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Abstract

Gene expression is an inherently stochastic process with transcription of mRNAs often occurring
in bursts: short periods of activity followed by typically longer periods of inactivity. While a
simple model involving switching between two promoter states has been widely used to analyze

transcription dynamics, recent experimental observations have provided evidence for more complex

kinetic schemes underlying bursting. Specifically, experiments provide evidence for complexity in
promoter dynamics during the switch from the transcriptionally inactive to the transcriptionally
active state. An open question in the field is: what is the minimal complexity needed to model
promoter dynamics and how can we determine this? Here, we show that measurements of mRNA
fluctuations can be used to set fundamental bounds on the complexity of promoter dynamics. We

study models wherein the switching time distribution from transcriptionally inactive to active
states is described by a general waiting-time distribution. Using approaches from renewal theory
and queueing theory, we derive analytical expressions which connect the Fano factor of mRNA
distributions to the waiting-time distribution for promoter switching between inactive and active
states. The results derived lead to bounds on the minimal number of promoter states and thus
allow us to derive bounds on the minimal complexity of promoter dynamics based on single-cell

measurements of mRNA levels.

Introduction

Gene expression in single cells is a stochastic process
involving multiple biochemical reactions which can
potentially give rise to large cell-to-cell variability in
the levels of mRNAs/proteins [1-21]. This intrinsic
randomness in gene expression can drive phenotypic
variations even in an isogenic population and is
known to play critical roles in cell-fate decisions and
diverse cellular processes [22]. The quantification of
molecular mechanisms involved in gene expression
is thus an important step in understanding variability
in cellular phenotypes and their responses to external
perturbations.

An important feature of gene expression in single
cells is that it can occur in a sporadic fashion, charac-
terized by synthesis of mRNAs in short bursts followed
by typically longer periods of inactivity. In recent
years, multiple experimental observations have pro-
vided evidence for such bursty synthesis of mRNAs

[23-30]. Such transcriptional bursting is known to
increase fluctuations in gene expression, and can thus
play a significant role in generating phenotypic vari-
ability in a clonal population of cells. At the simplest
level, the emergence of such bursting behavior can be
understood by analyzing a two-state promoter model,
also known as the standard model of gene expression
[7, 31-33]. The standard model of gene expression
posits that a promoter can exist in either a transcrip-
tionally inactive state (off state) or transcriptionally
active state (on state) with constant rates of switching
between promoter states. However, transcription is a
complex process involving multiple rate limiting steps
as reported in several theoretical and experimental
studies [34-40]. For example, recent experimental
observations on mammalian cells have provided evi-
dence for multiple rate-limiting steps between the
transition from the transcriptionally inactive state to
active state [7, 41, 42]. However, promoter switching
from the on state to the off state has been reported to
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occur with essentially a single rate-limiting step and
thus can be modeled by a constant switching rate [43].
An important open problem in the field is estimation
of the number of internal promoter states involved
in the switching between inactive to active promoter
states.

Recent research in nonequilibrium statistical
mechanics has led to the derivation of thermodynamic
inequality relations which set fundamental bounds on
dissipation based on observations of current fluctua-
tions [44—46]. A natural question that arises is: can we
derive similar relations for gene expression that can
bound the complexity of promoter dynamics based
on observations of current fluctuations? While previ-
ous studies have developed approaches for inference
of parameters of coarse-grained stchastic models of
gene expression using single cell measurements [47],
obtaining exact bounds on the number of promoter
states for general promoter models is still an open
problem. In this paper, we consider a general model
of gene expression for which we use approaches from
renewal theory and queueing theory to derive funda-
mental bounds on the minimal number of internal
promoter states based on observations of mRNA fluc-
tuations.

The paper is organized as follows. In the next sec-
tion, we discuss a model for stochastic gene expression
wherein promoter switching from its off to on state is
characterized by a general waiting-time distribution.
Next, we consider two cases of the model which lead
to bounds on the minimum number of internal states
involved in the switching process. First, we consider the
case that the number of mRNAs created can be exper-
imentally measured as a function of time in single cells
allowing us to directly estimate the rate of mRNA pro-
duction. The second case corresponds to experimental
measurements of steady-state mRNA levels in single
cells across the population of cells. For both cases, we
derive analytic expressions for the Fano-factor associ-
ated with mRNA copy numbers, which are then ana-
lyzed to estimate the minimum number of states pre-
sent in the promoter switching process. We conclude
with a summary of the results derived.

Model

The experimental observations discussed above [7,
41, 42] indicate that the waiting-time distribution
for promoter switching from off to on states is, in
general, non-exponential. However, we do not have a
canonical formula for the non-exponential waiting-
time distribution since it depends on the number of
internal states for the promoter, which can vary from
gene to gene. As experimental progress in single-
cell measurements has made it possible to count the
number of transcripts in different cells, it is of interest
to analyze if these measurements can contribute to
modeling the complexities of promoter dynamics. The
focus of this paper is to derive results that make use
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Figure 1. Schematic representation of gene expression
model characterized by a general switching time distribution
g(t)corresponding to transition of the promoter from an off
state to the on state, denoted by 0 and 1, respectively. Gene in
the on state either switches back to the off state with rate 5 or
synthesizes an mRNA with rate k,,,. The mRNA degradation
rate is denoted by pu,,.

of experimentally accessible measurements to derive
bounds on the number of internal states involved in
promoter switching from off to on states.

We consider the model shown in the figure 1 which
is based on experimental observations [7, 41, 42] and
has been used in previous studies [43]. The model
assumes that the promoter has a transcriptionally
inactive state (off state) and a transcriptionally active
state (on state). The promoter in the on state leads to
production of mRNAs with rate k,,, which can then
degrade with rate y,,. The promoter in the on state
can also switch back to the off state with rate /5. From
the off state, the promoter can transition between a
general number of internal transcriptionally inactive
promoter states before switching back to the on state.
The waiting-time distribution for switching from the
off state to the on state is represented by g(#), with the
notation g emphasizing that it is a general distribu-
tion. Note that while the waiting-time distribution is
general since the number of promoter states as well as
the switching rates between different promoter states
can be arbitrary, we are restricting ourselves to models
wherein the waiting-time distribution for switching
from one promoter state to the next is an exponential
distribution.This class of waiting-time distribution is
denoted in the queueing literature as phase-type dis-
tributions [48].In order to derive bounds on the num-
ber of promoter states, we will use this model for two
separate scenarios: first we will consider the case that
experimental measurements can access mRNA pro-
duction in single cells as a function of time. Hence the
rate of mRNA production can be directly estimated
from available experimental measurements. The sec-
ond scenario corresponds to the case that we can only
access the steady-state distribution of mRNAs across
the population of cells.

Inference based on rate of mRNA
production

We first consider the case that the mRNA production
rate in single cells can be measured experimentally.
For this case, the model discussed above (figure 1) will
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be used to estimate the number of promoter states
involved in the switching of gene from the off state to
the on state. To proceed, we note that, in the model,
creation of mRNAs is a renewal process since the
time interval between successive arrivals of mRNAs
is drawn from the same waiting-time distribution.
Correspondingly, the mean number of mRNAs created
in time # (in the long-time limit) is given by

(m(t)) = Piknt, (1)

where P; denotes the fraction of time (in the long-time
limit) that the promoter is in the transcriptionally
active on state and Pk, is the average rate of mRNA
production. Furthermore, following [49], the variance
of the number of mRNAs created in time ¢is given by:

2
] oy, e
where (7) is the mean time interval between successive
mRNA arrivals (i.e. renewals), and o2 is the variance
associated with the corresponding inter-arrival time
distribution. It is interesting to note that the Fano
factor associated with the number of mRNA arrivals,
F = ((m(t)*) — (m(t))*)/{m(t)) is given by the noise
associated with the corresponding inter-arrival time
distribution, i.e.

(m(t)) — (m(t))* = [

F = . (3)

In the following, we will use the Fano-factor associated
with mRNA arrivals to derive bounds for the number
of states involved in promoter switching from off to on
states.

To proceed further, we note that to derive an
expression for F, we need to determine the mean and
variance associated with the inter-arrival time distri-
bution (f(7)) between successive arrivals of mRNAs.
As discussed in previous studies [43, 50], an active
gene can either produce a mRNA in a single step (i.e.
without switching to off state) or complete multiple
cycles passing through the off state before producing
an mRNA. Calculations based on this set-up lead to the
following explicit expression for the inter-arrival time
distribution in the Laplace domain (s) [43]:

ki
okt s+ (1—g(s)8

with fi(s) and gi(s) representing the Laplace trans-
forms of the inter-arrival time distribution for
mRNA arrivals and the waiting-time distribution
for the promoter to switch from the off to the on state
respectively:

fr(s)

(4)

A9 = [ 10ean go = [ ge
0 0
(5)
Using equation (5), we can determine the first and
second moments of the inter-arrival time distribution
(f(¢)) and the promoter switching-time distribution
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(g(t)) in terms of the coefficients of s and s> when f;(s)
and g;(s) are expanded around s =0, respectively.
Using these moments, we obtain the following relation
between the noise in the inter-arrival time distribution
(n¢) and noise in the promoter switching-time
distribution ()

Bk
(5+5)

From this equation, we note that noise in the inter-
arrival time distribution for mRNAs, and hence the
corresponding Fano factor associated with mRNA
arrivals (equation (3)), depends on the noise in the
the promoter switching time distribution g(t). In
particular, if the mean rate of promoter switching
(1/(t,)) from off to on states is fixed, the Fano factor
of mRNA arrivals is a minimum when the noise in the
promoter switching-time distribution is minimized.

Let us now consider the case that the number of
transcriptionally inactive states (including the off state)
is set to a fixed value (n). In this case, the switching-
time distribution g(#) can be modeled as a phase-type
distribution of order n [48]. For fixed n and fixed mean
switching time between off and on state, we wish to
obtain bounds on n based on measurements of mRNA
fluctuations. We note that it has been shown that out of
all possible phase-type distributions (with fixed mean)
of order n, the gamma distribution is the one with the
minimum variance [51, 52]. Furthermore, variance of
the gamma distribution decreases monotonically with
n. This is helpful since it implies that if the variance of
the waiting-time distribution for switching between
off and on states (which can be estimated using exper-
imental measurements of mRNA fluctuations using
equation (3) above) is less than that of a gamma dis-
tribution of order 7, then the promoter must have at
least (n + 1) promoter states. Using this logic, as elabo-
rated in the following, we can derive general bounds of
the mimimal number of promoter states by analyzing
gamma waiting-time distributions. Correspondingly,
let us consider the case that g(¢) is given by a gamma
distribution with shape parameter n:

nr=1+ (1+m). ©)

ot 1 efoct

gt a,n) = T (7)

with o representing the rate associated with a single
step, and n denoting the number of steps. This,
focusing on the Fano factor for gamma switching-time
distributions allows us to set bounds on the Fano factor
for mRNA arrivals for any switching-time distribution
corresponding to fixed n.

For a gamma waiting time distribution with shape
parameter 7, the exact expression for the Fano-factor
(Fy) is given by (see see supplementary material A
(stacks.iop.org/PhysBio/17/015001/mmedia))

&+ Bn(nky + ky + Bn) + 208n

fa = (a + Bn)? ®
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In the above formula, F, is expressed in terms of the
model parameters, «, 8, n and k,,. However, to gain
further insight, it is desirable to express F, in terms
of quantities that are experimentally measurable.
In particular, consider the following quantities: the
steady-state probability of promoter being in the on
state P, the mean switching rate R of the promoter
from its off state to the on state, and the mean burst
size (D) i.e. the mean number of mRNAs created in
the on state just before the promoter switches back to
the off state. When the switching time distribution is
characterized by the gamma distribution, the mean
rate of promoter transition from the off to on state (R)
is given by

R= (9)

With mean switching rates R and 3, the promoter
changes stochastically between on and off states. In the
long-time limit, the probability that it is on is given by

R
TR+

To quantify bursting, we note that when the gene is in
the transcriptionally active on state, it can either switch
back to the off state with rate 8 or it can produce an
mRNA with rate k,,, i.e. the probability that the next
reaction for a transcriptionally active promoter is
switching to the off state is /(8 + k) whereas the
probability that the next reaction is production of
an mRNA is k,,/( + k). Thus the probability that
a promoter in the on state produces m number of
transcripts before it switches to the off state is given by
the geometric distribution:

kn 1" B
ﬂ+hJ Btk

Thus the mean number of mRNAs produced during
the burst is:

(0%
n

Py (10)

atm) = |

"~ k
mq(m) = 5 (11)

0
The above expressions for R, P and (b) will be used for
further analysis of the Fano-factor for mRNA arrivals.

Using equations (10) and (11) in equation (8),
we derive a simple expression for the Fano-factor of
mRNA arrivals (for a gamma waiting time distribu-
tion) in terms of the mean burst size ((b)) and the
probability of the promoter being in a transcription-
ally inactive state (P = 1 — Py):

m=

n+1

F,=1+ [ } Pi(b). (12)
Note that we are considering the case of fixed mean
switching rates § and R, which implies that Py is fixed
as well. Thus, the above expression shows that the
Fano-factor decreases monotonically with n with a
maximum at n = 1, i.e. Foo<F,, < F;. Furthermore,
since Foo = (1/2)(F; + 1), we can specify both the
lower and upper bounds just in terms of Fy, i.e.
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1

2

It is convenient to group together the exper-

imentally measurable quantities and to rewrite equa-
tion (12) as follows:

(F\ + 1)<F, < F,. (13)

F,—1 1
Fn = P05) =1+, (14)

which implies that the preceding inequality can be
rewrittenas1<J,, < 2.

The significance of the above result is the follow-
ing. Let us consider the experimental analog of F, (call
it F..), which has the experimental Fano factor F,,
replacing F, in the preceding equation. To set bounds
on the number of promoter states, we need to deter-
mine the largest integer n value such that F,, < F,, .
Since the gamma distribution of order # has the low-
est variance among all phase-type distributions of
order n, and furthermore since F, decreases mono-
tonically with n, this implies that the promoter must
have at least (n + 1) transciptionally inactive states if
Fox < Fn. Thus measurements of the Fano factor for
mRNA arrivals can now be used to set bounds on the
minimum number of promoter states involved in the
transition from off to on states.

Inference based on steady-state mRNA
levels

The preceding analysis was based on measurements
of the rate of mRNA production. We now consider
the case that experiments can only access the steady-
state distribution of mRNAs. A natural question that
arises is: can we use steady-state measurements of
mRNA levels to infer similar bounds on the number of
promoter states?

For the analysis based on the steady-state measure-
ments, we derive analytical expressions for the steady-
state mRNA moments for the model shown in figure 1.
Consider first the mapping of gene expression process
to models studied in the queuing theory as outlined in
previouswork[43,53,54].In thismapping, mRNAsare
the analogs of customers in a queue: the production of
mRNAs is analogous to arrival of customers and deg-
radation of mRNAs is analogous to customers leaving
the queue after receiving service. The waiting-time dis-
tribution for mRNA degradation is analogous to the
customers service time distribution in queuing mod-
els. We will assume that distribution of degradation
times for mRNAs is exponential. Furthermore, since
each mRNAs degrades independently in the model,
there are effectively an infinite number of servers in the
corresponding queuing model. Correspondingly, the
gene expression model as shown in figure 1 is a special
case of the GI/M /oo system in queueing theory: GI
stands for a general waiting-time distribution for the
inter-arrival times, M denotes Markovian service time
distribution for the customers, and oo represents infi-
nite servers in the system.

4
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For GI/M /oo model, we can derive exact expres-
sions for the steady-state moments for the number of
customers in the system [43, 53]. The expressions for
the steady-state mean and Fano-factor for mRNA lev-
els are given by (see supplementary material B):

kpn 1
<ms> =—P, F, = 5 [1+Kg(ﬂm)] > (15)
m
where P is the steady-state probability that promoter is
in the on state and K, (44, ) denotes the gestation-factor
which characterizes the arrival process for mRNAs and
is given by

ﬁ(um) _ Pk,
1 — fo(ftm) Hom ’

with fi(s) denoting the Laplace transform of the
waiting time distribution between successive arrivals
of mRNAs.

We note that the gestation-factor K (i) depends
on the explicit form of the switching-time distribution
(g(7)), which is a general waiting time distribution.
Let us consider a limiting case in which the parameter
1 (T) < 1, wherein 7 is the random variable corre-
sponding to the inter-arrival time for mRNAs, as con-
sidered in previous studies [47, 53]. In this limit, K,
can be approximated as K, ~ o2 /(7)*[47,53]. Corre-
spondingly, the expression for Fano-factor is given by

1 o? 1+
Fo==- 14— |=—"1
2[ * <T>2} 2 (17)

with 7 as the noise associated with inter-arrival time
distribution of mRNAs (f(¢)).

Note that this expression for the Fano-factor has
been derived for the limiting case Ky ~ 02 /(7)% In
this limit, we see that the Fano-factor F; of mRNA
steady-state levels is a minimum when the noise in
the inter-arrival time distribution 7 is minimum. As
we have discussed in the previous section, for a fixed
number of promoter states 7, 7y is minimum when the
switching-time distribution g(7)is a gamma distribu-
tion. So once again, we can use the gamma waiting-
time distribution to derive bounds based on the exper-
imentally measured Fano factor.

Considering the case that g(7) corresponds to
the gamma distribution (equation (7)), using equa-
tions (10) and (15), we obtain:

(mg) = o (R
Y \B+R
and the steady-state the Fano-factor is given by

Ke(jim) = 1+2 (16)

); R=a/n, (18)

ki 1 R
F,=1+-2

1+ 2 (1= (14 )™ RES
(19)
The above expression shows that Fano-factor decreases
monotonically with 7. Its maximum occurs at n = 1
which corresponds to the standard two promoter states
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scenario, and its minimum corresponds to #n — co.
The steady-state Fano factor is bounded between these
two limiting cases:

Foos<Fns < F157 (20)

with F; and Fo,_ representing steady-state Fano factors
for n =1 and n — oo cases, respectively. Using the
general expression for the Fano factor, we can derive
explicit expressions for these two bounds. For n =1,
we get

kin

F =1+-2
Lo

1

R 4 B
Tt

B
R+ 5

(21)

and forthe casen — oo (usingthe fact thatforn — oo,

14 &e)=r — e~ %), we obtain

k

Fooo =1+ —
[m

1 R
1+ 2 (1—e*) R+p

(22)

Now that we have derived upper and lower bounds

for the steady-state Fano factor F,, we can use these

results to derive bounds on the minimum number of

promoter states n using measurable quantities such as
(mg), F,,,, Py or R. Using the following relations:

B (ms)  kn _ (ms) R _ (my)

£ - LA e T , (23
Hm <b>Pl Hm Py pim <b>P0 3)
in combination with (19) leads to:
F, =1+ %15) 1 —~ - P
e (- ) )
(24)

The above result expresses the Fano-factor
(for gamma waiting time distributions) in terms
of experimentally measurable quantities P;, (my),
(b). Now if we have n inactive promoter states, the
experimentally measured steady-state Fano fac-
tor has to be greater than F,, given that the gamma
distribution has the least variance among all phase-
type distributions of order n. As in the previous
section, we can determine the minimum number
of promoter states using the inequality F,., < F,
(where F,, is experimentally measured value of Fano
factor) which implies that the number of promoter
states must be greater than n. Correspondingly, we
derive the following inequality relating the num-
ber of inactive promoter states n to experimentally
measurable quantities

(1+82) "5 n

n(ms) -

(ms) Pt (mg) — 17

(25)
The minimum number of promoter states involved
in the transition from off to on states can now be
determined using the largest integer satisfying the
above inequality.
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Conclusions

In conclusion, we have studied a gene expression model
wherein promoter switching from a transcriptionally
inactive state to an active state is characterized by a general
waiting-time distribution. For this generic model of gene
expression, we have derived analytical expressions for
moments associated with mRNA levels for two scenarios
corresponding to experimental measurements of mRNA
production rates and steady-state levels in single cells.
In both cases, we have obtained analytical expressions
relating the Fano factor for mRNAs to properties
derived from the waiting-time distribution for promoter
switching. For the mRNA production rates case, the Fano
factor of interest is directly related to the noise in the
waiting-time distribution for successive mRNA arrivals.
For the steady-state measurements case, an additional
approximation is needed to connect the Fano factor to the
noise in the waiting-time distribution. The results derived
can then be used to set bounds on the minimal number of
promoter states involved in the switching for inactive to
active states, using experimentally measurable quantities
in combination with theoretical results for the Fano factor
corresponding to gamma waiting-time distributions.
The significance of these results is that they elucidate
that constraints on minimal complexity (in terms of the
number of internal promoter states) needed to accurately
model the system based on measurements of fluctuations
in mRNA levels. The results derived can thus be used to
develop minimal models of gene expression dynamics
that are consistent with experimentally observed
fluctuations in mRNA production.
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