
Physical Biology
     

PAPER

Constraining the complexity of promoter dynamics using fluctuations in
gene expression
To cite this article: Niraj Kumar and Rahul V Kulkarni 2020 Phys. Biol. 17 015001

 

View the article online for updates and enhancements.

This content was downloaded from IP address 158.121.118.101 on 19/03/2020 at 20:16

https://doi.org/10.1088/1478-3975/ab4e57
http://googleads.g.doubleclick.net/pcs/click?xai=AKAOjstdVhB4479lYhVlXu1guxr2P_92yOXnmykg7hYjrkIOMPFsjxVO-MrpNBMbLw3WpL0aLKndeaSO0iPzPVi5ossSQvP8iYMUK92hyAvGEc_kW534T2GN6vphT_ET8AO7hmZow7yUw1XAGCPRtHniZOmeuakgBYdH0_0IbedNHFddgyvNeJiR64ghXeihsjCQE3bk1wSB4xYoLXSdtRLbAaxGVgEsh1xuPizPs9Ga_PAdmLQuImE6&sig=Cg0ArKJSzEbLCnLn-bg6&adurl=http://iopscience.org/books


© 2019 IOP Publishing Ltd

Introduction

Gene expression in single cells is a stochastic process 
involving multiple biochemical reactions which can 
potentially give rise to large cell-to-cell variability in 
the levels of mRNAs/proteins [1–21]. This intrinsic 
randomness in gene expression can drive phenotypic 
variations even in an isogenic population and is 
known to play critical roles in cell-fate decisions and 
diverse cellular processes [22]. The quantification of 
molecular mechanisms involved in gene expression 
is thus an important step in understanding variability 
in cellular phenotypes and their responses to external 
perturbations.

An important feature of gene expression in single 
cells is that it can occur in a sporadic fashion, charac-
terized by synthesis of mRNAs in short bursts followed 
by typically longer periods of inactivity. In recent 
years, multiple experimental observations have pro-
vided evidence for such bursty synthesis of mRNAs 

[23–30]. Such transcriptional bursting is known to 
increase fluctuations in gene expression, and can thus 
play a significant role in generating phenotypic vari-
ability in a clonal population of cells. At the simplest 
level, the emergence of such bursting behavior can be 
understood by analyzing a two-state promoter model, 
also known as the standard model of gene expression  
[7, 31–33]. The standard model of gene expression 
posits that a promoter can exist in either a transcrip-
tionally inactive state (off state) or transcriptionally 
active state (on state) with constant rates of switching 
between promoter states. However, transcription is a 
complex process involving multiple rate limiting steps 
as reported in several theoretical and experimental 
studies [34–40]. For example, recent experimental 
observations on mammalian cells have provided evi-
dence for multiple rate-limiting steps between the 
transition from the transcriptionally inactive state to 
active state [7, 41, 42]. However, promoter switching 
from the on state to the off state has been reported to 

N Kumar and R V Kulkarni

Constraining the complexity of promoter dynamics using fluctuations in gene expression

Printed in the UK

015001

PBHIAT

© 2019 IOP Publishing Ltd

17

Phys. Biol.

PB

1478-3975

10.1088/1478-3975/ab4e57

1

1

6

Physical Biology

IOP

1

November

2019

Constraining the complexity of promoter dynamics using 
fluctuations in gene expression

Niraj Kumar  and Rahul V Kulkarni
Department of Physics, University of Massachusetts Boston, Boston, MA 02125, United States of America

E-mail: niraj.kumar@umb.edu (N K) and rahul.kulkarni@umb.edu (R V K)

Keywords: stochastic gene expression, transcriptional bursting, promoter switching

Supplementary material for this article is available online

Abstract
Gene expression is an inherently stochastic process with transcription of mRNAs often occurring 
in bursts: short periods of activity followed by typically longer periods of inactivity. While a 
simple model involving switching between two promoter states has been widely used to analyze 
transcription dynamics, recent experimental observations have provided evidence for more complex 
kinetic schemes underlying bursting. Specifically, experiments provide evidence for complexity in 
promoter dynamics during the switch from the transcriptionally inactive to the transcriptionally 
active state. An open question in the field is: what is the minimal complexity needed to model 
promoter dynamics and how can we determine this? Here, we show that measurements of mRNA 
fluctuations can be used to set fundamental bounds on the complexity of promoter dynamics. We 
study models wherein the switching time distribution from transcriptionally inactive to active 
states is described by a general waiting-time distribution. Using approaches from renewal theory 
and queueing theory, we derive analytical expressions which connect the Fano factor of mRNA 
distributions to the waiting-time distribution for promoter switching between inactive and active 
states. The results derived lead to bounds on the minimal number of promoter states and thus 
allow us to derive bounds on the minimal complexity of promoter dynamics based on single-cell 
measurements of mRNA levels.
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occur with essentially a single rate-limiting step and 
thus can be modeled by a constant switching rate [43]. 
An important open problem in the field is estimation 
of the number of internal promoter states involved 
in the switching between inactive to active promoter 
states.

Recent research in nonequilibrium statistical 
mechanics has led to the derivation of thermodynamic 
inequality relations which set fundamental bounds on 
dissipation based on observations of current fluctua-
tions [44–46]. A natural question that arises is: can we 
derive similar relations for gene expression that can 
bound the complexity of promoter dynamics based 
on observations of current fluctuations? While previ-
ous studies have developed approaches for inference 
of parameters of coarse-grained stchastic models of 
gene expression using single cell measurements [47], 
obtaining exact bounds on the number of promoter 
states for general promoter models is still an open 
problem. In this paper, we consider a general model 
of gene expression for which we use approaches from 
renewal theory and queueing theory to derive funda-
mental bounds on the minimal number of internal 
promoter states based on observations of mRNA fluc-
tuations.

The paper is organized as follows. In the next sec-
tion, we discuss a model for stochastic gene expression 
wherein promoter switching from its off to on state is 
characterized by a general waiting-time distribution. 
Next, we consider two cases of the model which lead 
to bounds on the minimum number of internal states 
involved in the switching process. First, we consider the 
case that the number of mRNAs created can be exper
imentally measured as a function of time in single cells 
allowing us to directly estimate the rate of mRNA pro-
duction. The second case corresponds to experimental 
measurements of steady-state mRNA levels in single 
cells across the population of cells. For both cases, we 
derive analytic expressions for the Fano-factor associ-
ated with mRNA copy numbers, which are then ana-
lyzed to estimate the minimum number of states pre-
sent in the promoter switching process. We conclude 
with a summary of the results derived.

Model

The experimental observations discussed above [7, 
41, 42] indicate that the waiting-time distribution 
for promoter switching from off to on states is, in 
general, non-exponential. However, we do not have a 
canonical formula for the non-exponential waiting-
time distribution since it depends on the number of 
internal states for the promoter, which can vary from 
gene to gene. As experimental progress in single-
cell measurements has made it possible to count the 
number of transcripts in different cells, it is of interest 
to analyze if these measurements can contribute to 
modeling the complexities of promoter dynamics. The 
focus of this paper is to derive results that make use 

of experimentally accessible measurements to derive 
bounds on the number of internal states involved in 
promoter switching from off to on states.

We consider the model shown in the figure 1 which 
is based on experimental observations [7, 41, 42] and 
has been used in previous studies [43]. The model 
assumes that the promoter has a transcriptionally 
inactive state (off state) and a transcriptionally active 
state (on state). The promoter in the on state leads to 
production of mRNAs with rate km, which can then 
degrade with rate µm. The promoter in the on state 
can also switch back to the off state with rate β. From 
the off state, the promoter can transition between a 
general number of internal transcriptionally inactive 
promoter states before switching back to the on state. 
The waiting-time distribution for switching from the 
off state to the on state is represented by g(t), with the 
notation g emphasizing that it is a general distribu-
tion. Note that while the waiting-time distribution is 
general since the number of promoter states as well as 
the switching rates between different promoter states 
can be arbitrary, we are restricting ourselves to models 
wherein the waiting-time distribution for switching 
from one promoter state to the next is an exponential 
distribution.This class of waiting-time distribution is 
denoted in the queueing literature as phase-type dis-
tributions [48]. In order to derive bounds on the num-
ber of promoter states, we will use this model for two 
separate scenarios: first we will consider the case that 
experimental measurements can access mRNA pro-
duction in single cells as a function of time. Hence the 
rate of mRNA production can be directly estimated 
from available experimental measurements. The sec-
ond scenario corresponds to the case that we can only 
access the steady-state distribution of mRNAs across 
the population of cells.

Inference based on rate of mRNA 
production

We first consider the case that the mRNA production 
rate in single cells can be measured experimentally. 
For this case, the model discussed above (figure 1) will 

Figure 1.  Schematic representation of gene expression 
model characterized by a general switching time distribution 
g(t) corresponding to transition of the promoter from an off 
state to the on state, denoted by 0 and 1, respectively. Gene in 
the on state either switches back to the off state with rate β or 
synthesizes an mRNA with rate km. The mRNA degradation 
rate is denoted by µm.

Phys. Biol. 17 (2020) 015001
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be used to estimate the number of promoter states 
involved in the switching of gene from the off state to 
the on state. To proceed, we note that, in the model, 
creation of mRNAs is a renewal process since the 
time interval between successive arrivals of mRNAs 
is drawn from the same waiting-time distribution. 
Correspondingly, the mean number of mRNAs created 
in time t (in the long-time limit) is given by

〈m(t)〉 = P1kmt,� (1)

where P1 denotes the fraction of time (in the long-time 
limit) that the promoter is in the transcriptionally 
active on state and P1km  is the average rate of mRNA 
production. Furthermore, following [49], the variance 
of the number of mRNAs created in time t is given by:

〈m(t)2〉 − 〈m(t)〉2 =

[
σ2
τ

〈τ〉2

]
〈m(t)〉,� (2)

where 〈τ〉 is the mean time interval between successive 
mRNA arrivals (i.e. renewals), and σ2

τ is the variance 
associated with the corresponding inter-arrival time 
distribution. It is interesting to note that the Fano 
factor associated with the number of mRNA arrivals, 
F = (〈m(t)2〉 − 〈m(t)〉2)/〈m(t)〉 is given by the noise 
associated with the corresponding inter-arrival time 
distribution, i.e.

F =
σ2
τ

〈τ〉2
.� (3)

In the following, we will use the Fano-factor associated 
with mRNA arrivals to derive bounds for the number 
of states involved in promoter switching from off to on 
states.

To proceed further, we note that to derive an 
expression for F, we need to determine the mean and 
variance associated with the inter-arrival time distri-
bution ( f (τ)) between successive arrivals of mRNAs. 
As discussed in previous studies [43, 50], an active 
gene can either produce a mRNA in a single step (i.e. 
without switching to off state) or complete multiple 
cycles passing through the off state before producing 
an mRNA. Calculations based on this set-up lead to the 
following explicit expression for the inter-arrival time 
distribution in the Laplace domain (s) [43]:

fL(s) =
km

km + s + (1 − gL(s))β
,� (4)

with f L(s) and gL(s) representing the Laplace trans
forms of the inter-arrival time distribution for 
mRNA arrivals and the waiting-time distribution 
for the promoter to switch from the off to the on state 
respectively:

fL(s) =

∫ ∞

0
f (t)e−stdt, gL(s) =

∫ ∞

0
g(t)e−stdt.

� (5)

Using equation  (5), we can determine the first and 
second moments of the inter-arrival time distribution 
( f (t)) and the promoter switching-time distribution 

(g(t)) in terms of the coefficients of s and s2 when f L(s) 
and gL(s) are expanded around s  =  0, respectively. 
Using these moments, we obtain the following relation 
between the noise in the inter-arrival time distribution 
(ηf ) and noise in the promoter switching-time 
distribution (ηg )

ηf = 1 +
βkm(

β + 1
〈tg〉

)2

(
1 + ηg

)
.

� (6)

From this equation, we note that noise in the inter-
arrival time distribution for mRNAs, and hence the 
corresponding Fano factor associated with mRNA 
arrivals (equation (3)), depends on the noise in the 
the promoter switching time distribution g(t). In 
particular, if the mean rate of promoter switching 
(1/〈tg〉) from off to on states is fixed, the Fano factor 
of mRNA arrivals is a minimum when the noise in the 
promoter switching-time distribution is minimized.

Let us now consider the case that the number of 
transcriptionally inactive states (including the off state) 
is set to a fixed value (n). In this case, the switching-
time distribution g(t) can be modeled as a phase-type 
distribution of order n [48]. For fixed n and fixed mean 
switching time between off and on state, we wish to 
obtain bounds on n based on measurements of mRNA 
fluctuations. We note that it has been shown that out of 
all possible phase-type distributions (with fixed mean) 
of order n, the gamma distribution is the one with the 
minimum variance [51, 52]. Furthermore, variance of 
the gamma distribution decreases monotonically with 
n. This is helpful since it implies that if the variance of 
the waiting-time distribution for switching between 
off and on states (which can be estimated using exper
imental measurements of mRNA fluctuations using 
equation (3) above) is less than that of a gamma dis-
tribution of order n, then the promoter must have at 
least (n + 1) promoter states. Using this logic, as elabo-
rated in the following, we can derive general bounds of 
the mimimal number of promoter states by analyzing 
gamma waiting-time distributions. Correspondingly, 
let us consider the case that g(t) is given by a gamma 
distribution with shape parameter n :

g(t;α, n) =
αntn−1e−αt

Γ(n)
� (7)

with α representing the rate associated with a single 
step, and n denoting the number of steps. This, 
focusing on the Fano factor for gamma switching-time 
distributions allows us to set bounds on the Fano factor 
for mRNA arrivals for any switching-time distribution 
corresponding to fixed n.

For a gamma waiting time distribution with shape 
parameter n, the exact expression for the Fano-factor 
(Fn) is given by (see see supplementary material A 
(stacks.iop.org/PhysBio/17/015001/mmedia))

Fn =
α2 + βn (nkm + km + βn) + 2αβn

(α+ βn)2
.� (8)

Phys. Biol. 17 (2020) 015001
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In the above formula, Fn is expressed in terms of the 
model parameters, α,β, n and km. However, to gain 
further insight, it is desirable to express Fn in terms 
of quantities that are experimentally measurable. 
In particular, consider the following quantities: the 
steady-state probability of promoter being in the on 
state P1, the mean switching rate R of the promoter 
from its off state to the on state, and the mean burst 
size 〈b〉 i.e. the mean number of mRNAs created in 
the on state just before the promoter switches back to 
the off state. When the switching time distribution is 
characterized by the gamma distribution, the mean 
rate of promoter transition from the off to on state (R) 
is given by

R =
α

n
.� (9)

With mean switching rates R and β, the promoter 
changes stochastically between on and off states. In the 
long-time limit, the probability that it is on is given by

P1 =
R

R + β
.� (10)

To quantify bursting, we note that when the gene is in 
the transcriptionally active on state, it can either switch 
back to the off state with rate β or it can produce an 
mRNA with rate km, i.e. the probability that the next 
reaction for a transcriptionally active promoter is 
switching to the off state is β/(β + km) whereas the 
probability that the next reaction is production of 
an mRNA is km/(β + km). Thus the probability that 
a promoter in the on state produces m number of 
transcripts before it switches to the off state is given by 
the geometric distribution:

q(m) =

[
km

β + km

]m
β

β + km
.

Thus the mean number of mRNAs produced during 
the burst is:

〈b〉 =
m=∞∑
m=0

mq(m) =
km

β
.� (11)

The above expressions for R, P1 and 〈b〉 will be used for 
further analysis of the Fano-factor for mRNA arrivals.

Using equations  (10) and (11) in equation  (8), 
we derive a simple expression for the Fano-factor of 
mRNA arrivals (for a gamma waiting time distribu-
tion) in terms of the mean burst size (〈b〉) and the 
probability of the promoter being in a transcription-
ally inactive state (P0 = 1 − P1):

Fn = 1 +

[
n + 1

n

]
P2

0〈b〉.� (12)

Note that we are considering the case of fixed mean 
switching rates β and R, which implies that P0 is fixed 
as well. Thus, the above expression shows that the 
Fano-factor decreases monotonically with n with a 
maximum at n  =  1, i.e. F∞<Fn � F1. Furthermore, 
since F∞ = (1/2)(F1 + 1), we can specify both the 
lower and upper bounds just in terms of F1, i.e.

1

2
(F1 + 1)<Fn � F1.� (13)

It is convenient to group together the exper
imentally measurable quantities and to rewrite equa-
tion (12) as follows:

Fn =
Fn − 1

P2
0〈b〉

= 1 +
1

n
,� (14)

which implies that the preceding inequality can be 
rewritten as 1<Fn � 2.

The significance of the above result is the follow-
ing. Let us consider the experimental analog of Fn (call 
it Fex), which has the experimental Fano factor Fex 
replacing Fn in the preceding equation. To set bounds 
on the number of promoter states, we need to deter-
mine the largest integer n value such that Fex < Fn . 
Since the gamma distribution of order n has the low-
est variance among all phase-type distributions of 
order n, and furthermore since Fn decreases mono-
tonically with n, this implies that the promoter must 
have at least (n + 1) transciptionally inactive states if 
Fex < Fn. Thus measurements of the Fano factor for 
mRNA arrivals can now be used to set bounds on the 
minimum number of promoter states involved in the 
transition from off to on states.

Inference based on steady-state mRNA 
levels

The preceding analysis was based on measurements 
of the rate of mRNA production. We now consider 
the case that experiments can only access the steady-
state distribution of mRNAs. A natural question that 
arises is: can we use steady-state measurements of 
mRNA levels to infer similar bounds on the number of 
promoter states? 

For the analysis based on the steady-state measure-
ments, we derive analytical expressions for the steady-
state mRNA moments for the model shown in figure 1. 
Consider first the mapping of gene expression process 
to models studied in the queuing theory as outlined in 
previous work [43, 53, 54]. In this mapping, mRNAs are 
the analogs of customers in a queue: the production of 
mRNAs is analogous to arrival of customers and deg-
radation of mRNAs is analogous to customers leaving 
the queue after receiving service. The waiting-time dis-
tribution for mRNA degradation is analogous to the 
customers service time distribution in queuing mod-
els. We will assume that distribution of degradation 
times for mRNAs is exponential. Furthermore, since 
each mRNAs degrades independently in the model, 
there are effectively an infinite number of servers in the 
corresponding queuing model. Correspondingly, the 
gene expression model as shown in figure 1 is a special 
case of the GI/M/∞ system in queueing theory: GI 
stands for a general waiting-time distribution for the 
inter-arrival times, M denotes Markovian service time 
distribution for the customers, and ∞ represents infi-
nite servers in the system.

Phys. Biol. 17 (2020) 015001
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For GI/M/∞ model, we can derive exact expres-
sions for the steady-state moments for the number of 
customers in the system [43, 53]. The expressions for 
the steady-state mean and Fano-factor for mRNA lev-
els are given by (see supplementary material B):

〈ms〉 =
km

µm
P1, Fs =

1

2

[
1 + Kg(µm)

]
,� (15)

where P1 is the steady-state probability that promoter is 
in the on state and Kg(µm) denotes the gestation-factor 
which characterizes the arrival process for mRNAs and 
is given by

Kg(µm) = 1 + 2

[
fL(µm)

1 − fL(µm)
− P1km

µm

]
,� (16)

with f L(s) denoting the Laplace transform of the 
waiting time distribution between successive arrivals 
of mRNAs.

We note that the gestation-factor Kg(µm) depends 
on the explicit form of the switching-time distribution 
(g(τ)), which is a general waiting time distribution. 
Let us consider a limiting case in which the parameter 
µm〈τ〉 � 1, wherein τ  is the random variable corre
sponding to the inter-arrival time for mRNAs, as con-
sidered in previous studies [47, 53]. In this limit, Kg 
can be approximated as Kg ≈ σ2

τ/〈τ〉2 [47, 53]. Corre
spondingly, the expression for Fano-factor is given by

Fs =
1

2

[
1 +

σ2
τ

〈τ〉2

]
=

1 + ηf

2
,� (17)

with ηf  as the noise associated with inter-arrival time 
distribution of mRNAs ( f (t)).

Note that this expression for the Fano-factor has 
been derived for the limiting case Kg ≈ σ2

τ/〈τ〉2. In 
this limit, we see that the Fano-factor Fs of mRNA 
steady-state levels is a minimum when the noise in 
the inter-arrival time distribution ηf  is minimum. As 
we have discussed in the previous section, for a fixed 
number of promoter states n, ηf  is minimum when the 
switching-time distribution g(τ) is a gamma distribu-
tion. So once again, we can use the gamma waiting-
time distribution to derive bounds based on the exper
imentally measured Fano factor.

Considering the case that g(τ) corresponds to 
the gamma distribution (equation (7)), using equa-
tions (10) and (15), we obtain:

〈ms〉 =
km

µm

(
R

β + R

)
; R = α/n,� (18)

and the steady-state the Fano-factor is given by

Fns = 1 +
km

µm


 1

1 + β
µm

(
1 −

(
1 + µm

nR

)−n
) − R

R + β


 .

� (19)

The above expression shows that Fano-factor decreases 
monotonically with n. Its maximum occurs at n  =  1 
which corresponds to the standard two promoter states 

scenario, and its minimum corresponds to n → ∞. 
The steady-state Fano factor is bounded between these 
two limiting cases:

F∞s<Fns � F1s ,� (20)

with F1s  and F∞s representing steady-state Fano factors 
for n  =  1 and n → ∞ cases, respectively. Using the 
general expression for the Fano factor, we can derive 
explicit expressions for these two bounds. For n  =  1, 
we get

F1s = 1 +
km

µm

[
1

1 + R
µm

+ β
µm

]
β

R + β
,� (21)

and for the case n → ∞ (using the fact that for n → ∞, 

(1 + µm

nR )
−n → e−

µm
R ), we obtain

F∞s = 1 +
km

µm

[
1

1 + β
µm

(
1 − e−

µm
R

) − R

R + β

]
.

� (22)
Now that we have derived upper and lower bounds 

for the steady-state Fano factor Fns, we can use these 
results to derive bounds on the minimum number of 
promoter states n using measurable quantities such as 
〈ms〉, Fns, P0 or R. Using the following relations:

β

µm
=

〈ms〉
〈b〉P1

,
km

µm
=

〈ms〉
P1

,
R

µm
=

〈ms〉
〈b〉P0

,� (23)

in combination with (19) leads to:

Fns = 1 +
〈ms〉
P1




1

1 + 〈ms〉
〈b〉P1

(
1 −

(
1 + 〈b〉P0

n〈ms〉

)−n
) − P1


 .

� (24)
The above result expresses the Fano-factor 

(for gamma waiting time distributions) in terms 
of experimentally measurable quantities P1, 〈ms〉, 
〈b〉. Now if we have n inactive promoter states, the 
experimentally measured steady-state Fano fac-
tor has to be greater than Fns , given that the gamma 
distribution has the least variance among all phase-
type distributions of order n. As in the previous 
section, we can determine the minimum number 
of promoter states using the inequality Fex < Fns 
(where Fex is experimentally measured value of Fano 
factor) which implies that the number of promoter 
states must be greater than n. Correspondingly, we 
derive the following inequality relating the num-
ber of inactive promoter states n to experimentally 
measurable quantities

(
1 +

〈b〉P0

n〈ms〉

)−n

> 1 +
〈b〉P1

〈ms〉
− 〈b〉

Fex + 〈ms〉 − 1
.

� (25)
The minimum number of promoter states involved 
in the transition from off to on states can now be 
determined using the largest integer satisfying the 
above inequality.

Phys. Biol. 17 (2020) 015001
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Conclusions

In conclusion, we have studied a gene expression model 
wherein promoter switching from a transcriptionally 
inactive state to an active state is characterized by a general 
waiting-time distribution. For this generic model of gene 
expression, we have derived analytical expressions for 
moments associated with mRNA levels for two scenarios 
corresponding to experimental measurements of mRNA 
production rates and steady-state levels in single cells. 
In both cases, we have obtained analytical expressions 
relating the Fano factor for mRNAs to properties 
derived from the waiting-time distribution for promoter 
switching. For the mRNA production rates case, the Fano 
factor of interest is directly related to the noise in the 
waiting-time distribution for successive mRNA arrivals. 
For the steady-state measurements case, an additional 
approximation is needed to connect the Fano factor to the 
noise in the waiting-time distribution. The results derived 
can then be used to set bounds on the minimal number of 
promoter states involved in the switching for inactive to 
active states, using experimentally measurable quantities 
in combination with theoretical results for the Fano factor 
corresponding to gamma waiting-time distributions. 
The significance of these results is that they elucidate 
that constraints on minimal complexity (in terms of the 
number of internal promoter states) needed to accurately 
model the system based on measurements of fluctuations 
in mRNA levels. The results derived can thus be used to 
develop minimal models of gene expression dynamics 
that are consistent with experimentally observed 
fluctuations in mRNA production.
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