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Abstract

Orogenic crustal thickening leads to increased continental elevation and runoff into
the oceans, but there are fundamental uncertainties in the temporal patterns of
thickening through Earth history. U-Pb age and trace element data in detrital zircons
from Antarctica are consistent with recent global analyses suggesting two dominant
peaks in average crustal thickness from ~2.6 to 2.0 Ga and ~0.8 to 0.5 Ga. Shifts
in marine carbonate 87Sr/8¢Sr ratios show two primary peaks that post-date these
crustal thickness peaks, suggesting significant weathering and erosion of global con-
tinental relief. Both episodes correlate well with zircon trace element and isotope
proxies indicating enhanced crustal and fluid input into subduction zone magmas.
Increased crustal thickness correlates with increased passive margin abundance and
overlaps with snowball Earth glaciations and atmospheric oxygenation, suggesting

a causal link between continental rift-drift phases and major transitions in Earth's

updates
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1 | INTRODUCTION

The temporal patterns of orogenic thickening and associated up-
lift of Earth's continental crust are of widespread interest be-
cause of postulated links to atmospheric oxygenation (Campbell &
Allen, 2008), as well as global climate cooling and changes in ocean
chemistry (Raymo & Ruddiman, 1992). There are, however, uncer-
tainties about the spatial and temporal patterns of crustal thickness
in Earth's past. Previous studies have focused on determining juve-
nile crustal thickness (i.e. at the time of mantle separation) through
time using in situ whole-rock geochemical and isotopic data (Dhuime,
Wouestefeld, & Hawkesworth, 2015). Other studies have used detri-
tal zircon trace element ratios to evaluate absolute crustal thickness
(i.e. juvenile + recycled/existing crust) at the time of final magmatic
crystallization associated with individual continental arcs (Barth,
Wooden, Jacobson, & Economos, 2013), and more recently for the
evolution of continental crust in India (McKenzie, Smye, Hegde, &
Stockli, 2018) and on a global scale (Balica et al., 2020). However,
whether crustal thickness estimates from global detrital zircon stud-

ies are representative of crustal evolution over Earth history remains

atmospheric and oceanic evolution.

uncertain given the small size of datasets with respect to the large
areas they cover.

Detrital zircon U-Pb age analyses have provided considerable
insight into the age of continental crust of East Antarctica (Goodge,
Williams, & Myrow, 2004; Nelson & Cottle, 2017; Squire, Campbell,
Allen, & Wilson, 2006). There is a growing recognition that sedimen-
tary rock successions derived from eroding continents hold important
archives for understanding the age and physical-chemical evolution of
continental crust (Dhuime, Hawkesworth, Delavault, & Cawood, 2017).
In particular, detrital zircons retain compositional data that can yield
information about the petrotectonic environments in which they
formed, but these studies have not taken advantage of the information
available in zircon trace element record over Earth history. This study
integrates detrital zircon U-Pb age and trace element proxies for an
exceptionally large detrital zircon dataset (n = 5,755) from 73 sand-
stone samples (41 Neoproterozoic-early Palaeozoic and 32 Devonian
to Jurassic samples) distributed along ~3,000 km of Gondwana's
palaeo-Pacific margin (Figure 1; data from Nelson & Cottle, 2017,
Paulsen, Deering, Sliwinski, Bachmann, & Guillong, 2016a, 2016b;
Paulsen, Deering, Sliwinski, Bachmann, & Guillong, 2017). We focus
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FIGURE 1 Gondwana reconstruction showing the Ross-
Delamerian orogen within the greater latest Neoproterozoic to
late Palaeozoic Terra Australis orogen. White circles show major
provinces from which samples have been analysed in this paper.
Mts: mountains. Figure modified from Paulsen et al. (2016a)

on developing a better understanding of the global evolution of con-
tinental crust and its potential links to major changes in the ocean and

atmospheric systems derived from other proxy records.

2 | ANTARCTIC DETRITAL ZIRCON
RECORD

The cumulative dataset analysed in this study (ages < 15% discord-
ant or <5% reverse discordant and culled of anomalous trace ele-
ment values) shows a polymodal age distribution with about half of
the detrital zircon age data (n = 2,781 of 5,755) from the studied
sample suite yielding Archean to early Neoproterozoic ages (3.6-
0.9 Ga; Figure 2). To assess the importance of changes in the average
trace element ratios within this dataset through time, we conducted
Monte Carlo bootstrap resampling (Efron, 1987) of compositional
values of zircons in 0.1 Gyr brackets. The resampling was weighted
inversely proportional to the temporal U-Pb age density to mini-
mize the effect of sampling bias presented by peaks in detrital zir-
con abundance. The zircon dataset analysed here (Th/U > 0.1) may
contain a small percentage of metamorphic grains (Rubatto, 2017).
However, the majority of zircons in our dataset are expected to have
igneous heritage associated with the generation of low temperature,
high-silica hydrous melts along convergent margins, the primary zir-
con factory (Lee & Bachmann, 2014).

Trace elements in detrital zircons can be used both as a means to
relate their formation to a general tectonic setting and as more spe-
cific proxies for changes in the characteristics of magmatic evolution
(e.g. Barth et al., 2013). Garnet is a mineral found in crustal magmas
that is stable during fractionation of magmas in the deep crust and
incorporates heavy rare-earth elements (HREE)+Y relative to other
trace elements. Therefore, Y/Gd and Yb/Gd ratios in zircon decrease
with fractionation at increasing pressure associated with increases in
crustal thickness (Barth et al., 2013).

Statement of Significance

Mountain building is a fundamental tectonic process
that commonly occurs in association with crustal thick-
ening along Earth's major convergent plate boundaries.
Geologists have long recognized that the generation of
significant continental relief has the potential to have pro-
foundly influenced the chemistry of the Earth's oceans and
atmosphere as it evolved through time. However, there
are significant uncertainties about the spatial and tempo-
ral patterns of crustal thickening in Earth's past, especially
associated with the ancient rock record leading up to the
Cambrian explosion of life. These uncertainties exist be-
cause continental relief tends to be subdued during weath-
ering and erosion, leaving in situ rock records of these
processes incomplete. However, detrital zircons from sedi-
mentary rocks have been shown to capture a more repre-
sentative record of Earth history. Here we show that U-Pb
age and trace element data obtained for an exceptionally
large number of detrital zircons from representative sand-
stones recovered in Antarctica are consistent with recent
global analyses suggesting two prominent peaks in crustal
thickness that correlate with proxy records for the rift-drift
of the continents. Crustal thickening also overlapped with
snowball Earth glaciations and associated steps in atmos-
pheric oxygenation, possibly signifying that there are im-
portant links between the evolution of Earth's geosphere

and its atmosphere and hydrosphere envelopes.

The trace element record retained within the Pacific-Gondwana
zircon dataset shows that lower Y/Gd and Yb/Gd ratios are gener-
ally associated with two principal periods (Figure 3). This pattern of
depletion in HREE + Y suggests that crust was thicker in the source
areas of the zircons formed during these intervals. The first sug-
gests an increasing proportion of magmas formed along relatively
thicker convergent margins after 3.1 Ga to a broad ~2.6 to 2.0 Ga
high (considering younger and older age limits of the 0.1 Gyr age
brackets), whereas the second suggests a peak in the proportion of
magmas formed within thicker crust centred ~0.8 to 0.5 Ga. These
peaks are separated by an intervening interval from ~1.9 to 0.9 Ga
during a period of remarkable environmental stasis known as the
‘boring’ billion (Cawood & Hawkesworth, 2014; Holland, 2006;
Roberts, 2013).

3 | LINKS TO GLOBAL PATTERNS

In terms of scale, the length of the palaeocontinental margin along
which we have characterized relative palaeocrust thickness pat-
terns is roughly equivalent to the Nazca-South American conver-

gent plate margin along coastal Chile. The sources of the zircon
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FIGURE 2 Kernel density estimate plots and histograms
(Vermeesch, 2012) of cumulative U-Pb age data (n = 5,755) for
the compilation of detrital zircons analyse in this study from the
Transantarctic Mountains and Marie Byrd Land area of Antarctica.
(a) 3.6 to 0 Ga (n = 5,755), (b) 1.8 to 0 Ga (n = 5,400) and (c) 3.6

to 1.8 Ga (n = 356). Data sources for compilation provided in text

populations in these samples may include exposed and ice-cov-
ered igneous provinces in Antarctica, for example the Ross and
Gondwanide orogens (Goodge et al., 2004; Nelson & Cottle, 2017),
as well as interior areas of Gondwana like the East African orogen
(Squire et al., 2006). Regardless of their precise provenance, the
large number of detrital zircon U-Pb age and trace element meas-
urements within our dataset suggests that the crustal thickness
proxies are likely representative of at least a significant portion
of East Gondwana. Global detrital zircon trace element records
(Balica et al., 2020) show overall average crustal thickness pat-
terns similar to those yielded by the Pacific-Gondwana zircon
suite (Figure 3), despite the sample suites possessing only minor
overlap (2 samples). Differences in the thickness patterns are pri-

marily seen in the older time intervals (the 3.2-3.1 Ga opposing
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peaks and troughs), which may reflect issues stemming from sam-
pling bias and/or data treatment. Collectively, these results sug-
gest that the two principal increases in average crustal thickness
identified here and in Balica et al. (2020) may have global signifi-
cance, a notion supported by other proxy data to which we now
turn.

Shifts in 87Sr/%¢Sr within marine carbonates have previously
been found to correlate with episodes of extensive felsic magma-
tism associated with an increase in assimilation of older radiogenic
crust (Bataille et al., 2017), a process that is favoured along com-
pressional advancing convergent margins and collisions (Collins,
Belousova, Kemp, & Murphy, 2011; Condie & Aster, 2013), which,
in turn, lead to increases in continental elevation and Sr runoff
into the Earth's oceans (Shields, 2007). The 85r/8%Sr isotope curve
shown in Figure 4, which is normalized to the model 875r/86Sr of
global river and mantle inputs, shows two primary peaks that post-
date the peaks in crustal thickness, a delay that is expected as con-
tinental relief is reduced by weathering and erosion. The 875y/86sy
isotope peaks may in part reflect increased sediment input into
the oceans due to exhumation associated with rifting (DelLucia,
Guenthner, Marshak, Thomson, & Ault, 2018) and deglaciation that
marked the end of two prominent periods of global glaciation re-
ferred to as ‘snowball Earth’ (Sobolev & Brown, 2019). However,
our data indicate that significant continental relief along convergent
margins may have played an important additional role in produc-
ing these 87Sr/8¢Sr isotopic excursions, as also suggested for the
~0.7-0.5 Ga time interval by Balica et al. (2020). A mix of these
processes likely played a fundamental role in the generation of two
of the most significant unconformities in the geological record, the
Proterozoic-Phanerozoic Great Unconformity and its predecessor
at the Archean-Proterozoic boundary (Keller et al., 2019; Peters &
Gaines, 2012; Windley, 1984).

To test the hypothesis that these peaks in crustal thickness and
subsequent increased Srinput into the Earth's oceans were associated
with an increase in the reworking and assimilation of older radiogenic
crust, we evaluated the Th/Yb ratio of the Pacific-Gondwana zircons
based on the assumption that Th is enriched relative to the other el-
ements as crust matures (Barth et al., 2013). Zircons with the highest
Th/Yb ratios in our dataset correlate well with the thickness peaks
(Figure 4). This pattern is confirmed on a global scale by the Hf iso-
tope record (Cawood, Hawkesworth, & Dhuime, 2013), which shows
two primary peaks in crustal input that correlate with the peaks in
crustal thickness identified here (Figure 4). Our interpretation of
these correlations is that they reflect an increase in the contribution
of sediment from subducting slabs, as well as crustal assimilation
associated with thermal maximums reached during peaks in crustal
thickness. Crustal reworking associated with portions of the global
Hf isotope trends may have been enhanced by magmatic recycling of
sediment input into trenches following snowball Earth deglaciations
(Keller et al., 2019; Sobolev & Brown, 2019). However, the correla-
tion between crustal thickening and reworking indicated by our data
suggests an additional strong orogenic signal in these datasets (Balica
et al., 2020).
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The suggestion that increased crustal reworking relates to
changes in processes involving subduction warrants an examina-
tion of the U/Yb ratio in zircon, which has been used as a proxy
for subducting slab fluid addition because the fluids are enriched
in U relative to HREE such as Yb (Barth et al., 2013). The Pacific-
Gondwana zircon suite shows U/Yb increases that correlate with the
two primary peaks in crustal thickness we have identified (Figure 4).
Igneous zircon U contents are also influenced by the composition of
source rocks involved in the generation of melts and the presence
of other minerals that compete to incorporate U during crystalliza-
tion (Kirkland, Smithies, Taylor, Evans, & McDonald, 2015). However,
the onset of increased crustal thickness associated with the first
episode (Archean-Proterozoic) correlates with the ~3.0 Ga appear-
ance of eclogite-bearing diamonds, marking the inception of wide-
spread subduction associated with the onset of the Wilson cycle
(Figure 4) (Shirey & Richardson, 2011). Subsequent increases in fluid

flux from subducting oceanic slabs have, in turn, been postulated

to have driven voluminous 3.0-2.5 Ga felsic magmatism associ-
ated with remelting of previously formed mafic crust (Tang, Chen,
& Rudnick, 2016); a time period that is here also characterized by
increased crustal input into magmas.

To investigate the relationship between crustal thickness and the
record of metamorphism along convergent margins, we compared
thickness patterns to the in situ high-grade metamorphic rock re-
cord shown in Figure 5a. The increase in crustal thickness during the
Archean-Proterozoic time interval correlates with the ~2.8 Ga emer-
gence of high dT/dP and intermediate dT/dP metamorphism thought
to mark widespread coupling of paired metamorphic belts, the hall-
mark signature of subduction (Brown & Johnson, 2018). Decreased
crustal thickness during the boring billion in turn correlates with a
period dominated by high dT/dP metamorphism with higher thermal
gradients (Brown & Johnson, 2018). This could relate to superconti-
nent insulation of the mantle (Figure 5; Brown & Johnson, 2018) and

associated development of hot back-arc environments (Hyndman,



PAULSEN ET AL.

Emergence of Emergence of paired
blueschist & UHP high dT/dP & interm. dT/dP
metamorphism metamorphism
307 Snow Wilson
ball M cyc]e
Earth onset
40 4 ‘Boring bil
o
£
S c
o |2
> -
501 <
—= ~100% s
| £
i 2
| ©
! 4
| S
60 \ | g
| | —
~50%
L — | o
| | g
12 | I S
| | [+
| I g
'2 - > | Low <
| . . |
£o0s8 : Boring bil |
| |
| |
FIGURE 4 Average Y/Gd (crustal :
thickness proxy), Th/Yb (crustal input 04 2
proxy) and U/Yb (subducting slab : 10 8
fluid proxy) with their 95% confidence E
envelopes determined by Monte Carlo ;—g
bootstrap resampling of Antarctic detrital 0.0 %
zircons in 0.1 Gyr time brackets, compared /\/‘\'\v 0 o
to global average zircon eHf values E
from Cawood et al. (2013), normalized 3.0 T
marine Sr/8¢Sr evolution from Shields P
(2007), increases in atmospheric oxygen, %
early ‘whiffs’ of oxygen (blue arrows) 2 10
. ) o 20
and intervening boring billion from >
Holland (2006) and Lyons, Reinhard, and
Planavsky (2014). Ages of the emergence
of paired high dT/dP-intermediate dT/dP 10
metamorphism and widespread ultrahigh- ' 4.0
pressure and blueschist metamorphism
(cold subduction) marking onset of o
modern plate tectonic regime from Brown 0.0 _8 g
and Johnson (2018), Wilson cycle onset 2.0 gf&
from Shirey and Richardson (2011), and £ QN
snowball Earth glaciations adapted from Boring billion <
Sobolev & Brown (2019). GOE, Great
oxygenation event; NOE, Neoproterozoic 0 10 0 48

oxygenation event

Currie, & Mazzotti, 2005) with a greater proportion of convergent
margins in retreating states in outboard localities on thinner crust
(Roberts, 2013).

The increase in crustal thickness during the Proterozoic-
Phanerozoic time interval in turn correlates with a decrease in ther-
mal gradients of high dT/dP metamorphism, as well as the ~0.75 Ga

20
Age (Ga)

widespread appearance of blueschist (Tsujimori & Ernst, 2014) and
ultrahigh-pressure (Liou, Tsujimori, Yang, Zhang, & Ernst, 2014)
metamorphism (Figure 5a; Brown & Johnson, 2018). Blueschist
metamorphism is a hallmark of a cooler subduction environment,
which fostered deeper subduction of crust and ultrahigh-pressure

metamorphism (Brown, 2007). The decrease in thermal gradients
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FIGURE 5 (a) Average crustal thickness proxies with their 95% confidence envelopes compared to global compilation of ages versus T/P
(°C/GPa) of high dT/dP (granulite - ultrahigh temperature) (red), intermediate dT/dP (eclogite - high-pressure granulite) (purple) and low dT/
dP (high-pressure - ultrahigh-pressure) metamorphism (blue). (b) Average crustal thickness proxies with their 95% confidence envelopes
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passive margins contribute to each bin over which their lifespan overlaps. Increased crustal thickness tends to correlate with increased
passive margin abundance suggesting a convergent margin response to continental rift-drift phases. Onset of widespread rift-drift ~3.2-
3.0 Gais implied assuming the appearance of mantle eclogites marking widespread subduction is balanced by construction of new crust
associated with the onset of the Wilson cycle. Supercontinent/craton abbreviations: G, Gondwana; K, Kenor; N, Nuna; P, Pangea; R, Rodinia.
Data for metamorphic rock compilation from Brown and Johnson (2018) and passive margin abundance from Bradley (2008). Age ranges

of the tenure of supercontinents/cratons from Bradley (2011), emergence of paired high dT/dP-intermediate dT/dP metamorphism and
widespread ultrahigh-pressure and blueschist metamorphism (cold subduction) marking onset of modern plate tectonic regime from Brown
and Johnson (2018) and Wilson cycle onset from Shirey and Richardson (2011)
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of high dT/dP metamorphism has in turn been associated with su-
percontinent breakup (Brown & Johnson, 2018), which may throw
convergent margins into compressional advancing states associ-
ated with thicker crust (Lee et al., 2013; Lenardic, 2016; Lenardic
etal, 2011). Indeed, the increase in crustal thickness during this time
interval correlates well with an increase in passive margin abundance
marking supercontinent rifting and the onset of continental drift
(Figure 5b; Bradley, 2008). Similar correlations over Earth history
(Figure 5b) suggest that increased crustal thickness recorded along
greater proportions of convergent margins is primarily driven by the

processes governing the rift-drift of the continents (Li et al., 2019).

4 | CONCLUSION AND IMPLICATIONS

Our results suggest two prominent increases in crustal thickness oc-
curred as the lithosphere responded to major tectonic milestones as
the mantle cooled through time. The cause of planetary cooling that
induced two principal periods of global glaciation is controversial,
but some models attribute these changes to steps in atmospheric
oxygenation (Figure 4) that caused significant decreases in atmos-
pheric methane, a potent greenhouse gas (Fakhraee, Hancisse,
Canfield, Crowe, & Katsev, 2019). If the two prominent increases
in crustal thickness identified here are representative of a global
pattern, their temporal correlation with global glaciations raise the
important question of whether or not increased crustal elevations
provided essential cooler, higher elevation nurseries for initial ice
sheet growth (Eyles & Januszczak, 2004), as was the case for the
growth of Cenozoic continental glaciers in Antarctica (Deconto &
Pollard, 2003). These correlations also highlight the possibility that
greater amounts of crust were available for silicate weathering, a pro-
cess that fostered global Cenozoic cooling through the drawdown of
atmospheric CO, (Raymo & Ruddiman, 1992) and that may have also
played arole in the snowball Earth glaciations (Donnadieu, Goddéris,
Ramstein, Nédélec, & Meert, 2004; Hoffman & Schrag, 2002). The
Palaeoproterozoic and Neoproterozoic steps in oxygenation of
Earth's atmosphere have been previously postulated to in turn cor-
relate with increases in continental elevation and consequent nutri-
ent influx into the Earth's oceans (Campbell & Allen, 2008; Ganade
De Araujo et al., 2014). While increases in crustal thickness likely
played a significant role in these important milestones in Earth's evo-
lution, the ultimate drivers were likely dependent on a complex set of
variables and associated feedbacks that are inextricably linked (Lee
et al,, 2016). Indeed, widespread volcanism and exhumation associ-
ated with rifting, which we argue is linked to geodynamic changes in
convergent margin networks, likely played a role in these processes
during the Neoproterozoic time interval (Cox et al., 2016; DeLucia
et al., 2018). Collectively, the intriguing correlations outlined above
add increasing evidence for important potential links between the
solid Earth and the evolution of its atmospheric and oceanic enve-
lopes (Galvez & Pubellier, 2019), emphasizing the critical need to
expand the collection of robust sample suites and further develop

strategies to assess crustal thickness and exhumation through time.
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