MAXIMALITY OF GALOIS ACTIONS FOR
ABELIAN AND HYPER-KAHLER VARIETIES
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Abstract

Let {pg}¢ be the system of L-adic representations arising from the i th £-adic cohomol-
0gy of a proper smooth variety X defined over a number field K. Let Ty and Gy be,
respectively, the image and the algebraic monodromy group of py. We prove that the
reductive quotient of Gy is unramified over every degree 12 totally ramified extension
of Qq for all sufficiently large L. We give a necessary and sufficient condition (x) on
{p¢}e such that, for all sufficiently large {, the subgroup Ty is in some sense maximal
compact in G¢(Qy). This is used to deduce Galois maximality results for L-adic
representations arising from abelian varieties (for all i ) and hyper-Kdhler varieties
(i =2) defined over finitely generated fields over Q.

1. Introduction

1.1. Galois maximality conjecture

The starting point of this article is the well-known theorem of Serre [33, Théoreme 2]
asserting that, for every elliptic curve E defined over a number field K with
Endgx(E) = Z, the {-adic Galois representation Galg — GL»(Z¢), given by the
Galois action on the ¢-adic Tate module T;(FE), is surjective for all £ sufficiently
large. In his 1984-1985 College de France course [39], Serre extended this result to
abelian varieties X of dimension g with End(X) = Z, when g is odd (or g € {2, 6}).
For £ > 0, the image of Galg in Aut(T¢(X)) is then GSp,,(Z¢). The hypothesis
on g ensures that the only semisimple group admitting an irreducible, minuscule,
symplectic representation of degree 2g is Sp,,, and the only representation of this
form is the standard one. (The relevance of this to abelian varieties is due, to the best
of our knowledge, to Ribet in [32].) When g = 4m, for example, Sp,,,, x SLa x SL,
has an irreducible, minuscule, symplectic representation of degree 2g, namely, the
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external tensor product of the natural representations of the three factors, and a new
idea is needed.

Wintenberger in [44, Théoreme 2] succeeded in proving a general result for
abelian varieties, which can be formulated as follows. Let X be an abelian variety
of dimension g over a number field K. Let I'; be the image of Galg in Aut(7;(X)),
and let Gy be the Zariski closure of I’y in GLag over Q. Let G denote the univer-
sal covering group of the derived group of the identity component G;. Then for all
sufficiently large £, the group I'y contains the image of a hyperspecial maximal com-
pact subgroup of G°(Q¢). A key ingredient in Wintenberger’s argument was Falting’s
proof of Tate’s conjecture for abelian varieties (see [ 14, Satz 4]), which guarantees the
existence of certain algebraic cycles predicted by Tate’s general conjecture.

Our goal in the following is to show that it is feasible to prove theorems of this
type with less powerful information from arithmetic geometry: instead of assuming
that certain algebraic cycles exist, it is enough to assume equality between certain
dimensions of £-adic and (mod £) Tate cycles or to deduce new cases from known
cases by establishing suitable Tate cycles. This not only gives a new proof of Win-
tenberger’s theorem for abelian varieties (where we know the needed algebraic cycles
exist, as graphs of endomorphisms), but it gives new Galois maximality results (e.g.,
for hyper-Kéhler varieties), where we do not know it. Beyond these special cases, it
offers a general approach to proving the maximality of Galois images without first
proving a version of the Tate conjecture or the Mumford—-Tate conjecture. The price
for doing this is harder work on the group theory side.

Let X be a proper smooth variety X defined over a finitely generated subfield
K c C. Let K denote the algebraic closure of K in C, and let X% := X xg K.
For a fixed nonnegative integer i and a varying rational prime ¢, each {-adic étale
cohomology group H i(Xf, Qy) is a Qg-vector space with a continuous Galg :=
Gal(K /K)-action. Let n be the common dimension of H i(Xf, Q) for all £. We
obtain a system of £-adic representations

{pg:GalKeGLn(Qg)}é, (1

which in the case that K is a number field is (by the main theorem of Deligne from
[12]) a strictly compatible system in the sense of Serre from [36, Chapter 1]. The
image Iy := py(Galg) is called the monodromy group of py; it is a compact £-adic
Lie subgroup of GL, (Qy).

The algebraic monodromy group of pg, denoted by Gy, is defined to be the Zariski
closure of I'y in GL, g,. There exists a finite extension L /K such that py(Galy) C
Gz (Qq) forall £ (see [37, pp. 6, 171, [39, Section 2.2.3]). When X/ K is projective, the
conjectural theory of motives, together with the celebrated conjectures of Hodge, of
Tate, and of Mumford-Tate, predicts the existence of a common connected reductive
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Q-form Ggq of Gy for all £ (see [35, Section 3]). Then Serre’s conjectures on maximal
motives in [35, Conjectures 11.4, 11.8] imply that, if § denotes any extension of Gg to
a group scheme over Z[1/N] for some nonzero integer N, then the compact subgroup
p¢(Galy) is in a suitable sense maximal in §(Z,) if £ is sufficiently large.

Denote I’y N G (Qg) by '}, denote the derived group of G| by G%e', denote the
intersection 'y N G%er(Qg) by I' 2‘”, denote the quotient of G by its radical by Gy,
and denote the image of I'; under the quotient map Gj(Q¢) — G*(Q¢) by I'}*. Since
G}’ is connected semisimple, it has a universal covering group, which we denote
G}; we write I';° for the preimage of I';® under the map Gy (Q¢) — G (Qy). The
following statement, due to the second author, is a weak version of Serre’s maximality
conjecture with the feature that it can be formulated without assuming the Mumford—
Tate conjecture. The connections between these conjectures are explored further in
[23].

CONIJECTURE 1.1 (see [26])

Let {pg}¢ be the system of L-adic representations arising from the i th £-adic cohomol-
ogy of a proper smooth variety X | K. Then the {-adic Lie group )% is a hyperspecial
maximal compact subgroup of Gif(Qy) for all sufficiently large .

It is proved in [26, Theorem 3.17] that the assertion on I')* holds for a density 1
subset of primes £. These primes lie in an infinite union of sets defined by Chebotarev-
type conditions, and there seems no hope of showing by this method that this thin
set of possible exceptional primes is in fact finite. In [22, Theorem 1], we proved
Conjecture 1.1 for “type A” Galois representations. What is special about type A is
that semisimple groups of this type contain no proper semisimple subgroups of equal
rank. For instance, a new idea would be needed to rule out possibilities like

I3 ={y €Sp2,(Ze) | 7 € P2y (Fe) X SPay_2m (Fe)}.

where y denotes (mod £) reduction. To rule out this kind of behavior, we introduce a
new hypothesis () below.

1.2. Main results of the paper

It is convenient to replace K with a finite extension so that we may assume that Gy
is connected for all £. Denote by pj* the semisimplification of p¢, and denote by G?d
the quotient of G} by its unipotent radical. The group Gzed is also the image of Gj
under the semisimplification of H* (X%, Q¢). The image of H' (X%, Z,) is a lattice
in H' (X%, Q). Let

oy : Galg — GL, (IFy)
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be the semisimple reduction of py, that is, the semisimplification of the representa-
tion obtained by reducing p; modulo £, and denote the image of pj° by Gy. By the
Brauer—Nesbitt theorem, this does not depend on the choice of lattice. For every suf-
ficiently large £, there exists a connected reductive subgroup G, (called the algebraic
envelope' of Gy) of GL, F, such that Gy is a subgroup of G,(IFy) of index bounded
above by a constant independent of £ (see Section 4.1).

The central result of the present article is Theorem 1.2, which gives an arithmetic
condition equivalent to Conjecture 1.1.

THEOREM 1.2

Let {pg}¢ be the system of L-adic representations arising from the ith £-adic coho-
mology of a proper smooth variety X defined over a number field K such that Gy is
connected for all L. Then for sufficiently large £, the subgroup U} is a hyperspecial
maximal compact subgroup in G’ (Qg) (and G?’d is unramified) for all sufficiently
large £ if and only if the commutants of T' = pj’(Galk) and G = pj’(Galg) on the
ambient spaces have the same dimension:

dimg, (Endr(Q})) = dimg, (Endg (F})). (%)

An even-dimensional, projective smooth, simply connected variety Y defined
over K is said to be hyper-Kdhler if the space of holomorphic 2-forms H°(Y(C),
Q%,(C)) is of dimension 1 and is generated by a form that is nondegenerate everywhere
on Y (C). Examples include Hilbert schemes of points on K3 surfaces (including K3
surfaces themselves) and generalized Kummer varieties. By using Theorem 1.2, we
prove the following.

THEOREM 1.3

Let {p¢}¢ be the system of £-adic representations arising from the ith £-adic coho-
mology of a proper smooth variety X defined over a subfield K of C that is finitely
generated over Q. For all sufficiently large €, the group T'}° is a hyperspecial maximal
compact subgroup of G (Qg) and G is reductive and unramified under either of the
following hypotheses:

(a) X is an abelian variety,

(b) X is a hyper-Kdhler variety and i = 2.

Remark 1.4
For the special case that Serre originally considered in [33], additional work is needed
to deduce his result from Theorem 1.3(a). Namely, one must translate between the

'The algebraic envelope is denoted by (-}[ in [20]. Here we follow the notation of [38].
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Galois action on the Tate module and the dual action on H !, note that gy = py forall
£ sufficiently large, and check that det py is surjective. Serre also presented his £-adic
result as a consequence of an “adelic openness” result: the image of Galg in GL, (Z)
is open. Theorem 1.3 also has an “adelic” version, which requires some care to state
since we do not know that the groups G, come from a common algebraic group over
Q. (Details are given in [23].)

We have already mentioned that Wintenberger proved Theorem 1.3(a) in the key
case where K is a number field and i = 1. In the case of K3 surfaces, Theorem 1.3(b)
is due to Cadoret and Moonen from [8, Theorem B], conditional on the Mumford—
Tate conjecture.

1.3. Ingredients and structure
The key ingredient in proving Theorem 1.2 is the following purely group-theoretic
result.

THEOREM 1.5

Let G C GL, g, be a connected reductive subgroup, let G C GL, r, be a connected

reductive subgroup with G as derived group and Z as connected center, let T be

a closed subgroup of G(Qg) N GL,(Zy), and let ¢: ' — GL,,(Fy) be a semisimple

continuous representation with G := ¢(I') C G (Fy). Assume that this data satisfies

the following conditions.

(a) The subgroup T is Zariski-dense in G.

(b)  There is an equality of semisimple ranks: rank G%" = rank G,

(c) The derived group G is exponentially generated (see Section 2.1).

(d) For all y € T, the (mod £) reduction of the characteristic polynomial of y is
the characteristic polynomial of ¢(y).

(e) The index [G (Fy) : G] is bounded by k € N.

) The formal character of (Z,IF)) is bounded by N € N, where Z is the con-
nected center of G (see Section 2.0).

(2) Condition (*) holds for T and G, that is,

dimg, (Endr(Q})) = dimg, (Endg (F})).

If £ is sufficiently large in terms of the data in (a)—(g), then the reduction representa-
tion I' — GL,(Z¢) — GL,(IF¢) and ¢ are conjugate, I'*° is a hyperspecial maximal
compact subgroup of G*(Qy), and G is unramified. Hypotheses (a)—(f) of Theo-
rem 1.5 suffice to imply that G splits over some finite unramified extension of Q
and is unramified over every degree 12 totally ramified extension of Qy.
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Once Theorem 1.5 is established, Theorem 1.2 follows by checking that (after
restricting py to some open subgroup Galy, of Galg and semisimplifying) there exist
n,k, N € N such that the conditions (a)—(f) in Theorem 1.5 are verified for the mon-
odromy group I := p¢(Galr), G := p;’(Galr), G := Gy, and G is the algebraic
envelope of p;*(Galy) if £ is sufficiently large. This verification uses the main results
in [20]. Unfortunately, condition (g) is in a different category, and further progress on
Conjecture 1.1 seems to require it.

Theorem 1.3(a) is a consequence of Theorem 1.2, a (mod £) version of the Tate
conjecture for abelian varieties for £ > 0 proved by Faltings in [15, Theorem 4.2]
for the condition (*) in Theorem 1.2, and an {-independence result of algebraic
monodromy groups under specialization (see [18, Corollary 2.7]). Theorem 1.3(b) is
mainly a consequence of Theorem 1.3(a), the Kuga—Satake construction, and André’s
results on motivated cycles from [1] and [2]. In fact, we will see that the condition
that () holds for all sufficiently large £ is stable under duals, tensor products, and
passage to subrepresentations (see Lemma 4.7 and the proof of Theorem 1.2).

The last claim of Theorem 1.5 is obtained mainly by Bruhat-Tits theory, which
determines the possibilities for a connected semisimple group G/Q; whose group of
Q¢-points contains a maximal compact subgroup whose total £-rank (see Section 2.3)
equals the rank of G.

To indicate the idea behind the rest of Theorem 1.5, we consider a particularly
favorable case. Suppose that n = 2g is even and that I' C GSp,, (Zy) is Zariski-dense
in G = GSp,, ¢, We note that not all maximal compact subgroups of GSp,, (Q¢)
are of this form GSp,,(Z¢); in general, we can achieve an embedding of T" in a
maximal compact subgroup of this kind only after passing to a (totally ramified) finite
extension of QQz, but we assume this for the purpose of illustration. We further assume
that the (mod £) reduction I' — GL,, () is semisimple, so the reduction map can
be identified, after conjugation, with ¢. The goal is to show that the inclusion T :=
[T, '] C Spyg(Zy) is an equality if £ is large enough with respect to n. By reducing
(mod {), we obtain G’ C Sp,, (IFy).

By applying Nori’s theory to G’ (see Section 2.1), we obtain a connected alge-
braic group

i C Sp2g,]F[

such that G’ is of bounded index, independent of ¢, in S(F,;). However, Theo-
rem 1.5(e) implies that G’ is also of bounded index in G%"(F,), and this, given that
both S and G*" are generated by additive algebraic groups (S by construction, G
by Theorem 1.5(c)) and therefore connected and also, in some sense, of bounded
complexity, implies that § = G%" if £ is sufficiently large.
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By Theorem 1.5(b), the ranks of G%" and G%" = Sp,g., coincide, so both must
be g — 1. Since I' is Zariski-dense in GSp,, ¢, Which acts irreducibly on Q?g , the
group G acts irreducibly on ]F?g by (). It follows that G and therefore G%" = S also
act irreducibly.

In the inclusion of connected semisimple groups S C Sp,, ,, both have the same
rank by Theorem 1.5(b) and the same commutant in End,, r,, namely, the scalars.
In characteristic 0, the equality S = Sp,, , would be an immediate consequence
of the Borel-de Siebenthal theorem from [3]; this is known to hold also in positive
characteristic except for characteristic 2 and 3 (see [16]).

Now S = Sp, , is simply connected, so it has no proper subgroups of bounded
index as £ grows without bound. Thus, for sufficiently large £, we obtain

G’ = S(F¢) = Spyg (Fy). (2)

Finally, the result of Serre [38, Lemme 1], subsequently generalized by Vasiu in [43],
asserts that any closed subgroup of Sp,.(Z¢) which maps onto Sp,, (Fy) is all of
Sp,, (Zg). Applying this to T, we get the theorem in this case.

Various group-theoretic technicalities arise in implementing this idea in the gen-
eral case. The condition () gives a loose comparison between the reductive groups
G and G, whereas what is needed for the Borel-de Siebenthal theorem is a compar-
ison between some semisimple groups S and I, where the first comes from G’ via
Nori’s construction and the second comes from G% via Bruhat-Tits theory. Bruhat—
Tits theory works best for simply connected semisimple groups, but it is also useful
for the groups we work with to be subgroups of GL,,. Much of the technical work here
justifies moving back and forth between a reductive group, its derived group, and the
universal cover of the derived group.

Section 2 assembles results from group theory that are needed in Section 3,
including Nori’s theory, our theory of £-dimensions and £-ranks, Bruhat—Tits theory,
and some results about centralizers, formal characters, and regular elements. Section 3
proves the purely group-theoretic Theorem 1.5. Section 4 presents the main results on
the algebraic envelopes G, and proves Theorems 1.2 and 1.3.

Conventions for schemes and groups

The symbol £ always denotes a rational prime. Suppose that R — S is a homomor-

phism of commutative rings with unity, and suppose that X is a scheme over Spec(R)

(or simply R). Denote the fiber product X xg § := X Xgpec(r) Spec(S) also by X.
A semisimple algebraic group will always be assumed to be connected. A simple

algebraic group over F is a semisimple group over F' which has no proper, connected,

closed, normal subgroup defined over F'.
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In order to keep track of the various kinds of groups that arise in this paper, we
use the following system. An algebraic group over a field F is always assumed to
be a smooth affine group variety over F. The bold letters, for example, G, H, S,
denote algebraic groups over fields of characteristic 0 unless otherwise stated. The
underlined letters, for example, G, H, S, always denote algebraic groups over finite
fields. Given a homomorphism f : G — H, we denote by f(G) the image of f
in H endowed with the unique structure of reduced closed subscheme; the induced
morphism G — f(G) is assumed to be smooth in this paper. Group schemes over
rings of dimension 1 (e.g., Z, Z;) are denoted by § and #. Capital Greek letters
denote infinite groups, which are generally £-adic Lie groups, whereas capital Roman
letters denote finite groups.

Simple complex Lie algebras are denoted by g and . We identify such algebras
with their Dynkin diagrams, so instead of saying that SL, (F;) and SU, (FF,) are both
of type A,—1, we may say they are of type g = sl,. Let G denote an algebraic group
over a field F of any characteristic, and let I’ C G(F') denote a subgroup. The rank of
G, denoted by rank G, always means the dimension of a maximal torus of G X F.
We denote by

G the derived group of G,
G° the identity component of G,
G* the quotient of G° by its radical,
G*¢ the universal cover of G*,
Grd the quotient of G° by its unipotent radical,
dimG  the dimension of G as an F-variety,
kg the rank of the simple Lie algebra g,
dimg the dimension of g as a C-vector space,
rs the image of I'° := I" N G°(F') under the quotient map G° — G*,
rs the preimage of I'** under the map G*(F) — G*(F),
M, (R) the ring of n X n matrices with entries in a ring R,
GL,(R) the group of units of M, (R).

2. Group-theoretic preliminaries

2.1. Nori’s theory
Let n be a positive integer, and suppose that £ > n. Let G be a subgroup of GL, (Fy).
Nori’s theory from [31] produces a connected Fy-algebraic subgroup S of GL, ,
that approximates G if £ is larger than a constant depending only on .

Let G[€] := {x € G | x* = 1}. The subgroup of G generated by G[{] is denoted
by G* and is normal in G. Define exp and log by
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1 -1 (1—x)
exp(x) := Z m and log(x) :=— Z P
i=0 i=1
Denote by S the (connected) algebraic subgroup of GL, r,, defined over [F¢, gener-
ated by the one-parameter subgroups

1> x' :=exp( - log(x)) 3)

for all x € G[{]. The F¢-subgroup S is called the Nori group of G C GL, (F¢). An
algebraic subgroup of GL, r, is said to be exponentially generated if it is generated
by the one-parameter subgroups x! in (3) for some set of unipotent elements x €
GL,, (Fy). Since S is exponentially generated, S is an extension of a semisimple group
by a unipotent group (see [31, Section 3]). If y € M,,(IF;) commutes with x, then it
also commutes with log x and therefore with the algebraic group x’. Thus,

Z+(Mn(F)) = Zs@y) (Mn(Fo)) = Zgg,y (Mn () N My (Fy). 4)

The following theorem approximates G* by S (IFy).

THEOREM 2.1

There is a constant Cy(n) depending only on n such that if £ > C1(n) and G is a

subgroup of GL,,(IFy), then the following assertions hold.

(1) If S is the Nori group of G, then Gt = S(IFy)™.

(i)  If S is a Nori group, the quotient S(Fy)/S(F¢)t is a commutative group of
order at most 2"~ 1.

(i)  If G C GL, F, is exponentially generated, then the Nori group of G = G (Fy)

is G.
Proof
This is due to Nori: parts (i) and (iii) come from [3 1, Theorem B] and part (ii) comes
from [31, Remark 3.6]. O

A theorem of Jordan [25, p. 91] says that every finite subgroup G of GL,(C) has
an abelian subgroup Z such that the index [G : Z] is bounded by a constant depend-
ing only on n. The following theorem is a variant of Jordan’s theorem in positive
characteristic.

THEOREM 2.2 ([31, Theorem C])
Let G be a subgroup of GL,, (F), where F is a finite field of characteristic £ > n. Then

G has a commutative subgroup Z of prime to £ order such that Z - G is normal in
G and
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[G:Z-GT]<Can),

where Co(n) is a constant depending only on n (and not on F, £, G).

Note that the statement of [31, Theorem C] does not explicitly assert that the
order of Z is prime to £, but that fact is stated in the Introduction to Nori’s article
and it is immediate from the construction of Z (see [31, p. 270]). Nori’s theory does
a good job of algebraically approximating the “semisimple” and “unipotent” parts of
a finite subgroup of GL, (IF¢), but not the toric part; in general, there is no reason to
expect, for large £, that Z will be well approximated by the Fy-points of any torus in
GLj r,. For Theorem 1.5, we hypothesize that it can be well approximated, moreover,
by a torus whose complexity is bounded in a sense to be made precise in Section 2.6.
For images of (mod £) Galois representations arising from cohomology of a given
projective nonsingular variety, we will see that this additional hypothesis holds.

We have the following result due to Serre for S if G acts semisimply on the
ambient space.

PROPOSITION 2.3 ([20, Proposition 2.1.2])

Suppose that G acts semisimply on F;. There is a constant C3(n) depending only on
n such that if £ > C3(n), then the following assertions hold.

(1) The Nori group S is a semisimple Fg-subgroup of GL, ,.

(i) The representation S — GLj, r, is semisimple.

2.2. Galois cohomology
We begin with an estimate in Galois cohomology.

PROPOSITION 2.4

For k € N there exists a constant C4(k) depending only on k such that, if F is a finite
extension of Qg with £ > k and C is a finite commutative group scheme over F with
|C(F)| <k, then

|H'(F.C(F))| < C4(k).

Proof
Consider the inflation-restriction sequence

1 — H'(Gal(L/F),C(F)) —» H'(F,C(F)) - H'(L,C(F))

where Galy, acts trivially on C(F) and [L : F] < k!. Since the size of H'(Gal(L/F),
C(F)) is bounded above by some constant depending only on k, it suffices to bound



MAXIMALITY OF GALOIS ACTIONS 1173

H'(L,C(F)). Let S be the set of abelian extensions of L of degree bounded above
by k. For every element ¢ of

H'(L,C(F)) =~ Hom(Gal, C(F)) =~ Hom(Gal}, C(F)),
ker ¢ corresponds to an element of S. Since |C(F)| < k, we have
|Hom(Galy, C(F))| < |S]-k!.

Let IF; be the residue field of L. By local class field theory, S corresponds to the set
of open subgroups U of

L* = 0] xZ=pro-t xFy xZ

such that [L* : U] < k. Hence, the possibilities of U are bounded above by some
constant depending only on k if £ > k. O

COROLLARY 2.5

Let F be a finite extension of Qg, and let a : G — H be a central isogeny of degree at
most k of connected reductive groups over F. If I is a subgroup of H(F), then the
quotient

I'/a(eH(T) NG(F))

is an abelian group with size bounded above by C4(k) if £ > k.

Proof
Consider the long exact sequence in Galois cohomology

1 - C(F) = G(F) > H(F) » H'(F,C(F)) - -,

where C := kera. The claim is an immediate consequence of Proposition 2.4. O

PROPOSITION 2.6

Let G be a simply connected semisimple group that is an inner twist of a split group
over a finite extension F of Qq, and let d denote the order of the center of G(F). For
every finite extension F' of F of degree divisible by d, the group G splits over F’.

Proof

Let Gg be the split form of G, and let Cy denote the center of Gy. Now G is the twist
of Gg by aclass in H'(F,Go(F)/Co(F)). The nonabelian cohomology sequence of
the central extension
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1 = Co(F) = Go(F) = Go(F)/Co(F) — 1
gives an exact sequence
H'(F,Go(F)) — H'(F,Go(F)/Co(F)) — H?*(F,Co(F)).

Thus, since H'(F,Go(F)) = 0 by [4, Théoreme 4.7], it suffices to prove that d divid-
ing [F': F] implies that

H?*(F,Co(F)) — H?*(F',Co(F))

is the zero map. As Gy is split, Cy is a product of groups of the form p,, where n
divides d. Thus, it suffices to prove that every class in Br(F'), lies in ker(Br(F) —
Br(F’)) for every extension F'/F such that d divides [F’: F]. This follows from
the fact (see [34, Section XIII, Proposition 7]) that, at the level of invariants, the map
Br(F) — Br(F’) is just multiplication by [F' : F]. O

2.3. {-Dimension and {-ranks

In this section, we review the definitions of the £-dimension and the £-ranks (i.e., the
total £-ranks and the h-type £-rank for varying simple Lie type §) of finite groups and
profinite groups with open prosolvable subgroups (see [20], [22]) and state the results
relating the dimension and the ranks of an algebraic group G /F, to, respectively, the
{-dimension and the {-ranks of G (F,) (see [22]).

2.3.1

Let G be a finite simple group of Lie type in characteristic £ > 5. The condition on
£ rules out the possibility of Suzuki or Ree groups, so there exists a (unique) adjoint
simple group G /F, s so that

G =[GFyr).GFrr)]|=im(G*Fr) — G(Fyr)).
We define the £-dimension of G to be
dimy G := f -dimG.

Let g denote the unique simple complex Lie algebra whose root system is a factor
of the root system of Gz ,- If b is a simple complex Lie algebra, the h-type £-rank of
G is

-rank G ifh =g,
rk? G:= f & ih g
0 otherwise.

For example, G = PSL,,(IF, s ) (resp., PSU, (IF,r)) has f(n?—1) as the £-dimension
and f(n —1) as A,—;-type £-rank.
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For simple groups which are not of Lie type in characteristic £ (including simple
groups of order less than £ and abelian simple groups like Z/{Z), we define the £-
dimension and h-type £-rank to be 0. We extend the definitions to arbitrary finite
groups G by defining the £-dimension (resp., h-type £-rank) to be the sum of the
£-dimensions (resp., h-type £-ranks) of its composition factors. We define the total
£-rank of G to be

kg G 1= Zrkh,
b

where the sum is taken over all simple complex Lie algebras.

This makes it clear that dimy, rk?, and rk, are additive on short exact sequences
of groups. In particular, the £-dimension and the total £-rank of every solvable finite
group are 0, and neither passing to a central extension nor to the derived group affects
the £-dimension or any £-rank. For instance the £-dimension and £-rank of GL, (F, 1),
PGL,(F,r), and PSL, (IF,s) are all the same.

Our basic results on dimy, rk?, and rky of finite groups are the following.

LEMMA 2.7
For k € N there exists a constant Cs(k) such that, if £ > Cs5(k) and H is a subgroup
of G of index at most k, then the £-dimension and L-ranks of G and H are the same.

Proof

At the cost of replacing k by k!, we may assume that H is normal in G. If £ is large
enough, then the £-dimension and £-ranks of G/H are 0, and the lemma follows by
additivity. O

PROPOSITION 2.8

Let G be a subgroup of GL,(Fy), and let S be the Nori group of G. There exists a
constant Cg(n) depending only on n such that if £ > Ceg(n), then the {-dimension and
the £-rank of G and S(Fy) are identical.

Proof
The assertion follows directly from Theorems 2.1 and 2.2 and Lemma 2.7. O

PROPOSITION 2.9 ([22, Proposition 4]%)
Let G be a connected algebraic group over s with £ > 5. The composition factors
of G(F,r) are cyclic groups and finite simple groups of Lie type in characteristic

2The rank of an algebraic group G/ F in [22] is defined to be the usual rank of G* X F (see [22, Section 2]).
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L. Moreover, let my be the number of factors of Q%Cg of type g. Then the following
equations hold:

i) rkj(G(Fyr)) =mgf -tkg,

(i)  tke(G(Fyr)) = f -rank G*,

(i) dim(G(F,r)) = f Y 4(mg-dimg) = f - dim G*.

232

Let F be a finite extension of Qy with the ring of integers Of and the residue field
F,. The definitions above are extended to certain infinite profinite groups, including
compact subgroups of GL,, (F'), as follows. If T is a finitely generated profinite group
which contains an open prosolvable subgroup, then we define

dimg T :=dimg(T/A),  1kj [ :=1k)([/A),  and 1k T :=rke(T/A)

for any normal, pro-£, open subgroup A of I'. The £-dimension and £-rank of every
pro-£ group is 0. (So, in particular, the £-dimension of an £-adic Lie group can be
strictly smaller than its dimension in the sense of £-adic manifolds.) By additivity,

dim; T =dim;G, tk)I=rk)G, and 1k, =1kG,

where G denotes the image in GL, (F;) under the reduction of I" with respect to an
OF -lattice in F" stabilized by I'. If T is a compact subgroup of GL,(F) and A is a
closed normal subgroup, then

dimg I" = dimg A + dimg(I'/A),
k) T = k) A + 1k} (T/A),
and

rky T =1k¢ A + ko (T/A).

LEMMA 2.10
Let ' C I1 be compact subgroups of GL, (Qy) (resp., GL,(IFy)). There exists a con-
stant C7(n) depending only on n such that if £ > C7(n), then

rk, I' <rky IT,
dim; I' < dimy IT.
Proof

Fix a Il-stable lattice A in Qj. By the fact that the £-ranks of prosolvable groups
are 0, it suffices to prove the same inequality for the finite groups G € P € GL, (Fy)
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obtained by reducing modulo A. The Nori group of G is generated by a subset of
the collection of unipotent groups generating the Nori group of P and is therefore
a closed subgroup of that algebraic group. Both the dimension and semisimple rank
of a subgroup of any algebraic group are less than or equal to those of the ambient
group, so the lemma follows from Propositions 2.8 and 2.9. ([

2.4. Bruhat-Tits theory
We briefly recall some basic facts from Bruhat-Tits theory, mainly from [42]. The
main goal of this section is Theorem 2.11.

24.1

Let F be a finite extension of (Q; with residue field F,, and let G be a connected,
semisimple algebraic group defined over F. The Bruhat-Tits building B(G, F) is a
polysimplicial complex (see [42, Section 2.2.1]), endowed with a G(F')-action that
is linear on each facet. If F’ is a finite extension of F, then there is a corresponding
continuous injection of buildings

trr.F: B(G,F)— B(G, F),

which is equivariant with respect to G(F) C G(F’) and maps vertices of B(G, F) to
vertices of B(G, F').If F C F’ C F" are finite extensions of fields, then

LF7" F’OlF' F =LlFV F.

For every point x € B(G, F), the stabilizer G(F)* is a compact subgroup of
G(F). There exist a smooth affine group scheme &, over the ring of integers Of of
F and an isomorphism i from the generic fiber of g, to G such that i (5 (OFf)) =
G(F)* and if F’ is a finite unramified extension of F, then (see [42, Section 3.4.1])

i(6:(0F1)) = G(F')' ¥ .+,

If the special fiber Gy, of Gy is reductive, we say that x is hyperspecial and G(F)*
is a hyperspecial maximal compact subgroup (or simply hyperspecial) of G(F) (see
[42, Section 3.8.1]).

Every maximal compact subgroup of G(F) is the stabilizer G(F)* of a point
x € B(G, F) by [42, Section 3.2]. We may always take x to be the centroid of some
facet. Moreover, if G is in addition simply connected, then x is a vertex (see [42,
Section 3.2]) and the special fiber gy f, is connected (see [42, Section 3.5.2]).

242
Let F™ be the maximal unramified extension of F in F. The group G determines
a map of Gal(F™/F)-diagrams: the relative local Dynkin diagram Afp (i.e., the
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local Dynkin diagram of G/ F) with trivial Gal(F™/F)-action, the absolute local
Dynkin diagram Apnw (i.e., the local Dynkin diagram of G/ F™) with an action
of Gal(F™/F), and a Gal(F™/F)-map Apx — Afp (see [42, Section 1.11]). The
Dynkin diagram of 5”% (the reductive quotient of § 7, , see conventions for groups)
can be constructed by deletlng from Apnw all the vertlces (together with all the edges
connected to them) mapping to the vertices in A associated to x. Moreover, if the
minimal facet containing x is a chamber (e.g., when G/ F is anisotropic, in which
case A is empty), then ﬁ;f%q is a torus (see [42, Section 3.5.2]).

A semisimple group G over a local field F' is unramified if G has a Borel sub-
group over F' and G splits over an unramified extension of F. The group G is unram-
ified if and only if B(G, F') has a hyperspecial point (see [42, Section 1.10.2] for the
“only if”” part and [10, Corollary 5.2.14] for the “if” part). And the latter condition
is equivalent to the local Dynkin diagram A r having a hyperspecial vertex (see [42,
Sections 1.9, 1.10]).

2.4.3
The main theorem of this section is as follows.

THEOREM 2.11

Let F be a finite extension of Qg with residue degree [ = [Fy : Fy], and let £ > 5.

Let G be a semisimple group of rank r over F, and let T1 be a maximal compact

subgroup of G(F). Then the following assertions hold.

(i) The total L-rank of T1 is at most fr.

(i)  Ifrkg I1 = fr, then G splits over a finite unramified extension of F.

(iii) If tke I = fr, then G is unramified over every degree 12 totally ramified
extension F'/F.

(iv)  Iftkg I = f'r, then there exist a totally ramified extension F'/F and a hyper-
special maximal compact subgroup Q2 C G(F’) such that T1 C .

Proof

Since IT*¢ is maximal compact in G*(F) and the total £-ranks of IT and I1% are
equal, we may assume that G is simply connected. It therefore factors as a product
of groups G; which are simply connected and simple. Let x denote a vertex of the
building B(G, F) stabilized by I1, and let &, denote the smooth affine group scheme
over Of in Section 2.4.1. The building of G is the product of the buildings of the
G;’s (see [42, Section 2.1]), so the vertex x = (x1,...,Xx), and

9 = H(ﬁi)x,..

As rank is additive in products, it suffices to prove the theorem in the simple case.
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Thus, there exist a finite extension F’/F and an absolutely simple group G’/ F’
such that G = Resg//r G'. Then II is a maximal compact subgroup of G'(F') =
G(F). Denote the rank of G’ by r/, the order of the residue field of F’ by £/, and
the ramification degree of F’/F by e. Since we have

r=[F" FIr' =e(f'/f)r.

the inequality rky IT < f’r’ implies that rky IT < fr, with strict inequality if e > 1.
Let F'/F be the totally ramified extension described in (iii). If ¢ = 1, then it follows
that

. F’/F is unramified,

. the composition F’F" is totally ramified over F’ of degree 12, and

® Gr = (ResF//p G/) XF Ft= RCSF/Ft/Fl(G/ XF’ F,Ft).

Hence, if G’ splits over an unramified extension F” of F’, then G (resp., Grt) also
splits over F” (resp., F” F'), which is unramified over F (resp., F'). If G’ is quasisplit
over F'F", then it has a Borel subgroup B’ defined over F’F", and the restriction of
scalars Res i/ pe B is a Borel subgroup of G g«. Thus, if (i)—(iii) hold for (G, F’),
they hold for (G, F), and without loss of generality, we may assume that G is abso-
lutely simple.

As the kernel of §,(OFf) — §x(FF,) is pro-£, the total £-ranks of IT and 9, (IF,)
are equal. Since G is simply connected, §x (IF,) is the group of IF,-points of an alge-
braic group which is the extension of the reductive group ﬁ;‘f%q by a unipotent group.
Thus, rk¢ (§x (Fg)) is f times rank ﬁj}q, the semisimple rank of 5;8,%,, . We claim that
this is less than or equal to fr, or equivalently,

rank 9% <, &)

with equality only if G splits over an unramified extension and has a Borel subgroup
over F'in (iii).

Since rank ﬁ;e,%q and the relative rank of G g (the rank of a maximal F™-split
torus of Ggw) are equal (see [42, Section 3.5]), the inequality (5) holds in general,
which is assertion (i), and the equality holds only if G splits over F'™, which is asser-
tion (ii). Let G / F be a split form of G. By definition, the number of vertices in the
absolute local Dynkin diagram A pw of G is 1 greater than the relative rank of G gu.
If the equality in (5) holds, then it follows by (ii) and Section 2.4.2 that
(A)  AFn coincides with the (relative) local Dynkin diagram of G**/ F',

(B)  AFn contains at least one Gal(F""/ F)-stable vertex, and
(@) G is not anisotropic; that is, A # @.

To list the cases when the conditions (A), (B), and (C) hold, we consult the tables
from [42, Sections 4.2, 4.3]; the possible types are all split types in [42, Section 4.2]
together with the following possibilities in [42, Section 4.3]:



1180 HUI and LARSEN
247 2 2 2 2 27 3 4 2 3 2
An7 BS7 C2m7 Dta Dt? DZS’ D47 D2n7 E67 E6’ E7a

wherem > 1,n > 2,5 > 3,and ¢ > 4 are integers. From the tables, every split type has
a hyperspecial vertex in A g and is thus unramified. Similarly, the groups 24/, 2D;,
3Dy, and 2 E¢ also have hyperspecial vertices in A g and are therefore unramified.

The cases 2C,,, and 2E; are inner forms of split groups of types Cy,, and E7,
respectively, by (A) and the fact that C,,, and E7 have no nontrivial outer automor-
phisms. They therefore split over every even-degree extension by Proposition 2.6,
because their F-centers are of order 2.

Similarly, 3 E¢ is an inner form of a split group of type Eg by (A) and the fact that
its index ' E¢% has presuperscript 1 (see [42, Section 4.3]; meaning that the image of
Gal(F"™/F) — Aut(Apw) is of order 1 by [41, Table II: Indices]). Thus, it splits over
every extension whose degree is divisible by 3 by Proposition 2.6 since its F -center
is of order 3.

To see that, in the remaining cases 2By, 2D}, 2D/, * D5, the group G becomes
unramified over every F'in (iii), we examine the explicit descriptions from [42, Sec-
tion 4.4] which classify every central isogeny class of absolutely simple groups over
F . The quaternionic orthogonal groups 2D/ and * D, become ordinary orthogonal
groups after passage to any ramified quadratic extension of F since each such exten-
sion splits the quaternion algebra over F. This leaves the cases of orthogonal groups
of quadratic forms including ? By and 2 D).

By passing to any ramified quadratic extension F’/F, we may assume that the
form Q defining G is ulx% + -4 u,,x,%, where the u;’s are units in Og/. We claim
that there exists a plane hyperbolic with respect to Q contained in the 3-dimensional
locus x4 = x5 = --- = x, = 0. Indeed, the quadratic form u1x? + usx3 + uzx3
defines a form of SO(3); the space (F’)> of triples (x;,x5,x3) contains a hyperbolic
plane if and only if this form is split, that is, if and only if there is a nonzero isotropic
vector. A nontrivial solution of the equation 11 x7 4+ #1,x3 4+ 113x3 = 0 over the residue
field Fy of F’ exists by Chevalley—Warning, which lifts by Hensel’s lemma to a
nonzero isotropic vector in (F”)3. It follows by induction that O defines a quadratic
form of Witt index n’ > n/2 — 1. Hence, Gg/ can only be D/, By, 2D,,/+1 by [42,
Section 4.4] and (A), and it is thus unramified, as its relative local Dynkin diagram
has a hyperspecial vertex (see [42, Section 4.2, 4.3]).

Since £ > 5, every degree 12 totally ramified extension F' of F is tame and thus
contains subextensions of all possible degrees dividing 12. We conclude that G is
unramified over F', and (iii) is obtained.

For assertion (iv), let F* be a field in (iii), and let x' be the centroid of a facet
of B(GFt, F') whose stabilizer is a maximal compact subgroup of G(F") containing
I1. Since GF: is semisimple and unramified by (iii), there exists a totally ramified
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extension F’ of F' such that x" := tp/ pi(x") is a hyperspecial point of B(Gf/, F’)
(see [26, Lemma 2.4]). The stabilizer G(F’)*" is the desired group . O

2.5. Commutants and semisimplicity

Let F/Qq be a finite field extension, let V' be an n-dimensional F-vector space, let
A be an OFp-lattice in V, and let " be a closed subgroup of GL(A) = GL,(OF) C
GL,(F) = GL(V).If F’is a finite extension of F, we can regard I" also as a subgroup
of GL(A') = GL,(OF’), where A’ = A ® 0. Of’. Let  (resp., ') be a uniformizer
of OF (resp., Of/), and define V' :=V @ F'. We have the following results in this
setting.

LEMMA 2.12
The group T acts semisimply on V' if and only if it acts semisimply on V, in which
case we have

dimp/(Endr V/) =dimp (Endr‘ V)

Likewise, I acts semisimply on the reduction L := A/nA if and only if it acts
semisimply on L' := A’ /7’ A’, in which case we have

dimg,. /(r)(Endr L) = dimOF,/(ﬂ/) (Endr L).

Proof
The proof is clear. U

LEMMA 2.13
Let M be a free Of-module of finite rank, and let I' be a subgroup of Auto, M.
Then for all k > 1, the inclusion

MY/ *MT ¢ (M/7*M)T
is either proper for all k > 1 or is an equality for all k > 1.

Proof
We use the following diagram of cohomology sequences:

0 ——= MT o MT —~ (M/aM)T —— H'(T,M)

e e

0 ——= MT o MU~ (M/7*M)T —— H\(T,M).
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The inclusion follows from the second row. As the rightmost vertical arrow is an
isomorphism, M T /7 MT C (M/xM)T implies that MT /n* MT C (M/7*k M)T for
all k > 1. Conversely, if MT /xMT = (M/xM)T, then the cohomology sequence

0— (M/aM)" - M/7*M)T - (M/z* ' Mm)T — ...
implies by induction on k that
M/ M| < |(M/eM)T | = |MT /M T E = | MT kM
for all k > 1, which implies that (M /7% M)T = MT /a*MT. O

LEMMA 2.14

Let V be a finite-dimensional vector space over a field F, and let H C G C GL(V)

be subgroups. Let V** be the semisimplification of G on V. The following assertions

hold.

(1) dimg (Endg V) < dimg (Endg V).

(i)  Ifdimg(Endg V) = dimg (Endg V™), then G acts semisimply on V.

(i)  If H acts semisimply on V and dimg (Endg V) = dimg (Endg V), then G
acts semisimply on V.

(iv)  If H acts semisimply on V and dimg (Endg V) = dimg (Endg V), then H is
absolutely irreducible on every absolutely irreducible subrepresentation W <
Vof G.

Proof

Assertions (i) and (ii) are just [7, Lemma 3.6.1.1]. Let H™® and G™¢ be the images
of H and G, respectively, in GL(V*). Since H acts semisimply on V', the represen-
tations H — GL(V') and H™! — GL(V*) are isomorphic. This implies that

dimp (Endg V) =dimg (Endgy V) = dimg (End grea V)
> dlmF (EndGred VSS).

Then (iii) follows from (i) and (ii).

For assertion (iv), G is semisimple on V' by (iii). The absolute irreducibility of
W and the condition dimr (Endg V') = dimp (Endg V') force 1 = dimg (Endg W) =
dimg (Endg W). We are done since H is semisimple on W O

PROPOSITION 2.15

Let F be a characteristic 0 local field with valuation ring OfF and residue field I .
Let V be a finite-dimensional vector space over F, and let I' be a compact subgroup
of GL(V') which acts semisimply on V. The following assertions are equivalent.
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@) For some T'-stable lattice A of V, we have
dimg (Endr V) = diqu (Endr (A Rop Fq)ss).

(i)  For every I'-subrepresentation W of V and every T'-stable lattice Aw of W,
Aw ®o,. Fy is semisimple, and

dimg (Endr W) = dim]Fq (EndF(AW Rop Fq))

(iii)  The following two assertions hold.
(a) If W is an irreducible T -subrepresentation of V, and Aw is a I"-stable
lattice of W, then Aw ®o,. Fy is semisimple and

dimg (Endr W) = dimp,, (El‘ldp (Aw Qof Fq))

(b) If Wy and W, are nonisomorphic irreducible T"-subrepresentations of
V and A1 and A, are T-stable lattices of W1 and W5, respectively,
then Ay @op Fy and Ax Qo Fy have no common irreducible T"-
subrepresentation.

Proof
Assume assertion (i), let W and W’ be any subrepresentations of V/, and let A and
A’ be stable lattices in W and W', respectively. Applying and Lemma 2.13 to M =
Homo,. (A, A") C Homp (W, W'), we obtain
dimp (Homp (W, W')) = ko, (Homp (A, A"))
§diqu(H0mr(A ®oy Fg, A Q0 Fq)). (6)
Let W, and W, be, respectively, complementary I'-subrepresentations of V' with I'"-

stable lattices A and A,. The Brauer—Nesbitt theorem implies that (A ® o Fy)** is
the semisimplification of (A1 @ A2) ®o Fy. It follows by (i) that

dim]Fq (El’ldr‘([\ Rop ]Fq)ss) > dlm]F (El’ldl" ((Al P A2) Rop Fq))

2 2
ZZ lmﬂ?q HOH]F(A ®OF JquA ®0F q))
i=1j=1

IV

.IIMN

dimp (Homr(A; Qo F.Aj ®0, F))

= dimp (Endr V),
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where equality holds only if (A1 ® Az) Qo Fy = (A1 Qo Fg) B (A2 Qo Fy)
is semisimple (by Lemma 2.14(ii)) and equality holds in (6) for W = W’ = W and
W = W' = W,. This implies (ii).

Assertion (ii) implies (iii.a) trivially and (iii.b) by setting W = W; + W;.

Given assertion (iii), if Wla1 DD Wka kK is a decomposition of V into pairwise
nonisomorphic I'-representations, then choosing for each summand W, a I"-stable
lattice of the form A" and setting A =Y, A{", we see that A ® o, Fy is a direct
sum of isotypic semisimple representations (A; ® o, )%, where the representa-
tions A; ®o,- F; are pairwise without common irreducible factor. Thus, A ® o,. Fy
is semisimple, and

k k
dimp (Endp V) = ) a? dimp (Endr W;) = Y _a? dimg, (Endr (A; ®0, Fy))

i=1 i=1

= dimg, (Endr (A ®0, Fy)). O

COROLLARY 2.16

Let V be a finite-dimensional vector space over Qq, and let I be a compact subgroup
of GL(V') which acts semisimply on V. The following assertions are equivalent.

@) For some T'-stable lattice A of V, we have

dimg, (Endr V) = dimg, (Endr (A ® F()™).

(i)  If F is a finite extension of Qg with residue field I, such that every irreducible
I"-subrepresentation of V ® F is absolutely irreducible, then the following two
assertions hold.

(a) If W is an irreducible T -subrepresentation of V ® F and Aw is a
I'-stable OF -lattice of W, then Aw ® o Fy is absolutely irreducible.

(b)  If Wy and W, are nonisomorphic irreducible T'-subrepresentations of
V®F and Ay and A, are T'-stable OF -lattices of Wi and W5, respec-
tively, then A1 @, Fgq and A, @ F,; are not isomorphic.

Proof

Let F be the finite extension of Qg in assertion (ii). Tensoring by Of over Z;, we
see by Lemma 2.12 that assertion (i) is equivalent to assertion (i) of Proposition 2.15.
Regarding I" as a subgroup of Autr(V ® F), by absolute irreducibility, assertions
(iii.a) and (iii.b) of Proposition 2.15 correspond to assertions (ii.a) and (ii.b), respec-
tively. O

LEMMA 2.17
Let F be a finite totally ramified extension of Qg with ring of integers Of and residue
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field Fy, let A be a finitely generated free Of-module, and let T' C Autg,. A be a
closed subgroup such that the action of T on A @ Fy is semisimple. Then

ker(I' — Autg, (A ® Fy))

is the maximal normal pro-£ subgroup of T'.

Proof
The kernel is a closed subgroup of the pro-£ group

ker(Auto, A — Autg, (A ® Fy))

and, therefore, is again pro-£. So it suffices to prove it is maximal among normal pro-£
subgroups of I'. If not, the image of any normal pro-£ subgroup not contained in the
kernel is a nontrivial normal £-subgroup of the image of I' — Autr, (A ® Fy). How-
ever, a subgroup of GL,, (F¢) which acts semisimply cannot have a nontrivial normal
£-subgroup, since a semisimple representation of an £-group over [Fy is necessarily
trivial. (]

2.6. Formal characters and regular elements

2.6.1

We work over a field F of any characteristic. Suppose at first that F is algebraically
closed. Let T C GL,, be a torus of rank r. By weights of T, we mean the weights of
the ambient representation T — GL,,, that is, the characters y € X *(T) appearing in
the decomposition of the ambient representation into irreducible factors. We define
my to be the multiplicity of the weight x and ), my[x] € Z[X*(T)] to be the formal
character of T (as a subgroup of GL,,).

For N € N, let Ix denote the set of integers in the interval [—N, N]. Given an
isomorphism i : Z" — X *(T), the formal character is bounded by N with respect to
i if my >0 only for y € i(Iy). We say it is bounded by N if this is true for some
choice of i (see [20, Definition 4]). In this case we say that T is an N -bounded torus.

For any connected algebraic subgroup G of GL,, r, we define the formal char-
acter of G as the formal character of any maximal torus T C G, and we say that
G is N-bounded if T is N-bounded; since the maximal tori of G are conjugate to
one another, this does not depend on the choice of T. We say the formal characters
of connected algebraic subgroups G; C GL, F, and G, C GL, r, (where F; and
F, may even have different characteristics) are the same if there exist maximal tori
Ty, T, (of Gy, G, respectively) and an isomorphism X *(T;) — X*(T,) mapping
the formal character of Ty C GL,, F, to that of T, C GLj, f,. This is equivalent to
the existence of g1 € GL,(F1) and g2 € GL,(F2) such that g7'T1g1 C G, 5, and
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g5 Tag> C G, F, are diagonal tori cut out by the same set of characters in X *(Gh)
(see [20, Proposition 2.0.1]). If F is not algebraically closed, the formal character of
G C GL,,F is defined to be the formal character of Gz C GLn,f, and we say the
former is N -bounded if the latter is N -bounded.

2.6.2

Let T C G, be a rank r diagonal torus over a field F. The corresponding map
of character groups f: Z" = X*(G?) — X*(T) determines an ordered n-tuple
(f(e1),..., f(en)) € X*(T)", where the ¢;’s are the standard generators of Z". The
number of occurrences of a character y € X *(T) in this n-tuple equals m, so T deter-
mines the element of X*(T)” up to permutation. As ker f is finitely generated, there
exists M € N such that 7y, Nker f generates ker /. This is equivalent to the fact that
T is the intersection in G}, of ker x over some collection of y € I, C Z" = X*(G},).
There are finitely many homomorphisms Z" — Z" sending each e; to an element of
I}, so there exists a constant Cg(n, N') depending only on n, N € N (independent of
the field F') such that this property holds for all N -bounded subtori of G/}, whenever
M > Cg(n,N).

Let T C GL,,F be a torus, and let ¢t € T(F). There exists g € GL, (F) such
that g~!Tg C G is a diagonal torus. If & € GL, (F) is another element such that
h~'Th C G, then a permutation of coordinates of G, maps g~1Tg to A~ Th. We
say thatt € T(F) is m-regular if whenever y € I); C X*(G7,) is a character such that
g 'tg ekery,then g7 'Tg C ker y. As [ 18 stable under permutation of coordinates,
this does not depend on the choice of g conjugating T into a diagonal torus.

If T is a maximal torus of a connected reductive subgroup G C GL, r and ¢ €
T(F) is 1-regular, then ¢ is a regular semisimple element of G; this follows from the
fact that the adjoint representation of G is a subrepresentation of the restriction to G
of the adjoint representation of GL, r. If € G(F) is regular semisimple, we say
that ¢ is m-regular if # is m-regular with respect to the unique maximal torus T C G
(defined over F') containing ¢. The following lemmas are fundamental.

LEMMA 2.18

Let Fy, F, be fields, and let M > Cg(n, N) be an integer. If T C G"m’Fl and T, C
G”m’ F, are N -bounded diagonal tori of the same rank and t € T1(Fy) is an M -regular
element such that, for all y € 15, N X*(G},), the inclusion T, C ker y implies that

x(t) =1, then T\ and T, are cut out by the same set of characters in I, N X*(G}},).

Proof
The proof is immediate. O
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LEMMA 2.19
Let F be a field, and let M > Cg(n, N) be an integer. If T1 and T, are N -bounded
tori of GLy, F and t € T1(F) NT2(F) is M -regular for Ty, then T, C T».

Proof

Without loss of generality, we may assume that F is algebraically closed, T, C G,
and g7!Tg C G, for some g € GL,(F). As g 'tg and ¢ are both diagonal, g can
be written as zh, where z commutes with ¢ and 4 normalizes G/, in GL,,. Thus, we
may take g = z. Since 1 € z7!T;z C G”, is at least 1-regular, it follows that T; is also
diagonal. Since ¢ is M -regular, every character x € I3, N X *(G},) which annihilates
T, sends ¢ to 1 and is therefore trivial on T;. By the definition of M, we obtain
T; CTs,. ]

2.6.3
Let A be an abelian group, and let B be a subgroup of A. The saturation of B is the
subgroup of elements a@ € A such that ma € B for some nonzero m € Z. If B is equal

to its saturation, then B is said to be saturated. We focus on algebraic groups over
finite fields IFy.

PROPOSITION 2.20
If £ and N are sufficiently large in terms of n, then every exponentially generated
subgroup of GL, r, has N -bounded formal character.

Proof

Let T C G}, be a torus of rank r over an algebraically closed field F with f :
X*(G},) — X*(T). For £ C {1,...,n} of cardinality r, let Ty C G}, be the rank
n —r torus with 1 in the o-coordinate for all o € ¥ with fx : X*(G}) - X*(Tx).
The fiber product over G}, of two subtori is cut out by the sum of the subgroups of
X*(G},) cutting out each of the tori. The closed subscheme C of G, cut out by a sub-
group of X *(G7,) of index D is reduced and satisfies |C(F)| = D if and only if D is
not divisible by the characteristic of F". If T xgn Ty is reduced, then |[T(F) NTx(F)|
and the index

[A"X*(Gp): A" (ker f) A A" (ker f3)]

have the same cardinality. Thus, if B is fixed, T Xgz Ty is reduced for all X, and
IT(F)NTx(F)| < B for all X for which the intersection is finite, then there are only
a finite number of possibilities for the top exterior power A" (ker /) C A" X*(G})
and therefore a finite number of possibilities for (ker /) ® Q as a subspace of
X*(Gh) ® Q =Q". As ker f is saturated, (ker f) ® Q determines ker f as a
subgroup of X *(G?,) and therefore determines the formal character of T.
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By [28, Proposition 3] and the fact that Hilbert schemes are of finite type, the
exponentially generated subgroups of GL,, r, for all sufficiently large £ form a con-
structible family ¥ C GL,, g in the sense of [30]; that is, § is a closed subscheme of
the general linear scheme over a scheme § of finite type over Spec Z and, for every
algebraically closed field F' of characteristic O or sufficiently large positive character-
istic, every exponentially generated subgroup of GL, r is of the form §, for some
xe8(F).

Let 7 denote the closed subscheme of GL, g consisting of diagonal matrices,
and for any subset X C {1,2,...,n}, let T5 denote the closed subscheme of T for
which the o-coordinate is 1 for all o € X. The fiber product § xgL,, ¢ Tz is a group
scheme over & and, therefore, reduced over every point in characteristic O and,
therefore, reduced over every point in sufficiently large finite characteristic (see [17,
Théoreme 9.7.7(iii)]). Moreover, by [17, Corollaire 9.7.9], there is an upper bound
for the cardinality of any finite fiber, and this implies that there are only finitely many
possibilities for the formal character of any fiber of §. U

PROPOSITION 2.21

There exists a constant Co(r,k, N) depending only on r,k, N € N such that, if T is
a rank r torus over Fy with £ > Co(r,k, N) and the Galg,-orbit of y € X*(Zm) is
N -bounded with respect to some isomorphismi: 7 — X *(ZFZ), then

[{r e T(Fe) | x(1) = 1}| <k T(Fy)|. (7)

Proof

Let X be the subgroup of X *(ZE) generated by the Galois orbit O, of y. Then the
number of possibilities for i ~'(X) is bounded by a constant depending only on N
and r. Therefore, there exists a positive integer s, depending only on N and r, such
that, for all £ in the saturation of X, we have s& € X. It follows that if ¢ € ﬂse x keré&,
then ¢ belongs to the subtorus To, of T, cut out by the saturation of X. Since any
element of T (IFy) in ker y is in ker x° for all x° € Oy, it follows that {t € T (Fy) |
x(t) = 1} lies in the union of at most s” translates of a proper Fy-subtorus of 7. A
proper subtorus has at most (£ + 1)"~! F,-points, while |7 (F¢)| > (£ — 1)", and the
proposition follows. ([

COROLLARY 2.22

There exists a constant C1o(e,m,n, N) depending only on € >0 and m,n,N € N
such that if T C GLy f, is an N-bounded torus with £ > Cyo(e,m,n, N), then the
number of elements of T (Fy) which fail to be m-regular is less than €|T (Fy)|.
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Proof
By taking
Cio(e.m,n,N) 201;13;@(& [11n]/€].mN),
this follows immediately. O

PROPOSITION 2.23

There exists a constant C11(€,n, N) depending only on € > 0 and n, N € N such that
if G, and G, are N -bounded connected subgroups of GL, z, with G | reductive,{ >
Ci1(e,n,N), and

|Q1 Fe) N Qz(FZ)| > 6|Q1 (Fe)

3

then G| C G,.

Proof

Let r be the rank of G,, and let M > Cg(n, N) be an integer. By Corollary 2.22,
every maximal torus 7 of G, defined over Fy contains o(({ + 1)") elements which
fail to be M -regular. Each regular semisimple element belongs to a unique 7', so the
number of maximal tori containing a regular semisimple element defined over Fy is
O™"|G,(Fy)]). Thus, the number of regular semisimple elements of G, (IF;) which
are not M -regular is 0(|G, (F¢)|). By Lang—Weil and the fact that the root datum of
the connected reductive G, 7, has finitely many possibilities (depending on 1), the
number of elements of G, (F) which are not regular semisimple is also o(|G ; (F¢)|).
We conclude that if £ is sufficiently large, then more than (1 —€/2)|G, (F,)| elements
x of G,(Fy) are regular semisimple and are M -regular and, therefore, do not lie in
G, (Fy) unless the unique maximal torus of G, containing x is contained in some
maximal torus of G, by Lemma 2.19.

It follows that G ; and G, have at least (¢/3)|G, (FF¢)| elements in common which
are regular semisimple and M -regular for G, if £ is sufficiently large. The group
generated by the unique maximal tori of G, containing these elements is a closed
connected subgroup of G; N G, containing at least (¢/3)|G, (F¢)| regular semisim-
ple elements. However, if it is a proper subgroup of G, its dimension is at most
dim G, — 1, soif £ is sufficiently large, it contains less than (2/£)|G, (F,)| elements.
Thus, G, C G,. O

3. Maximality of compact subgroups

3.1. Theorem 1.5
The main goal of this section is to establish the following theorem.
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THEOREM 1.5

Let G C GL, g, be a connected reductive subgroup, let G C GLy r, be a connected

reductive subgroup with G as derived group and Z as connected center, let T' be

a closed subgroup of G(Qg) N GL, (Zy), and let ¢: T' — GL,(IFy) be a semisimple

continuous representation with G .= ¢(I') C G (Fy). Assume that this data satisfies

the following conditions.

(a) The subgroup T is Zariski-dense in G.

(b)  There is an equality of semisimple ranks: rank G%" = rank G,

() The derived group G is exponentially generated.

(d) For all y € T, the (mod £) reduction of the characteristic polynomial of y is
the characteristic polynomial of ¢ (y).

(e) The index [G(Fy) : G] is bounded by k € N.

®) The formal character of (Z,IF}) is bounded by N € N, where Z is the con-
nected center of G.

(2) Condition (*) holds for I" and G, that is,

dimg, (Endp (QZ)) = dimp, (EndG (]F?)) .

If £ is sufficiently large in terms of the data in (a)—(g), then the reduction representa-
tion I' — GL,,(Z¢) — GL,(Fy) and ¢ are conjugate, I'*® is a hyperspecial maximal
compact subgroup of G*(Qy), and G*" is unramified. Hypotheses (a)—(f) of Theo-
rem 1.5 suffice to imply that G splits over some finite unramified extension of Qq
and is unramified over every degree 12 totally ramified extension of Q.

3.2. The condition (x)

Suppose the conditions (a)—(f) of Theorem 1.5 hold. The goal of this section is reduce
the condition (x) of Theorem 1.5(g) to the semisimple part, that is, the condition (')
in Proposition 3.2.

PROPOSITION 3.1

There exists a constant C12(k,n, N) depending only on k,n, N € N such that, if G C

GL, F, is an N-bounded connected reductive subgroup with £ > Ci2(k,n,N) and

derived group G%" also N -bounded, G is a subgroup of index bounded by k in G (Fy),

and S is the Nori group of G, then the following assertions hold.

(1) The ambient representation G — GL, (IFy) is semisimple.

(i) The ambient representation G — GLj, p, is semisimple.

(iii)  The derived group of G is S.

(iv)  The commutant of G in M,,(F;) consists of the F¢-points of the commutant of
Q in Mn,]Fg-

Parts (i) and (ii) hold without the N -bounded assumption.
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Proof

If £ > k, then G N G%'(IFy) contains G*(Fy)[¢] and therefore GY"(Fy)*. If £ is
sufficiently large in terms of n, then every characteristic £ representation of G (IFy)
is semisimple (see [24]). The restriction of a semisimple representation to a normal
subgroup is always semisimple, so G%"(Fy)* acts semisimply on 7. As G ()t
is normal in G N G%"(F;) and of prime-to-£ index, by [11, Section 10, Exercise 8],
the latter also acts semisimply on /. On the other hand, G N G (IFy) is the kernel of
a homomorphism from G to the group of Fy-points of the torus G /G, It is therefore
anormal subgroup of prime-to-£ index in G, so by applying [11, Section 10, Exercise
8] again, G acts semisimply on I}, proving (i).

Part (ii) is true for any connected reductive algebraic group if £ is large compared
to n (see [27, Theorem 3.5] when § is semisimple and [24] in general).

For part (iii), we note that the formal character of G*" is bounded by hypothesis,
while the formal character of S is bounded by Proposition 2.20. As G* (Fy)t =
S(Fy)™*, this group is of bounded index in both G%'(Fy) and S (F;). By Lemma 2.7
and Proposition 2.9(iii), this implies that

dim(G*") = dimg (G (Fy)) = dimg (S (F) ") = dimy (S(Fy)) = dim S

for sufficiently large £. Thus, Proposition 2.23 gives G% = §.

Let x € M, (IF;) commute with G, and let its centralizer in GL, r, be Z . Then
G C G(Fy) N Z,(Fp). Now, Z, is the complement in a linear subvariety of n x n
matrices of the zero locus of the determinant, so it is irreducible. Moreover, centraliz-
ers form a constructible family, so their formal characters are N -bounded (e.g., by the
proof of Proposition 2.20). Part (iv) follows by applying Proposition 2.23 as G; = G
and G, ranges over all groups Z, .. U

PROPOSITION 3.2

Under the hypotheses of Theorem 1.5, there exists a constant Cy3(k,n, N) depending

onlyonk,n, N € N such that, if { > C13(k,n, N), then the following statements hold.

(1) For any finite extension F of Qg with uniformizer w and residue field F, s and
any Op-lattice A of F" := Q) ®q, F fixed by ', the reduction representation

I' > GL(A) —> GL(A/7A)
is isomorphic to ¢ ® Fy s and thus semisimple.

(i)  The formal characters of G*" and G%* coincide.

(iii)  The commutator subgroup G' acts semisimply on ¥} and
dimg, (Endp/(QZ)) = dimp, (EndG/(IFZ’)), ()

where T is the commutator subgroup of T, that is, the closure of the group
generated by commutators.
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Proof

For assertion (i), the Brauer—Nesbitt theorem and Theorem 1.5(d) imply that the
semisimplification of (I', A/ A) is isomorphic to ¢ @ F, . Lemma 2.13 (fork = 1)
and Lemma 2.14(i) produce the inequalities

dim(Endr (F")) < dim(Endr(A/7A)) < dim(Endg ).

which, by Lemma 2.12 and (%), are actually equalities. Then the I, s -representation
A/mA of T is semisimple by Lemma 2.14(ii).

For parts (ii) and (iii), we first note that, for some N’ depending only on n and
N, the three groups Qder, G, and G are N’-bounded. Indeed, the N’-boundedness
of the first is due to Theorem 1.5(c) and Proposition 2.20; the N’-boundedness of the
second is due to the N’-boundedness of the first and Theorem 1.5(f); and the N’-
boundedness of the third follows since, in characteristic 0, by the Weyl dimension
formula, there are only finitely many possibilities for formal characters of semisimple
groups which admit a faithful n-dimensional representation.

Now for (ii), choose an integer M > Cg(n, N’) (defined in Section 2.6.2). Let
T be a maximal torus of G%'. Then the index [T (Fy) : T (F¢) N G'] is bounded by a
constant depending only on k and n. By Corollary 2.22, if £ is sufficiently large in
terms of n, N’, M, and k, then there exists g € T(IF;) N G’ which is M -regular in
T.Lety e I'" C G*'(Qy) be any lift of g, and let y, € G¥'(Qy) be its semisimple
part. Let T denote a maximal torus of G%" which contains Y. Let Tg. be a maximal
torus of GL,, g, containing T, and let & € GL,, (Qy) be an element such that A~ T A
is diagonal. Thus,

hlyh = diag(A1,..., An), (8)

where the A;’s are the eigenvalues of yg. They are integral over Zg, so they reduce to
Al,..., Ay €Fy, the eigenvalues of g. Define

T,:=h"'Th )

as the diagonal torus, and define T, to be some diagonalization of T'g, so that g €
T (Fy) goes to diag(A;,...,A,). Since T; and T, have the same rank by Theo-
rem 1.5(b), it follows by Lemma 2.18 that they are cut out by the same set of charac-
ters in 7, N X*(G};,), which implies (ii).

To prove (iii), we use Corollary 2.16 to replace (x) and (x') by assertions
2.16(ii.a) and 2.16(ii.b). We fix a finite extension F of Q; over which F” decomposes
as a direct sum of absolutely irreducible representations for I' and I'’. By Zariski
density, any decomposition of F" as a direct sum of irreducible G-representations
gives a decomposition into irreducible I'-representations, and likewise, a decompo-
sition into GY'-irreducibles gives a decomposition into I''-irreducibles. As every
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G-irreducible restricts to a G%'-irreducible, the same is true for I'-irreducibles and
I'’-irreducibles.

By hypothesis, G is of bounded index in G(F¢). Thus,G N G¥'(Fy) is of
bounded index in G%"(Fy), and its inverse image in G*°(IFy) is of bounded index
and therefore equal to G*°(IFy) if £ is sufficiently large. Thus, G’ contains the image
of G**(Fy) — G%*(Fy), which is of bounded index in G (FF). Applying Proposi-
tion 3.1 and Lemma 2.14(iv) to G C G(F;) and G’ C G%*'(F), we conclude that an
F¢-subspace of FZ is invariant and irreducible for G if and only if it is so for G (Fy)
if and only if it is so for G (IFy) if and only if it is so for G’. Hence, we obtain
Corollary 2.16(ii.a) for T".

For Corollary 2.16(ii.b), it suffices to show that if W} 22 W, are irreducible sub-
representations of I'" (equivalently G%) in @Z, then their reductions as irreducible
representations of G’ are nonisomorphic for £ larger than some constant depending
only on k, n, N. Since diag()_tl, el )_L,,) (the reduction of (8)) and the diagonal torus
in (9) are annihilated by the same set of characters in /},, the actions of yg on the
reductions of W) and W, are isomorphic if and only if the actions of T (a maximal
torus of G%") on W; and W, are isomorphic. We are done. O

PROPOSITION 3.3

Let T' C GL, (Qy) be a compact subgroup, let A C Qf be a I'-stable lattice, let A be

a closed normal subgroup of I, and let y € I'. Assume the following conditions hold:

(a) y is a semisimple element of GL,(Qy);

(b) every element in My, (Qq) which commutes with A and with y commutes with
r;

(c) if A1, Ay € Qq are distinct eigenvalues of y, then Ay — A, is an L-adic unit.

Then

dimg, (EndA (Q'Z)) = dimp, (EndA (A® F()“) (10)
implies that

dimg, (Endr (Q})) = dimg, (Endr (A ® F()*). an

Proof
The left-hand side of (11) is the dimension of the centralizer of T" in M, (Qy), which
by (b) is the dimension of the centralizer of y in Enda (Q}). By (a), this is the dimen-
sion of the 1-eigenspace of y acting on Enda (Q}) C M, (Q¢) by conjugation.
Defining M := Enda A, we have M ®z, Q¢ = Enda (Q}). Equation (10) and
Lemma 2.14(ii) imply that A is semisimple on A ® F;. Conditions (a) and (c) imply
that y is semisimple on M ® F;. Hence, the right-hand side of (11) is bounded above
by the F¢-dimension of the 1-eigenspace of y acting on M ® F,. By (c) and the first
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paragraph, this is equal to the left-hand side of (11), which implies that the two are
equal. O

3.3. Proof of Theorem 1.5

Proof of Theorem 1.5
We assume that £ > k, which means that every element of G (IF;) of order £ lies in G.
As G(F)/G*"(F) has prime-to-£ order,

Gl = GE[l] = G (FLl,

so by Theorems 1.5(c) and 2.1(iii), the Nori group of G equals G%'. As G acts
semisimply on F7, its maximal normal £-subgroup is trivial. The composition I" —
GL, (Z¢) — GL, (IFy) is a semisimple representation by Corollary 2.16, so by Theo-
rem 1.5(d) and Brauer—Nesbitt, it is conjugate to ¢.

We now suppose the theorem known in the case in which G and G are semisim-
ple. We defined I'’ to be the topological group generated by commutators in I, but in
fact every element of I' is a finite product of commutators. Indeed, the commutator
morphism G x G — G factors through G* x G*. Now I'* is a compact Zariski-
dense subgroup of the Q;-points of a semisimple algebraic group, so it is open, by a
theorem of Chevalley. As the generalized commutator morphism G* x G* — G is
dominant, the implicit function theorem implies that the set of commutators of ele-
ments of I'** in G%7(Qy) has nonempty interior. It follows that every element in T/
can be written as a finite product of commutators.

If ¢': T/ — G denotes the restriction of ¢ to T, it follows that ¢'(T'’) = G’.
Note that ¢" is semisimple, since G’ is a normal subgroup of G, and the restriction
of a semisimple representation to a normal subgroup is again semisimple. Conditions
1.5(a)-1.5(d) for (G, G¥" T, G’, ¢') are immediate from the same conditions for
(G,G,T,G, ¢), whereas Theorem 1.5(f) is trivial. By Proposition 3.2, Theorem 1.5(g)
for I” and G’ follows from Theorem 1.5(g) for I" and G.

For Theorem 1.5(e), we note that G N G%"(Fy) is of index at most k in G (Fy).
By assuming £ > k, we can ensure that G contains all elements of G (IF)[€], so
G D G¥(Fy)*. The index of G¥(Fy)* in G¥'(Fy) is bounded by 2"~ by Theo-
rem 2.1(ii). Therefore, at the cost of replacing the index k by 2”1, we may assume
that all conditions 1.5(a)—1.5(g) hold for (G, G T/, G’, ¢'), while G¥" and G**
are semisimple.

Applying the theorem in the semisimple case, we conclude that the inverse image
of I' in G*(Qy) is a hyperspecial maximal compact subgroup. The central isogeny
G — G* maps I'’ to (I'**)’, so the inverse image of I'** in G*(Qy), which is com-
pact, contains the inverse image of I'’, which is maximal compact. This implies the
theorem in the reductive case.



MAXIMALITY OF GALOIS ACTIONS 1195

Thus, we may assume without loss of generality that G and G are semisimple.
By definition, I'* is the inverse image of I" in G**(Qy). By Corollary 2.5, the isogeny
G*(Q¢) — G(Qy) has bounded cokernel, so we may replace I" with the image of
' - I" and G with the new ¢(I") at the cost of increasing k by a bounded factor.
This will not affect Theorem 1.5(g); the left-hand side of (x) is unchanged since I
is Zariski-dense in G, and G is connected, while the right-hand side is unchanged by
Proposition 3.1(iv).

Thus, we may assume ['* maps onto I, and for I'-representations, I'*“-invariance
is the same as I'-invariance. By Lemma 2.17, G is the quotient of I' by its maximal
normal pro-£ subgroup. Let

I C G(Qp) 12)

be a maximal compact subgroup containing I'. Then [T C G**(Qy) is a maximal
compact subgroup containing I'*° and fixes some vertex x¢ in the Bruhat-Tits build-
ing B(G*,Qy). The vertex xo corresponds to a group scheme # /Z, with generic
fiber isomorphic to G*. When £ is large enough depending on k, the total £-rank of I"
is equal to rank G* by Theorems 1.5(b) and 1.5(e). Lemma 2.10 and Theorem 2.11(i)
imply that the total £-rank of IT (and hence IT° = #(Zy)) is equal to rank G* if ¢
is large enough depending on 2. Then Theorem 2.11(iv) implies that there exist some
finite totally ramified extension F'/Q and a hyperspecial maximal compact subgroup
Q of G*(F) corresponding to a semisimple group scheme d /OF (Section 2.4.1) such
that

I Cc #(Zy) CcQ2=4(0F) CG*(F).

As J(OF) is compact, it stabilizes some Op-lattice A C F”". Let y: I'** —
GL(A ® Fy) = GL, (F;) denote the composition of the maps

I — JH(Z¢) = J(OF) = GLo, A — GLg, (A ® Fy).

By Brauer—Nesbitt, {* is equivalent to ¢, so by Corollary 2.16, ¥ is equivalent to ¢.
As I'* and J (OF) are both Zariski-dense in G,

dimp (Endr« (A ® o, F)) =dimp (Endyo,)(A ® F))
< dimg, (Endg(o,) (A ® Fy)). (13)
By Theorem 1.5(g) and I'** C J(OF),
dimg (Endr«(A ® o, F)) = dimg, (Endrs«(A ® Fy))
> dimg, (Endg(o,) (A ® Fy)). (14)
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It follows that equality holds in both (13) and (14). By Lemma 2.14(iii), J (OF) acts
semisimply on A ® [Fy = ).

By Lemma 2.17, the image I of 4(OF) in GL(A ® [Fy) is the quotient of  (OF)
by its maximal normal pro-£ subgroup, which is the quotient of J (IF;) by a subgroup
Z of its center. So [ is a subgroup of bounded index of the F¢-points of the semisim-
ple group dr,/Z (isogenous to Jr,). As the image of v is contained in the image of
J(OF) in GL(A ® Fy), we obtain an embedding of G in [, with

dimg, (Endg (A ® Fy)) = dimg, (End; (A ® Fy)) = dimg, (Endr«(Q})).

The image H of #(Z;) in I satisfies G C H C 1.

Let H and I denote the Nori groups of H and I, respectively, so G C H C I.
If £ is sufficiently large, / is semisimple by Proposition 2.3(i) and of rank equal to
rky I = rank(dfp/Z) = rankd g by Lemma 2.7 and Propositions 2.8 and 2.9. By
Proposition 3.1(iv), the commutants of G and [/ in End(A ® Fy) have the same dimen-
sion; they must therefore be the same. By hypothesis, G is semisimple, and we have
equality of ranks:

rank G = rank G =rankJ g =rank /.

By the Borel-de Siebenthal theorem [16, Theorem 0.1], G = I, and it follows that
H = G is likewise semisimple. We have

GEF)TcGcHCICGFy).

As H acts semisimply, since the image of ker(# (Zy) — # (Fy)) in H is a nor-
mal £-subgroup, it must be trivial. Thus, H is a quotient of J# (Fy). If the vertex
X € B(G*,Qy) associated to H is not hyperspecial, then the unipotent radical of
Hr, is nontrivial. Since # is flat, the dimension of H#p, equals the dimension of G,
which is also the dimension of dr, and therefore the dimension of G = H = I. By
Proposition 2.9(iii), we obtain

dimg H < dimg(H (Fy)) = dim Hg, < dim Hp, = dim G = dim, G,

which is impossible by Lemma 2.10 since G C H C GL,(Fy). Thus, #(Z;) is a
hyperspecial maximal compact subgroup, which means that # (F;) is the group of
F¢-points of a simply connected semisimple algebraic group over Fy, and H is a
quotient of # (IFy) by a subgroup of its center. As G is of bounded index in H, the
compact subgroup I'*® of J(Z¢) maps onto a bounded index subgroup of J# (IF,),
which has to be J# (IFy) itself when £ is sufficiently large. By [43, Theorem 1.3], this
implies that I'* = #(Z;), as claimed.
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Condition () is used only to prove that the commutants of G and I have
the same dimension. In any case, we have rank G = rank / = rank G and, there-
fore, tky(G(F;)) = rankG. As G is of bounded index in G(Fy), if £ is suffi-
ciently large,tky G = 1ky(G(F¢)), and since G is a quotient of I', we obtain
rank G = rky I' < rky IT by the construction (12) and Lemma 2.10. Theorems 2.11(i)-
2.11(iii) now imply the remaining claims since IT is maximal compact in G(Q,). O

4. Maximality of Galois actions

4.1. Algebraic envelopes

Let {p¢}¢ be the system of £-adic representations in Theorem 1.2. The monodromy
group (resp., algebraic monodromy group) of py is denoted by I'; (resp., Gy). The
quotient of Gy by its unipotent radical is denoted by Gzed. If X is a projective nonsin-
gular variety over K, then for each ¢, the image of H' (X%, Z¢) in H' (X%, Q) = Qj
is a Zg-lattice Ay stabilized by pg, and

7 : Galg — GL, (Fy) (15)

denotes the semisimplification of the (mod £) reduction of p; : Galx — GL,(Z;) (the
action of Galg on this lattice). Denote by G the image py*(Galk) for all £. In [20],
we construct the algebraic envelope G, (a connected reductive subgroup of GL, r,)
of Gy to study the £-independence of the total £-rank and the g-type £-rank of G, for
all sufficiently large £. The idea of constructing such a G, is due to Serre in [38], who
considered the Galois action on the £-torsion points of abelian varieties without com-
plex multiplication (see also [5]). The algebraic envelope G, can be written as S, Z,,
where S, := Q;‘er is also the Nori group of Gy C GL,(Fy) (by [20, Section 2.5]) and
Z, is the identity component of the center of G,. Theorems 4.1 and 4.2 below present
the key properties of the algebraic envelopes G,.

THEOREM 4.1 ([20, Theorem 2.0.5, Proof of Theorem 2.0.5(iii)])

After replacing K by a finite normal field extension L if necessary, for all sufficiently

large L, the algebraic envelope G, € GL, r, has the following properties:

(1) Gy is a subgroup of G ,(Fy) whose index is bounded uniformly independent of
(;

(i) Gy acts semisimply on the ambient space;

(iii)  the representations {S;, — GLur,}¢>0 and {Z, — GLyF,}e>0 have
bounded formal characters, and in particular,{G, — GLyF,}e>0 has
bounded formal characters.
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THEOREM 4.2 ([20, Theorem A, Theorem 3.1.1])

Let Gy be the algebraic monodromy group of py. After replacing K by a finite normal

field extension L if necessary, the following statements hold for all sufficiently large £.

(1) The formal character of Sy — GLy r, (resp., Gy — GLj, 5, ) is independent of
€ and is equal to the formal character of (GF*)* — GLy q, (resp.,Gf* —
GL, g, )

(i1) The non-abelian composition factors of Gy and the non-abelian composition
factors of S ,(Fy) are in bijective correspondence. Thus, the composition fac-
tors of Gy are finite simple groups of Lie type in characteristic £ and cyclic
groups.

Note that the implicit constants in Theorems 4.1 and 4.2 depend only on the
system (15) of (mod £) Galois representations.

Remark 4.3
The formal bi-character [21, Definition 2.3] of Gzed — GL, g, is independent of £
(see [19, Theorem 3.19]).

PROPOSITION 4.4

The system of algebraic envelopes {G, C GLy, r,}¢s0 is characterized by the con-
ditions 4.1(i) and 4.1(iii) in the sense that if {H, C GLy,,}¢>0 is another sys-
tem of connected reductive subgroups such that, for £ > 0, Gy is a subgroup of
H ,(Fy) whose index is uniformly bounded and the formal character of H, is uni-
formly bounded, then G, = H , for all sufficiently large £.

Proof
This follows directly from Proposition 2.23. O

THEOREM 4.5
If the algebraic monodromy group Gy is connected for all £, then Gy, C G ,(IFy) for
all sufficiently large L.

Proof
Let L be a finite normal extension of K in Theorem 4.1 such that p;*(Gal.) C G,(IFy)
for £ > 0. Let N, be the normalizer of the Nori group S, in GL, r,. Then G, C
N(Fy).

We claim that Gy = pj’(Galg) normalizes the connected reductive group G,
for £ > 0. By construction (see [20, Proof of Theorem 2.0.5(i) and (ii)]), G, is the
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preimage of a torus /, C GLy, under some morphism’
te: Ny~ Ny/S; <> Gly,,

where W is some [Fy-vector space whose dimension is bounded independent of £.
Since the index [1,(FF¢) : 7¢(p;’(Galy))] and the formal character of 1, C GLy, are
both bounded independent of £ (see [20, Theorem 2.4.2]), the normality of the field
extension L/K and Proposition 2.23 imply that #,(G;) normalizes I, for all suf-
ficiently large £. Hence, the product G¢G, is a subgroup of GL, r, with identity
component G, for £ > 0.

The number of conjugacy classes of elements of the finite group Gal(L/K) is
bounded by m :=[L : K]. Since Gy is connected for all £ and the strictly compatible
system {p¢}¢ is pure of weight i, the method of Frobenius tori of Serre (see, e.g.,
[29], [21, Theorem 2.6, Corollary 2.7]) implies that there is a Dirichlet density 1 set
of finite places v of K such that the Frobenius torus T; y C GL, g, is a maximal torus
of G¢ if v{ £ and ¥ is some place on K extending v on K. Thus, for each conjugacy
class ¢ of Gal(L/K), we can fix a finite place v, of K (unramified in L) mapping to
¢ and a place o, of K above v, such that Tj,. ¢ is a maximal torus of Gy for £ > 0. To
prove G¢G, = G, for £ > 0, it suffices to show, for each ¢ and all sufficiently large
£, the semisimple part oy’ (Frg, )ss € G (IFy).

For each c, there exist a torus T, C GL, g and an element y, € T.(Q) such that,
for all sufficiently large £, the chain

ve €T CGL, o (16)
is conjugate to the chain
pe(Fri.)ss € Ts..¢ C GLy g, (17)
by some element in GL,,(Qy). For £ >> 0, the reduction modulo £
8et €T,y CGLlyp, (18)

of (16) can be well defined, and the two semisimple elements g. ¢ and p;*(Fry, )ss in
GL,, (Fy) are conjugate since they have the same characteristic polynomial. Without
loss of generality, assume g. ¢ = p;’(Fry,.)ss. The formal characters of T',. , and G,
are equal and bounded by some N € N independent of £ > 0 by Theorem 4.2(i).
Since the powers y* are Zariski-dense in T, there exists M > Cs(n, N) (in Sec-
tion 2.6.2) such that for £ > 0 the torus T'. , C GL, r, after diagonalization is the
intersection of the kernels of some characters in /3, N X*(G};,) and the element gé’fe
is M-regularin T, ,. Since we have

3The groups 1,,8,,N,, G, aredenoted 1s, Se. N¢, Ge in [20].
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e = Py (Frs )G € G (Fo),

it follows by Lemma 2.19 and the M -regularity of g’, € T'. , that T'. , C G, for
£>> 0. We are done since p;*(Fry, )ss = get € T - O

4.2. Proof of Theorem 1.2

Proof of Theorem 1.2

After taking a finite extension L of K and the semisimplification of p;, we may
assume that G is connected reductive for all £ and Gy is a subgroup of G, (Fy) for
£ > 0 by Theorem 4.5. By the constructions of

[y € Ge(Qp) CGLL(Qy),
Gy C Gy(Fg) CGL,(Fy)

and Theorem 4.2(i), we are in the setting of Theorem 1.5, and the conditions 1.5(a)—
1.5(d) are verified. Moreover, Theorems 1.5(e) and 1.5(f) are verified by Theorems
4.1(i) and 4.1(iii). Thus, for £ 3> 0, the condition () implies the hyperspeciality of
;¢ in Gjf(Qg) (which in turn implies the unramifiedness of G, Gier, and G (Propo-
sition 4.6(i))).

Next, we prove the converse. Let §, be the Zariski closure of the derived group I’
in GLp, (A being the lattice in QF) endowed with the unique structure of reduced
closed subscheme. For £ >> 0, the group scheme §; is smooth with constant rank
over Zy (see [6, Theorem 9.1, Section 9.2.1]) and has generic fiber G%"'r. We first
show that g, is semisimple for £ > 0. Suppose that I'; is a hyperspecial maximal
compact subgroup of G (Qg¢). When ¢ is sufficiently large, there exists a semisimple
group scheme J¢/Z; whose generic fiber is Gy, satisfying J(Zg) = I';°. Since I')°
is perfect if £ is large enough depending on n (see [23, Theorem 3.4]), it maps into
the commutator subgroup I'y C §;(Z,). Consider

JI cm — Fé — gé(Zg) — GL(A@) — GL(A@ ® Fg), (19)

and let Ry C GLA,gF, be the Nori group of p¢ (). For £ large enough depending
on n, the groups
have the same £-dimension by Theorems 2.1 and 2.2 and the remarks of Section 2.3.2.
Then it follows by Proposition 2.9(iii) that

dim Gger = dim Hy, = dimy (J€ (Fg)) = dimy (& (Fg)) =dim R}’ (20)

Since dimG%er > dim R, by [28, Theorem 7] for £ large enough depending on
n, it follows that the Nori group R, is semisimple and the action of R,(Fy)
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(resp., Ry (Fo)* = pe(I'})*) on Ay ® Fy is also semisimple by [27, Theorem 3.5].
Since ,54(I‘2“)Jr is normal in pg(T")°) of prime-to-£ index, (19) is semisimple.

Since the equality dim G(ger = dim R, holds, it follows by [28, Theorem 7(3)]
that pg(T"}°) is a subgroup of §;(IFy) of index bounded by a constant depending only
on n. Hence, if the unipotent radical of the special fiber of ﬁé is nontrivial for some
large enough £, then p¢(I')°) has a nontrivial normal subgroup of unipotent elements,
which contradicts the semisimplicity of (19). Thus, the group scheme §; is semisim-
ple over Zy.

The weights appearing in the natural #-dimensional representation of the generic
fiber ﬁ — remain bounded as £ varies. By [40, Corollary 4.3], if £ is sufficiently large,
the (mod E) reduction of every irreducible factor in this representation is again irre-
ducible, and the (mod ¢) reductions of distinct irreducible factors are distinct. Thus,
the composition of the special fiber ﬁé 7 GL, ,gr, With the adjoint representation
of GL, , g7, is semisimple, its irreducible factors have bounded highest weights, and
they are in one-to-one correspondence with the irreducible factors of the composition
of ﬁé e GL, g, with its adjoint representation. So we obtain

dimg, Endgé'w (Ay @ Fy) = dimg, Endgé-@e (Q}) = dimg, Endpé Q7).

Since the index of I'; in §;(IF¢) and the formal character of ﬁém C GLa,@F, are
uniformly bounded independent of £, it follows by Propositions 3.1(i) and 3.1(iv)
that for £ > 0 the image of I'; in GL(A; ® F¢) in (19) can be identified with the
semisimple action G, — GL(F}) and

dimg, EndGz (F?) = dimp, Endgé,u (A @ TFy)

holds. Hence, we deduce (*') for £ > 0.

Now, I'y/ T is a Zariski-dense subset of the torus G/ GY°r, which acts on the
space of I, -invariants or, equivalently, the space of G‘éer-invariants, in the adjoint rep-
resentation of GL,, g, . Thus, any Zariski-dense subset of G¢(Q¢) contains an element
y with the property that any vector in the adjoint representation of GLj g, which is
fixed by I'; and by y is fixed by I';.

By Theorem 4.1, Gy is of bounded index in G ,(F¢), so by Proposition 2.22, if
£ is sufficiently large, then there exist a maximal torus 7, of G, and an element
y € G, N T,(Fy) such that y is not in the kernel of any nontrivial character of 7',
acting in the restriction to G, of the adjoint representation of GL, r,. We want to
apply Proposition 3.3 with " := I'; and A :=T'). The elements y € I'; which reduce
(mod £) to y are Zariski-dense in G¢(Qy), so we may choose y to satisfy properties (a)
and (b). By Theorem 4.2(i), the formal characters of G, — GL, r, and Gy — GL, g,
are the same, so in particular, two eigenvalues A and A, of y are equal if A; — A5 is
not a unit. We can therefore apply the proposition, and (x) follows. O
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Without (%), we can prove much less. Nevertheless, we still have the following.

PROPOSITION 4.6

Let {pg}¢ be the system of £-adic representations arising from the i th £-adic cohomol-

ogy of a proper smooth variety X defined over a number field K which is sufficiently

large. Then for sufficiently large £,

@) the reductive group G?d splits over some finite unramified extension of Qy,

(i)  the reductive group Gzed is unramified over every degree 12 totally ramified
extension of Qy.

Recall that, according to standard terminology, a connected reductive group over
alocal field which splits over an unramified extension of that field need not be unram-
ified, since it need not have a rational Borel subgroup.

Proof

The first assertion follows immediately by the method of Frobenius tori (see [9], [29],
[37]). The second assertion follows from the first and the last statements in Theo-
rem 1.5. U

4.3. Proof of Theorem 1.3(a)

Proof of Theorem 1.3(a)
Let X be an abelian variety defined over a subfield K of C that is finitely generated
over Q. Since the £-adic representation py arising from H "(Xf, Q¢) is semisimple
by Faltings (see [14]), the algebraic monodromy group Gy is reductive.

We first treat the case i = 1. By taking a finite extension of K, we may assume
G is connected for all £ (see, e.g., [5, Section 2.3]). There exists an abelian scheme
f X — & defined over some number field whose generic fiber is X — Spec K.
Let s be a closed point of §, and let R! £,Q; be the lisse sheaf on §. Then by the
proper-smooth base change theorem, p, factors through the £-adic representation

Yy mi'(8,5) = GL(R' £ Qls)

for all £. Hence, we may assume that [y (resp.,Gy) is the monodromy group
(resp., algebraic monodromy group) of . Moreover, the composition ¥y 1=
Ve o (n$'(s,5) — 7$'(8,5)) is isomorphic to the {-adic representation H (X5, Q)
of the abelian variety X5 (the fiber over s) defined over the residue field of s (some
number field) for all £. Let I'; 5 (resp., G¢,s) be the monodromy group (resp., alge-
braic monodromy group) of V¥, ;. We may identify I'y ; (resp., G¢ 5) as a subgroup of
Iy (resp., Gy).
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Fix a prime p, one can find a closed point s of § such that G, s = G, (see [37]).
By the main theorem of [18], we have G4y = Gy for all £. Therefore, it suffices to
deal with the case when K is a number field. Since the condition (x) holds by the
Tate conjecture for abelian varieties proved by Faltings in the strong form given in
[15, Theorem 4.2], we are done by Theorem 1.2.

Since we have Hi(Xf, Qo) = /\i H'(X%.Qy) as Galg-representations, the
general case follows from the lemma below. O

LEMMA 4.7

Let 1 : G — H be a surjective morphism between connected reductive algebraic
groups defined over Qq, and let T' be a compact subgroup of G(Qy). If T is a
hyperspecial maximal compact subgroup of G**(Qy), then (I")% is a hyperspecial
maximal compact subgroup of H*(Qy).

Proof

The surjective Qg-morphism p : G — H induces a surjective Qg-morphism p*¢ :
G* — H* mapping I'*¢ into w(I")*. Since both G** and H*® are simply connected,
H* can be identified as a direct factor of G* and u*® can be identified as the pro-
jection to the factor. It follows that u*°(I"*°) is also a hyperspecial maximal compact
subgroup of H*(Qy). Since u**(I'*°) C w(I")*® holds, the compact subgroup p(I')*
is equal to u*°(I"*°) and we are done. O

4.4. Proof of Theorem 1.3(b)

Proof of Theorem 1.3(b)
Let X be a hyper-Kéhler variety defined over a subfield K of C that is finitely gen-
erated over Q, and let p; the £-adic representation arising from H?(Xg, Q). If the
dimension n of the representation is less than 4, then G* is trivial or of type A for all
£. Hence, Theorem 1.3(b) follows by [22, Theorem 15].

Suppose that n > 4, and write X¢ := X xg C. By the Kuga—Satake construction,
there are a complex abelian variety Ac and a surjective morphism

H'(Ac,Q) ® H'(Ac.Q) > H*(Xc.Q) @D
of pure Hodge structures, that is, there is a Hodge cycle of
H'(4c.Q)* ® H'(Ac, Q)" ® H?(Xc. Q)

giving the correspondence (21). Assume that Ac has a model A7, defined over a sub-
field L of C; that is finitely generated over K. Since the Hodge cycle on the product
X¢ x Ac corresponding to (21) is motivated (see [1, Corollary 1.5.3]) and motivated
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cycles are absolute Hodge (see [2, Proposition 2.5.1]) in the sense of Deligne (see
[13, 2.10]), we obtain for each £ a surjective morphism

H' (A7, Qo) ® H' (A7, Qo) = H* (X1, Q)

of Galy -representations (after replacing L by a finite extension if necessary; [13,
Proposition 2.9(b)]). Since Ay, is an abelian variety defined over a subfield L of C that
is finitely generated over @, the assertion of Theorem 1.3 holds for X := X xg L by
Theorem 1.3(a) and Lemma 4.7. By induction, it suffices to show that Theorem 1.3
for X/K also holds when L is a finite extension of K or L. = K(t), where ¢ is tran-
scendental over K. The former case is obvious, and the latter case can be done by the
fact that 775" (SpecK [¢]) is trivial. O
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