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The action spectrum characterizes closed contact 3-manifolds
all of whose Reeb orbits are closed
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Abstract. A classical theorem due to Wadsley implies that, on a connected contact manifold
all of whose Reeb orbits are closed, there is a common period for the Reeb orbits. In this paper
we show that, for any Reeb flow on a closed connected 3-manifold, the following conditions are
actually equivalent: (1) every Reeb orbit is closed; (2) all closed Reeb orbits have a common
period; (3) the action spectrum has rank 1. We also show that, on a fixed closed connected
3-manifold, a contact form with an action spectrum of rank 1 is determined (up to pull-back by
diffeomorphisms) by the set of minimal periods of its closed Reeb orbits.
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1. Introduction

A much studied problem in Riemannian geometry asks to what degree a Riemannian
manifold is determined by its length spectrum, that is, the set of lengths of its closed
geodesics. It is known that the length spectrum does not in general recover the
metric, but more refined conjectures and results exist, see for example [10, 15, 24]
and references therein.

In contact geometry, an analogous question exists, but little is known. Recall that
a contact form on a closed (2n + 1)-manifold Y is a 1-form A such that A A (dA)”
is a volume form on Y. The kernel of dA is then generated by a unique vector
field R, such that A(R)) = 1, called the Reeb vector field, which defines a Reeb
flow ¢3:Y — Y. AReeb orbit y:R — Y, y(t) = ¢} (2) is said to be closed if it is
t-periodic for some t > 0, i.e. y(¢t) = y(¢t 4+ ) forall t € R. As usual, the minimal
period of a closed Reeb orbit y is the minimal T > 0 such that y is t-periodic; the
multiples of such t will be simply called periods of y. The subset (Y, 1) C (0, c0)
consisting of the (not necessarily minimal) periods of the closed Reeb orbits of ¢i is
the action spectrum of the contact manifold, whereas its subset o,(Y,A) S o(Y, 1)
consisting of the minimal periods of the closed Reeb orbits of d)i is the prime action
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spectrum. One can now ask to what degree we can characterize A from its action
and prime action spectra. In the present note we establish some positive results in
dimension 3.

1.1. Setup and main results. A contact form A is called Besse when every orbit of
its Reeb flow is closed. Our first result states that one can recognize whether a contact
form on a closed connected 3-manifold is Besse from its action spectrum. We define
the rank of the action spectrum o (Y, A) to be the rank of the Z-submodule of R that it
generates (this is the same as the rank of the submodule generated by the prime action
spectrum o, (Y, A)). In particular, o(Y, A) has rank 1 if and only if it is contained in
a subset of the form {nT | n € N} for some T > 0.

Theorem 1.1. Let (Y, L) be a closed connected 3-manifold equipped with a contact
Jorm. The following conditions are equivalent:

(i) The contact manifold (Y, A) is Besse.

(ii) The closed orbits of the Reeb flow gbi have a common period, i.e. there is T > 0
such that ©/t" is an integer for all " € 0,(Y, A).

(iii) The action spectrum o (Y, A) has rank 1.

The fact that the closed Reeb orbits of a Besse contact manifold admit a common
period, and thus that the action spectrum has rank 1, is a consequence of a classical
theorem due to Wadsley [30], together with Sullivan’s remark [28] that Reeb flows
are geodesible. The novelty, here, is the reverse implication, namely that the fact that
the action spectrum has rank 1 forces a contact form to be Besse.

A contact form A is called Zoll when it is Besse and its closed Reeb orbits have
the same minimal period. Namely, when there exists 7 > 0 such that ¢X = id, and
for all + € (0, 7) the map (]bjL has no fixed points. Theorem 1.1 has the following
immediate corollary.

Corollary 1.2. A closed contact 3-manifold is Zoll if and only if its closed Reeb
orbits have the same minimal period. O

Remark 1.3. In [21, Question 1.2], the second author and Suhr asked whether a
reversible contact form on the unit cotangent bundle of any surface must be Zoll if all
its closed Reeb orbits have the same minimal period. (The motivation for this comes
from the connection between the contact geometry of the unit cotangent bundle and
Riemannian and Finsler geometry, which we say more about below.) Corollary 1.2
answers this in the affirmative, and without the reversibility requirement on the contact
form.

To the best of the authors’ knowledge, for general higher dimensional closed
contact manifolds it is not known whether the Besse or the Zoll properties can be
read off from the action spectra.
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Question 1.4. Let (Y, A) be a closed contact manifold of dimension n > 5. If all
its closed Reeb orbits have the same minimal period, is A necessarily Zoll? If Y is
connected and the action spectrum o (Y, 1) has rank 1, is A necessarily Besse?

By Theorem 1.1, from the action spectrum one can determine whether or not
a contact form on a closed connected 3-manifold is Besse. However, it is not
possible to recover the contact form (up to pull-back by diffeomorphisms) from
the action spectrum in the Besse case. For example, the standard 1-form Ay =
% Y iz12(xidy; — yidx;) on R# restricts as a contact form to the boundary of any
symplectic ellipsoid

2 2
TT|Z1 TT|Zp

E(a,b) = <1\ cC? =R*

Its Reeb flow always has two closed orbits of minimal period @ and b. When b/a
is rational, the contact form is Besse and the other closed Reeb orbits have minimal
period lem(a, b). Thus, dE(1, 1) and dE(1,2) have the same action spectrum, but
their contact forms cannot be diffeomorphic. We can distinguish these ellipsoids,
however, through the prime action spectrum. Indeed, our next theorem states that, in
the Besse case, the prime action spectrum always determines the contact form up to
pull-back by diffeomorphisms.

Theorem 1.5. Let Y be a closed connected 3-manifold, and A1, A, two Besse contact
forms onY. Then o,(Y, A1) = 0p(Y, A2) if and only if there exists a diffeomorphism
Y:Y — Y such that y*Ay = Aq.

In the Zoll case, Theorem 1.5 was proved by Abbondandolo et al. [1,2] for S3
and SO(3), and by Benedetti-Kang [6, Lemma 2.3] for general S'-bundles over
closed surfaces.

Remark 1.6. Theorems 1.5 and 1.1 in combination provide a spectral recognition
result: the contact form of a fixed closed connected 3-manifold can be recovered
from its prime action spectrum, provided its action spectrum has rank 1. In higher
rank, however, the same cannot in general be done. For example, in [4, Theorem 1.2]
Albers—Geiges—Zehmisch construct a contact form A on S* whose Reeb flow has
a dense orbit and only two closed orbits. The minimal periods ¢ and b of these
two orbits are rationally independent. So, the action spectrum o (S3, 1) is the same
as 0(dE(a,b), Aqq), but there is no diffeomorphism v: S* — 3E(a, b) such that
A =Y* g

1.2. Finsler geometry. Theorem 1.1 and Corollary 1.2 apply in particular to Finsler
geodesic flows of 2-spheres. We recall that a Finsler metric on a closed manifold M
is a continuous function F:TM — [0, c0) that is smooth outside the O-section,
fiberwise positively homogeneous of degree 1, and such that d,, F2(x, v) is positive
definite at every point (x, v) outside the 0-section. The Finsler metric F is reversible
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when F(x,v) = F(x,—v) for all (x,v) € TM, and Riemannian when it is of the
form F(x,v) = gx (v, v)!/? for some Riemannian metric g on M. The geodesic flow
of (M, F) is precisely the Reeb flow of (SM, 1), where 7: SM — M is the F-unit
tangent bundle of M and A is the Liouville form A (x ,)(w) = 0, F (x, v) dz(x, v)w.
The action spectrum o (S M, 1) is the usual length spectrum of (M, F'), and is denoted
by 6 (M, F). The Finsler metric F is Besse or Zoll if the associated Liouville form A
is so.

In [21], the second author and Suhr established (a slightly stronger version of)
Corollary 1.2 for geodesic flows of Riemannian 2-spheres. Theorem 1.1 actually
implies the following more general corollaries for Finsler geodesic flows of surfaces.

Corollary 1.7. Let (M, F) be a closed connected orientable Finsler surface. The
length spectrum o (M, F) has rank I ifand onlyif M = S? and F is Besse. Moreover,
if F is reversible, the length spectrum o (M, F) has rank 1 if and only if M = S?
and F is Zoll.

Remark 1.8. The reversibility assumption in the second part of this statement is
essential. Indeed, certain of the so-called Katok’s metrics on the 2-sphere [31] are
examples of non-reversible Finsler metrics that are Besse but not Zoll.

Proof of Corollary 1.7. The fact that the length spectrum of a Finsler closed
connected surface has rank 1 if and only if the metric is Besse follows from
Theorem 1.1. A theorem due to Frauenfelder—Labrousse—Schlenk [11], which
extends the classical Bott—Samelson Theorem [7,27] from Riemannian geometry,
implies that F can be Besse only if the fundamental group of M is finite and
the integral cohomology ring of the universal cover of M agrees with that of a
compact rank-one symmetric space. The only closed orientable surface M with
these properties is S2. Finally, a Besse reversible Finsler metric on S? is Zoll
according to a theorem of Frauenfelder—Lange—Suhr [12], which generalizes the
classical Riemannian result of Gromoll-Grove [14]. L]

Corollary 1.9. Let (M, F) be a closed connected non-orientable Finsler surface.
The length spectrum o (M, F) has rank 1 if and only if M = RIP? and F is Besse.
Moreover, if F is Riemannian, the length spectrum o (M, F) has rank 1 if and only
if M = RPP? and F is Riemannian with constant curvature (in particular, F is Zoll).

Proof. Let M’ be the orientation double cover of M, and F':TM’ — [0, 00) the
lift of F. By Corollary 1.7, F’ is Besse if and only if o(M’, F') has rank 1 and
M’ = §2. Notice that M’ = S? if and only if M = RP?. The length spectra satisfy
oc(M',F') C o(M,F)and 20(M, F) C o(M’, F'); in particular, 6 (M’, F’) has
rank 1 if and only if the same is true for o (M, F). Moreover, F' is Besse if and
only if the same if true for F'. This proves the first part of the statement. Finally, a
Riemannian metric on RP? is Besse if and only if it has constant curvature, according
to a theorem of Pries [25]. ]
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1.3. Relationship with previous work and organization of the paper. A corollary
of Theorem 1.1 is that any contact form on a closed 3-manifold has at least two distinct
closed embedded Reeb orbits. This was previously proved by the first author and
Hutchings [8] using embedded contact homology. Our proof of Theorem 1.1 uses a
similar method; the main difference here is a strengthening of one of the key lemmas
in that paper, see our Lemma 3.1 below. In contrast, the proof of Theorem 1.5 does
not require embedded contact homology, but instead makes use of the classification
of Seifert fibered spaces, in combination with a Moser trick in Lemma 4.5.

The paper is organized as follows. In Section 2 we provide the needed background
on embedded contact homology. In Section 3, we prove our main Theorem 1.1; in the
proof, we will need a slightly stronger version of the bumpy contact form theorem,
which we state and prove in Appendix A. In Section 4, after introducing the needed
preliminaries on Seifert fibered spaces, we prove Theorem 1.5.

Acknowledgements. The authors are grateful to the anonymous referee for her/his
careful reading of the manuscript, and for pointing out the statement of Corollary 1.9.
Daniel Cristofaro-Gardiner is partially supported by the National Science Foundation
under Grant No. 1711976. Marco Mazzucchelli is partially supported by the
National Science Foundation under Grant No. DMS-1440140 while in residence
at the Mathematical Sciences Research Institute in Berkeley, California, during the
Fall 2018 semester.

2. Background on Embedded Contact Homology

In this section we will recall the essential features of embedded contact homology
that will be needed in order to prove Theorem 1.1. The interested reader will find a
detailed account and precise references in Hutchings’ survey [17].

2.1. The chain complex. Let (Y, £) be a closed connected oriented contact manifold
of dimension 3. Throughout this paper, the contact distribution § C TY is assumed
to be cooriented, and as usual we will call a 1-form A on Y a supporting contact form
of &£ whenker(1) = £ and A induces the orientation of TY /&. The 2-form dA will then
induce an orientation on &. The contact form A is called bumpy when, for each 7 > 0
and z € fix(¢}), 1 is not an eigenvalue of the linearized Poicaré map d¢; (z)[¢. We
will write the symplectization of our contact manifold as (R x Y, d(e’A)), where s is
the variable on R. The embedded contact homology group ECH(Y) is a topological
invariant obtained as the homology of a chain complex (ECC(Y, 1), dy 5, 7), where A
is a bumpy supporting contact form of (Y, £), and J is an almost complex structure on
(RxY,d(eSA)) suchthat JR) = %, J& =&, dA(v, Jv) > Oforeachnon-zerov € §,
and J is chosen generically in order to satisfy suitable technical assumptions. The
chain group ECC(Y, 1) is the Z,-vector space freely generated by finite sets of
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pairs {(m;,y;) |i = 1,...,k}, where k € N, the y; are distinct simple closed orbits
of the Reeb flow ¢, and m; is a positive integer required to be equal to 1 if y; is
hyperbolic. Here, by “simple” we mean that the closed Reeb orbits y; are viewed as
maps of the form y;: R/t;Z — Y, where t; > 0 is the minimal period of y;. Two
simple closed Reeb orbits y;, y; are distinct if they are not of the form y; = y,; (- +5)
for any s > 0. The definition of the differential dy , ; involves counting certain
J -holomorphic curves in the symplectization of (Y, 1), but will not be needed in the
present paper.

2.2. The U map. The embedded contact homology comes equipped with an endo-
morphism

U:ECH(Y) — ECH(Y)

defined as follows. Let y ={(m;,y;) |i=1,....k}and E={(n;, &) |i=1,...,1}
be two chains in ECC(Y,A). Let (¥, ) be a punctured Riemann surface, and
u: % — R x Y a J-holomorphic curve that is asymptotic as a current to ), m;y;
and ) ; n;{; as s — oo and s — —oo respectively. We denote by M(J, y, ) the
space of such J-holomorphic curves modulo equivalence as currents. Notice that,
for every u € M(J, p, ), we have

k I
/Eu*dk = Zmia‘\vx(%‘) - Znid‘\vx(fi)-

i=1 i=1

Here, #, denotes the contact action
) = [ 2.
Y

If y is a simple closed Reeb orbit, 4, (y) is simply its minimal period. To every
u € M(J,y,¢) there is an associated integer which is called the ECH-index, and
whose definition will not be needed in the present paper. For a given z € Y, we
denote by M3 (J,y.§) C M(J,p, &) the subset of those u: ¥ — R x Y having
ECH-index 2 and whose image u(X) passes through (0, z). The condition on the
ECH index implies that, if J is chosen generically, then M» ;(J, p, §) is a finite set.
The endomorphism

U:ECC(Y,A) > ECC(Y.2). U:(p)= > (#Ma:(J.y.{) mod2)¢
£E€ECC(Y,M)

turns out to be a chain map that induces the endomorphism U in embedded contact
homology. Notice that U, depends on the chosen point z, on the contact form A, and
on the almost complex structure J, whereas U is a topological invariant of Y.
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2.3. Spectral invariants. Given a supporting contact form A on a closed contact
3-manifold (Y, &), we denote by X (Y, 1) C (0, c0) the set of real numbers that are
finite sums of elements in the action spectrum o (Y, 1), i.e.

TN ={u++ul|k=1lneoA) Vi=1,...k}

The chain complex (ECC(Y, 1), dy,x,7) can be filtered by means of the action as
follows. For each t > 0, let ECC*(Y, A) be the vector subspace of ECC(Y, A)
generated by those y = {(m;,y;) | i = 1,...,k} such that

k
Ar(y) =) miAy(yi) <.

i=1

Since the boundary map dy,;_; does not increase the action, (ECC*(Y, 1), dy . ) is
a subcomplex of (ECC(Y, 1), dy,5.s), whose homology is denoted by ECH* (Y, 1).
As the notation suggests, this latter group turns out to be independent of the almost
complex structure J. There is an inclusion induced map

(*:ECH* (Y, A) — ECH(Y).

Each non-zero 0 € ECH(Y) defines a spectral invariant cs(¥Y,A) € Z(Y,A) as
follows. If A is bumpy, then ¢, (Y, 7A) is the minimal T > 0 such that o admits
a representative in ECC*(Y, A), in other words such that ¢ is in the image of
the map (*. If A is not bumpy, we can choose a sequence of smooth functions
bp:Y — R, C%-converging to zero and such that each contact form e?7 1 is bumpy
(see Proposition A.1); in this case, the sequence co (Y, e?” 1) converges and the
spectral invariant ¢4 (Y, A) is defined as its limit, i.e.

co(Y.2) = lim_ co (Y, eP1). 2.1)

The following statement due to the first author and Hutchings provides the only
property of spectral invariants needed in this paper. It is an application of the Volume
Property for the ECH spectrum proved in [9].

Lemma 2.1 ([8, Cor. 2.2]). There exists a sequence {ox | k € N} of non-zero
elements in ECH(Y) such that Uoyy, = oy and co, (Y, A)/k — 0 as k — oo for
each supporting contact form A of (Y, §). O

3. ECH-spectral characterization of Besse contact forms

The following statement, which improves [8, Lemma 3.1(b)] while following a similar
logic, is the main ingredient for proving Theorem 1.1.
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Lemma 3.1. Let (Y, A) be a closed connected contact 3-manifold equipped with a
contact form. If cs(Y, 1) = cyos (Y, A) for some 0 € ECH(Y) with Ua # 0, then
(Y, A) is Besse.

Proof. Assume that (Y, 1) is not Besse, so that there exists z € Y such that ¢ (z) # z
for all ¢t # 0. We set ¢ := ¢5(Y, ), and fix an arbitrary real number T > c¢. Let
3 C Y be an embedded compact ball of codimension 1 containing z in its interior and
suchthat T; X = &,, where £ = ker(1) is the contact distribution. Up to shrinking X
around z, the map

Vi[-1/2,1/2l x> Y, Y(r,w) = ¢5(w)

is a diffeomorphism onto its image K := ¥ ([—t/2, t/2] x ¥). Namely, K is a flow
box for the Reeb flow ¢} containing orbits of length 7.

We fix an almost complex structure J on the symplectization (R x Y, d(e*A))
such that JR; = %, J& = &, and dA(v, Jv) > O for all non-zero v € £. By
Proposition A.1, there exists a sequence b, € C*°(Y) such that b,|x =0, b, — 0
in C%and A,, := e is a bumpy contact form. Since A,, = A on K, this latter set is
also a flow box for the Reeb flows ¢in. In particular, none of the closed orbits of ¢in
with minimal period at most 7 intersects K. Therefore, we can choose an almost
complex structure J, on the symplectization (R x Y, d(e*A,)) such that J, = J
on R x K, and J, is sufficiently generic to define the differential of the complex
(ECC*(Y, Ay), dy.2,.7,) and the endomorphism U,: ECC*(Y, A,) — ECC*(Y, A,).

We consider an arbitrary cycle y, € ECC*(Y, A,) such that 0 = (*([y,]) and
cs (Y, Ap) = 4y, (y,). Equation (2.1) implies that A, (y,,) — co(Y,A) asn — oo.
In order to conclude the proof, we need to show that there exists § > 0 such that

Ay, Vn) — A, (Uzy,) =8, VneN.
Indeed, this implies that
cus(Y,A) = lim cys (Y, A,) < lim fA)/ln (Uzyn)
n—>oo n—>oo
< lim A, (y,) —6 =co(Y.A) = 6.
n—>oo
Assume by contradiction that

Up to extracting a subsequence, we can actually assume that

Jim (A, (r,) = Az, (Uzy,)) = 0. (3.1)
We choose, for each n € N, a J,-holomorphic curve u,: 3, — R x Y in the moduli
space Mz (Jn, ¥, Uz¥,). We set C, := u,(X,), and from now on we will not
distinguish between the map u, and its image C,,. Notice that

/C dA, = An, (¥,) — A, (Uzy,). (3.2)

and in particular this quantity is uniformly bounded in n. Since J, = J on R x K,
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the intersections C, N ([—1, 1] x K) are J-holomorphic curves. Since dA, = dA is
non-negative on C, N ([—1, 1] x K), Equations (3.1) and (3.2) imply that

lim dl =0, 3.3)
n—=> Jc,n(-1,1]xK)

and that this integral is uniformly bounded in n. Let sg € [-2,—1] and 57 € [1, 2] be
such that u,, is transverse to {sq, 51} xY . Since bothd(e®A,) and dA, are non-negative
on C, by the conditions on J,, we have the uniform bound

/ d(eX) < / d(e*Ay)
CnN([-1,1]xK) CnN([s0,51]xY)

= 51 / An _eSo/ An
CnN({s1}xY) CnN({s0}xY)

< ez(/ An +/ d)kn)
CnN({s1}xY) CnN([s1,00)xY)

= ezdmn Y, < e2co (Y, 1) + 1

for all n € N large enough. We can thus employ a compactness result due to
Taubes [29, Prop. 3.3], in its version [8, Prop. 3.2], and infer that, up to extracting a
subsequence, the sequence C,, N ([—1, 1] x K) converges in the sense of currents to
a compact J-holomorphic curve C C [—1, 1] x K with boundary in d([—1, 1] x K),
and (0, z) € C. Equation (3.3) thus implies

[ar=o
c

and therefore C must have a component of the form [—1,1] x ¢£_r/ 27/21(z). In

particular
/ A>1, Vsel[-1,1].
CN({sIxK)

We fix an arbitrary t” € (¢, (Y, A), ). Foreachn € N, we choose apoint s, € [—1, 1]
such that u, is transverse to {s,} x Y, and we orient the intersection using the
“R-direction first” convention. By the conditions on J,, the contact form A, is
non-negative along the oriented 1-manifold C,, N ({s,} x Y). Therefore, since
C, N ([—1,1] x K) — C in the sense of currents, up to removing sufficiently many
elements from the sequence {C, | n € N} we have

/ /\,,2/ A, >1t', VneN.
CnN({sn}xY) CnN({sn}xK)

However, if we choose n large enough so that 4, (y,) < t/, we have

/ A, < / Ay —l—/ dA, = Ay, (¥,) < 7',
CnN({sn}xY) CnN({sn}xY) CnN([s5,00)xY)

which gives a contradiction. O
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Proof of Theorem 1.1. We already know that (i) implies (ii) by Wadsley’s theo-
rem [30]. Assume now that our closed connected contact 3-manifold (Y, § = ker(1))
satifies (ii). We denote by t > 0 a common period for the closed Reeb orbits.
Every closed orbit y of the Reeb flow ¢i has minimal period t/k, for some
k, € N = {1,2,3,...}. Since Y is compact and the Reeb vector field of (¥, A)
is nowhere vanishing, there is a uniform lower bound for the minimal periods of the
closed orbits of ¢i. In particular, the set

K := {k, | y closed orbit of ¢} }

is finite. If we denote by k € N a common multiple of the natural numbers in K, we
readily see that the period of each closed orbit of the Reeb flow ¢} must be a multiple
of t/k. This implies (iii).

Finally, let us assume that (Y, A) satisfies (iii). By Lemma 2.1, there exists a
sequence {0y | k € N} of non-zero elements in ECH(Y, &, ") such that Uog 41 = o
and cg, (Y, A)/k — 0ask — oo. If ¢g (Y, A) # o, (Y, ) forall k € N, then

CUk+1 (Ya A') E CO’k (Y, A) + T7
where T > 0is such that 6(Y, 1) C {nT | n € N}. However, this would imply that

liminfcq, (Y,A)/k > T >0,
k—00

which is a contradiction. Therefore we must have ¢q, ,, (Y, 1) = ¢q, (¥, A) for some
(and indeed for infinitely many) k € N. By Lemma 3.1, we conclude that (Y, 1)
is Besse. O

Recent results of the second author and Suhr, [21, Theorem 3.1] and [22,
Theorem 1.2], provide a min-max characterization of certain Zoll Riemannian
manifolds by employing Morse-theoretic spectral invariants for the length and energy
functionals on the loop space. In the same spirit, the proof of Theorem 1.1 also
provides the following ECH-spectral characterization of Besse contact forms.

Theorem 3.2. A closed connected contact 3-manifold (Y, L) is Besse if and only if,
for some 0 € ECH(Y ) with Uo # 0, we have c; (Y, L) = cus(Y, A). O

4. Besse contact forms and Seifert fibrations

4.1. The Morse-Bott property. Let us recall that a closed connected Besse contact
manifold (Y, 1) of any dimension 2n + 1 > 3 has Morse—Bott closed orbits. By the
already mentioned Wadsley’s Theorem [30], there exists a minimal T > 0 such that
the Reeb flow satisfies ¢; = id. Therefore, each point z € Y lies on a closed Reeb
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orbit of minimal period 7, = t/a;, for some o, € N. For each ¢ € N, we define a
compact subset
Ko = fix(¢]/®) C V.

Since the Reeb vector field R, is nowhere vanishing, there exists a finite subset
F C N suchthat K, # @ if and only if & € . Let gg be a Riemannian metric on Y
such that go(R,,-) = A. Its average

e
g:=—/ (@L)* go dr
T Jo

is a Riemannian metric that still satisfies g(R,,-) = A and is invariant under the
Reeb flow, i.e. (¢})*g = g. Since ¢1/ % is a g-isometry, its fixed-point set K, is a
closed submanifold of ¥ with tangent spaces

T, Ky = ker (d¢/*(2) —id),

see [19, Theorem 5.1]. The linearized map d¢;/ *(2)|g, is a symplectic endomor-

phism of the symplectic vector space (§,,dA;|¢. ), where § := ker(A). Therefore, the

eigenvalue 1 € a(ddﬁ/ *(2)]g,) has even algebraic multiplicity. Since dd);/ *(2)e.

is an a-th root of the id/entity, this algebraic multiplicity is equal to the geometric
T/

multiplicity dimker(d¢,"” (z)|¢. — id). This, together with the fact that

dpY*(2)Ra(2) = Ra(2),

proves that dim(T;Ky) is odd, and thus that K, is an odd-dimensional closed
manifold.

4.2. Seifert fibrations. We now assume that our Besse closed connected contact
manifold (Y, A) has dimension 3. Therefore, the subsets K, with o € F \ {1}
are finite disjoint unions of embedded circles. If F \ {1} # @, the complement
Y \ K, where K := Ugyep\{1}Kq, is an open Zoll contact manifold. The Reeb
flow on Y defines a locally free R/tZ-action on Y, whose quotient X, can be
given the structure of a closed orientable surface of some genus g > 0. The
quotient map 7:Y — X, is not a genuine circle bundle if (Y, A) is not Zoll, but
it is still a Seifert fibration. Namely, if {xy,...,x,} := w(K), for each x; there
are associated parameters o, 8 j,a}, ,B’] €Z with the following properties. The
parameter o; > 1 is such that 77! (x;) C K,;. Therefore, 7' (x;) is a closed
Reeb orbit of minimal period 7/« ;. Both pairs («;, B;), (a;. , ,3;.) are coprime, and
form an integer matrix with determinant a; 8; — o, 8; = 1. The point x; possesses
a compact disk neighborhood D; C X, that we identify with the unit ball in the
complex plane, and there is a diffeomorphism ¥;: D; x S' — 7~1(D;) such that

wovy;(pz1,22) = pzf"zgj, Vpe[0,1], z1,2z2 € S'.
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Here and in the following, S' denotes the unit circle in the complex plane C. The
Reeb flow induced on D; x S! has the form

— / i .
1//]'_1 o¢i o 1//,1'(,021,22) — (,OZ]e zZnozjt/r’ZzezZnajt/r).

The restriction 7: Y \ K — Xg \ {x1, ..., x,} is a trivial S'-bundle, that is, there is
a diffeomorphism
VS \ X1, x5 x ST > Y\ K

such that 77 o ¥ (z1,22) = z1. The Reeb flow induced on T, \ {x1,...,x,} x Stis
simply |
W‘l O(p,l{ OW(Zl,Zz) — (21’226127[1/‘[).

We orient X, by means of a2-formw on X4\ {x1, ..., x,} suchthat 7*w = dA|y\k,
and we orient the fibers of = by means of the Reeb vector field Rj, so that the
diffeomorphisms ¥ [¢1g1:{x} X S ' — 77 !(x) are orientation preserving. We
introduce the oriented circles in the torus 7; := 7~ 1(dD ;)

M;:=v;(0D; x{1}), L;:=y;({1}xS"),
M=y (0D; x{1}). L;:=vy({x}xS"),

where x is any point in dD ;. In the homology group H;(7’;; Z), we have
[M;] = o;[M;]+ B, (L], [L;]=e}[M;]+ B}[L}].

The integers in the tuple (g; o1, f1, ..., ®r, Br) are the so-called Seifert invariants of
the Seifert fibration 7: Y — X, and every («, B;) is called a Seifert pair. We stress
that the concept of Seifert fibration is more general than the one presented here (for
instance it allows for non-orientable total spaces and non-orientable base surfaces),
but will not be needed in its full generality for the application to Besse contact forms.
In this paper, all Seifert fibrations are implicitly assumed to be of the above type, and
in particular with total space and base surface both closed and orientable.

A Seifert fibration can be described by different Seifert invariants tuples, but
nevertheless these invariants determine the Seifert fibration completely. More pre-
cisely, given two Seifert fibrations m;: ¥Y; — X, i = 1,2, there exist an orientation
preserving diffeomorphism F:Y; — Y, and a diffeomorphism f: ¥4 — X, such
that 7, o F = f o mp if and only if the two Seifert fibrations can be described by
the same Seifert invariants tuple. A theorem due to Raymond [26] (see also [18,
Theorem 2.1]) implies that the isomorphism classes of Seifert fibrations are the same
as the isomorphism classes of effective S!-actions on 3-manifolds. This readily
implies the following statement in our setting.

Theorem 4.1. For i = 1,2, let (Y;,A;) be a Besse closed connected contact
3-manifold oriented via the volume form A; A dA; and whose Reeb orbits
have minimal common period t;. Then, there exists an orientation preserving
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diffeomorphism : Y1 — Y, such that o qb;llt oyl = ¢;22t forallt € R if
and only if (Y1, A1) and (Y2, A2) have the same Seifert invariants in normal form (up
to permutation of the pairs). O

A particular case of a result due to Lisca—Mati¢ [20] provides a constraint on the
Seifert invariants of a Seifert fibration associated to a Besse contact form.

Theorem 4.2 ([20, Prop. 3.1]). The Seifert invariants (g; a1, B1, ..., o, Br) of any
Besse closed connected contact 3-manifold satisfy g—: + o4 # > 0. O

The Seifert fibrations are classified. In particular, a result due to Orlik—Vogt—
Zieschang [23] (see also [13, Section 1]) implies that a given closed connected
orientable 3-manifold ¥ admits at most one Seifert fibration structure (up to Seifert
fibration isomorphism possibly reversing the orientation of the total space), unless ¥
is a prism manifold, a single Euclidean manifold, or a lens space. Every manifold
that is of prism or single Euclidean type admits two non-isomorphic Seifert fibration
structures, one of which projects onto a non-orientable surface. By applying this
together with Lisca—Mati¢’s Theorem 4.2, we obtain the following uniqueness result
for Besse contact forms.

Lemma 4.3. Let Y be a closed connected 3-manifold not homeomorphic to a lens
space, and A1, Ao two Besse contact forms on Y whose Reeb orbits have minimal
common periods 11, Tp respectively. Then, there exists a diffeomorphism .Y — Y
such that ¥ o ¢;11t oyl = qﬁzt forallt € R, and the volume forms ¥*(Ay A dA3)
and A1 A dAq induce the same orientation on'Y .

Proof. Letm;:Y — Xg, be the Seifert fibration defined by the Besse contact form A;.
Since X, is orientable and the total space Y is not homeomorphic to a lens space,
the above mentioned result of Orlik—Vogt—Zieschang [23] implies that there exist
diffeomorphisms F:Y — Y and f:Xg, — Xg, suchthat 7, o F = f omy. The
lemma now follows from Theorem 4.1 once we prove that A; AdA; and F*(A, AdAy)
define the same orientation on Y.

Let us assume by contradiction that A; A dA; and F*(A, A dA,) define opposite
orientationson Y. If (g1; a1, B1.. ... o, B;) are Seifert invariants for r;: Y — Xy,
Lisca—Mati¢’s Theorem 4.2 implies that

By .4l .1
Since A1 A dA; and F*(A, A dA,) define opposite orientations, the Seifert fibration
Y — X, has Seifert invariants (g1; 01, —f1, ..., o, —B;), and Lisca—Mati¢’s
Theorem 4.2 would imply
BB,
o o

contradicting (4.1). ]
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The classification of Seifert fibrations on lens spaces has been recently carried
out by Geiges—Lange [13]. We summarize their results that we will need as follows.
We recall that, for p and ¢ coprime integers and p > 0, the lens space L(p,q)
is the quotient of the unit 3-sphere S® C C?2 under the Z/pZ-action generated
by (z1,22) > (e'2%/Pz,, ¢274/Pz,). When p is not positive, the lens spaces are
defined by L(p,q) := L(—p,—q) and L(0,1) := S? x S, If n: L(p,q) — Zg
is a Seifert fibration, then the base surface =, is either S? or RP2. Since X, is
orientable whenever the Seifert fibration is defined by a Besse contact form, in this
section we will only consider Seifert fibrations of lens spaces over S2.

Theorem 4.4 ([13, Prop. 4.6-4.8 and Th. 4.10]).

(i) Any Seifert fibration w: L(0,1) — S? has Seifert invariants (0;a, B, o, —fB),
where o and B are coprime integers such that « > 0 and B > 0.

(i) If p > 0, any Seifert fibration 7w: L(p,q) — S? with at most one singular fiber
has Seifert invariants (0;«, B), where B = p, « # 0, and o = q or ag = 1
mod p.

(ili) There exist functions by: Z* — Z and by: Z* — 7 such that any Seifert fibration
w: L(p,q) — S?with p > 0 has Seifert invariants (0; a1, By, o2, B2) satisfying
B1=b1(p.q,a1,a2), B2 = ba(p.q,a1,az), and the greatest common divisor
ged(ay, an) divides p. O

4.3. Classification of Besse contact 3-manifolds. The following is the last ingre-
dient needed for proving Theorem 1.5.

Lemma 4.5. Fori = 0, 1, let (Y;, A;) be a closed contact 3-manifold equipped with
a contact form and oriented by means of the volume form A; A dA;. If there exists
an orientation preserving diffeomorphism \ro: Yo — Y1 such that dyo(z) Ry, (z) =
Ry, (Y (2)) forall z € Yy, then g can be isotoped to a diffeomorphism yr1: Yo — Y
such that A1 = Ao.

Proof. By pulling back the contact form A; by means of ¥y, we can assume without
loss of generality that Yo = Y1 =: Y, ¥ = id, R, = R;,, and both volume forms
Ao A dAg and A1 A dA; define the same orientation on Y. For each ¢ € [0, 1], the
convex combination A; := tA; 4+ (1 — t)A¢ is a contact form. Indeed, consider any
oriented basis of a tangent space of Y of the form R;(z), v, w. Since Ry, = Rj,,
notice that

Ai AdA;(Ry,(2), v, w) =dA; (v, w)
=A; AdA;(R;;(2),v,w) >0, Vi, je{0,1}.

This readily implies that the 3-form

A AdA, = [211 AdAr + (1 —l)z/\() Addo +t(1 —1)(Ag AdAy + A1 A dAy)
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is a positive volume form on Y, and in particular each A; is a contact form. We
can now complete the proof by applying a Moser trick as follows. We consider the
time-dependent vector field X; on Y defined by A;(X;) = 0 and X;.dA; = Ao —A;.
Its flow ¥;: Y — Y, with ¢ = id, satisfies

Sy = P (X)) + Xesdhy + Ag — o) =0,
which gives the desired condition Y41 = Ao. O

Proof of Theorem 1.5.Let A1, A, be two Besse contact forms on a closed 3-manifold Y.
If there exists a diffeomorphism : Y — Y such that ¥ *A, = Ay, clearly

op(Y, A1) = 0p(Y, A2).

Conversely, assume that the two Besse closed connected contact manifolds have the
same prime action spectrum o}, := 0,(Y, A1) = 0,(Y, A,). If one of the two contact
forms is Zoll, then oy, is a singleton, and the other contact form must be Zoll as well.
In this case, [6, Lemma 2.3] implies that there exists a diffeomorphism ¢: Y — Y
such that ¥*A, = A;. Assume now that A; and A, are not Zoll. By Wadsley’s
Theorem [30], their prime action spectrum must have the form

o, =1{t,7/ay,...,t/as},

for some integers s > O and a; > 1,7 = 1,...,s. Here, t > 0 is the minimal
common period of the Reeb orbits of both (¥, A1) and (Y, X,). We denote by X;
the quotient of ¥ under the locally free R /7 Z-action defined by the Reeb flow ¢il_.
As we already discussed, ¥ and X, are orientable closed surfaces, and the quotient
projections m1: Y — X and mp: Y — X, are Seifert fibrations.

If Y is not homeomorphic to a lens space, since the two Reeb flows have the
same minimal common period 7, Lemmas 4.3 and 4.5 imply that there exists a
diffeomorphism ¥: Y — Y such that ¥*1, = A;.

It remains to consider the case in which Y is alens space. Since Y admits the Besse
contact forms A; and A,, it cannot be the lens space L(0, 1); indeed, if ¥ = L(0, 1),
Theorem 4.4(i) would imply that the Seifert fibrations 7;: Y — X; have Seifert
invariants of the form (0;«, 8, «, —f), contradicting Lisca—Mati¢’s Theorem 4.2.
Therefore, we can assume that Y = L(p, ¢) for some p > 0.

We claim that the two Seifert fibrations 71: Y — X7 and 7m5: Y — 3, have the
same number of singular fibers (which is at most two according to Theorem 4.4).
Indeed, assume that one of the two fibrations, say 71: Y — 3, has two singular
fibers. Let (0;aq, 1,2, B2) be its Seifert invariants, and notice that a; > 1
and o, > 1. If the other Seifert fibration has only one singular fiber, then we
must have a; = o> =: @ and 0, = {7, 7/a}. By Theorem 4.4(iii), the quotient
ny := p/a € (0, p) is a positive integer, and we must have p > 1 and thus g # 0.
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This, together with Theorem 4.4(ii), implies that 75: Y — 3, has Seifert invariants
(0;a, p),and @ = g or g = 1 mod p. Therefore

(I+mmnx)a =g or (¢+mna=1

for some n, € Z. None of these equalities is possible: the first one since o > 1
divides p and the non-zero integers p, g are coprime; the latter once since o > 1.
This gives a contradiction.

The Seifert fibrations 71:Y — X7 and m,:Y — X, have the same Seifert
invariants. Indeed, if they have only one singular fiber, then o, = {7, 7/a} for
some integer @ > 1, and Theorem 4.4(ii) implies that their Seifert invariants are
(0;a, p). If they have two singular fibers, then o, = {7, 7/, 7/az} for some
integers o1, @p > 1, and Theorem 4.4(ii) implies that their Seifert invariants are

(051, b1(p. g, a1, a2), 002, ba(p. q, 01, @2)).

This, together with the fact that both Besse contact forms have the same minimal
common period t for their Reeb orbits, allows to apply Lemmas 4.3 and 4.5, which
imply that there exists a diffeomorphism v: Y — Y such that ¢*A, = A;. O

A. Genericity of bumpy contact forms

Let (Y, & = ker(1)) be a closed contact manifold. We recall that the contact form A
is called bumpy when, for each T > 0 and z € fix(¢;), 1 is not an eigenvalue of the
linearized Poicaré map d¢; (z)|¢. We wish to stress, here, that 7 is not necessarily
the minimal period of z. Namely, a contact form is bumpy when the simple closed
orbits of its Reeb flow and all their iterates are transversally non-degenerate. It is well
known that generic contact forms supporting a given contact distribution are bumpy,
see [16, Prop. 6.1]. In the proof of Lemma 3.1 we need a slightly stronger statement
asserting that such genericity also holds when the contact form is prescribed on an
embedded flow box.

Let us recall the notion of flow box in our setting. Let ¥ C Y be an embedded
compact ball of codimension 1 that is transverse to the Reeb vector field R, and such
that, for some s > 0, the map

[0,s]xXZ =Y, (t,z)—~ qbi(z)

is a diffeomorphism onto its image. A flow box is a compact subset of Y that is the
image of one such map.

For each compact subset K of a closed manifold Y, we denote by Cg(Y) the
space of C" functions f:Y — R such that f|x = 0; in the following, C¢ (Y) will
be endowed with the C" topology.
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Proposition A.1. Let (Y,§ = ker(A)) be a closed contact manifold, K € Y a flow
box for the Reeb flow ¢i and 2 < r < oo. Then, there is a Gg-dense subset
B C Ci(Y) such that, for each b € B, the contact form eb X is bumpy.

The proof of this proposition is analogous to the one provided by Anosov [5] in
the case of geodesic flows, and we will carry it over after some preliminaries. For
each2 <r < ooand T; > Ty > 0, we denote by B”(Ty, T1) the subset of those
b € Cg(Y) such that

1¢0(dps (2)lg), VYT e (0.Tol. k e NN (0.T1/7). z € fix(g),)).

Here, as usual, o (-) denotes the spectrum of a linear endomorphism.
Lemma A.2. The subset 8" (Ty, T1) is open in Cr(Y).

Proof. Assume that a function b € Cg(Y) does not belong to the inte-
rior of B"(To,T1), so that there exists a sequence b, € Cr(Y) \ B"(To,T1)
converging to b. Therefore, there exist sequences 7, € (0, To], kn € N N (0, T1/y],
and z, € ﬁx(qberzn ;) such that 1 € a(dqﬁe;’;; (zn)|g). Up to passing to appropriate
subsequences, we can assume that t, — v € (0,Ty], kn, = k € (0,T1/7],
and z, — z. However, this implies that d)e’bl(z) =zand 1 € a(dd)fb’/l(z)lg),
and thus b & B"(Typ, T1). O

We set B (T') := B" (T, T). Namely, B"(T) is the set of those b € Cy(Y) such
that all the (possibly iterated) closed orbits of the Reeb flow qbi with period at most T
are transversely non-degenerate. We introduce the C”~! map

O:Cr(Y)xY x(0,00) > Y xY, &b, z1t)= (z,q&ébl(z)),

and we denote by @ := P(b,-,-):Y x (0,00) — Y x Y its restrictions. Notice
that, if T > 0 and z € fix(¢},,), then 1 & o(d¢7,, (z)[¢) if and only if the image
of d®(z, 7) is transverse to T(; ;) A, where A C ¥ x Y is the diagonal submanifold.
Even when this transversality condition is not satisfied, we still have the following
one. From now on, we assume that

3<r<oo,

so that the map @ is at least C2.

Lemma A.3. If t > 0 is the minimal period of a closed Reeb orbit (;52 b A(Z), then the
image of d® (b, z, 7) is transverse to T(; ;) A. In particular, for each T > 0, the map
®| gr(T,2T)x¥ x(0,2T) I8 transverse to the diagonal A C'Y x Y.

Proof. For each H € C*(Y), we denote by ¥%,:Y — Y the contact isotopy
generated by the contact Hamiltonian vector field X g, which is defined by

PA(Xy)=H, Xyid(e®A)=—dH +dH(R,;)e’ L.



18 D. Cristofaro-Gardiner and M. Mazzucchelli CMH

Notice that ¢£ by = Y!. Assume that T > 0 is the minimal period of a closed
Reeb orbit ¢ +— ¥i(z). Since K is a flow box for the Reeb flow ¥} (z), this
closed orbit must intersect its complement ¥ \ K. Let t, € [0,7) be such that
Zo = wio(z) € Y\ K. For each v € T,Y and for each open neighborhood
U C Y \ K of zg, we can find a family of smooth functions Hy:Y — R smoothly
depending on s € (—e,¢€) such that Hy = 1, Hy|y\y = 1 for each s € (—¢,¢),
and %|S=OW;IS(Z) = v. We set by := —log(H;), and notice that by = 0 and
bsly\v = O0forall s € (—e¢, €). In particular each by belongs to C(Y'). The contact
Hamiltonian vector field Xg, is the Reeb vector field associated to the contact
form eb?1bs ) = H%yeb)t, ie., w;ls = ¢2h+hs,{' Therefore, if we set b’ := 0sbg|s=0,
we have
d®(b,z,7)(b',0,0) = di Ob + bs,z, 1) = di 0@ ¥ (2) = (0,v).

s |s=0 s
This readily implies that d®(b, z, 7) is transverse to T, ;) A. O

Lemma A.4. ForeachT > 0and S € (T,2T), the intersection B (S)NB" (T, 2T)
is dense in B"(T,2T).

Proof. By Lemma A.3, the C? map ®| g (T,2T)xY x(0,2T) i8 transverse to the diagonal
A C Y xY. Therefore, by Abraham’s infinite dimensional transversality theorem [3],
there exists a dense subset 8 C B'(T,2T) such that, for each b € B, the
map ®p|yx(o,27) is transverse to the diagonal A C Y x Y. This implies that B
is contained in B”(S) for each S € (T, 2T), and the lemma follows. O

Lemma A.5. Foreach T > 0, 8"(T,2T) is dense in B" (T).

Proof. Consider an arbitrary by € 8" (T). Notice that the subset

F:= | fix(¢%,)

€(0,T]

is the union of finitely many closed orbits yy,..., yx of the Reeb flow ¢é bo 3
Since by = 0 on the flow box K, each y; intersects the open set Y \ K. Since
all the closed orbits of gbé b0y, with period at most 7" are transversally non-degenerate,
there exists € > 0 such that no closed orbit of ¢2 by, has minimal period in the
interval (T, T + €].

For each i = 1,...,k, we choose a point z;(bg) on the intersection of the
closed orbit y; with ¥ \ K, and we denote by 7;(bg) € (0, T'] the minimal period
of y;. Since all the y;’s are non-degenerate t; (bg)-periodic orbits, there exist an open
neighborhood U C Cg(Y) of by, open neighborhoods U; C Y \ K of z;(bg), and
continuous (indeed, even more regular) maps

22U Uy x-x Uy, z(b) = (z1(b),...,zk(b)),
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and
T U—>(0,T+¢€/2]x---x(0,T +€/2], t(b)=(tr1(b),...,%(D))

with the following properties: for each b € U, the only closed orbits of the Reeb flow
of e? ) with minimal period at most 7 + €/2 and intersecting U; U - -- U Uy, are the
$',, (zi(b))’s; the minimal period of ¢’ ,, (z; (b)) is 7: (b). and 1 & o(dg 7" (z:(b))).

We can choose a smaller open neighborhood W C U of by so that, foreachb € W,
the Reeb flow of e?A does not have closed orbits with period at most 7 + €/2 not
intersecting U; U- - -U Uy For every such open neighborhood W, it is well known that

we can choose b € ‘W such that, foreachi = 1,...,kand h € N N (0,27 /1; (b)),
h; (b)

we have 1 € o(d¢,,""(zi(D))). Therefore such b belongs to B”(T, 2T). O
Proof of Proposition A.1. We define the Gg-set
B =) B(S).
SeN

We first assume that 3 < r < co. Lemmas A.4 and A.5 imply that the open subset
!B’(%T) is dense in B"(T). Therefore, B”(S) is dense in B"(T) for all S > T,
and by the Baire category theorem we conclude that 8" is dense in 8" (T) for
each T > 0. Notice that, for each b € Cg(Y), there exists 7 > 0 such that
no closed orbit of the Reeb vector field ¢2 », has period less than or equal to T'.
In particular, every b € Cg(Y) is contained in 8" (T") for some T > 0. This,
together with the above density argument, implies that B” is dense in Cg(Y).
Since CL(Y) < CZ(Y) is a dense inclusion, we readily infer that the set 82 is
dense in CIZ((Y).
The set
BX(S) =B (S)NC(Y)

isopenin Cg°(Y). For2 < r < oo, since B"(S) is openin Cx(Y'), and both B"(S)
and Cg°(Y) are dense in C (Y'), we infer that B°°(S) is dense in C(Y'). We recall
that the topology of Cg°(Y) is generated by open sets of the form W N C(Y),
where W is an open subset of some Cr(Y) with2 < r < oco. If W C Cg(Y) is one
such non-empty open subset, we have

BOS)NWNCRY)) =B°S)NW # 2.

This shows that 8°°(S) is open and dense in Cg°(Y'). By the Baire category theorem,
B> is dense in Cg°(Y). O
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