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Torsion contact forms in three dimensions
have two or infinitely many Reeb orbits

DAN CRISTOFARO-GARDINER
MICHAEL HUTCHINGS
DANIEL POMERLEANO

We prove that every nondegenerate contact form on a closed connected three-manifold
such that the associated contact structure has torsion first Chern class has either two
or infinitely many simple Reeb orbits. By previous results it follows that under the
above assumptions, there are infinitely many simple Reeb orbits if the three-manifold
is not the three-sphere or a lens space. We also show that for nontorsion contact
structures, every nondegenerate contact form has at least four simple Reeb orbits.

53D10; 53D42

1 Introduction

1.1 Statement of the main result

Let Y denote a closed connected three-manifold. Recall that a contact form on Y 1is a
I1-form A on Y such that A A dA # 0 everywhere. Associated to A is the Reeb vector
field R characterized by dA(R,-) =0 and A(R) = 1. Also associated to A is the
contact structure & = Ker(1); this is a 2—plane field on Y which is oriented by dA.

A Reeb orbit is a periodic orbit of R, thatis, amap y: R/TZ — Y forsome T >0
such that y’(t) = R(y(t)) for all . We consider two Reeb orbits to be equivalent
if they differ by precomposition with a translation of the domain. A Reeb orbit y is
simple if the map y is an embedding. Every Reeb orbit is an m—fold cover of a simple
Reeb orbit for some positive integer m.

The three-dimensional case of the Weinstein conjecture asserts that every contact form
on a closed three-manifold has at least one Reeb orbit. This was proved by Taubes [25]
in 2006, and various special cases had been proved earlier; see eg the survey by
Hutchings [13].

Later, the first two authors established the following refinement of Taubes’s result:
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Theorem 1.1 [4] Every contact form on a closed three-manifold has at least two
simple Reeb orbits.

The lower bound of two is the best possible, because there exist contact forms on S3
with exactly two simple Reeb orbits; see eg Hutchings [15, Example 1.8]. One can also
take quotients of these examples by cyclic group actions to obtain contact forms on
lens spaces with exactly two simple Reeb orbits. However, one could try to prove the
existence of more simple Reeb orbits under additional assumptions.

The following theorem provides some inspiration. Recall that if y is a Reeb orbit, the
linearized Reeb flow along y defines a symplectic linear map P, , the “linearized return
map”, from (§,(g).dA) to itself. The Reeb orbit y is nondegenerate if 1 is not an
eigenvalue of P, . In this case, we say that y is positive hyperbolic if P, has positive
eigenvalues, and negative hyperbolic if P, has negative eigenvalues; otherwise P,
has eigenvalues on the unit circle and we say that y is elliptic. The contact form A is
called nondegenerate if every (not necessarily simple) Reeb orbit is nondegenerate.

Theorem 1.2 (Hofer, Wyoscki and Zehnder [9, Corollary 1.10]) Let A be a non-
degenerate contact form on S3. Assume that:

(a) & =Ker(A) is the standard' contact structure on S3.

(b) The stable and unstable manifolds of all hyperbolic Reeb orbits of A intersect

transversely.

Then A has either two or infinitely many simple Reeb orbits.

For more complicated three-manifolds, Colin and Honda [3] used linearized contact
homology to show that for many contact three-manifolds (Y, §£) supported by an open
book decomposition with pseudo-Anosov monodromy, every (possibly degenerate)
contact form A with Ker(A) = £ has infinitely many simple Reeb orbits.

In fact, no example is currently known of a contact form on a closed connected three-
manifold with more than two but only finitely many simple Reeb orbits. Thus it is
natural to ask:

Question 1.3 Does every contact form on a closed connected three-manifold have
either two or infinitely many simple closed orbits?

1Here, the “standard” contact structure refers to the kernel of the restriction of the form Agq =
% Ziz=1 (x; dy; — yi dx;) to the unit sphere in C2 = R*.
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Our main result answers this question in many cases:

Theorem 1.4 Let Y be a closed connected three-manifold and let A be a nondegener-
ate contact form on Y. Assume that c¢1(§) € H?(Y;Z) is torsion. Then A has either
two or infinitely many simple Reeb orbits.

So, for example, assumptions (a) and (b) in Theorem 1.2 can be dropped. For a different
application of Theorem 1.4, we recall that in [20], the second author and Taubes showed:

Theorem 1.5 [20] Let Y be a closed three-manifold with a nondegenerate contact
form with exactly two simple Reeb orbits. Then both orbits are elliptic and Y is S3 or

a lens space.”

By combining this with Theorem 1.4, we obtain:

Corollary 1.6 Let Y be a closed connected three-manifold which is not S3 or a lens
space. Then every nondegenerate contact form A on Y such that c¢1(§) € H*>(Y;Z) is
torsion has infinitely many simple Reeb orbits.

When Y is S3 or a lens space, we can still combine Theorems 1.4 and 1.5 to deduce
that if a nondegenerate contact form on Y has at least one hyperbolic Reeb orbit, then
it has infinitely many simple Reeb orbits.3

1.2 Idea of the proof of the main theorem

The strategy of the proof of Theorem 1.4, inspired by Hofer, Wysocki and Zehnder [8],
is to use holomorphic curves to find a genus zero “global surface of section” for the
Reeb flow; see Definition 3.1. If ¥ is a global surface of section, then the Reeb orbits
consist of the periodic orbits of a Poincaré return map from X to itself (which preserves
the area form on X given by the restriction of d 1), together with the Reeb orbits at
the boundary of . If ¥ has genus zero, then one can deduce the existence of either
two or infinitely many simple Reeb orbits by using a theorem of Franks, asserting that
an area-preserving homeomorphism of an open annulus has either zero or infinitely
many periodic orbits.

21n [20] one just wrote that “Y is a lens space”, considering S3 to be a special case of a lens space.

3In particular, if A is a nondegenerate contact form on a closed three-manifold Y, and if £ is overtwisted,

then A has at least one positive hyperbolic simple Reeb orbit. This follows from the fact that the ECH
contact invariant of £ vanishes; see [15, Section 1.4].
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In fact, we cannot always find a global surface of section. But we can find one if we
assume that A is nondegenerate, that c; () is torsion and that there are only finitely
many simple Reeb orbits, and this is enough to prove Theorem 1.4.

To find a global surface of section under these hypotheses, we use embedded contact
homology* (ECH). The ECH of (Y, 1) is the homology of a chain complex which is
generated by certain finite sets of simple Reeb orbits with positive integer multiplicities,
and whose differential counts certain Fredholm index one J—holomorphic curves in
R x Y, for a suitable almost complex structure J on R x Y. Most importantly for the
present application, ECH is equipped with a “U-map”, which is induced by a chain
map which counts certain Fredholm index two J —holomorphic curves in R x Y. It
was shown by Taubes [26] that there is a canonical isomorphism between ECH and
a version of Seiberg—Witten Floer cohomology, which identifies the U-map on ECH
with a corresponding “U-map” on Seiberg—Witten Floer cohomology. By results of
Kronheimer and Mrowka [23] on the nontriviality of the latter, it then follows that there
are infinitely many> holomorphic curves in R x Y counted by the U-map on ECH.
This gives us a large supply of holomorphic curves in R x Y, and we would like to show
that at least one of these holomorphic curves projects to a global surface of section
inY.

Proposition 3.2 gives general criteria for a holomorphic curve C in R x Y to project to
a genus zero global surface of section in Y. The two most nontrivial criteria to satisfy
are the following: First, C must have genus zero; we need this condition both for its
own sake and to get an embedded surface in Y. Second, the component of the moduli
space of holomorphic curves containing C must be compact; this condition implies
that these holomorphic curves fill up all of Y, except for the Reeb orbits at their ends.
Without this condition, the moduli space component containing C would only allow
us to describe the dynamics on part of Y. On the other hand, when the conditions in
Proposition 3.2 are satisfied, the projections of the holomorphic curves in the same
component of C give a foliation with leaf space S' of the part of ¥ away from the
Reeb orbits at their ends, and the Reeb vector field is transverse to this foliation.

#In particular, both our argument and the argument of Colin and Honda [3] mentioned above use Floer
homology. The methods of proof, however, are quite different: the approach in [3] involves detecting Reeb
orbits directly by showing exponential growth of linearized contact homology with respect to symplectic
action.

SMore precisely, there are infinitely many different nonempty moduli spaces of holomorphic curves
counted by the U—map.
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A priori, the holomorphic curves counted by the U-map need not satisfy either of these
criteria. The key new insight of our paper is that one may use the “volume property” of
ECH from Cristofaro-Gardiner, Hutchings and Ramos [5] to control both the genus and
the potential breakings of these curves. The volume property is perhaps the deepest
property of ECH; it gives a relation between the symplectic action (total period of Reeb
orbits) needed to represent classes in ECH and the contact volume of (Y, A).

Our argument for controlling the genus through the volume property uses the “Jo index”,
which can be regarded as a formalism encoding the relative adjunction formula. The
Jo index of a curve bounds its topological complexity. In general, Jo of a holomorphic
curve depends on its relative homology class. However, when ¢ (§) is torsion, Jo of
any holomorphic curve that we find using the U-map depends only on the asymptotics
of the curve. The idea of our argument is then to take a sequence of curves counted
by UV for N a large positive integer, and bound the sum of Jo of these curves. We
use the assumption that there are only finitely many simple Reeb orbits to get a bound
on this sum in terms of the symplectic action needed to represent a corresponding class
in ECH. We then use the volume identity to get a strong enough bound to show that
most of these N curves must have genus O when N is sufficiently large. In the simpler
situation where there are exactly two Reeb orbits, some similar arguments were used
in [20] to prove Theorem 1.5 above; in that situation, however, the volume property
was not needed.

We use the volume property again to show that for many of the genus zero curves
counted by the U-map, the sets of Reeb orbits that they go between have a very small
difference in symplectic action; see Lemma 4.4. By using the assumption that there
are only finitely many simple Reeb orbits, and by using the fact that curves counted by
the U-map satisfy certain constraints on their asymptotics encoded by the “partition
conditions”, a combinatorial argument in Section 4.5 finds such a curve for which
there is no intermediate set of Reeb orbits along which the curve can break, so that the
moduli space component is compact.

We remark that the volume property was also used in [4] to prove Theorem 1.1 above;
for some additional applications of the volume property, see Asaoka and Irie [1],
Hutchings [16] and Irie [22].

1.3 Other results

To fully answer Question 1.3, one would like to generalize Theorem 1.4 by dropping
the assumptions that ¢ (£) is torsion and A is nondegenerate. We cannot currently drop
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the assumption that ¢ (§) is torsion for reasons alluded to above and explained more in
Remark 4.5, and most of the machinery we use makes extensive use of nondegeneracy.
However, we can still say the following about the nontorsion and possibly degenerate
case:

Theorem 1.7 Let A be a contact form on a closed three-manifold such that ¢y (§) is
not torsion. Then:

(a) A has at least three simple Reeb orbits.

(b) If A is nondegenerate, then A has at least four simple Reeb orbits.

The proof of Theorem 1.7 is different and simpler than that of the main theorem,
although it still uses the volume property of ECH.

Finally, in the course of the proof of Theorem 1.4, we obtain another result which
involves refining the three-dimensional Weinstein conjecture by looking for Reeb orbits
of particular types.

Question 1.8 Let Y be a closed connected three-manifold which is not S3 or a
lens space, and let A be a nondegenerate contact form on Y. Does A have a positive
hyperbolic simple Reeb orbit?

By Theorem 1.5, under the assumptions of Question 1.8 there exists a hyperbolic simple
Reeb orbit, which however might not be positive hyperbolic. We can say a bit more
here:

Proposition 1.9 Every nondegenerate contact form on a closed three-manifold Y
with b1(Y) > 0 has a positive hyperbolic simple Reeb orbit.

Proposition 1.9 is proved in Section 2 as a direct corollary of the isomorphism between
ECH and Seiberg—Witten Floer cohomology.

1.4 Outline of the rest of the paper

Section 2 reviews everything that we will need to know about embedded contact
homology. In particular, the Jy index is reviewed in Section 2.6, and the volume
property is reviewed in Section 2.7. Section 3 proves Proposition 3.2, which gives
general criteria for a holomorphic curve in R x Y to project to a global surface of
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section for the Reeb flow in Y. The heart of our argument, Section 4, uses ECH to
find a holomorphic curve satisfying these criteria, assuming that A is nondegenerate,
c1(§) is torsion and there are only finitely many simple Reeb orbits. Section 5 reviews
the theorem of Franks and completes the proof of Theorem 1.4. Finally, Section 6
proves Theorem 1.7. The appendix clarifies the facts from Seiberg—Witten theory that
are needed to yield infinitely many holomorphic curves counted by the U-map on ECH.

2 Embedded contact homology preliminaries

Let Y be a closed connected three-manifold, let A be a nondegenerate contact form
on Y and let I' € H{(Y). We now review the definition of the embedded contact
homology ECH«(Y, A, T"), and the facts about this that we will need. More details
about ECH can be found in the lecture notes [15].

Roughly speaking, ECH, (Y, A, T') is built from finite sets of simple Reeb orbits with
multiplicities with total homology class I'". For the proof of Theorem 1.4, we will just
need to consider the case I' = 0; however, we will need to work with other classes T’
in the proof of Theorem 1.7.

2.1 Holomorphic curves and currents

We say that an almost complex structure J on R x Y is A—compatible if J is R—
invariant; J(ds) = R where s denotes the R coordinate on R x ¥ and R denotes the
Reeb vector field as usual; and J(§) = £, rotating £ positively with respect to dA. Fix
a A—compatible J.

We consider J—holomorphic curves of the form u: (X, j) — (R x Y, J) where the
domain (X, j) is a punctured compact Riemann surface. Here the domain ¥ is not
necessarily connected, and we say that u is irreducible if X is connected. If y is a
(not necessarily simple) Reeb orbit, a positive end of u at y is a puncture near which
u is asymptotic to R x y as s — oo, and a negative end of u at y is a puncture near
which u is asymptotic to R x y as s — —o0; see [15, Section 3.1] for more details.
We assume that each puncture is a positive end or a negative end as above. We mod
out by the usual equivalence relation on holomorphic curves, namely composition
with biholomorphic maps between domains. Under this equivalence relation, if u is
somewhere injective, then u is determined by its image C = u(X), and in this case
we often abuse notation to denote u by its image C.
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If u is a J—holomorphic curve as above, its Fredholm index is defined by
(2-1) ind(u) = —x(Z) + 2. (u) + CZ"(u).

Here 7 is a symplectic trivialization of the contact structure £ over the Reeb orbits
at which u has ends. The term c;(u) denotes the relative first Chern class of u*§
with respect to 7; see [15, Section 3.2]. Finally, suppose that u# has k positive ends at
(not necessarily simple) Reeb orbits y1+ Yy y]j , and / negative ends at Reeb orbits
Y1s---»¥; - Then the last term is defined by

k l

CZPMu) =) CZ(y) =D CZe(yy).
i=1 Jj=1

Here if y is a Reeb orbit and 7 is a trivialization of y*&, then CZ.(y) denotes the

Conley—Zehnder index of y with respect to t. In our three-dimensional situation, this

is given by

(2-2) CZ:(y) = 16] +101.

where 6 denotes the rotation number with respect to t of the linearized Reeb flow
along y, see [15, Section 3.2]. The Fredholm index does not depend on the choice of
trivialization t. The significance of the Fredholm index is that if J is generic and if
u is irreducible and somewhere injective, then the moduli space of J—holomorphic
curves near u is a manifold of dimension ind(u).

Sometimes we wish to mod out by a further equivalence relation, declaring two J—
holomorphic curves to be equivalent if they represent the same current in R x Y. In this
case we refer to an equivalence class as a J —holomorphic current. A J—holomorphic
current is described by a finite set of pairs C = {(Cy, dy)}, where the C are distinct
irreducible somewhere injective J —holomorphic curves as above, which we refer to
as the “components” of C, and the dj are positive integers, which we refer to as the
“multiplicities” of these components.

2.2 Definition of embedded contact homology

We are now ready to define the embedded contact homology ECH(Y, A, I'). This is the
homology of a chain complex ECCy(Y, A, T") over Z/2 defined as follows.® An orbit
set is a finite set of pairs o = {(«;, m;)} where the ¢; are distinct simple Reeb orbits,

61t is also possible to define ECH with Z coefficients, as explained in [19, Section 9], but this is not
necessary for the applications so far.
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and the m; are positive integers. The orbit set « is admissible if m; = 1 whenever «;
is hyperbolic. The total homology class of the orbit set « is defined by

] :=) " mjo;] € Hi(Y).

The chain complex ECC« (Y, A, I') is now freely generated over Z /2 by admissible
orbit sets o with total homology class [¢] = I'. We sometimes write an orbit set
o = {(a;,m;)} as a commutative product o = []; a;"i , and we usually refer to an
admissible orbit set as an ECH generator.

The differential on the chain complex ECC. (Y, A, I') depends on the additional choice
of a generic A—compatible almost complex structure J. If @ = {(o;,m;)} and f =
{(Bj.n;)} are (not necessarily admissible) orbit sets with [a] = [B] € H{(Y), let
M (a, B) denote the set of J—holomorphic currents as in Section 2.1 with positive
ends at covers of «; with total covering multiplicity m; , negative ends at covers of f;
with total covering multiplicity n;, and no other punctures.

Continuing to assume that [o] = [B], let H2(Y, «, B) denote the set of 2—chains Z in Y
with 0Z =), m;«a; —Zj njB;, modulo boundaries of 3—chains. The set H»(Y, o, B)
is an affine space over H»(Y), and each current C € M” (a, B) determines a relative
homology class [C] € H2(Y, «, B).

Given Z € Hy(Y, @, B), we define the ECH index

23)  1@B.2)=c(2)+ 02+ Y CZe(@) =3 Y CzZo(Bh).

i k=1 Jj =1

Here 7 is a trivialization of § over the Reeb orbits o; and B;, and ¢; denotes the
relative first Chern class as before. The integer Q;(Z) is the “relative self-intersection
number” reviewed in [15, Section 3.3]. In the Conley—Zehnder index terms, if y is
a Reeb orbit and k is a positive integer, then yk denotes the Reeb orbit which is a
k—fold cover of y.

The ECH index does not depend on the choice of trivialization . However, the
ECH index sometimes does depend on the relative homology class Z. Namely, if
[@]=[B]=T € H{(Y),andif Z,Z' € Hy(Y,a, B), then the difference Z — Z’ is an
element of H,(Y), and we have the “index ambiguity formula”

2-4 (o, B.2)— (e, B. Z') = (c1(§) +2PD(I"), Z - Z');
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see [15, Equation 3.6]. The ECH index is also additive in the following sense: if §
is another orbit set with [«] = [B] = [§], if Z € Ha(Y,«, B) and if W € H,(Y, 5, 0),
then Z + W € H,(Y, «, 6) is defined and

(2-5) 1,8, 2)+ 18,6, W)=1(a,8,Z+ W);
see [15, Section 3.4].

Given a current C € M7 (a, B), we define its ECH index 1(C) = I(a, 8, [C]). We also
write ¢;(C) = ¢¢([C]) and O.(C) = O([C]). If k is an integer, we define M,{ (a, B)
to be the set of C € M” («, ) with ECH index 1(C) = k.

The significance of the ECH index is that it bounds the Fredholm index via the following
index inequality, explained in [15, Section 3.4]: if C € M (&, B) has no multiply
covered components, then

(2-6) ind(C) < I(C)—-24(C).
Here §(C) is a count of the singularities of C with positive integer multiplicities.

The index inequality (2-6) leads to the following classification of holomorphic currents
with low ECH index. Below, define a frivial cylinder to be a cylinder Rxy C R x Y
where y is a simple Reeb orbit. A trivial cylinder is an embedded J—holomorphic
curve for any A—compatible J.

Proposition 2.1 [15, Proposition 3.7] Let J be a generic A—compatible almost
complex structure. Let o and f be orbit sets with [«] = [B] and let C € M7 («, B).
Then:

(0) 1(C) = 0, with equality if and only if each component of C is a trivial cylinder.

(1) IfI(C)=1, then C =CyUCy, where I1(Cyp) =0, and Cy is embedded and does
not include any trivial cylinders and has ind(Cy) = I(Cy) = 1.

(2) If o and B are admissible and I(C) =2, then C =CylUCy, where I(Cy) =0, and
C is embedded and does not include any trivial cylinders and has ind(Cy) =
1(Cy) =2.

In particular, it follows from Proposition 2.1(1) that M{ (o, B)/R is a discrete set,
where R acts on M («, B) by translation of the R factor in R x Y. The differential
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on the ECH chain complex ECC(Y, A, I') is now defined as follows: Choose a generic
A—compatible J. Given an admissible orbit set « with [¢] = I", define

dya =) #M{( B)/R)B.
B

Here the sum is over admissible orbit sets 8 with [8] = I", and # denotes the mod 2
count. It is shown in [15, Section 5.3] that d; is well defined, and in [18, Theorem 7.20]
that 83 = 0. The embedded contact homology ECH. (Y, A, ') is now defined to be
the homology of the chain complex (ECC« (Y, A,T"), dy). Although the differential d s
may depend on J, the homology of the chain complex does not; see Theorem 2.2
below.

The ECH index induces a relative Z/d grading on the chain complex ECC (Y, A, T),
where d denotes the divisibility of the cohomology class c1(§)+2PD(T") in H?(Y;Z)
mod torsion, which is an even integer. If o and f are generators with [«¢] = [B] =T,
the grading difference between « and f is defined by

I(a,B)=1(a,B,Z) mod d,

where Z € H(Y, «, B). The relative grading does not depend on Z as a result of the
index ambiguity formula (2-4). By definition, the differential 0y decreases the relative
grading by 1.

There is also an absolute Z /2 grading I» on the chain complex defined as follows: if
o = {(aj,m;)} is an admissible orbit set, then I, («) is the mod 2 count of orbits o;
that are positive hyperbolic. This is compatible with the relative grading / in the sense
that if [a] = [B], then

2-7) Ia, B) = I () — I2(B) mod 2;

see [11, Proposition 1.6(c)].

2.3 The U-map

Embedded contact homology has various additional structures on it. One such structure
that will play a crucial role in this paper is the U-map, a degree —2 map

(2-8) U: ECH4 (Y, A, T) — ECHy_o(Y, A, T).

To define this, choose a basepoint z € ¥ which is not on the image of any Reeb orbit,
and let J be a generic A—compatible almost complex structure. One then defines a

Geometry & Topology, Volume 23 (2019)



3612 Dan Cristofaro-Gardiner, Michael Hutchings and Daniel Pomerleano

map
Ujz: ECCo(Y,A,T) > ECH, (Y, A, T)

as follows: if o and B are ECH generators, then the coefficient (Uy ., B) is the
mod 2 count of J-holomorphic currents in M{ (e, B) that pass through the point
(0,z) eRxY.

As explained in [20, Section 2.5], the map Uy ; is a chain map, and we define the
U-map (2-8) to be the induced map on homology. Our assumption that Y is connected
implies that U does not depend on the choice of z. The U-map does not depend on
J either by Theorem 2.2 below.

If « and § are ECH generators and if C € M{ (o, B) is a J —holomorphic current
counted by the chain map Uy ;, then we refer to C as a U—curve. By Proposition 2.1,
a U—curve has the form

C=CylUCq,

where Cy is a union of trivial cylinders with multiplicities, and C; is embedded and
satisfies ind(Cy) = I(Cy) = 2. Moreover, C; is irreducible by [20, Lemma 2.6(b)].

2.4 The isomorphism with Seiberg—Witten theory

A priori, the embedded contact homology ECH« (Y, A, I") could depend on the choice of
generic A—compatible J, so strictly speaking we should denote it by ECH. (Y, A, T, J).
The U-map could also depend on J. In fact, these depend only on Y, I' and the
contact structure &, as a result of the following theorem of Taubes:

Theorem 2.2 [26] Let Y be a closed connected three-manifold with a nondegenerate
contact form A, and let I' € H{(Y). Then, for any generic A—compatible almost
complex structure J, there is a canonical isomorphism of relatively graded 7./2—
modules’

(2-9) ECH. (Y, A, T, J) => HM *(Y, s¢ + PD(I'); Z/2)

which preserves the U-maps on both sides.

Here ﬁl\\/l*(Y ,5;7/2) is a version of Seiberg—Witten Floer cohomology with Z /2
coefficients defined by Kronheimer and Mrowka [23], which depends on a closed
oriented connected three-manifold Y together with a spin-c structure s. This has a

7One can also obtain an isomorphism with Z coefficients; see [27].
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relative Z/d grading, where d denotes the divisibility of ¢1(s) in H?(Y;Z) mod
torsion. In the theorem, s¢ denotes the spin-c structure determined by the oriented
2-plane field &; see eg [15, Section 2.8]. We have

(2-10) c1(sg +PD(I')) = ¢1(§) +2PD(I),

so that both sides of (2-9) have the same type of relative grading. Also, the group
ﬁl\\/l*(Y,s; 7, /2) is equipped with a canonical degree 2 map, which is also denoted
by U.

In addition to implying topological invariance of ECH, Theorem 2.2, combined with
known results about Seiberg—Witten Floer cohomology, implies nontriviality results for
ECH. In particular, the following proposition provides an abundant supply of U—curves
which will be needed in the proof of the main theorem. Below, define a U-sequence to
be an infinite sequence {0y }x>; of nonzero homogeneous classes in ECH such that
Uoy 1 = oy for each k > 1. Also, use the canonical Z/2 grading /> on ECH to
decompose

ECH4(Y, A, T') = ECHeven(Y, A, T') @ ECHoqq(Y, A, T).

Proposition 2.3 Let Y be a closed connected three-manifold with a nondegenerate
contact form A, and let ' € Hy(Y) such that c¢1(£) +2PD(I") € H?(Y;Z) is torsion.
Then:

(a) There exists a U-sequence in ECH, (Y, A, ).

(b) If b1 (Y) > 0, then there exist U-sequences in both ECHeyen(Y, A, ') and
ECHoqa(Y, A, T).

The proof of Proposition 2.3 is given in the appendix. We can now use this proposition
to give:

Proof of Proposition 1.9 Without loss of generality, Y is connected. Choose I' such
that ¢1(§) +2PD(T) is torsion (such a I always exists). By Proposition 2.3(b), there
exists a U-sequence in ECHyqq(Y, A, I'). In particular, ECHoqq(Y, A, I") is nontrivial,
so there exists an ECH generator o = {(c;, m;)} with [@] =T and I;(e) = 1. From
the definition of I, it follows that at least one of the simple Reeb orbits «; is positive
hyperbolic. a
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2.5 Partition conditions

The nontrivial components of U—curves satisfy specific constraints on their asymptotics
which we will need to take into account. To state these, let y be a simple Reeb orbit
and let m be a positive integer. We now define two partitions of m, the “positive
partition” p +(m) and the “negative partition” py (m), as follows. Let 6 € R be the
rotation number of y as in (2-2) with respect to some trivialization t of |, . We then
define p;, £(m) = (m) where pg *(m) is defined as follows.

Consider the convex hull in R? of the set of lattice points (x,y) € Z? such that
0 <x <m and y < 6x. The boundary of this convex hull consists of a vertical ray
below (0, 0), a vertical ray below (m, |m8]) and a path which we denote by AJg (m).
This path is the graph of a continuous piecewise linear concave function [0, m] — R.
Then pgr (m) consists of the horizontal components of the segments of the path Ag (m)
connecting consecutive lattice points. Likewise, let Ay(m) denote the lower boundary
of the convex hull of the set of lattice points (x,y) with 0 < x <m and y > 0Ox.
Then pg4 (m) consists of the horizontal components of the segments of the path A\ (m)
connecting consecutive lattice points. Equivalently,

pg (m) = p* (m).

Note that the partition p, *(m) depends only on the congruence class of 6 € R/Z,
which does not depend on the choice of trivialization t.

For example, if y is positive hyperbolic, then 6 is an integer, and it follows that

(2-11) py(m)=p,(m)y=(1,....1).
If y is negative hyperbolic, then 6 = > mod 7, and it follows that

2,...,2), m even,

: +
(2-12) py (m) = p,, (m) = (2,...,2,1), modd.

If y is elliptic, then our usual assumption that all Reeb orbits are nondegenerate implies
that ¢ is irrational, and it then turns out that p, *(m) and Py (m) are disjoint whenever
m > 1; see [15, Example 3.13].

The significance of these partitions is as follows. Let @ = {(o;,m;)} and B ={(B;.n;)}
be orbit sets, and suppose that C € M7 («, ) has no multiply covered components.
Then, for each i, the curve C has ends at covers of «; with total multiplicity m; , and
these multiplicities determine a partition of m; , which we denote by p; (C ). Likewise,
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for each j, the asymptotics of the negative ends of C at covers of ; determine a
partition of n;, which we denote by plgj (C). We then have:

Proposition 2.4 [15, Section 3.9] Suppose that C € M7 (a, ) has no multiply
covered components and that equality holds in the index inequality (2-6). Then for
each i we have p} (C) = pJ} (m;), and for each j we have g, (C)= g, (nj).

1 1 J J

In particular, if C = Co U C; is a U—curve, then, by Proposition 2.1(2), we know that
Proposition 2.4 is applicable to the nontrivial component Cj .

We note one simple fact about the partitions which will be needed later. Let y be a
simple Reeb orbit and let m be a positive integer. Recall that without any choice of
trivialization, y has a well-defined rotation number 6 € R/Z. In particular, |m6 |
and [m0] are well-defined elements of Z/mZ..

Lemma 2.5 Let y be a simple Reeb orbit with rotation number 6 € R/Z, and let m
be a positive integer.

(a) If p;f (m) = (m), then ged(m, |m6]) = 1.
(b) If p, (m) = (m), then ged(m, [m8]) = 1.

Proof Let 6 € R be the rotation number of y for some trivialization of &[,. If
p;' (m) = (m), then this means that the path Aj; (m) consists of the single edge from
(0,0) to (m, [m6]), and this edge has no lattice point in its interior. It follows that
|m6] is relatively prime to m. This proves (a), and (b) is proved by a symmetric
argument. o

2.6 The Jy index
We now recall a variant of the ECH index which is useful for bounding the topological
complexity of holomorphic curves.

Let @ = {(o;,m;)} and B = {(B;,n;)} be orbit sets with [a] = [B], and let Z €
H>(Y, o, B). We then define the “Jy index”

m;—1 n;—1
2-13) Jo(@.B.Z) =—cr(2)+ Qr(D)+ Y D CZ(ef) =) Y CZ(B)).
i k=1 Jj =1

Here ©, ¢, and Q; are defined as in (2-3).
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Like the ECH index I, the Jy index (2-13) does not depend on the choice of triv-
ialization t. However, Jy depends on Z in the following way, similarly to the
index ambiguity formula (2-4). If « and B are orbit sets with [¢] =[] =T, and if
Z,7Z' € Hy(Y,qa, B), then the ambiguity in the relative first Chern class is given by

(2-14) c(Z)=co(Z) = (c16). Z - Z').

This follows from the definition of the relative first Chern class in [15, Section 3.2].
By (2-14), together with (2-3), (2-4) and (2-13), we obtain

(2-15) Jo(a, B, Z) —Jo(a, B, Z") = (—c1(§) + 2PD("), Z — Z').

If C e M7 (a, B), we write Jo(C) = Jo(a, B, [C]). If C is a U—curve, then the integer
Jo(C) gives the following bound on the topological complexity of C. Write o =
{(aj,m;)} and B ={(Bj.n;)} and C = Co LU Cy as usual. Let nl‘" denote the number
of positive ends of C; at covers of «;, plus 1 if Cy includes a cover of R x ;. Let
n; denote the number of negative ends of Cp at covers of ;, plus 1 if Cp includes a
cover of R x ;.

Proposition 2.6 [20, Lemma 3.5; 15, Propositon 5.8] Let (Y, 1) be a nondegenerate
contact three-manifold and let J be a generic A—compatible almost complex structure.
Let o = {(a;,m;)} and B = {(Bj.n;)} be ECH generators and let C = Co LI C; €
M7 (a, B) be a U—curve. Then

(2-16) Jo(©)=—x([C+ Y (f =D+ (7 —1).
i J

2.7 Spectral invariants and the volume property

It follows from the isomorphism (2-9) that ECH. (Y, A, ') is a topological invariant.
However, ECH can be used to extract finer information in the form of real numbers
depending on the contact form, using a filtration on the ECH chain complex by the
symplectic action.

If o = {(j, m;)} is an orbit set, its symplectic action is defined by

Al@) =) m; | A

o

The ECH differential decreases the symplectic action, ie if the coefficient (0o, ) # 0
then A(a) > A(pB); see [15, Section 1.4]. Consequently, for any L € R we can define
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the filtered ECH,
(2-17) ECHL(Y,A,T),

to be the homology of the subcomplex of ECC(Y, A, ') generated by orbit sets «
with A(«) < L. There is a natural map

(2-18) 11 ECHE(Y, A, T) — ECH, (Y, A, T)

induced by inclusion of chain complexes. It is shown in [21, Theorem 1.3] that the
filtered ECH (2-17) and the inclusion-induced map (2-18) do not depend on the choice
of almost complex structure J.

We can now define, for each nonzero class ¢ € ECH4 (Y, A, '), a “spectral invariant”
co (Y, A) =inf{L | 0 € Im(1z,)}.

Equivalently, ¢ (Y, ) is the smallest real number L such that the class o can be
represented by a cycle in the chain complex ECC, (Y, A, I') which is a sum of ECH
generators each with action < L. In particular,

(2-19) co(Y, 1) = Aa)

for some orbit set & which is a generator of the chain complex ECC. (Y, A, I"). Another
useful property is that if Uo # 0 then

(2-20) cvo (Y, 1) < co (Y, ).

This holds because the chain map Uy ,, like the differential, decreases symplectic
action.

We are assuming above that the contact form A is nondegenerate. In fact, the spectral
numbers ¢, are C ®—continuous functions of the contact form, so one can extend them to
degenerate contact forms by taking limits; see [14, Section 4.1]. When A is degenerate,
we make sense of the ¢ in ¢s by using the topological invariance in (2-9) to identify
ECH. (Y, A,T") with ECH,(Y, A/, T"), where A’ is a nondegenerate contact form with
the same contact structure as A. For degenerate contact forms, property (2-19) still
holds, where « is some orbit set with [a] = . Property (2-20) holds in the degenerate
case under the additional assumption that there are only finitely many simple Reeb
orbits; see [4, Lemma 3.1].

A deeper property of the spectral numbers ¢, which will play a key role in the proof of
the main theorem, is the following relation between their asymptotics and the contact
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volume:

vol(Y, A) 2/ ANdA.
Y

Recall from Section 2.2 that if the class ¢1(£) +2PD(I") € H?(Y; Z) is torsion, then
ECH« (Y, A, T') has a relative Z—grading.

Theorem 2.7 [5, Theorem 1.3] Let Y be a closed connected three-manifold with
a contact form A, let I' € H{(Y) with c;(§) + 2PD(I") torsion, and let I be any
refinement of the relative Z —grading on ECH.(Y, A, ') to an absolute Z —grading.
Then, for any sequence of nonzero homogeneous classes {0 };>1 in ECH«(Y,A,T")
with limy_, o, I (o) = 400, we have

o, (Y, 1)? _

221 lim St oy,
(2-21) R T e

In particular, if {oy }x>1 is a U-sequence, then /(o) = 2k + a for some constant a,
so (2-21) implies that

(2-22) lim M

=2vol(Y, A).
k—o00 k VO( )

3 Ciriteria for a global surface of section

The goal of this section is to prove Proposition 3.2 below, which gives criteria under
which a holomorphic curve gives rise to a “global surface of section” for the Reeb flow.
For related statements and proofs, see [8, Proposition 5.1; 10, Lemma 6.9].

Definition 3.1 Let (Y, 1) be a contact three-manifold. A global surface of section for
the Reeb flow is an embedded open surface ¥ C Y such that:

o The Reeb vector field R is transverse to X.

o There is a compact surface with boundary, X, such that int(X) = X, and the
inclusion ¥ — Y extends to a continuous map g: ¥ — Y such that each
boundary circle of ¥ is mapped to the image of a Reeb orbit.

o Forevery y € Y\ g(0X), the Reeb trajectory starting at y intersects X in both
forward and backward time.
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We will use the following notation. Suppose that (Y, A) is a nondegenerate contact
three-manifold and J is a A—compatible almost complex structure on R x Y. If u is
a J —holomorphic curve in R x Y as in Section 2.1, let g(u) denote the genus of the
domain of u, and let 4 (u) denote the number of ends of u at positive hyperbolic
Reeb orbits (including even-degree covers of negative hyperbolic orbits). Let M,f
denote the component of the moduli space of J—holomorphic curves in R x Y that
contains u. Let my: R x Y — Y denote the projection.

Proposition 3.2 Let (Y, 1) be a nondegenerate contact three-manifold, and let J
be a A—compatible almost complex structure on R x Y. Let C be an irreducible
J —holomorphic curve in R x Y such that:
(i) Every C'e Mé is embedded® in R x Y.
(i) g(C)=h4(C)=0 and ind(C) = 2.
(iii) C does not have two positive ends, or two negative ends, at covers of the same
simple Reeb orbit.

(iv) Let y be a simple Reeb orbit with rotation number § € R/Z. If C has a positive
end at an m—fold cover of y, then gcd(m, [m6]) = 1. If C has a negative end
at an m—fold cover of y, then gcd(m, [m0]) = 1.

(v) ./\/lé /R is compact.
Then 7y (C) C Y is a global surface of section for the Reeb flow.

3.1 From a holomorphic curve to a foliation

To prepare for the proof of Proposition 3.2, we first need to discuss when holomorphic
curves in R x Y project to embedded surfaces in Y, and when the latter foliate subsets
of Y. Continue to use the notation preceding Proposition 3.2. If u is a J —holomorphic
curve in R x Y, then, following Wendl [29], define the normal Chern number of u by

cy(u) = %(Zg(u) —2+ind(u) + h4(v)).
The goal of this subsection is to prove the following:

Proposition 3.3 Let (Y, A) be a nondegenerate contact three-manifold, and let J be
a A—compatible almost complex structure® on R x Y. Let C be a nontrivial irreducible
embedded J —holomorphic curve in R x Y such that:

8With more work, one can weaken hypothesis (i) to just assume that C is embedded in R x Y. However,

we will not need to do this.
9In Proposition 3.3 it is not necessary to assume that J is generic.
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(i) Every C' e /\/lé is embedded in R x Y.
(i) cy(C)=0.
(iii) C does not have two positive ends, or two negative ends, at covers of the same
simple Reeb orbit.

(iv) Let y be a simple Reeb orbit with rotation number 6 e R/7Z . If C has a positive
end at an m—fold cover of y, then gcd(m, [m6@]) = 1. If C has a negative end
at an m—fold cover of y, then gcd(m, [m0]) = 1.

Then:

(a) Forevery C' € ML, the projection of C’ to Y is an embedding.

(b) If g(C) =hy(C) =0, then the projections of the curves C' € Mé toY give a
foliation of an open subset of Y.

This proposition is a slight generalization of [20, Proposition 3.4], and the ideas in the
proof go back to [7].

To prove this proposition, we first need to recall the significance of the normal first
Chern number. Let u# be an immersed J —holomorphic curve in R x Y with domain X,
and let N — X denote the normal bundle to . Then u has a well-defined deformation
operator

Dy: L3(2,N) - L=, T*'S® N);

see eg [15, Section 2.3]. The derivative at u of a one-parameter family of curves
in Mi defines an element of Ker(D,,).

If v € Ker(D,) does not vanish identically (and u is irreducible), then ¥ has
only finitely many zeroes, all of which have positive multiplicity; see the review
in [20, Proposition 3.4]. We can then define winding numbers of i around the ends
of u as follows. Suppose that u has positive ends at m; —fold covers of simple Reeb
orbits «; , and negative ends at n;—fold covers of simple Reeb orbits ;. Let 7 be a
trivialization of & over the Reeb orbits «; and B;. Let wind;’"r (¥) denote the winding
number of ¥ around the positive end of u at a;" ", as measured using the trivialization t.
Likewise, let wind; () denote the winding number of ¥ around the negative end
of u at ,B;lj with respect to 7.

It was shown in [7] — see the review in [15, Section 5.1] — that the above winding
numbers are bounded by

G- wind (V) < [CZ(]")/2],  wind} () = [CZ(B]")/2].
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If 9;: denotes the rotation number of «; with respect to t, and if 6 iz denotes the
rotation number of B; with respect to 7, then we can rewrite the above inequalities as

(3-2) wind/ () < |mi6; 1. wind; () = [n;6; 1.

,T

Lemma 3.4 Let (Y,A) be a nondegenerate contact 3—manifold and let J be a A—
compatible almost complex structure on R x Y. Let u be an immersed irreducible
J —holomorphic curve in R x Y. Suppose that ¢y (1) =0. Let ¥ be a nonzero element
of Ker(Dy,). Then:

(a) W is nonvanishing.

(b) Equality holds in the inequalities (3-1).

Proof Let 7 be a trivialization of & over the Reeb orbits at whose covers u has ends.
The algebraic count of zeroes of y is then given by

(3-3) #y1(0) = c1(N, 1) + wind (V),

where

(3-4) wind, () = > wind (¥) = wind; ().
i j

Asin [11, Lemma 3.1(a)], we have
(3-5) c1(N, 1) = cc(u) — x (%),

where 3 denotes the domain of u. By (3-1) and (3-4), since CZ.(y) is even if and
only if y is positive hyperbolic, we have

(3-6) 2wind (¥) < CZPu) — p(u) + h (),
where p(u) denotes the total number of ends of u.

Combining (3-3), (3-5) and (3-6), we obtain

(3-7) 249 71(0) < 2¢¢ (u) —2x(2) + CZI(u) — p(u) + hoy (u)
= ind(u) — x(2) — p(u) + h-(u)
=2cy(u).

Since ¢y (1) =0 and all zeroes of ¥ have positive multiplicity, we have #y~1(0) =0,
establishing (a). To deduce (b), note that the inequality (3-7) is in fact an equality. This
implies that equality also holds in (3-6) and hence (3-1). O
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Lemma 3.5 Under the hypotheses in Proposition 3.3, if C' € M., then:

(a) The projection of C' to Y is an embedding.

(b) If C’ is not obtained from C by translation of the R factor in R x Y, then the
projections of C and C’ to Y are disjoint.

Proof We proceed in four steps. We continue to use the notation from (3-1) and (3-2).
Step 1 We first show that the projection of C’ to Y is an immersion.

For any C’ € M2, the projection of 9, (the derivative of the R coordinate on R x Y)
to the normal bundle N of C’ is a nonzero element of Ker(Dc/), since it is the
derivative of the family of curves obtained by translating C’ in the R direction. Since
we are assuming that C’ is not a trivial cylinder, the projection of ds to N does not
vanish identically. We have that ¢ (C’) = 0 and by hypothesis (i), we have that C’ is
embedded. Thus, we may apply Lemma 3.4(a) to conclude that the projection of dg
to N is nonvanishing. This means that the projection of C’ to Y is an immersion.

Step 2 We next show that if C’ € M and C # C’, then the algebraic count of
intersections of C and C’ in R x Y does not depend on C'.

It follows from the definition of Q. in [12, Section 2.7] that the algebraic count of
intersections of C and C’ is given by

#(CNC) = 0:(C) +£:(C.C),

where £;(C, C’) is the “asymptotic linking number” of C and C’ with respect to 7,
defined in [12, Section 2.7].

To analyze this asymptotic linking number, let wind;“r (C) denote the winding number
of dg around the positive end at oz;"i with respect to . Define windj_,r (C) likewise
for the negative ends. As in [15, Lemma 5.5(b)], we then have

(3-8) £:(C.C") <> m; -min(wind]_(C). wind_(C"))

4

— Z n; -max(wind; (C), wind; ; ).
J

Moreover, equality holds if:

(*) For each i, the integers m; and min(wind;"t(C),windi+ . (C")) are relatively
prime, and for each j, the numbers n; and max(wind; (C), wind; (C ")) are
relatively prime.
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By Lemma 3.4(b), we have
(3-9) wi (C) =m0 ], wi(C)=T[n;0;,].

The same holds for any C’ € M é . In particular, by the hypothesis (iv), condition ()
above holds, so equality holds in (3-8). Putting all of the above together, we obtain

#HCNC)=0c(C)+ Y milmi6f,] =) njn;0; 1.
: j

This equation implies that #(C N C’) does not depend on the choice of C' € M é )

Step 3 We now show that if C’ € Mé and C # C’, then C and C’ are disjoint in
RxY.

As in [20, Proposition 3.4, Step 5], hypothesis (iii) and condition (*) above imply that
if C’ is obtained from C by translating a small amount in the R direction, then C
and C’ are disjoint. It then follows from Step 2 that #(C N C’) =0 forall C’ € Mé .
By intersection positivity, this means that C and C’ are disjoint.

Step4 We now complete the proof.

(a) We know by Step 1 that the projection of C to Y is an immersion. To show
that this projection is an embedding, we just need to show that it is injective. (If this
map is an injective immersion, then it is also an embedding because the ends of C
are asymptotic to Reeb orbits.) If injectivity fails, then there exist y € ¥ and distinct
51,52 € R such that (sq, ), (s2,y) € C. Then C intersects the translation of C by
s — s1. It follows from Step 3 that C equals the translation of C by s, —s1 # 0.
This leads to all sorts of contradictions. For example, let (s*, y*) € C be a point
such that y* does not lie on a Reeb orbit. For large n, we would then have that
(n(s2 —s1) +s*,y*) € C, contradicting asymptotic convergence to Reeb orbits. We
conclude that the projection of C to Y is an embedding, and the same argument works
for any C’ € Mé

(b) If the projections of C and C’ to Y are not disjoint, then there exist y € Y and
s,s" € R with (s, y) € C and (s’, y) € C’. Thus C intersects the translation of C’ by
s —s'. It follows from Step 3 that C equals the translation of C’ by s —s’. O

Proof of Proposition 3.3 (a) We have proved this in Lemma 3.5(a).

(b) If u is any immersed J-—holomorphic curve in R x Y with cy(u) < ind(u),
then u is automatically cut out transversely; see the review in [17, Lemma 4.1],
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and see [28] for more general automatic transversality results. In the present case,
cn(C)=g(C)=h4(C)=0,s0ind(C) = 2, and the above automatic transversality
criterion holds for C, as well as for every C' € M é Thus M é /R is a 1-manifold.

By Lemma 3.5(b), the projections to Y of different elements of Mé /R are disjoint.
To complete the proof that these projections give a foliation of an open subset of Y, let
C'e Mé, let (s, y) € C’, and let wy (C’) denote the projection of C’ to Y. We need
to show that the natural map

(3-10) Ticy(ME/R) — (Nmy (C)),

is an isomorphism. Here Ny (C’) denotes the normal bundle to 7y (C’) in Y. By
Lemma 3.4(a), the map
Ter ML — (NC')s.y)

is injective, hence an isomorphism. It follows from this that the map (3-10) is an
isomorphism. a

3.2 From a foliation to a global surface of section

Proof of Proposition 3.2 Note that hypotheses (i), (iii) and (iv) in Proposition 3.2
are the same as the corresponding hypotheses in Proposition 3.3, and hypothesis (ii)
in Proposition 3.2 implies hypothesis (ii) in Proposition 3.3. Then by Lemma 3.5(a),
the restriction of 7y to C, or more generally to any C’ € M., is an embedding. To
complete the proof that 7wy (C) is a global surface of section, it is enough to show the
following:

(a) For each C’ € MY/, the projection 7y (C’) is transverse to the Reeb vector
field R.

(b) Let Z CY denote the union of the images of the Reeb orbits at which C has ends.
Then, for each y € Y \ Z, the Reeb trajectory starting at y intersects 7wy (C) in
both forward and backward time.

We proceed in three steps.
Step 1 We first prove statement (a).

Let C’ € /\/lé We know from Lemma 3.5(a) that d; is nowhere tangent to C’. Since
C’ is J-holomorphic and Jds = R, it follows that C’ is everywhere transverse to the
plane spanned by d5 and R. This implies that 7y (C’) is everywhere transverse to R.
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Step 2 Let
U= [] =v(C).

C’eml
We now show that U =Y \ Z.

We first show that U C Y \ Z. Suppose to get a contradiction that there exist C’ € M é
and z € Z such that z € wy(C’). Then, by part (a), 7y (C’) contains a disk D
which intersects Z transversely at z. Now C’ has an end asymptotic to a Reeb orbit
containing z, and 7y of points on this end must intersect the disk D. Thus 7y (C') is
not embedded in Y, contradicting Lemma 3.5(a).

To prove the reverse inclusion Y \ Z C U, first note that U is an open subset of Y, by
Proposition 3.3(b). Since Y \ Z is connected, it is enough to show that any sequence
in U has a subsequence that converges to a point in U or a point in Z. This holds by
our assumption (v) that M é /R is compact.

Step 3 We now prove statement (b).
By assumption (v) again, we can choose a diffeomorphism
¢: ML/R =5 S =R/Z.

By Lemma 3.5(b) and Step 2, this induces a function f:Y \ Z — S! such that
f(y) =¢([C']) when y € 7y (C’). By Proposition 3.3(b), the function f is a smooth
submersion. By part (a), the derivative Rf is nonzero on all of Y \ Z. By composing

¢ with an orientation-reserving diffeomorphism of S! if necessary, we may assume
that Rf >0 onallof Y\ Z.

Given y e Y \ Z and T € R, define g(y,T) € R to be the total change in f along a
Reeb trajectory for time 7T starting at y. It is enough to show that foreach y € Y \ Z,
there exists 7 > 0 such that g(y,T) > 1 and g(y,—T) < —1. In fact, we will show
that there is a single 7 > 0 which works forall y e Y \ Z.

Suppose that C has a positive end at the m—fold cover of a simple Reeb orbit y.
Fix a trivialization 7 of £|,, and let & € R denote the rotation number of y with
respect to 7. Choose an identification of a tubular neighborhood of the image of y
in ¥ with S x D? such that y is identified with S x {0} preserving orientation
and the derivative of the neighborhood identification along y agrees with 7. Let
p: R/mZ — R/Z = S! denote the projection. By the asymptotics of holomorphic
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curves reviewed in [15, Section 5.1], this end of C is described by a map
[s0,00) X (R/mZ) — R x (R/Z)x D2, (s,1)+ (s, p(t), n(s,1)).

Here
n(s, 1) = e MSp(t) + 0(eTH9),

where ¢: R/mZ — D? is nonvanishing and has winding number less than or equal
to [mf ], and u, e > 0. More specifically, ¢ is an eigenfunction of the “asymptotic
operator” associated to y”" with eigenvalue i ; see the review in [15, Lemma 5.2]. This
means that the Reeb flow near y, as it goes m times around y, rotates approximately by
at least m0 — |[m60 | = {m0} relative to the eigenfunction ¢ describing the asymptotics
of C.

Let k be an integer with k{m6} > 1; we know that such a k exists since we assumed
in (v) that 24 (C) = 0, hence m# is not an integer. Set T = km.A(y). Then, for y
near the image of y, we have g(y,7T) > 1 and g(y,—T) < —1.

Reasoning similarly for the other ends of C, we conclude that there exist a neighborhood
V of Z and a real number Ty > 0 such that if y € V' \ Z, then g(y,Tp) > 1 and

g(y,—Tp) < —1.

By compactness,'? there exists § > 0 such that the derivative Rf >§ on Y \ V. It
follows that if we set T = §~! + T, then for every y € Y \ Z we have g(y,T) > 1 and
g(y,—T) < —1. To clarify for example why g(y, T) > 1: if the Reeb flow starting at y
stays outside of V for time at least !, then by the definition of § we already have
g(y.871) > 1. On the other hand, if for some §’ € [0, §~!] the image of y under the
time §' Reeb flow is in V, then by the definition of Ty we have g(y,8' + Tp) > 1. O

3.3 The Poincaré return map

Under the hypotheses of Proposition 3.2, we can now define the “Poincaré return map”
(3-11) fray(C) = my(C)

as follows: If y € Y, then f(y) is the first intersection with 7y (C) of the forward
orbit of y under the Reeb flow. More precisely, for # € R, let ¢’: ¥ — Y denote the

100ne might wish to simplify the proof by finding a positive lower bound on Rf onall of ¥ \ Z.
However, this fails in the generic situation where the first two positive eigenvalues of the asymptotic

operator of any Reeb orbit at which C has a positive end are distinct, or the first two negative eigenvalues
of the asymptotic operator of any Reeb orbit at which C has a negative end are distinct.
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time ¢ Reeb flow. If y € 7y (C), let 14 (y) denote the infimum over ¢ > 0 such that
¢'(y) € my (C). By the “forward” part of the third bullet in Definition 3.1, we have
14 (y) < 0o. Now define f(y) = ¢+0)(y).

Lemma 3.6 Under the hypotheses of Proposition 3.2:

(a) dA restricts to an area form on y (C).

(b) The Poincaré return map (3-11) is a diffeomorphism which preserves this area
form.

(¢c) The Poincaré return map preserves the ends of wy (C).

Proof By Proposition 3.2, wy (C) is a global surface of section for the Reeb flow. By
the first bullet in Definition 3.1, the Reeb vector field R is transverse to 7wy (C). It
follows that (a) holds, and also that f is smooth.

By the “backward” part of the third bullet in Definition 3.1, f is a diffeomorphism. And
as shown in [8, Equation (5.10)], the return map f* preserves the area form dA |, (c).
This proves (b).

To prove (c), observe that the proof of Proposition 3.2 showed that if C has an end at a
cover of a simple Reeb orbit y, then the Reeb flow, starting a point in 7y (C) near y,
will return to 7y (C) while staying in a neighborhood of y. a

4 Existence of a special holomorphic curve

We would now like to find a holomorphic curve satisfying the criteria in Proposition 3.2,
so that it projects to a global surface of section for the Reeb flow. The goal of this
section is to prove Proposition 4.2 below, which asserts that we can do this, under
the assumptions that ¢q(£) is torsion and that there are only finitely many simple
Reeb orbits. In fact, we will obtain a curve satisfying even more properties than those
required for Proposition 3.2, namely:

Definition 4.1 Let (Y, A1) be a nondegenerate contact three-manifold, and let J be
a A—compatible almost complex structure on R x Y. A J-holomorphic curve C in
R x Y is special if it has the following properties:

(a) ind(C)=1(C)=2,and C is irreducible and embedded in R x Y.

Geometry & Topology, Volume 23 (2019)



3628 Dan Cristofaro-Gardiner, Michael Hutchings and Daniel Pomerleano

(b) C has at least one positive end, and at least one negative end, at elliptic Reeb
orbits.

(c) C has genus zero and at most three ends.

(d) C does not have two positive ends, or two negative ends, at covers of the same
simple Reeb orbit.

(e) C does not have any ends at hyperbolic orbits, except possibly one end at a
simple negative hyperbolic orbit.

(f) The component of the moduli space of J—holomorphic curves containing C is
compact.

Proposition 4.2 Let (Y, A) be a nondegenerate contact three-manifold with c1(§) €
H?(Y;Z) torsion and with only finitely many simple Reeb orbits. Let J be a generic
A —compatible almost structure on R x Y. Then there exists a special J —holomorphic
curvein R x Y.

4.1 A sequence of U-curves

The first step in the proof of Proposition 4.2 is to obtain a sequence of U—curves with
some control over their Jy index.

To prepare for this, note from (2-3) and (2-13) that if @ and § are any orbit sets with
@] =[B] and if Z € Ha(Y, @, B), then the difference between I and Jy is given by

@1 1@.B.2)=Jo(@.B.Z) =2c:(Z) + Y CZc(a]") = Y CZ(B}).
i J

We will also need the following linearity property of the relative first Chern class: Let
o’ and B’ be another pair of orbit sets with [o'] = [B'], and let Z' € Hy(Y,a', ).
Then Z + Z' € Hy(Y,ad’, BB’) is defined; here aa’ denotes the “product” orbit set
obtained by taking the union of the simple Reeb orbits in « and «’ and adding their
multiplicities. Let t be a trivialization of & over all the Reeb orbits in the four orbit
sets «, B, a’ and B’; it then follows from the definition of ¢, in [15, Section 3.2] that

(4-2) Ct(Z'f‘Z,) :Cr(z)'i‘ct(zl)-

Lemmad4.3 Let (Y, 1) be a nondegenerate contact 3—manifold with c1(§)e H*(Y; Z)
torsion. Then:
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(a) There is a unique way to assign, to each orbit set o with [@] = 0 e H{(Y),
integers I(«) and Jo(«), such that (i) 1(9) = Jo(@) = 0, and (ii) if B is
another orbit set with [] = 0, then for any Z € H(Y,«, B), we have

(4-3) o, B.2) = I()—1(B). Jol(.B. Z) = Jo(e) — Jo(B).

(b) If there are only finitely many simple Reeb orbits, then there is a constant §; > 0
such that if « is any orbit set with [«¢] = 0, then

(4-4) [1(a) = Jo(@)| = 81.A().

Proof (a) We must define /(o) = I(«, @, Z) and Jo(o) = Jo(a, @, Z) where Z is
any class in H (Y, a, @). These definitions do not depend on the choice of Z in view
of (2-4) and (2-15) since [] = 0 and c;(£) is torsion. The equations (4-3) hold as a
result of the additivity property (2-5) of I and an analogous property of Jg.

(b) Let aq,...,a, denote the simple Reeb orbits. Fix a trivialization t of & over
o1,.... 0. Leta=]]; oel'."i be a nullhomologous orbit set. Define c;(«) =c(a, &, Z)
for any Z € H,(Y, o, @); this is well defined by (2-14). Then, by part (a) and (4-1),
we have

n
(4-5) I(@) = Jo(o) = 2cc () + Y CZ (™).
i=1
Here we interpret CZ, (oz;"i) =0 when m; = 0.

To analyze the ¢; term in (4-5), note that o = ]_[;l:l a;ni is nullhomologous if and

only if (my,...,my) is an element of the set

Zmi[ai] =0e H(Y);.

i=1

W =1(my,...,m,)eN"

Thus ¢, defines a map W — Z. Let W denote the span of W in Q". The map
ce: W — Z is additive by (4-2), hence ¢, extends uniquely to a linear map Wg — Q.
This extension is then given by the inner product with a fixed vector in Wg. We
conclude that there are constants wy, ..., w, € Q such that every nullhomologous
orbit set @ = [[/_; o' satisfies

(4-6) cel@) =) wim.

i=1
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To estimate the Conley—Zehnder index term in (4-5), note that by (2-2) we have
CZr(a;"") = |m;6; | + [m;0;],

where 6; denotes the rotation number of «; with respect to . In particular,

@7 | CZe (o) = 2[16: [1m; .

Combining (4-5), (4-6) and (4-7), we obtain

(4-8) |[1(a) = Jo(@)| <Y dim,

i=1

where d; = 2(|w;| 4 [|6;|1)- In addition, we have

n
(4-9) Aer) =) aim;.
i=1
where a; = A(w;) > 0. It follows from (4-8) and (4-9) that the estimate (4-4) holds
with §; = max(d;/a;). a

Lemma 4.4 Let (Y, 1) be a nondegenerate contact 3—manifold with only finitely
many simple Reeb orbits and with c1(§) € H?(Y;Z) torsion. Let J be a generic
A —compatible almost complex structure. Let € > 0. Then at least one of the following
is true:

(1) There exist ECH generators o and B, and a U—curve C € M’ («, B), such that
[@]=[B]=0¢€ H{(Y) and A(x)—A(B) <& and Jo(C) < 1.

(2) For every positive integer [, there exist ECH generators «(0),a(1),...,a(l)
with [«(i)] = 0 € H1(Y), and U—curves C(i) € M’ (a(i),a(i — 1)) fori =

1,...,1, such that for each i we have
(4-10) A(a(@))— A(x(@i —1)) <e,
4-11) Jo(C(i)) = 2.

Proof Suppose that (1) is false, in particular that every U—curve C € M7 (a, B) with
@] = [B] =0 and A(x) —A(B) < ¢ satisfies Jo(C) > 2. We must prove that (2) is true.

By Proposition 2.3(a) and our assumption that c;(§) is torsion, there exists a U-
sequence {0y jx>1 in ECH(Y, A, T") with I' = 0. By (2-22), there is a constant J > 0
such that

cop (Y, 1) < 82k1/2.
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Recall from Section 2.3 that the map U on ECH(Y, A, 0) is induced by a chain
map Uy, on ECC(Y, A, 0) counting U—curves passing through a point z € ¥ which
is not on any Reeb orbit. Fix a large positive integer k. By the definition of ¢4, , the
class op can be represented by a cycle x = ) ; Xj in the chain complex ECC(Y,A,0)
such that each x; is an ECH generator with action A(x;) < ¢, . Since U k=15, #£0
on homology, it follows that U }"le # 0 on the chain level. Thus there are ECH
generators «(1), ..., (k) such that [@(i)] =0 € H(Y) for each i, the ECH generator
a(k) is one of the x;, and (Uy ;a(i),o(i —1)) #0 for i =2, ..., k. In particular,

(4-12) A(a(k)) < 82k'2,
and there exist U—curves C(i) € M7 (a(i),a(i —1)) fori =2,... k.

We claim that for every positive integer /, if k is sufficiently large, then there will be /
consecutive integers i from 2 to k satisfying (4-10) and (4-11). It is enough to show
that there are at most O(kl/ 2) integers i from 2 to k such that (4-10) and (4-11) are
not both satisfied.

By (4-12), there are at most e 18,k1/2 integers i from 2 to k such that (4-10) is
not satisfied. By our hypothesis, this also implies that there are at most e 18,k1/2
integers i from 2 to k such that Jo(C(i)) < 1.

Since the C(i) are U—curves, they each have ECH index 2, so

k
> IEh)) =20k - 1).
=2

It then follows from Lemma 4.3(b) and the estimate (4-12) that

k
> " Jo(C(i)) = Jola(k)) — Jo(e(1)) < 2(k — 1) + 2818,k /2.
=2
Recall that Jo(C(7)) is an integer. Also, it follows from Proposition 2.6 that Jo(C(i)) >
—1 for each i . We deduce that there are at most (28, + 4e~1)8,k!/2 integers i from
2 to k such that (4-11) is not satisfied. |

Remark 4.5 The proof of Lemma 4.4 is the part of the proof of Theorem 1.4 where
we make essential use of the assumption that ¢ (§) is torsion. Without this assumption,
we can still find U—curves in M (a, B) with A(e) —A(B) < & such that [a] =[] =T,
where ¢1(§) +2PD(T") € H?(Y;Z) is torsion. However, we do not know how to
control Jy of these curves, because when ¢ (§) is not torsion, Jo of these curves no
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longer depends only on o and 8, but also on their relative homology classes by (2-15).
How to bound Jj in this case is an interesting question for future research.

4.2 Controlling topological complexity

We now use Proposition 2.6 to describe the possible structure of a U—curve C = Co U Cy
with Jo(C) <2.

Lemma 4.6 Under the hypotheses of Proposition 2.6, suppose that Jo(C) <1 and that
C1 has at least one negative end. Then:

(a) Cj has genus zero and at most three ends.

(b) C; does not have two positive ends or two negative ends at covers of the same
simple Reeb orbit.

Proof It follows from (2-16) that y(Cy) > —1. Since C; always has at least one
positive end, and we are assuming that C; has at least one negative end, assertion (a)
follows.

If assertion (b) is false, then it follows from (2-16) that y(C;) > 0, which is impossible
since now Cj has at least three ends. O

Lemma 4.7 Under the hypotheses of Proposition 2.6, suppose that Jo(C) = 2 and that
C1 has at least one negative end. Then:

(a) If for some i, both Cy and C; have positive ends at covers of «;, or if for
some j, both Co and Cy have negative ends at covers of f;, then Cy satisfies
the conclusions of Lemma 4.6.

(b) C; has at most two positive ends at covers of «; for each i, and at most two
negative ends at covers of fB; foreach j .

(c) If Cy has two positive ends at covers of «; for some i, then C; has exactly one
negative end. Likewise, if Cy has two negative ends at covers of 8; for some j ,
then C; has exactly one positive end.

Proof (a) This follows from (2-16) as in the proof of Lemma 4.6.

(b) If C; has more than two positive ends at covers of «; for some i, or if C; has
more than two negative ends at covers of B; for some j, then (2-16) implies that
x(C1) = 0, which is a contradiction since in this case Cp has at least four ends.
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(c) If C; has two positive ends at covers of «; for some i, then, by (2-16), y(C1)>—1.
Since we are assuming that C; has at least one negative end, it follows that C; has
exactly one negative end. The proof in the case where C; has two negative ends at
covers of B; for some j is analogous. a

4.3 Exceptional Reeb orbits

Definition 4.8 Let (Y, A) be a nondegenerate contact three-manifold. Let y be a
simple Reeb orbit and let m be a positive integer. We say that the pair (y,m) is
exceptional if |p}‘f (m)| +|p, (m)| <3.

Lemma 4.9 Let (Y,A) be a nondegenerate contact three-manifold, and let y be a
simple Reeb orbit. Then there are only finitely many positive integers m such that the
pair (y, m) is exceptional.

Proof If y is hyperbolic, then Lemma 4.9 follows directly from (2-11) and (2-12).
So assume that y is elliptic. We need to show that if # is an irrational number then
there are only finitely many positive integers m with | p; (m)| + | py (m)| € {2,3}.
Since p, (m) = pfa (m), it is enough to show that there are only finitely many positive
integers m with pg'(m) = (m) and |p, (m)| € {1,2}.

Claim If 0 is irrational and p; (m) = (m), then 1 € pe_(m).11

Proof Let a denote the smallest element of p, (m). By the definition of py in

Section 2.5, the triangle with vertices (m, [mf]), (m, [m8]) and (m —a, [(m—a)d7)

does not contain any lattice points other than its vertices. Thus, by Pick’s theorem, this
a

triangle has area % But this triangle also has area 5,s0 a = 1. a

It follows from the claim that if p; (m) = py (m) = (m) then m = 1.

It remains to show that there are only finitely many m with p;’(m) = (m) and
|pg (m)| = 2. In this case, it follows from the claim that p, (m) = (m — 1, 1). Then,
by the definition of p(;r and p,, the quadrilateral with vertices (0,0), (m, [m6]),
(m,[m6]) and (m — 1, [(m — 1)87) contains no lattice points other than its ver-
tices. This quadrilateral contains the triangle with vertices (0,0), (m, |mf]) and

More generally, if 0 is irrational and m > 1 then 1 ¢ pg' (m) if and only if 1 € py (m). This is
shown in [11, Equation (22)], and can also be proved similarly to the proof of the claim.
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(m —1,[(m — 1)87), so that triangle also contains no lattice points other than its
vertices, and thus has area % Recomputing this area using determinants, we obtain

m[m—1)01—(m—1)|mb| =1.
Since py (m) = (m —1, 1), we also know from [15, Example 3.13(b)] that
[(m—1)01+[0] = [m0].
Substituting this equation into the previous one, we obtain
I =m([m0]—1601)—(m—1)[mb]
=m—=1)+[m0] —m[0]
=m—-1)+mb+1—-—{mb}—m(6+1—-{0})
=mi{0} —{mo}.

This implies that m{f} < 2, so there are only finitely many such m. O

4.4 Low energy curves

Lemma 4.10 Let (Y, A) be a nondegenerate contact three-manifold with only finitely
many simple Reeb orbits. Then there exists a constant ¢ > 0 with the following
property. Let « and 8 be ECH generators with A(a) — A(B) <e¢. Let J be a generic
A —compatible almost complex structure on R x Y. Let C = Co U C; € M’ («, B) be a
U—curve. Then:

(a) Let o/ and B’ denote the orbit sets for which C; € M” (¢, B'). Then there is at
least one pair (y, m) € &’ such that (y,m) is not exceptional, and likewise there
is at least one nonexceptional pair (y,m) € f8'.

(b) C; has at least one positive end and at least one negative end at elliptic Reeb

orbits.

(c) If C; has genus 0 and at most three ends, then the component of the moduli
space of J —holomorphic curves containing C1 is compact.

Proof Since there are only finitely many simple Reeb orbits, and since by Lemma 4.9
there are only finitely many exceptional pairs (y, m), there are only finitely many orbit
sets x where every pair (y, m) € x is exceptional. It follows that we can choose ¢ > 0
such that the following holds:

(1) If x is an orbit set such that every pair (y,m) € x is exceptional, and if y is
another orbit set with A(x) # A(y), then |A(x) — A(y)| > .
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In particular, we also have:

(i) If y is a simple Reeb orbit then A(y) > ¢.

(iii) If y is a positive hyperbolic Reeb orbit which is either simple or a double cover
of a simple negative hyperbolic orbit, and if y’ is any other Reeb orbit with
A(y) # A(y"), then [A(y) — A(Y))| > &.
We claim that properties (i)—(iii) above imply assertions (a)—(c). To see this, let J be
a generic A—compatible almost complex structure, and let C = Co U C; € M’ (a, B)
be a U-curve with A(a) — A(B) < &. We can write « = 'y and = 'y, where
y is the orbit set such that Co = R x y, and C; € M’ (¢/, 8’). Then we also have
0 < A(a') — A(B’) < &. We now prove (a)—(c) as follows.

(a) This follows immediately from property (i).

(b) Suppose to get a contradiction that (b) does not hold. Without loss of generality,
C1 does not have a positive end at an elliptic Reeb orbit. This means that all orbits in o’
are hyperbolic. Then, since « is an ECH generator, all orbits in o’ have multiplicity one.
In particular, every element of o’ is exceptional. Since Cy is nontrivial, A(a’) # A(B).
This contradicts property (i) with x = ¢’ and y = f".

(c) Suppose to get a contradiction that C; has genus 0 and at most three ends, but the
component of the moduli space of J —holomorphic curves containing C; is not compact.
Then, by the compactness theorem in [15, Lemma 5.11], there exists a sequence of
J —holomorphic curves in the moduli space containing C; which converges in an
appropriate sense to a “broken J-—holomorphic current” from o’ to B’ with more
than one level and with total ECH index 2. This broken J-holomorphic current
is a k—tuple of J—holomorphic currents (C(1),...,C(k)) where k > 1, the current
C(i) € M7 (a(i),a(i — 1)) is not a union of covers of trivial cylinders, a(k) = o’
and a(0) = B/, and Zf-;l I1(C(i)) = 2. By Proposition 2.1, it follows that k = 2 and
I(C()=1(C2)=1.

Write Ct = C(2) and C~ = C(1). By Proposition 2.1(1), we can write
ct=cifuctem! (g, ¢ =coucyem/(np)
for some (not necessarily admissible) orbit set 1, where each component of C(:)t isa

trivial cylinder, while C is embedded and has ind(Ci¥) = I(C) = 1. Note that
A(a’) — A(n) and A(n) — A(B’) are both less than €.

By property (ii), C 1+ and C| each have at least one negative end (and of course at
least one positive end). In particular, y(C 1+ )<0and x(C;) =<0.
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Now at least one of C 1+ and C;  must be a cylinder. Otherwise )((Cfr ) <—1 and
X(C{) =<—1,s0 x(Cy) <2 (by the definition of convergence to a broken holomorphic
current in [15, Section 5.3]), contradicting our assumption that C; has genus 0 and at
most three ends.

Since the cylinder C 1+ or C|” has Fredholm index 1, the two Conley—Zehnder terms
in (2-1) must have opposite parity, which means that one end is at a positive hyperbolic
orbit, while the other end is at an elliptic or negative hyperbolic orbit. Since this cylinder
also has ECH index 1, it follows from the partition conditions in Proposition 2.4 and
(2-11) and (2-12) that the positive hyperbolic orbit is either simple, or the double
cover of a negative hyperbolic orbit. The existence of this cylinder now contradicts
condition (iii). m|

4.5 Existence of a special curve

Proof of Proposition 4.2 Suppose there are n simple Reeb orbits. We now invoke
Lemma 4.4, with the constant ¢ provided by Lemma 4.10.

Suppose that case (1) in Lemma 4.4 holds. We then have a U—curve C =Co LU C; €
M7 (a, B) with A(a) — A(B) < & and Jo(C) < 1. We claim that the curve C; is
special. Condition (a) in the definition of “special” holds because C is a U—curve.
Condition (b) holds by Lemma 4.10(b) above. Conditions (c) and (d) then hold by
Lemma 4.6. Since C; has at most three ends, at least two of which are at elliptic orbits,
and since C; has even Fredholm index, it follows that C; cannot have an end at a
positive hyperbolic Reeb orbit. Since o and 8 are ECH generators, if C; has an end
at a negative hyperbolic Reeb orbit, then this orbit is simple. This proves condition (e)
in the definition of “special”. Condition (f) holds by Lemma 4.10(c).

Suppose now that case (2) in Lemma 4.4 holds. We can then put / = 2n + 1 into
Lemma 4.4 to obtain ECH generators «(0),...,a(2n + 1), and U—curves

C(i) =C(i)o LU C(i) € M7 (a(i), ali — 1))

fori =1,...,2n + 1 such that (4-10) and (4-11) hold for each i. We claim that for
at least one i, the curve C(i); is special. We know that for each i, the curve C(i);
satisfies condition (a) in the definition of “special” since C(i) is a U—curve, and
also condition (b) by Lemma 4.10(b). We need to show that for at least one i, the
curve C(i); also satisfies conditions (c) and (d); the conditions (e) and (f) will then
follow as before.
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We claim that for some i, the curves C(i)¢ and C(i); have positive ends at covers
of the same simple orbit, or negative ends at covers of the same simple orbit. Then,
by Lemma 4.7(a), the curve C(i); satisfies conditions (¢) and (d) in the definition of
“special”, and we are done.

To prove the claim, suppose that for all i, the curves C(i)g and C(i); do not have
positive ends at covers of the same simple orbit, or negative ends at covers of the same
simple orbit. We then obtain a contradiction as follows.

Let us call the curve C(i); “Type I” if it does not have two negative ends at covers of
the same simple orbit. Call the curve C(i); “Type II” if it does not have two positive
ends at covers of the same simple orbit. By Lemma 4.7(c), each curve C(i); is Type I
or Type II (or possibly both).

Suppose that for some i > 1, the curve C(i); is Type 1. Then, by Lemma 4.10(a),
there is a simple orbit y such that C(i); has exactly one negative end at a cover of y,
of multiplicity m, and the pair (y, m) is not exceptional. Then the curve C(i — 1)
cannot have any positive ends at covers of y, by Lemma 4.7(b) and the definition of
“exceptional”, hence the component of C(i — 1)¢ along y must have multiplicity m.
It then follows by downward induction on j that if 1 < j < i, then the curve C(j)
cannot have any positive or negative ends at covers of y.

Likewise, if for some i < 2n + 1, the curve C(i); is Type II, then there is a simple
orbit y such that C(i); has a positive end at a cover of y, but for i < j <2n+ 1, the
curve C(j); cannot have any positive or negative ends at covers of y.

Now, among the 2n — 1 curves C(2)1,...,C(2n)1, at least n of them have Type I,
or at least n of them have Type II (or possibly both). In the first case, there are no
possible orbits at which C(1); can have ends, which is the desired contradiction. In
the second case, there are no possible orbits at which C(2rn + 1)1 can have ends, which
is likewise a contradiction. O

5 Two or infinitely many Reeb orbits
In this section we complete the proof of the main result, Theorem 1.4.
5.1 Invoking a theorem of Franks

To prove Theorem 1.4, we will need one more dynamical fact.
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Proposition 5.1 Let C be a surface diffeomorphic to S? with k points removed. Let
 be an area formon C with [~ w <oo. Let f: (C,w)— (C,w) be an area-preserving
diffeomorphism which acts as the identity on the set of ends. Then:

If k =2, then f has either no periodic orbits or infinitely many.

e If k>2,then f has infinitely many periodic orbits.

To prove Proposition 5.1, we will use the following theorem of Franks. Below, let A
denote the open annulus D2\ {0}.

Theorem 5.2 [6, Theorem 4.4] Let f: A— A be a homeomorphism which preserves
Lebesgue measure. If f has at least one periodic orbit, then f has infinitely many
periodic orbits.

To apply Theorem 5.2, we will need the following result of Berlanga and Epstein, gen-
eralizing results of Oxtoby and Ulam [24]. Let u be a Borel measure on a manifold X.
We say that p is “nonatomic” if w({x}) = 0 for each x € X, and that p has “full
support” if w(U) > 0 for every nonempty open set U C X.

Theorem 5.3 (special case of [2]) Let puy and pup be two Borel measures on a
manifold X which are nonatomic and have full support. If 1(X) = u2(X) < oo,
then there is a homeomorphism h: X — X such that hy 1 = 2.

Proof of Proposition 5.1 We can identify C with A\{zy, ..., zx_»}, where the points
Z1,...,Zk_o € A are distinct. Since the diffeomorphism f: C — C preserves the
ends of C, it follows that f extends to a homeomorphism f: A — A with f(z;) = z;
fori=1,...,k—2.

Let u denote the measure on C determined by w. We extend  to a measure it on A
by setting w(U) = u(U \ {z1,...,2zx_>}) for any Borel measurable set U C A. The
homeomorphism f preserves the measure (. The measure 1 has full support because
w does, and is nonatomic because the points z1, ..., zx_, have measure zero. Thus, by
Theorem 5.3, there is a homeomorphism s: A — A such that s is a rescaling of the
Lebesgue measure. In particular, the conjugate homeomorphism / o ]F oh™l:4— A
preserves Lebesgue measure.

It now follows from Theorem 5.2 that the homeomorphism f_ has either no periodic
orbits or infinitely many. Since z1,...,z;_, are fixed points of f, Proposition 5.1
follows immediately. a
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5.2 Proof of the main theorem

Proof of Theorem 1.4 Assume that A has only finitely many simple Reeb orbits;
we need to show that A has exactly two simple Reeb orbits. Let J be a generic
A—compatible almost complex structure on R x Y.

By Proposition 4.2, there exists a special J—holomorphic curve C in R x Y. By
Definition 4.1, this implies that the following conditions hold:

(a) C isirreducible and embedded and has ind(C) = I(C) = 2.
(b’) C has at least two ends.
(¢’) C has genus zero.

(d) C does not have two positive ends, or two negative ends, at covers of the same
simple Reeb orbit.

(¢’) C has no ends at positive hyperbolic orbits or at nonsimple negative hyperbolic
orbits.

(H) ./\/lé /R is compact.

(Conditions (b"), (¢’), and (e’) above are weaker than the corresponding conditions (b),
(c) and (e) in Definition 4.1, but are all that we need in the proof.)'?

We now check that C satisfies hypotheses (i)—(v) of Proposition 3.2, so that C projects
to a global surface of section for the Reeb flow:

(i) By (d) and (¢’) above, C € M («, B) where « and B are admissible orbit sets.
Then, by (a) and [15, Proposition 3.7(2)], every C' € M é is embedded in R x Y.

(ii) This follows from (a), (c’) and (e’) above.
(iii) This is condition (d) above.

(iv) By (a) and (d) above, and by Proposition 2.4, if C has a positive end at an
m—fold cover of a simple Reeb orbit y, then p;f (m) = (m); and if C has a
negative end at an m—fold cover of a simple Reeb orbit y, then p,, (m) = (m).
Hypothesis (iv) now follows from Lemma 2.5.

(v) This is condition (f) above.
121n fact, as explained in the discussion preceding [8, Corollary 1.4], the Brouwer translation theorem

allows one to avoid using condition (b’) entirely. However, we have kept this condition in order to
streamline the exposition.
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Thus Proposition 3.2 is applicable to C, and as in Section 3.3 we obtain a Poincaré
return map

fiay(C)— ny(C).

By Lemma 3.6, we can apply Proposition 5.1 to the map f . Since we are assuming that
A has only finitely many Reeb orbits, it follows from Proposition 5.1 and condition (b”)
that C has exactly two ends, at Reeb orbits which we denote by y+ and y_, and that
A has no simple Reeb orbits other than the simple Reeb orbits underlying y+ and y_,
which we denote by y4 and y_. Moreover, Y4+ and y_ are distinct by Theorem 1.1
(one can also show this more directly using intersection theory). Thus A has exactly
two simple Reeb orbits. a

6 The nontorsion case

We conclude by proving Theorem 1.7. Below, if y; and y» are Reeb orbits, let iy, ,,
denote the map

(6-1) iy 27— Hi(Y),  (m1.m2) = my[y1] +malyal.

Proof of Theorem 1.7(b) We know by Theorem 1.5 that there are at least three simple
Reeb orbits. Suppose to get a contradiction that there are exactly three.

Choose ' € H1(Y) such that ¢1(§) +2PD(I") is torsion. Since we are assuming that
c1(£) is not torsion, it follows that I' € H{(Y) is not torsion either.

By Proposition 1.9, at least one of the simple Reeb orbits is positive hyperbolic.

We claim that the other two simple Reeb orbits are elliptic. To see this, note that if
there are no elliptic orbits, then there are just three hyperbolic simple Reeb orbits, so it
follows from the definition of the ECH chain complex that ECH, (Y, A, T') is finitely
generated, contradicting Proposition 2.3(a). If there is one elliptic simple Reeb orbit e
and two hyperbolic simple Reeb orbits /11 and £, then let {0 x> be a U-sequence
in ECH« (Y, A, I") provided by Proposition 2.3(a). By (2-19), the spectral invariant
co (Y, 1) is the symplectic action of some ECH generator oy = ek h?l'khgz'k, where
my is a nonnegative integer and 1y g, n, x € {0, 1}. By (2-20), the symplectic action
of oy is a strictly increasing function of k. It then follows that ¢4, (Y, A) grows at
least as 1kA(e), so that o, (Y, 2)?/k grows at least linearly with k. This contradicts

1
the asymptotic formula (2-22).
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Thus there are two elliptic simple Reeb orbits e; and e, and one positive hyperbolic
simple Reeb orbit 7. We claim now that the kernel of i, ., has rank one. If the
kernel of i., ¢, has rank zero, then, as before, ECH(Y, A, I') is finitely generated,
a contradiction. If the kernel has rank two, then the orbits e; and e, represent
torsion classes in homology. Since, by the definition of the mod 2 grading I,, every
generator of the chain complex ECCeyen(Y, A) takes the form e';"1 ey 2, we then have
ECHgyen (Y, A, ') = 0, contradicting Proposition 2.3(b).

Thus the kernel of i, ., has rank one, and is generated by some integer vector
(v1,v2). Without loss of generality, v > 0. Consider a U-sequence {0y }r>1
in ECHeyen(Y, A, 7). By (2-19), for each k the spectral invariant ¢4, (Y, A) is the
action of an orbit set e;"”‘ 6'2" >*in the homology class I'. For each k, we may

express

(6-2) (my g, my ) = (my,1.ma2,1) + arx(vi,v2)

for some ay € Z. By (2-20), the aj, are distinct. Since, by the definition of orbit set,
my x>0 and my ; > 0, and since vy > 0, it follows that vy > 0. (Otherwise there
could only be finitely many k such that (6-2) has both components nonnegative.) Since
both v and v, are nonnegative, it follows that the sequence ¢y, (¥, A) grows at least
linearly with k, since each term in this sequence exceeds the previous one by at least
min(A(ey), A(ez)). Once again this contradicts the asymptotic formula (2-22). O

Proof of Theorem 1.7(a) By Theorem 1.1, there are at least two simple Reeb orbits.
Suppose to get a contradiction that there are exactly two simple Reeb orbits, and
denote these by y; and y,. Choose I' such that c;(§) + 2PD(I") is torsion. By
Proposition 2.3(a), there is a U-sequence in the class I'; it follows from (2-19)
and (2-22) that there is an infinite sequence ()/In 1k y;n 2k )k>1 of orbit sets in the

class T" with strictly increasing action.

Now consider the map on homology (6-1). If the kernel of this map has rank 0, then
there is at most one orbit set in every homology class, contradicting the existence of
infinitely many orbit sets in the class I'. If the kernel has rank 2, then there can not
be any orbit sets in any nontorsion homology class, which again is a contradiction
since our hypothesis that ¢ (§) is not torsion implies that I is not torsion either. If the
kernel has rank 1, then we can repeat the last paragraph of the proof of Theorem 1.7(b)
to get a contradiction. a
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Appendix U-sequences from Seiberg—Witten theory

We now prove Proposition 2.3. Let P/Il\\/l*(Y, 5) denote Seiberg—Witten Floer coho-
mology with Z coefficients. Like ﬁl\\/I*(Y,s;Z /2), the groups ﬁlV[*(Y, 5) have a
canonical Z /2 grading which refines a relative Z/d grading. This allows us to split

HM* (Y, s) = HM®*(Y, 5) & HM°¥ (Y, 5).

Since Taubes’s isomorphism (2-9) preserves the relative gradings, it follows that for
any given ', this isomorphism will either preserve or switch the decompositions of
ECH and HM into even and odd parts.

The U-map on I-TM*(Y ,§;7,/2) also lifts to a canonical degree 2 map on I-/I-I\\/I*(Y, 5).
Define a “U-sequence” on HM* analogously to the definition in Section 2.4. By
Theorem 2.2 and (2-10), Proposition 2.3 follows from the following lemma:

Lemma A.1 Let Y be a closed oriented connected three-manifold, and let s be a
spin-c structure on Y with ¢1(s) € H?(Y ;Z) torsion. Then:

(a) There exists a U-sequence {0y }r>1 in ﬁMeve“(Y ,6) such that each oy, is non-
torsion.

(b) If b1(Y) > 0, then there exist U-sequences in HM®"*"(Y, s) and HAM®(Y, 5)
such that each o}, is nontorsion.

While this lemma is well known, we present a proof for completeness.

Proof of Lemma A.1 As explained in [23, Section 22.3], there are companion groups
HM* (Y,s) and HM*(Y, s) which fit into an exact triangle

(A-1) o« HM*(Y,5)* <« HM*(Y,s) < HM* (Y, 5) < --- .

By construction, as in the proof of [23, Corollary 35.1.4], the groups PTl\//I*(Y ,§) vanish
in sufficiently negative degree. Hence, by (A-1), it suffices to prove that there are
such U-sequences in HM*(Y, s). By the calculations in [23, Section 35], the latter
group is a module over Z[U, U~1]. It therefore suffices to prove that HM4 (Y, 5) @ R
is nonvanishing in even degrees when b1(Y) = 0 and that it is nonvanishing in both
even and odd degrees when b1 (Y) > 0.

By [23, Section 35], we have
(A-2) HM,(Y,5) @ R ~ H (T" ¥ )R,
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where the right-hand side denotes the “coupled Morse homology” defined in [23,
Section 33] for the torus T21 (), equipped with a suitable family of self-adjoint
Fredholm operators L. (When b;(Y) = 0, this torus is to be interpreted as a single
point.) By [23, Theorem 34.3.1], the vector space H4(T?'¥) ) QR is isomorphic
to the homology of the twisted de Rham complex

QT QR[U, U™, d + Unn),
where 7 is a suitable closed three-form.

The rest of the proof now goes via classical topology. By [23, page 681], the homology
of the above twisted de Rham complex is computed by a spectral sequence whose E3
page is
H* (T M) @R[U, U™
with differential
dy: x = U A x).

Furthermore, this spectral sequence degenerates after this page. Now, a graded module
over R[U, U] may be viewed equivalently as a Z/2 graded vector space over R.
Applying this to Hy (T 1) ® R and taking Euler characteristics, we obtain

K(HW(TO D L) @ R) = y(H* (T D)),
If b1 (Y) =0, then y(H*(T?'¥))) = 1, which proves assertion (a) of the lemma in
view of the isomorphism (A-2).

If b1(Y) > 0, then y(H*(T?1@))) = 0. Combined with [23, Corollary 35.1.3], which
says that Hy(T? @) L) ® R is never vanishing, and the isomorphism (A-2), this
proves assertion (b). m|
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