2 have the same rank by Theo-
rem 1.5(b), it follows by Lemma 2.18 that they are cut out by the same set of charac-
ters in I nM \X

�.Gnm/, which implies (ii).
To prove (iii), we use Corollary 2.16 to replace (�) and (�0) by assertions

2.16(ii.a) and 2.16(ii.b). We fix a finite extension F of Q` over which F n decomposes
as a direct sum of absolutely irreducible representations for � and � 0. By Zariski
density, any decomposition of F n as a direct sum of irreducible G-representations
gives a decomposition into irreducible �-representations, and likewise, a decompo-
sition into Gder-irreducibles gives a decomposition into � 0-irreducibles. As every
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G-irreducible restricts to a Gder-irreducible, the same is true for �-irreducibles and
� 0-irreducibles.

By hypothesis;G is of bounded index in G.F`/. Thus;G \ Gder.F`/ is of
bounded index in Gder.F`/, and its inverse image in Gsc.F`/ is of bounded index
and therefore equal to Gsc.F`/ if ` is sufficiently large. Thus;G0 contains the image
of Gsc.F`/! Gder.F`/, which is of bounded index in Gder.F`/. Applying Proposi-
tion 3.1 and Lemma 2.14(iv) to G �G.F`/ and G0 �Gder.F`/, we conclude that an
F`-subspace of F

n

` is invariant and irreducible for G if and only if it is so for G.F`/
if and only if it is so for Gder.F`/ if and only if it is so for G0. Hence, we obtain
Corollary 2.16(ii.a) for � 0.

For Corollary 2.16(ii.b), it suffices to show that if W1 �W2 are irreducible sub-
representations of � 0 (equivalently Gder) in Q

n

` , then their reductions as irreducible
representations of G0 are nonisomorphic for ` larger than some constant depending
only on k, n, N . Since diag. N�1; : : : ; N�n/ (the reduction of (8)) and the diagonal torus
in (9) are annihilated by the same set of characters in I nM , the actions of �ss on the
reductions of W1 and W2 are isomorphic if and only if the actions of T (a maximal
torus of Gder) on W1 and W2 are isomorphic. We are done.

PROPOSITION 3.3
Let � �GLn.Q`/ be a compact subgroup, let ƒ�Qn

`
be a �-stable lattice, let 	 be

a closed normal subgroup of � , and let � 2 � . Assume the following conditions hold:
(a) � is a semisimple element of GLn.Q`/;
(b) every element in Mn.Q`/ which commutes with 	 and with � commutes with

�;
(c) if �1; �2 2Q` are distinct eigenvalues of � , then �1 � �2 is an `-adic unit.
Then

dimQ`

�
End�.Q

n
` /
�
D dimF`

�
End�.ƒ˝ F`/

ss
�

(10)

implies that

dimQ`

�
End�.Q

n
` /
�
D dimF`

�
End�.ƒ˝ F`/

ss
�
: (11)

Proof
The left-hand side of (11) is the dimension of the centralizer of � in Mn.Q`/, which
by (b) is the dimension of the centralizer of � in End�.Qn` /. By (a), this is the dimen-
sion of the 1-eigenspace of � acting on End�.Qn` /�Mn.Q`/ by conjugation.

Defining M WD End�ƒ, we have M ˝Z` Q` D End�.Qn` /. Equation (10) and
Lemma 2.14(ii) imply that 	 is semisimple on ƒ˝ F`. Conditions (a) and (c) imply
that � is semisimple on M ˝F`. Hence, the right-hand side of (11) is bounded above
by the F`-dimension of the 1-eigenspace of � acting on M ˝ F`. By (c) and the first
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paragraph, this is equal to the left-hand side of (11), which implies that the two are
equal.

3.3. Proof of Theorem 1.5

Proof of Theorem 1.5
We assume that ` > k, which means that every element of G.F`/ of order ` lies in G.
As G.F`/=G

der.F`/ has prime-to-` order,

GŒ`�DG.F`/Œ`�DG
der.F`/Œ`�;

so by Theorems 1.5(c) and 2.1(iii), the Nori group of G equals Gder. As G acts
semisimply on Fn

`
, its maximal normal `-subgroup is trivial. The composition � ,!

GLn.Z`/! GLn.F`/ is a semisimple representation by Corollary 2.16, so by Theo-
rem 1.5(d) and Brauer–Nesbitt, it is conjugate to �.

We now suppose the theorem known in the case in which G and G are semisim-
ple. We defined � 0 to be the topological group generated by commutators in � , but in
fact every element of � 0 is a finite product of commutators. Indeed, the commutator
morphism G �G! Gder factors through Gss �Gss. Now �ss is a compact Zariski-
dense subgroup of the Q`-points of a semisimple algebraic group, so it is open, by a
theorem of Chevalley. As the generalized commutator morphism Gss �Gss!Gder is
dominant, the implicit function theorem implies that the set of commutators of ele-
ments of �ss in Gder.Q`/ has nonempty interior. It follows that every element in � 0

can be written as a finite product of commutators.
If �0 W � 0 ! G denotes the restriction of � to � 0, it follows that �0.� 0/ D G0.

Note that �0 is semisimple, since G0 is a normal subgroup of G, and the restriction
of a semisimple representation to a normal subgroup is again semisimple. Conditions
1.5(a)–1.5(d) for .Gder;Gder; � 0;G0; �0/ are immediate from the same conditions for
.G;G;�;G;�/, whereas Theorem 1.5(f) is trivial. By Proposition 3.2, Theorem 1.5(g)
for � 0 and G0 follows from Theorem 1.5(g) for � and G.

For Theorem 1.5(e), we note that G \Gder.F`/ is of index at most k in Gder.F`/.
By assuming ` > k, we can ensure that G contains all elements of Gder.F`/Œ`�, so
G � Gder.F`/

C. The index of Gder.F`/
C in Gder.F`/ is bounded by 2n�1 by Theo-

rem 2.1(ii). Therefore, at the cost of replacing the index k by 2n�1, we may assume
that all conditions 1.5(a)–1.5(g) hold for .Gder;Gder; � 0;G0; �0/, while Gder and Gder

are semisimple.
Applying the theorem in the semisimple case, we conclude that the inverse image

of � 0 in Gsc.Q`/ is a hyperspecial maximal compact subgroup. The central isogeny
Gder!Gss maps � 0 to .�ss/0, so the inverse image of �ss in Gsc.Q`/, which is com-
pact, contains the inverse image of � 0, which is maximal compact. This implies the
theorem in the reductive case.
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Thus, we may assume without loss of generality that G and G are semisimple.
By definition; �sc is the inverse image of � in Gsc.Q`/. By Corollary 2.5, the isogeny
Gsc.Q`/! G.Q`/ has bounded cokernel, so we may replace � with the image of
�sc! � and G with the new �.�/ at the cost of increasing k by a bounded factor.
This will not affect Theorem 1.5(g); the left-hand side of (�) is unchanged since �
is Zariski-dense in G, and G is connected, while the right-hand side is unchanged by
Proposition 3.1(iv).

Thus, we may assume �sc maps onto � , and for �-representations; �sc-invariance
is the same as �-invariance. By Lemma 2.17;G is the quotient of � by its maximal
normal pro-` subgroup. Let

…�G.Q`/ (12)

be a maximal compact subgroup containing � . Then …sc � Gsc.Q`/ is a maximal
compact subgroup containing �sc and fixes some vertex x0 in the Bruhat–Tits build-
ing B.Gsc;Q`/. The vertex x0 corresponds to a group scheme H=Z` with generic
fiber isomorphic to Gsc. When ` is large enough depending on k, the total `-rank of �
is equal to rank Gsc by Theorems 1.5(b) and 1.5(e). Lemma 2.10 and Theorem 2.11(i)
imply that the total `-rank of … (and hence …sc DH .Z`/) is equal to rank Gsc if `
is large enough depending on n. Then Theorem 2.11(iv) implies that there exist some
finite totally ramified extension F=Q` and a hyperspecial maximal compact subgroup
� of Gsc.F / corresponding to a semisimple group scheme I=OF (Section 2.4.1) such
that

�sc �H .Z`/��D I.OF /�Gsc.F /:

As I.OF / is compact, it stabilizes some OF -lattice ƒ � F n. Let  W �sc !

GL.ƒ˝ F`/ŠGLn.F`/ denote the composition of the maps

�sc ,!H .Z`/ ,! I.OF /!GLOFƒ!GLF`.ƒ˝ F`/:

By Brauer–Nesbitt; ss is equivalent to �, so by Corollary 2.16; is equivalent to �.
As �sc and I.OF / are both Zariski-dense in Gsc

F ,

dimF

�
End�sc.ƒ˝OF F /

�
D dimF

�
EndI.OF /.ƒ˝F /

�
	 dimF`

�
EndI.OF /.ƒ˝ F`/

�
: (13)

By Theorem 1.5(g) and �sc � I.OF /,

dimF

�
End�sc.ƒ˝OF F /

�
D dimF`

�
End�sc.ƒ˝ F`/

�
� dimF`

�
EndI.OF /.ƒ˝ F`/

�
: (14)
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It follows that equality holds in both (13) and (14). By Lemma 2.14(iii);I.OF / acts
semisimply on ƒ˝ F` Š Fn

`
.

By Lemma 2.17, the image I of I.OF / in GL.ƒ˝F`/ is the quotient of I.OF /

by its maximal normal pro-` subgroup, which is the quotient of I.F`/ by a subgroup
Z of its center. So I is a subgroup of bounded index of the F`-points of the semisim-
ple group IF`=Z (isogenous to IF` ). As the image of  is contained in the image of
I.OF / in GL.ƒ˝ F`/, we obtain an embedding of G in I , with

dimF`

�
EndG.ƒ˝ F`/

�
D dimF`

�
EndI .ƒ˝ F`/

�
D dimQ`

�
End�sc.Qn` /

�
:

The image H of H .Z`/ in I satisfies G �H � I .
Let H and I denote the Nori groups of H and I , respectively, so G �H � I .

If ` is sufficiently large; I is semisimple by Proposition 2.3(i) and of rank equal to
rk` I D rank.IF =Z/ D rank IF by Lemma 2.7 and Propositions 2.8 and 2.9. By
Proposition 3.1(iv), the commutants ofG and I in End.ƒ˝F`/ have the same dimen-
sion; they must therefore be the same. By hypothesis;G is semisimple, and we have
equality of ranks:

rankG D rank GD rank IF D rankI :

By the Borel–de Siebenthal theorem [16, Theorem 0.1], G D I , and it follows that
H DG is likewise semisimple. We have

G.F`/
C �G �H � I �G.F`/:

As H acts semisimply, since the image of ker.H .Z`/!H .F`// in H is a nor-
mal `-subgroup, it must be trivial. Thus;H is a quotient of H .F`/. If the vertex
x0 2 B.Gsc;Q`/ associated to H is not hyperspecial, then the unipotent radical of
HF` is nontrivial. Since H is flat, the dimension of HF` equals the dimension of G,
which is also the dimension of IF` and therefore the dimension of G DH D I . By
Proposition 2.9(iii), we obtain

dim`H 	 dim`

�
H .F`/

�
D dim H ss

F`
< dim HF` D dimG D dim`G;

which is impossible by Lemma 2.10 since G � H � GLn.F`/. Thus;H .Z`/ is a
hyperspecial maximal compact subgroup, which means that H .F`/ is the group of
F`-points of a simply connected semisimple algebraic group over F`, and H is a
quotient of H .F`/ by a subgroup of its center. As G is of bounded index in H , the
compact subgroup �sc of H .Z`/ maps onto a bounded index subgroup of H .F`/,
which has to be H .F`/ itself when ` is sufficiently large. By [43, Theorem 1.3], this
implies that �sc DH .Z`/, as claimed.
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Condition (�) is used only to prove that the commutants of G and I have
the same dimension. In any case, we have rankG D rankI D rank G and, there-
fore, rk`.G.F`// D rank G. As G is of bounded index in G.F`/, if ` is suffi-
ciently large; rk`G D rk`.G.F`//, and since G is a quotient of � , we obtain
rank GD rk`� 	 rk`… by the construction (12) and Lemma 2.10. Theorems 2.11(i)–
2.11(iii) now imply the remaining claims since… is maximal compact in G.Q`/.

4. Maximality of Galois actions

4.1. Algebraic envelopes
Let ¹�`º` be the system of `-adic representations in Theorem 1.2. The monodromy
group (resp., algebraic monodromy group) of �` is denoted by �` (resp:;G`). The
quotient of G` by its unipotent radical is denoted by Gred

`
. If X is a projective nonsin-

gular variety overK , then for each `, the image ofH i .XK ;Z`/ inH i .XK ;Q`/ŠQn
`

is a Z`-lattice ƒ` stabilized by �`, and

N�ss
` WGalK!GLn.F`/ (15)

denotes the semisimplification of the (mod `) reduction of �` WGalK!GLn.Z`/ (the
action of GalK on this lattice). Denote by G` the image N�ss

`
.GalK/ for all `. In [20],

we construct the algebraic envelope G` (a connected reductive subgroup of GLn;F` )
of G` to study the `-independence of the total `-rank and the g-type `-rank of G` for
all sufficiently large `. The idea of constructing such a G` is due to Serre in [38], who
considered the Galois action on the `-torsion points of abelian varieties without com-
plex multiplication (see also [5]). The algebraic envelope G` can be written as S`Z`,
where S` WDG

der
` is also the Nori group of G` �GLn.F`/ (by [20, Section 2.5]) and

Z` is the identity component of the center ofG`. Theorems 4.1 and 4.2 below present
the key properties of the algebraic envelopes G`.

THEOREM 4.1 ([20, Theorem 2.0.5, Proof of Theorem 2.0.5(iii)])
After replacing K by a finite normal field extension L if necessary, for all sufficiently
large `, the algebraic envelope G` 
GLn;F` has the following properties:
(i) G` is a subgroup of G`.F`/ whose index is bounded uniformly independent of

`;
(ii) G` acts semisimply on the ambient space;
(iii) the representations ¹S` ! GLn;F`º`�0 and ¹Z` ! GLn;F`º`�0 have

bounded formal characters, and in particular; ¹G` ! GLn;F`º`�0 has
bounded formal characters.
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THEOREM 4.2 ([20, Theorem A, Theorem 3.1.1])
Let G` be the algebraic monodromy group of �`. After replacingK by a finite normal
field extensionL if necessary, the following statements hold for all sufficiently large `.
(i) The formal character of S`!GLn;F` (resp:;G`!GLn;F` ) is independent of

` and is equal to the formal character of .Gred
`
/der! GLn;Q` (resp:;Gred

`
!

GLn;Q` ).
(ii) The non-abelian composition factors of G` and the non-abelian composition

factors of S`.F`/ are in bijective correspondence. Thus, the composition fac-
tors of G` are finite simple groups of Lie type in characteristic ` and cyclic
groups.

Note that the implicit constants in Theorems 4.1 and 4.2 depend only on the
system (15) of (mod `) Galois representations.

Remark 4.3
The formal bi-character [21, Definition 2.3] of Gred

`
! GLn;Q` is independent of `

(see [19, Theorem 3.19]).

PROPOSITION 4.4
The system of algebraic envelopes ¹G` � GLn;F`º`�0 is characterized by the con-
ditions 4.1(i) and 4.1(iii) in the sense that if ¹H ` � GLn;F`º`�0 is another sys-
tem of connected reductive subgroups such that, for `� 0, G` is a subgroup of
H `.F`/ whose index is uniformly bounded and the formal character of H ` is uni-
formly bounded, then G` DH ` for all sufficiently large `.

Proof
This follows directly from Proposition 2.23.

THEOREM 4.5
If the algebraic monodromy group G` is connected for all `, then G` � G`.F`/ for
all sufficiently large `.

Proof
Let L be a finite normal extension ofK in Theorem 4.1 such that N�ss

`
.GalL/�G`.F`/

for `� 0. Let N ` be the normalizer of the Nori group S` in GLn;F` . Then G` �
N `.F`/.

We claim that G` D N�ss
`
.GalK/ normalizes the connected reductive group G`

for `� 0. By construction (see [20, Proof of Theorem 2.0.5(i) and (ii)]);G` is the



MAXIMALITY OF GALOIS ACTIONS 1199

preimage of a torus I ` �GLW` under some morphism3

t` WN ` �N `=S` ,!GLW` ;

where W` is some F`-vector space whose dimension is bounded independent of `.
Since the index ŒI `.F`/ W t`. N�

ss
`
.GalL//� and the formal character of I ` � GLW` are

both bounded independent of ` (see [20, Theorem 2.4.2]), the normality of the field
extension L=K and Proposition 2.23 imply that t`.G`/ normalizes I ` for all suf-
ficiently large `. Hence, the product G`G` is a subgroup of GLn;F` with identity
component G` for `� 0.

The number of conjugacy classes of elements of the finite group Gal.L=K/ is
bounded by m WD ŒL WK�. Since G` is connected for all ` and the strictly compatible
system ¹�`º` is pure of weight i , the method of Frobenius tori of Serre (see, e.g.,
[29], [21, Theorem 2.6, Corollary 2.7]) implies that there is a Dirichlet density 1 set
of finite places v ofK such that the Frobenius torus T Nv;` �GLn;Q` is a maximal torus
of G` if v � ` and Nv is some place on K extending v on K . Thus, for each conjugacy
class c of Gal.L=K/, we can fix a finite place vc of K (unramified in L) mapping to
c and a place Nvc ofK above vc such that T Nvc ;` is a maximal torus of G` for `� 0. To
prove G`G` DG` for `� 0, it suffices to show, for each c and all sufficiently large
`, the semisimple part N�ss

`
.Fr Nvc /ss 2G`.F`/.

For each c, there exist a torus Tc �GLn;Q and an element �c 2 Tc.Q/ such that,
for all sufficiently large `, the chain

�c 2 Tc �GLn;Q (16)

is conjugate to the chain

�`.Fr Nvc /ss 2 T Nvc ;` �GLn;Q` (17)

by some element in GLn.Q`/. For `� 0, the reduction modulo `

gc;` 2 T c;` �GLn;F` (18)

of (16) can be well defined, and the two semisimple elements gc;` and N�ss
`
.Fr Nvc /ss in

GLn.F`/ are conjugate since they have the same characteristic polynomial. Without
loss of generality, assume gc;` D N�ss

`
.Fr Nvc /ss. The formal characters of T c;` and G`

are equal and bounded by some N 2 N independent of `� 0 by Theorem 4.2(i).
Since the powers �mc are Zariski-dense in Tc , there exists M � C8.n;N / (in Sec-
tion 2.6.2) such that for `� 0 the torus T c;` � GLn;F` after diagonalization is the
intersection of the kernels of some characters in I nM \X

�.Gnm/ and the element gm
c;`

is M -regular in T c;`. Since we have

3The groups I ` , S` , N ` , G` are denoted NI` , NS` , NN` , NG` in [20].
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gmc;` D N�
ss
` .Fr Nvc /

m
ss 2G`.F`/;

it follows by Lemma 2.19 and the M -regularity of gm
c;`
2 T c;` that T c;` � G` for

`� 0. We are done since N�ss
`
.Fr Nvc /ss D gc;` 2 T c;`.

4.2. Proof of Theorem 1.2

Proof of Theorem 1.2
After taking a finite extension L of K and the semisimplification of �`, we may
assume that G` is connected reductive for all ` and G` is a subgroup of G`.F`/ for
`� 0 by Theorem 4.5. By the constructions of

�` �G`.Q`/�GLn.Q`/;

G` �G`.F`/�GLn.F`/

and Theorem 4.2(i), we are in the setting of Theorem 1.5, and the conditions 1.5(a)–
1.5(d) are verified. Moreover, Theorems 1.5(e) and 1.5(f) are verified by Theorems
4.1(i) and 4.1(iii). Thus, for `� 0, the condition (�) implies the hyperspeciality of
�sc
`

in Gsc
`
.Q`/ (which in turn implies the unramifiedness of Gsc

`
, Gder

`
, and G` (Propo-

sition 4.6(i))).
Next, we prove the converse. Let G 0

`
be the Zariski closure of the derived group � 0

`

in GLƒ` (ƒ` being the lattice in Qn
`

) endowed with the unique structure of reduced
closed subscheme. For `� 0, the group scheme G 0

`
is smooth with constant rank

over Z` (see [6, Theorem 9.1, Section 9.2.1]) and has generic fiber Gder
`

. We first
show that G 0

`
is semisimple for `� 0. Suppose that �sc

`
is a hyperspecial maximal

compact subgroup of Gsc
`
.Q`/. When ` is sufficiently large, there exists a semisimple

group scheme H=Z` whose generic fiber is Gsc
`

, satisfying H .Z`/D �
sc
`

. Since �sc
`

is perfect if ` is large enough depending on n (see [23, Theorem 3.4]), it maps into
the commutator subgroup � 0

`
� G 0

`
.Z`/. Consider

N�` W �
sc
` ! � 0` ,! G 0`.Z`/ ,!GL.ƒ`/!GL.ƒ`˝ F`/; (19)

and let R` � GLƒ`˝F` be the Nori group of N�`.�sc
`
/. For ` large enough depending

on n, the groups

H .F`/;�
sc
` ; N�`.�

sc
` /;R`.F`/

have the same `-dimension by Theorems 2.1 and 2.2 and the remarks of Section 2.3.2.
Then it follows by Proposition 2.9(iii) that

dim Gder
` D dim HF` D dim`

�
H .F`/

�
D dim`

�
R`.F`/

�
D dimRss

` : (20)

Since dim Gder
`
� dimR` by [28, Theorem 7] for ` large enough depending on

n, it follows that the Nori group R` is semisimple and the action of R`.F`/
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(resp:;R`.F`/
C D N�`.�

sc
`
/C) on ƒ` ˝ F` is also semisimple by [27, Theorem 3.5].

Since N�`.�sc
`
/C is normal in N�`.�sc

`
/ of prime-to-` index, (19) is semisimple.

Since the equality dim Gder
`
D dimR` holds, it follows by [28, Theorem 7(3)]

that N�`.�sc
`
/ is a subgroup of G 0

`
.F`/ of index bounded by a constant depending only

on n. Hence, if the unipotent radical of the special fiber of G 0
`

is nontrivial for some
large enough `, then N�`.�sc

`
/ has a nontrivial normal subgroup of unipotent elements,

which contradicts the semisimplicity of (19). Thus, the group scheme G 0
`

is semisim-
ple over Z`.

The weights appearing in the natural n-dimensional representation of the generic
fiber G 0

`;Q`
remain bounded as ` varies. By [40, Corollary 4.3], if ` is sufficiently large,

the (mod `) reduction of every irreducible factor in this representation is again irre-
ducible, and the (mod `) reductions of distinct irreducible factors are distinct. Thus,
the composition of the special fiber G 0

`;F`
!GLƒ`˝F` with the adjoint representation

of GLƒ`˝F` is semisimple, its irreducible factors have bounded highest weights, and
they are in one-to-one correspondence with the irreducible factors of the composition
of G 0

`;Q`
!GLn;Q` with its adjoint representation. So we obtain

dimF` EndG 0
`;F`

.ƒ`˝ F`/D dimQ` EndG 0
`;Q`

.Qn` /D dimQ` End�0
`
.Qn` /:

Since the index of � 0
`

in G 0
`
.F`/ and the formal character of G 0

`;F`
� GLƒ`˝F` are

uniformly bounded independent of `, it follows by Propositions 3.1(i) and 3.1(iv)
that for `� 0 the image of � 0

`
in GL.ƒ` ˝ F`/ in (19) can be identified with the

semisimple action G0
`
!GL.Fn

`
/ and

dimF` EndG0
`
.Fn` /D dimF` EndG 0

`;F`

.ƒ`˝ F`/

holds. Hence, we deduce (�0) for `� 0.
Now; �`=� 0` is a Zariski-dense subset of the torus G`=Gder

`
, which acts on the

space of � 0
`
-invariants or, equivalently, the space of Gder

`
-invariants, in the adjoint rep-

resentation of GLn;Q` . Thus, any Zariski-dense subset of G`.Q`/ contains an element
� with the property that any vector in the adjoint representation of GLn;Q` which is
fixed by � 0

`
and by � is fixed by �`.

By Theorem 4.1;G` is of bounded index in G`.F`/, so by Proposition 2.22, if
` is sufficiently large, then there exist a maximal torus T ` of G` and an element
N� 2 G` \ T `.F`/ such that N� is not in the kernel of any nontrivial character of T `
acting in the restriction to G` of the adjoint representation of GLn;F` . We want to
apply Proposition 3.3 with � WD �` and 	 WD � 0

`
. The elements � 2 �` which reduce

(mod `) to N� are Zariski-dense in G`.Q`/, so we may choose � to satisfy properties (a)
and (b). By Theorem 4.2(i), the formal characters ofG`!GLn;F` and G`!GLn;Q`
are the same, so in particular, two eigenvalues �1 and �2 of � are equal if �1 � �2 is
not a unit. We can therefore apply the proposition, and (�) follows.
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Without (�), we can prove much less. Nevertheless, we still have the following.

PROPOSITION 4.6
Let ¹�`º` be the system of `-adic representations arising from the i th `-adic cohomol-
ogy of a proper smooth variety X defined over a number field K which is sufficiently
large. Then for sufficiently large `,
(i) the reductive group Gred

`
splits over some finite unramified extension of Q`,

(ii) the reductive group Gred
`

is unramified over every degree 12 totally ramified
extension of Q`.

Recall that, according to standard terminology, a connected reductive group over
a local field which splits over an unramified extension of that field need not be unram-
ified, since it need not have a rational Borel subgroup.

Proof
The first assertion follows immediately by the method of Frobenius tori (see [9], [29],
[37]). The second assertion follows from the first and the last statements in Theo-
rem 1.5.

4.3. Proof of Theorem 1.3(a)

Proof of Theorem 1.3(a)
Let X be an abelian variety defined over a subfield K of C that is finitely generated
over Q. Since the `-adic representation �` arising from H i .XK ;Q`/ is semisimple
by Faltings (see [14]), the algebraic monodromy group G` is reductive.

We first treat the case i D 1. By taking a finite extension of K , we may assume
G` is connected for all ` (see, e.g., [5, Section 2.3]). There exists an abelian scheme
f W X ! S defined over some number field whose generic fiber is X ! SpecK .
Let s be a closed point of S , and let R1f�Q` be the lisse sheaf on S . Then by the
proper-smooth base change theorem; �` factors through the `-adic representation

 ` W �
ét
1 .S ; Ns/!GL.R1f�Q`jNs/

for all `. Hence, we may assume that �` (resp:;G`) is the monodromy group
(resp., algebraic monodromy group) of  `. Moreover, the composition  `;s WD

 ` ı .�
ét
1 .s; Ns/! �ét

1 .S ; Ns// is isomorphic to the `-adic representation H 1.XNs;Q`/

of the abelian variety Xs (the fiber over s) defined over the residue field of s (some
number field) for all `. Let �`;s (resp:;G`;s) be the monodromy group (resp., alge-
braic monodromy group) of  `;s . We may identify �`;s (resp:;G`;s) as a subgroup of
�` (resp:;G`).
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Fix a prime p, one can find a closed point s of S such that Gp;s DGp (see [37]).
By the main theorem of [18], we have G`;s D G` for all `. Therefore, it suffices to
deal with the case when K is a number field. Since the condition .�/ holds by the
Tate conjecture for abelian varieties proved by Faltings in the strong form given in
[15, Theorem 4.2], we are done by Theorem 1.2.

Since we have H i .XK ;Q`/ Š
Vi

H 1.XK ;Q`/ as GalK -representations, the
general case follows from the lemma below.

LEMMA 4.7
Let � W G! H be a surjective morphism between connected reductive algebraic
groups defined over Q`, and let � be a compact subgroup of G.Q`/. If �sc is a
hyperspecial maximal compact subgroup of Gsc.Q`/, then �.�/sc is a hyperspecial
maximal compact subgroup of Hsc.Q`/.

Proof
The surjective Q`-morphism � W G! H induces a surjective Q`-morphism �sc W

Gsc! Hsc mapping �sc into �.�/sc. Since both Gsc and Hsc are simply connected,
Hsc can be identified as a direct factor of Gsc and �sc can be identified as the pro-
jection to the factor. It follows that �sc.�sc/ is also a hyperspecial maximal compact
subgroup of Hsc.Q`/. Since �sc.�sc/� �.�/sc holds, the compact subgroup �.�/sc

is equal to �sc.�sc/ and we are done.

4.4. Proof of Theorem 1.3(b)

Proof of Theorem 1.3(b)
Let X be a hyper-Kähler variety defined over a subfield K of C that is finitely gen-
erated over Q, and let �` the `-adic representation arising from H 2.XK ;Q`/. If the
dimension n of the representation is less than 4, then Gsc is trivial or of type A for all
`. Hence, Theorem 1.3(b) follows by [22, Theorem 15].

Suppose that n� 4, and write XC WDX �K C. By the Kuga–Satake construction,
there are a complex abelian variety AC and a surjective morphism

H 1.AC;Q/˝H
1.AC;Q/!H 2.XC;Q/ (21)

of pure Hodge structures, that is, there is a Hodge cycle of

H 1.AC;Q/
�˝H 1.AC;Q/

�˝H 2.XC;Q/

giving the correspondence (21). Assume that AC has a model AL defined over a sub-
field L of C; that is finitely generated over K . Since the Hodge cycle on the product
XC �AC corresponding to (21) is motivated (see [1, Corollary 1.5.3]) and motivated
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cycles are absolute Hodge (see [2, Proposition 2.5.1]) in the sense of Deligne (see
[13, 2.10]), we obtain for each ` a surjective morphism

H 1.AL;Q`/˝H
1.AL;Q`/!H 2.XL;Q`/

of GalL-representations (after replacing L by a finite extension if necessary; [13,
Proposition 2.9(b)]). SinceAL is an abelian variety defined over a subfieldL of C that
is finitely generated over Q, the assertion of Theorem 1.3 holds forXL WDX �K L by
Theorem 1.3(a) and Lemma 4.7. By induction, it suffices to show that Theorem 1.3
for X=K also holds when L is a finite extension of K or LDK.t/, where t is tran-
scendental over K . The former case is obvious, and the latter case can be done by the
fact that �ét

1 .SpecKŒt�/ is trivial.
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