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Torsion contact forms in three dimensions
have two or infinitely many Reeb orbits

DAN CRISTOFARO-GARDINER

MICHAEL HUTCHINGS

DANIEL POMERLEANO

We prove that every nondegenerate contact form on a closed connected three-manifold
such that the associated contact structure has torsion first Chern class has either two
or infinitely many simple Reeb orbits. By previous results it follows that under the
above assumptions, there are infinitely many simple Reeb orbits if the three-manifold
is not the three-sphere or a lens space. We also show that for nontorsion contact
structures, every nondegenerate contact form has at least four simple Reeb orbits.

53D10; 53D42

1 Introduction

1.1 Statement of the main result

Let Y denote a closed connected three-manifold. Recall that a contact form on Y is a
1–form � on Y such that �^d�¤ 0 everywhere. Associated to � is the Reeb vector
field R characterized by d�.R; � / D 0 and �.R/ D 1. Also associated to � is the
contact structure � D Ker.�/; this is a 2–plane field on Y which is oriented by d�.

A Reeb orbit is a periodic orbit of R , that is, a map 
 W R=TZ! Y for some T > 0
such that 
 0.t/ D R.
.t// for all t . We consider two Reeb orbits to be equivalent
if they differ by precomposition with a translation of the domain. A Reeb orbit 
 is
simple if the map 
 is an embedding. Every Reeb orbit is an m–fold cover of a simple
Reeb orbit for some positive integer m.

The three-dimensional case of the Weinstein conjecture asserts that every contact form
on a closed three-manifold has at least one Reeb orbit. This was proved by Taubes [25]
in 2006, and various special cases had been proved earlier; see eg the survey by
Hutchings [13].

Later, the first two authors established the following refinement of Taubes’s result:
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Theorem 1.1 [4] Every contact form on a closed three-manifold has at least two
simple Reeb orbits.

The lower bound of two is the best possible, because there exist contact forms on S3

with exactly two simple Reeb orbits; see eg Hutchings [15, Example 1.8]. One can also
take quotients of these examples by cyclic group actions to obtain contact forms on
lens spaces with exactly two simple Reeb orbits. However, one could try to prove the
existence of more simple Reeb orbits under additional assumptions.

The following theorem provides some inspiration. Recall that if 
 is a Reeb orbit, the
linearized Reeb flow along 
 defines a symplectic linear map P
 , the “linearized return
map”, from .�
.0/; d�/ to itself. The Reeb orbit 
 is nondegenerate if 1 is not an
eigenvalue of P
 . In this case, we say that 
 is positive hyperbolic if P
 has positive
eigenvalues, and negative hyperbolic if P
 has negative eigenvalues; otherwise P

has eigenvalues on the unit circle and we say that 
 is elliptic. The contact form � is
called nondegenerate if every (not necessarily simple) Reeb orbit is nondegenerate.

Theorem 1.2 (Hofer, Wyoscki and Zehnder [9, Corollary 1.10]) Let � be a non-
degenerate contact form on S3 . Assume that :

(a) � D Ker.�/ is the standard1 contact structure on S3 .

(b) The stable and unstable manifolds of all hyperbolic Reeb orbits of � intersect
transversely.

Then � has either two or infinitely many simple Reeb orbits.

For more complicated three-manifolds, Colin and Honda [3] used linearized contact
homology to show that for many contact three-manifolds .Y; �/ supported by an open
book decomposition with pseudo-Anosov monodromy, every (possibly degenerate)
contact form � with Ker.�/D � has infinitely many simple Reeb orbits.

In fact, no example is currently known of a contact form on a closed connected three-
manifold with more than two but only finitely many simple Reeb orbits. Thus it is
natural to ask:

Question 1.3 Does every contact form on a closed connected three-manifold have
either two or infinitely many simple closed orbits?

1Here, the “standard” contact structure refers to the kernel of the restriction of the form �std D
1
2

P2
iD1.xi dyi �yi dxi / to the unit sphere in C2 DR4 .
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Our main result answers this question in many cases:

Theorem 1.4 Let Y be a closed connected three-manifold and let � be a nondegener-
ate contact form on Y . Assume that c1.�/ 2H 2.Y IZ/ is torsion. Then � has either
two or infinitely many simple Reeb orbits.

So, for example, assumptions (a) and (b) in Theorem 1.2 can be dropped. For a different
application of Theorem 1.4, we recall that in [20], the second author and Taubes showed:

Theorem 1.5 [20] Let Y be a closed three-manifold with a nondegenerate contact
form with exactly two simple Reeb orbits. Then both orbits are elliptic and Y is S3 or
a lens space.2

By combining this with Theorem 1.4, we obtain:

Corollary 1.6 Let Y be a closed connected three-manifold which is not S3 or a lens
space. Then every nondegenerate contact form � on Y such that c1.�/ 2H 2.Y IZ/ is
torsion has infinitely many simple Reeb orbits.

When Y is S3 or a lens space, we can still combine Theorems 1.4 and 1.5 to deduce
that if a nondegenerate contact form on Y has at least one hyperbolic Reeb orbit, then
it has infinitely many simple Reeb orbits.3

1.2 Idea of the proof of the main theorem

The strategy of the proof of Theorem 1.4, inspired by Hofer, Wysocki and Zehnder [8],
is to use holomorphic curves to find a genus zero “global surface of section” for the
Reeb flow; see Definition 3.1. If † is a global surface of section, then the Reeb orbits
consist of the periodic orbits of a Poincaré return map from † to itself (which preserves
the area form on † given by the restriction of d�), together with the Reeb orbits at
the boundary of †. If † has genus zero, then one can deduce the existence of either
two or infinitely many simple Reeb orbits by using a theorem of Franks, asserting that
an area-preserving homeomorphism of an open annulus has either zero or infinitely
many periodic orbits.

2In [20] one just wrote that “Y is a lens space”, considering S3 to be a special case of a lens space.
3In particular, if � is a nondegenerate contact form on a closed three-manifold Y , and if � is overtwisted,

then � has at least one positive hyperbolic simple Reeb orbit. This follows from the fact that the ECH
contact invariant of � vanishes; see [15, Section 1.4].

Geometry & Topology, Volume 23 (2019)



3604 Dan Cristofaro-Gardiner, Michael Hutchings and Daniel Pomerleano

In fact, we cannot always find a global surface of section. But we can find one if we
assume that � is nondegenerate, that c1.�/ is torsion and that there are only finitely
many simple Reeb orbits, and this is enough to prove Theorem 1.4.

To find a global surface of section under these hypotheses, we use embedded contact
homology4 (ECH). The ECH of .Y; �/ is the homology of a chain complex which is
generated by certain finite sets of simple Reeb orbits with positive integer multiplicities,
and whose differential counts certain Fredholm index one J –holomorphic curves in
R�Y , for a suitable almost complex structure J on R�Y . Most importantly for the
present application, ECH is equipped with a “U–map”, which is induced by a chain
map which counts certain Fredholm index two J –holomorphic curves in R� Y . It
was shown by Taubes [26] that there is a canonical isomorphism between ECH and
a version of Seiberg–Witten Floer cohomology, which identifies the U–map on ECH
with a corresponding “U–map” on Seiberg–Witten Floer cohomology. By results of
Kronheimer and Mrowka [23] on the nontriviality of the latter, it then follows that there
are infinitely many5 holomorphic curves in R� Y counted by the U–map on ECH.
This gives us a large supply of holomorphic curves in R�Y , and we would like to show
that at least one of these holomorphic curves projects to a global surface of section
in Y .

Proposition 3.2 gives general criteria for a holomorphic curve C in R�Y to project to
a genus zero global surface of section in Y . The two most nontrivial criteria to satisfy
are the following: First, C must have genus zero; we need this condition both for its
own sake and to get an embedded surface in Y . Second, the component of the moduli
space of holomorphic curves containing C must be compact; this condition implies
that these holomorphic curves fill up all of Y , except for the Reeb orbits at their ends.
Without this condition, the moduli space component containing C would only allow
us to describe the dynamics on part of Y . On the other hand, when the conditions in
Proposition 3.2 are satisfied, the projections of the holomorphic curves in the same
component of C give a foliation with leaf space S1 of the part of Y away from the
Reeb orbits at their ends, and the Reeb vector field is transverse to this foliation.

4In particular, both our argument and the argument of Colin and Honda [3] mentioned above use Floer
homology. The methods of proof, however, are quite different: the approach in [3] involves detecting Reeb
orbits directly by showing exponential growth of linearized contact homology with respect to symplectic
action.

5More precisely, there are infinitely many different nonempty moduli spaces of holomorphic curves
counted by the U–map.
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A priori, the holomorphic curves counted by the U–map need not satisfy either of these
criteria. The key new insight of our paper is that one may use the “volume property” of
ECH from Cristofaro-Gardiner, Hutchings and Ramos [5] to control both the genus and
the potential breakings of these curves. The volume property is perhaps the deepest
property of ECH; it gives a relation between the symplectic action (total period of Reeb
orbits) needed to represent classes in ECH and the contact volume of .Y; �/.

Our argument for controlling the genus through the volume property uses the “J0 index”,
which can be regarded as a formalism encoding the relative adjunction formula. The
J0 index of a curve bounds its topological complexity. In general, J0 of a holomorphic
curve depends on its relative homology class. However, when c1.�/ is torsion, J0 of
any holomorphic curve that we find using the U–map depends only on the asymptotics
of the curve. The idea of our argument is then to take a sequence of curves counted
by UN for N a large positive integer, and bound the sum of J0 of these curves. We
use the assumption that there are only finitely many simple Reeb orbits to get a bound
on this sum in terms of the symplectic action needed to represent a corresponding class
in ECH. We then use the volume identity to get a strong enough bound to show that
most of these N curves must have genus 0 when N is sufficiently large. In the simpler
situation where there are exactly two Reeb orbits, some similar arguments were used
in [20] to prove Theorem 1.5 above; in that situation, however, the volume property
was not needed.

We use the volume property again to show that for many of the genus zero curves
counted by the U–map, the sets of Reeb orbits that they go between have a very small
difference in symplectic action; see Lemma 4.4. By using the assumption that there
are only finitely many simple Reeb orbits, and by using the fact that curves counted by
the U–map satisfy certain constraints on their asymptotics encoded by the “partition
conditions”, a combinatorial argument in Section 4.5 finds such a curve for which
there is no intermediate set of Reeb orbits along which the curve can break, so that the
moduli space component is compact.

We remark that the volume property was also used in [4] to prove Theorem 1.1 above;
for some additional applications of the volume property, see Asaoka and Irie [1],
Hutchings [16] and Irie [22].

1.3 Other results

To fully answer Question 1.3, one would like to generalize Theorem 1.4 by dropping
the assumptions that c1.�/ is torsion and � is nondegenerate. We cannot currently drop
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the assumption that c1.�/ is torsion for reasons alluded to above and explained more in
Remark 4.5, and most of the machinery we use makes extensive use of nondegeneracy.
However, we can still say the following about the nontorsion and possibly degenerate
case:

Theorem 1.7 Let � be a contact form on a closed three-manifold such that c1.�/ is
not torsion. Then:

(a) � has at least three simple Reeb orbits.

(b) If � is nondegenerate, then � has at least four simple Reeb orbits.

The proof of Theorem 1.7 is different and simpler than that of the main theorem,
although it still uses the volume property of ECH.

Finally, in the course of the proof of Theorem 1.4, we obtain another result which
involves refining the three-dimensional Weinstein conjecture by looking for Reeb orbits
of particular types.

Question 1.8 Let Y be a closed connected three-manifold which is not S3 or a
lens space, and let � be a nondegenerate contact form on Y . Does � have a positive
hyperbolic simple Reeb orbit?

By Theorem 1.5, under the assumptions of Question 1.8 there exists a hyperbolic simple
Reeb orbit, which however might not be positive hyperbolic. We can say a bit more
here:

Proposition 1.9 Every nondegenerate contact form on a closed three-manifold Y

with b1.Y / > 0 has a positive hyperbolic simple Reeb orbit.

Proposition 1.9 is proved in Section 2 as a direct corollary of the isomorphism between
ECH and Seiberg–Witten Floer cohomology.

1.4 Outline of the rest of the paper

Section 2 reviews everything that we will need to know about embedded contact
homology. In particular, the J0 index is reviewed in Section 2.6, and the volume
property is reviewed in Section 2.7. Section 3 proves Proposition 3.2, which gives
general criteria for a holomorphic curve in R � Y to project to a global surface of
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section for the Reeb flow in Y . The heart of our argument, Section 4, uses ECH to
find a holomorphic curve satisfying these criteria, assuming that � is nondegenerate,
c1.�/ is torsion and there are only finitely many simple Reeb orbits. Section 5 reviews
the theorem of Franks and completes the proof of Theorem 1.4. Finally, Section 6
proves Theorem 1.7. The appendix clarifies the facts from Seiberg–Witten theory that
are needed to yield infinitely many holomorphic curves counted by the U–map on ECH.

2 Embedded contact homology preliminaries

Let Y be a closed connected three-manifold, let � be a nondegenerate contact form
on Y and let � 2 H1.Y /. We now review the definition of the embedded contact
homology ECH�.Y; �; �/, and the facts about this that we will need. More details
about ECH can be found in the lecture notes [15].

Roughly speaking, ECH�.Y; �; �/ is built from finite sets of simple Reeb orbits with
multiplicities with total homology class � . For the proof of Theorem 1.4, we will just
need to consider the case � D 0; however, we will need to work with other classes �
in the proof of Theorem 1.7.

2.1 Holomorphic curves and currents

We say that an almost complex structure J on R� Y is �–compatible if J is R–
invariant; J.@s/DR where s denotes the R coordinate on R�Y and R denotes the
Reeb vector field as usual; and J.�/D � , rotating � positively with respect to d�. Fix
a �–compatible J.

We consider J –holomorphic curves of the form uW .†; j /! .R� Y; J / where the
domain .†; j / is a punctured compact Riemann surface. Here the domain † is not
necessarily connected, and we say that u is irreducible if † is connected. If 
 is a
(not necessarily simple) Reeb orbit, a positive end of u at 
 is a puncture near which
u is asymptotic to R� 
 as s!1, and a negative end of u at 
 is a puncture near
which u is asymptotic to R� 
 as s!�1; see [15, Section 3.1] for more details.
We assume that each puncture is a positive end or a negative end as above. We mod
out by the usual equivalence relation on holomorphic curves, namely composition
with biholomorphic maps between domains. Under this equivalence relation, if u is
somewhere injective, then u is determined by its image C D u.†/, and in this case
we often abuse notation to denote u by its image C.
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If u is a J –holomorphic curve as above, its Fredholm index is defined by

(2-1) ind.u/D��.†/C 2c� .u/CCZind
� .u/:

Here � is a symplectic trivialization of the contact structure � over the Reeb orbits
at which u has ends. The term c� .u/ denotes the relative first Chern class of u��
with respect to � ; see [15, Section 3.2]. Finally, suppose that u has k positive ends at
(not necessarily simple) Reeb orbits 
C1 ; : : : ; 


C

k
, and l negative ends at Reeb orbits


�1 ; : : : ; 

�
l

. Then the last term is defined by

CZind
� .u/D

kX
iD1

CZ� .
Ci /�
lX

jD1

CZ� .
�j /:

Here if 
 is a Reeb orbit and � is a trivialization of 
�� , then CZ� .
/ denotes the
Conley–Zehnder index of 
 with respect to � . In our three-dimensional situation, this
is given by

(2-2) CZ� .
/D b�cC d�e;

where � denotes the rotation number with respect to � of the linearized Reeb flow
along 
 , see [15, Section 3.2]. The Fredholm index does not depend on the choice of
trivialization � . The significance of the Fredholm index is that if J is generic and if
u is irreducible and somewhere injective, then the moduli space of J –holomorphic
curves near u is a manifold of dimension ind.u/.

Sometimes we wish to mod out by a further equivalence relation, declaring two J –
holomorphic curves to be equivalent if they represent the same current in R�Y . In this
case we refer to an equivalence class as a J –holomorphic current. A J –holomorphic
current is described by a finite set of pairs C D f.Ck; dk/g, where the Ck are distinct
irreducible somewhere injective J –holomorphic curves as above, which we refer to
as the “components” of C , and the dk are positive integers, which we refer to as the
“multiplicities” of these components.

2.2 Definition of embedded contact homology

We are now ready to define the embedded contact homology ECH.Y; �; �/. This is the
homology of a chain complex ECC�.Y; �; �/ over Z=2 defined as follows.6 An orbit
set is a finite set of pairs ˛ D f.˛i ; mi /g where the ˛i are distinct simple Reeb orbits,

6It is also possible to define ECH with Z coefficients, as explained in [19, Section 9], but this is not
necessary for the applications so far.
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and the mi are positive integers. The orbit set ˛ is admissible if mi D 1 whenever ˛i
is hyperbolic. The total homology class of the orbit set ˛ is defined by

Œ˛� WD
X
i

mi Œ˛i � 2H1.Y /:

The chain complex ECC�.Y; �; �/ is now freely generated over Z=2 by admissible
orbit sets ˛ with total homology class Œ˛� D � . We sometimes write an orbit set
˛ D f.˛i ; mi /g as a commutative product ˛ D

Q
i ˛
mi

i , and we usually refer to an
admissible orbit set as an ECH generator.

The differential on the chain complex ECC�.Y; �; �/ depends on the additional choice
of a generic �–compatible almost complex structure J. If ˛ D f.˛i ; mi /g and ˇ D
f. ǰ ; nj /g are (not necessarily admissible) orbit sets with Œ˛� D Œˇ� 2 H1.Y /, let
MJ .˛; ˇ/ denote the set of J –holomorphic currents as in Section 2.1 with positive
ends at covers of ˛i with total covering multiplicity mi , negative ends at covers of ǰ

with total covering multiplicity nj , and no other punctures.

Continuing to assume that Œ˛�D Œˇ�, let H2.Y; ˛; ˇ/ denote the set of 2–chains Z in Y
with @ZD

P
i mi˛i �

P
j nj ǰ , modulo boundaries of 3–chains. The set H2.Y; ˛; ˇ/

is an affine space over H2.Y /, and each current C 2MJ .˛; ˇ/ determines a relative
homology class ŒC� 2H2.Y; ˛; ˇ/.

Given Z 2H2.Y; ˛; ˇ/, we define the ECH index

(2-3) I.˛; ˇ;Z/D c� .Z/CQ� .Z/C
X
i

miX
kD1

CZ� .˛ki /�
X
j

njX
lD1

CZ� .ˇlj /:

Here � is a trivialization of � over the Reeb orbits ˛i and ǰ , and c� denotes the
relative first Chern class as before. The integer Q� .Z/ is the “relative self-intersection
number” reviewed in [15, Section 3.3]. In the Conley–Zehnder index terms, if 
 is
a Reeb orbit and k is a positive integer, then 
k denotes the Reeb orbit which is a
k–fold cover of 
 .

The ECH index does not depend on the choice of trivialization � . However, the
ECH index sometimes does depend on the relative homology class Z . Namely, if
Œ˛�D Œˇ�D � 2H1.Y /, and if Z;Z0 2H2.Y; ˛; ˇ/, then the difference Z�Z0 is an
element of H2.Y /, and we have the “index ambiguity formula”

(2-4) I.˛; ˇ;Z/� I.˛; ˇ;Z0/D hc1.�/C 2PD.�/;Z �Z0iI
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see [15, Equation 3.6]. The ECH index is also additive in the following sense: if ı
is another orbit set with Œ˛�D Œˇ�D Œı�, if Z 2H2.Y; ˛; ˇ/ and if W 2H2.Y; ˇ; ı/,
then ZCW 2H2.Y; ˛; ı/ is defined and

(2-5) I.˛; ˇ;Z/C I.ˇ; ı;W /D I.˛; ı;ZCW /I

see [15, Section 3.4].

Given a current C 2MJ .˛; ˇ/, we define its ECH index I.C/D I.˛; ˇ; ŒC�/. We also
write c� .C/D c� .ŒC�/ and Q� .C/DQ� .ŒC�/. If k is an integer, we define MJ

k
.˛; ˇ/

to be the set of C 2MJ .˛; ˇ/ with ECH index I.C/D k .

The significance of the ECH index is that it bounds the Fredholm index via the following
index inequality, explained in [15, Section 3.4]: if C 2MJ .˛; ˇ/ has no multiply
covered components, then

(2-6) ind.C /� I.C /� 2ı.C /:

Here ı.C / is a count of the singularities of C with positive integer multiplicities.

The index inequality (2-6) leads to the following classification of holomorphic currents
with low ECH index. Below, define a trivial cylinder to be a cylinder R� 
 �R�Y

where 
 is a simple Reeb orbit. A trivial cylinder is an embedded J –holomorphic
curve for any �–compatible J.

Proposition 2.1 [15, Proposition 3.7] Let J be a generic �–compatible almost
complex structure. Let ˛ and ˇ be orbit sets with Œ˛�D Œˇ� and let C 2MJ .˛; ˇ/.
Then:

(0) I.C/� 0, with equality if and only if each component of C is a trivial cylinder.

(1) If I.C/D 1, then C D C0tC1 , where I.C0/D 0, and C1 is embedded and does
not include any trivial cylinders and has ind.C1/D I.C1/D 1.

(2) If ˛ and ˇ are admissible and I.C/D2, then CDC0tC1 , where I.C0/D0, and
C1 is embedded and does not include any trivial cylinders and has ind.C1/D
I.C1/D 2.

In particular, it follows from Proposition 2.1(1) that MJ
1 .˛; ˇ/=R is a discrete set,

where R acts on MJ .˛; ˇ/ by translation of the R factor in R�Y . The differential
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on the ECH chain complex ECC.Y; �; �/ is now defined as follows: Choose a generic
�–compatible J. Given an admissible orbit set ˛ with Œ˛�D � , define

@J˛ D
X
ˇ

#.MJ
1 .˛; ˇ/=R/ˇ:

Here the sum is over admissible orbit sets ˇ with Œˇ�D � , and # denotes the mod 2
count. It is shown in [15, Section 5.3] that @J is well defined, and in [18, Theorem 7.20]
that @2J D 0. The embedded contact homology ECH�.Y; �; �/ is now defined to be
the homology of the chain complex .ECC�.Y; �; �/; @J /. Although the differential @J
may depend on J, the homology of the chain complex does not; see Theorem 2.2
below.

The ECH index induces a relative Z=d grading on the chain complex ECC�.Y; �; �/,
where d denotes the divisibility of the cohomology class c1.�/C2PD.�/ in H 2.Y IZ/

mod torsion, which is an even integer. If ˛ and ˇ are generators with Œ˛�D Œˇ�D � ,
the grading difference between ˛ and ˇ is defined by

I.˛; ˇ/D I.˛; ˇ;Z/ mod d;

where Z 2H2.Y; ˛; ˇ/. The relative grading does not depend on Z as a result of the
index ambiguity formula (2-4). By definition, the differential @J decreases the relative
grading by 1.

There is also an absolute Z=2 grading I2 on the chain complex defined as follows: if
˛ D f.˛i ; mi /g is an admissible orbit set, then I2.˛/ is the mod 2 count of orbits ˛i
that are positive hyperbolic. This is compatible with the relative grading I in the sense
that if Œ˛�D Œˇ�, then

(2-7) I.˛; ˇ/� I2.˛/� I2.ˇ/ mod 2I

see [11, Proposition 1.6(c)].

2.3 The U–map

Embedded contact homology has various additional structures on it. One such structure
that will play a crucial role in this paper is the U–map, a degree �2 map

(2-8) U W ECH�.Y; �; �/! ECH��2.Y; �; �/:

To define this, choose a basepoint z 2 Y which is not on the image of any Reeb orbit,
and let J be a generic �–compatible almost complex structure. One then defines a
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map
UJ;z W ECC�.Y; �; �/! ECH��2.Y; �; �/

as follows: if ˛ and ˇ are ECH generators, then the coefficient hUJ;z˛; ˇi is the
mod 2 count of J –holomorphic currents in MJ

2 .˛; ˇ/ that pass through the point
.0; z/ 2R�Y .

As explained in [20, Section 2.5], the map UJ;z is a chain map, and we define the
U–map (2-8) to be the induced map on homology. Our assumption that Y is connected
implies that U does not depend on the choice of z . The U–map does not depend on
J either by Theorem 2.2 below.

If ˛ and ˇ are ECH generators and if C 2MJ
2 .˛; ˇ/ is a J –holomorphic current

counted by the chain map UJ;z , then we refer to C as a U–curve. By Proposition 2.1,
a U–curve has the form

C D C0 tC1;

where C0 is a union of trivial cylinders with multiplicities, and C1 is embedded and
satisfies ind.C1/D I.C1/D 2. Moreover, C1 is irreducible by [20, Lemma 2.6(b)].

2.4 The isomorphism with Seiberg–Witten theory

A priori, the embedded contact homology ECH�.Y; �; �/ could depend on the choice of
generic �–compatible J, so strictly speaking we should denote it by ECH�.Y; �; �; J /.
The U–map could also depend on J. In fact, these depend only on Y , � and the
contact structure � , as a result of the following theorem of Taubes:

Theorem 2.2 [26] Let Y be a closed connected three-manifold with a nondegenerate
contact form �, and let � 2 H1.Y /. Then, for any generic �–compatible almost
complex structure J, there is a canonical isomorphism of relatively graded Z=2–
modules7

(2-9) ECH�.Y; �; �; J /
'
�!bHM��.Y; s� CPD.�/IZ=2/

which preserves the U–maps on both sides.

Here bHM�.Y; sIZ=2/ is a version of Seiberg–Witten Floer cohomology with Z=2

coefficients defined by Kronheimer and Mrowka [23], which depends on a closed
oriented connected three-manifold Y together with a spin-c structure s. This has a

7One can also obtain an isomorphism with Z coefficients; see [27].
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relative Z=d grading, where d denotes the divisibility of c1.s/ in H 2.Y IZ/ mod
torsion. In the theorem, s� denotes the spin-c structure determined by the oriented
2–plane field � ; see eg [15, Section 2.8]. We have

(2-10) c1.s� CPD.�//D c1.�/C 2PD.�/;

so that both sides of (2-9) have the same type of relative grading. Also, the group
bHM�.Y; sIZ=2/ is equipped with a canonical degree 2 map, which is also denoted
by U.

In addition to implying topological invariance of ECH, Theorem 2.2, combined with
known results about Seiberg–Witten Floer cohomology, implies nontriviality results for
ECH. In particular, the following proposition provides an abundant supply of U–curves
which will be needed in the proof of the main theorem. Below, define a U–sequence to
be an infinite sequence f�kgk�1 of nonzero homogeneous classes in ECH such that
U�kC1 D �k for each k � 1. Also, use the canonical Z=2 grading I2 on ECH to
decompose

ECH�.Y; �; �/D ECHeven.Y; �; �/˚ECHodd.Y; �; �/:

Proposition 2.3 Let Y be a closed connected three-manifold with a nondegenerate
contact form �, and let � 2H1.Y / such that c1.�/C 2PD.�/ 2H 2.Y IZ/ is torsion.
Then:

(a) There exists a U–sequence in ECH�.Y; �; �/.

(b) If b1.Y / > 0, then there exist U–sequences in both ECHeven.Y; �; �/ and
ECHodd.Y; �; �/.

The proof of Proposition 2.3 is given in the appendix. We can now use this proposition
to give:

Proof of Proposition 1.9 Without loss of generality, Y is connected. Choose � such
that c1.�/C 2PD.�/ is torsion (such a � always exists). By Proposition 2.3(b), there
exists a U–sequence in ECHodd.Y; �; �/. In particular, ECHodd.Y; �; �/ is nontrivial,
so there exists an ECH generator ˛ D f.˛i ; mi /g with Œ˛�D � and I2.˛/D 1. From
the definition of I2 , it follows that at least one of the simple Reeb orbits ˛i is positive
hyperbolic.
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2.5 Partition conditions

The nontrivial components of U–curves satisfy specific constraints on their asymptotics
which we will need to take into account. To state these, let 
 be a simple Reeb orbit
and let m be a positive integer. We now define two partitions of m, the “positive
partition” pC
 .m/ and the “negative partition” p�
 .m/, as follows. Let � 2R be the
rotation number of 
 as in (2-2) with respect to some trivialization � of �j
 . We then
define p˙
 .m/D p

˙
�
.m/, where p˙

�
.m/ is defined as follows.

Consider the convex hull in R2 of the set of lattice points .x; y/ 2 Z2 such that
0 � x � m and y � �x . The boundary of this convex hull consists of a vertical ray
below .0; 0/, a vertical ray below .m; bm�c/ and a path which we denote by ƒC

�
.m/.

This path is the graph of a continuous piecewise linear concave function Œ0;m�!R.
Then pC

�
.m/ consists of the horizontal components of the segments of the path ƒC

�
.m/

connecting consecutive lattice points. Likewise, let ƒ�
�
.m/ denote the lower boundary

of the convex hull of the set of lattice points .x; y/ with 0 � x � m and y � �x .
Then p�

�
.m/ consists of the horizontal components of the segments of the path ƒ�

�
.m/

connecting consecutive lattice points. Equivalently,

p�� .m/D p
C

��
.m/:

Note that the partition p˙
�
.m/ depends only on the congruence class of � 2 R=Z,

which does not depend on the choice of trivialization � .

For example, if 
 is positive hyperbolic, then � is an integer, and it follows that

(2-11) pC
 .m/D p
�

 .m/D .1; : : : ; 1/:

If 
 is negative hyperbolic, then � � 1
2

mod Z, and it follows that

(2-12) pC
 .m/D p
�

 .m/D

�
.2; : : : ; 2/; m even,
.2; : : : ; 2; 1/; m odd.

If 
 is elliptic, then our usual assumption that all Reeb orbits are nondegenerate implies
that � is irrational, and it then turns out that pC

�
.m/ and p�

�
.m/ are disjoint whenever

m> 1; see [15, Example 3.13].

The significance of these partitions is as follows. Let ˛Df.˛i ; mi /g and ˇDf. ǰ ; nj /g
be orbit sets, and suppose that C 2MJ .˛; ˇ/ has no multiply covered components.
Then, for each i , the curve C has ends at covers of ˛i with total multiplicity mi , and
these multiplicities determine a partition of mi , which we denote by pC˛i

.C /. Likewise,
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for each j , the asymptotics of the negative ends of C at covers of ǰ determine a
partition of nj , which we denote by p�

ǰ
.C /. We then have:

Proposition 2.4 [15, Section 3.9] Suppose that C 2MJ .˛; ˇ/ has no multiply
covered components and that equality holds in the index inequality (2-6). Then for
each i we have pC˛i

.C /D pC˛i
.mi /, and for each j we have p�

ǰ
.C /D p�

ǰ
.nj /.

In particular, if C D C0 tC1 is a U–curve, then, by Proposition 2.1(2), we know that
Proposition 2.4 is applicable to the nontrivial component C1 .

We note one simple fact about the partitions which will be needed later. Let 
 be a
simple Reeb orbit and let m be a positive integer. Recall that without any choice of
trivialization, 
 has a well-defined rotation number � 2 R=Z. In particular, bm�c
and dm�e are well-defined elements of Z=mZ.

Lemma 2.5 Let 
 be a simple Reeb orbit with rotation number � 2R=Z, and let m
be a positive integer.

(a) If pC
 .m/D .m/, then gcd.m; bm�c/D 1.

(b) If p�
 .m/D .m/, then gcd.m; dm�e/D 1.

Proof Let � 2 R be the rotation number of 
 for some trivialization of �j
 . If
pC
 .m/D .m/, then this means that the path ƒC

�
.m/ consists of the single edge from

.0; 0/ to .m; bm�c/, and this edge has no lattice point in its interior. It follows that
bm�c is relatively prime to m. This proves (a), and (b) is proved by a symmetric
argument.

2.6 The J0 index

We now recall a variant of the ECH index which is useful for bounding the topological
complexity of holomorphic curves.

Let ˛ D f.˛i ; mi /g and ˇ D f. ǰ ; nj /g be orbit sets with Œ˛� D Œˇ�, and let Z 2
H2.Y; ˛; ˇ/. We then define the “J0 index”

(2-13) J0.˛; ˇ;Z/D�c� .Z/CQ� .Z/C
X
i

mi�1X
kD1

CZ� .˛ki /�
X
j

nj�1X
lD1

CZ� .ˇlj /:

Here � , c� and Q� are defined as in (2-3).
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Like the ECH index I, the J0 index (2-13) does not depend on the choice of triv-
ialization � . However, J0 depends on Z in the following way, similarly to the
index ambiguity formula (2-4). If ˛ and ˇ are orbit sets with Œ˛�D Œˇ�D � , and if
Z;Z0 2H2.Y; ˛; ˇ/, then the ambiguity in the relative first Chern class is given by

(2-14) c� .Z/� c� .Z
0/D hc1.�/; Z �Z

0
i:

This follows from the definition of the relative first Chern class in [15, Section 3.2].
By (2-14), together with (2-3), (2-4) and (2-13), we obtain

(2-15) J0.˛; ˇ;Z/�J0.˛; ˇ;Z
0/D h�c1.�/C 2PD.�/;Z �Z0i:

If C 2MJ .˛; ˇ/, we write J0.C/D J0.˛; ˇ; ŒC�/. If C is a U–curve, then the integer
J0.C/ gives the following bound on the topological complexity of C . Write ˛ D
f.˛i ; mi /g and ˇ D f. ǰ ; nj /g and C D C0 tC1 as usual. Let nCi denote the number
of positive ends of C1 at covers of ˛i , plus 1 if C0 includes a cover of R� ˛i . Let
n�j denote the number of negative ends of C1 at covers of ǰ , plus 1 if C0 includes a
cover of R� ǰ .

Proposition 2.6 [20, Lemma 3.5; 15, Propositon 5.8] Let .Y; �/ be a nondegenerate
contact three-manifold and let J be a generic �–compatible almost complex structure.
Let ˛ D f.˛i ; mi /g and ˇ D f. ǰ ; nj /g be ECH generators and let C D C0 t C1 2
MJ .˛; ˇ/ be a U–curve. Then

(2-16) J0.C/D��.C1/C
X
i

.nCi � 1/C
X
j

.n�j � 1/:

2.7 Spectral invariants and the volume property

It follows from the isomorphism (2-9) that ECH�.Y; �; �/ is a topological invariant.
However, ECH can be used to extract finer information in the form of real numbers
depending on the contact form, using a filtration on the ECH chain complex by the
symplectic action.

If ˛ D f.˛i ; mi /g is an orbit set, its symplectic action is defined by

A.˛/D
X
i

mi

Z
˛i

�:

The ECH differential decreases the symplectic action, ie if the coefficient h@J˛; ˇi ¤ 0
then A.˛/ >A.ˇ/; see [15, Section 1.4]. Consequently, for any L 2R we can define
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the filtered ECH,

(2-17) ECHL� .Y; �; �/;

to be the homology of the subcomplex of ECC�.Y; �; �/ generated by orbit sets ˛
with A.˛/ < L. There is a natural map

(2-18) {LW ECHL� .Y; �; �/! ECH�.Y; �; �/

induced by inclusion of chain complexes. It is shown in [21, Theorem 1.3] that the
filtered ECH (2-17) and the inclusion-induced map (2-18) do not depend on the choice
of almost complex structure J.

We can now define, for each nonzero class � 2 ECH�.Y; �; �/, a “spectral invariant”

c� .Y; �/D inffL j � 2 Im.{L/g:

Equivalently, c� .Y; �/ is the smallest real number L such that the class � can be
represented by a cycle in the chain complex ECC�.Y; �; �/ which is a sum of ECH
generators each with action � L. In particular,

(2-19) c� .Y; �/DA.˛/

for some orbit set ˛ which is a generator of the chain complex ECC�.Y; �; �/. Another
useful property is that if U� ¤ 0 then

(2-20) cU� .Y; �/ < c� .Y; �/:

This holds because the chain map UJ;z , like the differential, decreases symplectic
action.

We are assuming above that the contact form � is nondegenerate. In fact, the spectral
numbers c� are C 0–continuous functions of the contact form, so one can extend them to
degenerate contact forms by taking limits; see [14, Section 4.1]. When � is degenerate,
we make sense of the � in c� by using the topological invariance in (2-9) to identify
ECH�.Y; �; �/ with ECH�.Y; �0; �/, where �0 is a nondegenerate contact form with
the same contact structure as �. For degenerate contact forms, property (2-19) still
holds, where ˛ is some orbit set with Œ˛�D � . Property (2-20) holds in the degenerate
case under the additional assumption that there are only finitely many simple Reeb
orbits; see [4, Lemma 3.1].

A deeper property of the spectral numbers c� , which will play a key role in the proof of
the main theorem, is the following relation between their asymptotics and the contact
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volume:
vol.Y; �/D

Z
Y

�^ d�:

Recall from Section 2.2 that if the class c1.�/C 2PD.�/ 2H 2.Y IZ/ is torsion, then
ECH�.Y; �; �/ has a relative Z–grading.

Theorem 2.7 [5, Theorem 1.3] Let Y be a closed connected three-manifold with
a contact form �, let � 2 H1.Y / with c1.�/C 2PD.�/ torsion, and let I be any
refinement of the relative Z–grading on ECH�.Y; �; �/ to an absolute Z–grading.
Then, for any sequence of nonzero homogeneous classes f�kgk�1 in ECH�.Y; �; �/
with limk!1 I.�k/DC1, we have

(2-21) lim
k!1

c�k
.Y; �/2

I.�k/
D vol.Y; �/:

In particular, if f�kgk�1 is a U–sequence, then I.�k/D 2kC a for some constant a ,
so (2-21) implies that

(2-22) lim
k!1

c�k
.Y; �/2

k
D 2 vol.Y; �/:

3 Criteria for a global surface of section

The goal of this section is to prove Proposition 3.2 below, which gives criteria under
which a holomorphic curve gives rise to a “global surface of section” for the Reeb flow.
For related statements and proofs, see [8, Proposition 5.1; 10, Lemma 6.9].

Definition 3.1 Let .Y; �/ be a contact three-manifold. A global surface of section for
the Reeb flow is an embedded open surface †� Y such that:

� The Reeb vector field R is transverse to †.

� There is a compact surface with boundary, †, such that int.†/D †, and the
inclusion † ! Y extends to a continuous map gW † ! Y such that each
boundary circle of † is mapped to the image of a Reeb orbit.

� For every y 2 Y ng.@†/, the Reeb trajectory starting at y intersects † in both
forward and backward time.
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We will use the following notation. Suppose that .Y; �/ is a nondegenerate contact
three-manifold and J is a �–compatible almost complex structure on R�Y . If u is
a J –holomorphic curve in R�Y as in Section 2.1, let g.u/ denote the genus of the
domain of u, and let hC.u/ denote the number of ends of u at positive hyperbolic
Reeb orbits (including even-degree covers of negative hyperbolic orbits). Let MJ

u

denote the component of the moduli space of J –holomorphic curves in R� Y that
contains u. Let �Y W R�Y ! Y denote the projection.

Proposition 3.2 Let .Y; �/ be a nondegenerate contact three-manifold , and let J
be a �–compatible almost complex structure on R � Y . Let C be an irreducible
J –holomorphic curve in R�Y such that :

(i) Every C 0 2MJ
C is embedded8 in R�Y .

(ii) g.C /D hC.C /D 0 and ind.C /D 2.

(iii) C does not have two positive ends, or two negative ends, at covers of the same
simple Reeb orbit.

(iv) Let 
 be a simple Reeb orbit with rotation number � 2R=Z. If C has a positive
end at an m–fold cover of 
 , then gcd.m; bm�c/D 1. If C has a negative end
at an m–fold cover of 
 , then gcd.m; dm�e/D 1.

(v) MJ
C =R is compact.

Then �Y .C /� Y is a global surface of section for the Reeb flow.

3.1 From a holomorphic curve to a foliation

To prepare for the proof of Proposition 3.2, we first need to discuss when holomorphic
curves in R�Y project to embedded surfaces in Y , and when the latter foliate subsets
of Y . Continue to use the notation preceding Proposition 3.2. If u is a J –holomorphic
curve in R�Y , then, following Wendl [29], define the normal Chern number of u by

cN .u/D
1
2
.2g.u/� 2C ind.u/C hC.u//:

The goal of this subsection is to prove the following:

Proposition 3.3 Let .Y; �/ be a nondegenerate contact three-manifold , and let J be
a �–compatible almost complex structure9 on R�Y . Let C be a nontrivial irreducible
embedded J –holomorphic curve in R�Y such that :

8With more work, one can weaken hypothesis (i) to just assume that C is embedded in R�Y . However,
we will not need to do this.

9In Proposition 3.3 it is not necessary to assume that J is generic.
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(i) Every C 0 2MJ
C is embedded in R�Y .

(ii) cN .C /D 0.

(iii) C does not have two positive ends, or two negative ends, at covers of the same
simple Reeb orbit.

(iv) Let 
 be a simple Reeb orbit with rotation number � 2R=Z. If C has a positive
end at an m–fold cover of 
 , then gcd.m; bm�c/D 1. If C has a negative end
at an m–fold cover of 
 , then gcd.m; dm�e/D 1.

Then:

(a) For every C 0 2MJ
C , the projection of C 0 to Y is an embedding.

(b) If g.C /D hC.C /D 0, then the projections of the curves C 0 2MJ
C to Y give a

foliation of an open subset of Y .

This proposition is a slight generalization of [20, Proposition 3.4], and the ideas in the
proof go back to [7].

To prove this proposition, we first need to recall the significance of the normal first
Chern number. Let u be an immersed J –holomorphic curve in R�Y with domain †,
and let N !† denote the normal bundle to u. Then u has a well-defined deformation
operator

DuW L
2
1.†;N /! L2.†; T 0;1†˝N/I

see eg [15, Section 2.3]. The derivative at u of a one-parameter family of curves
in MJ

u defines an element of Ker.Du/.

If  2 Ker.Du/ does not vanish identically (and u is irreducible), then  has
only finitely many zeroes, all of which have positive multiplicity; see the review
in [20, Proposition 3.4]. We can then define winding numbers of  around the ends
of u as follows. Suppose that u has positive ends at mi –fold covers of simple Reeb
orbits ˛i , and negative ends at nj –fold covers of simple Reeb orbits ǰ . Let � be a
trivialization of � over the Reeb orbits ˛i and ǰ . Let windCi;� . / denote the winding
number of  around the positive end of u at ˛mi

i , as measured using the trivialization � .
Likewise, let wind�j;� . / denote the winding number of  around the negative end
of u at ˇnj

j with respect to � .

It was shown in [7] — see the review in [15, Section 5.1] — that the above winding
numbers are bounded by

(3-1) windCi;� . /� bCZ� .˛
mi

i /=2c; wind�j;� . /� dCZ� .ˇ
nj

j /=2e:
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If �Ci;� denotes the rotation number of ˛i with respect to � , and if ��j;� denotes the
rotation number of ǰ with respect to � , then we can rewrite the above inequalities as

(3-2) windCi;� . /� bmi�
C
i;�c; wind�j;� . /� dnj �

�
j;�e:

Lemma 3.4 Let .Y; �/ be a nondegenerate contact 3–manifold and let J be a �–
compatible almost complex structure on R � Y . Let u be an immersed irreducible
J –holomorphic curve in R�Y . Suppose that cN .u/D 0. Let  be a nonzero element
of Ker.Du/. Then:

(a)  is nonvanishing.

(b) Equality holds in the inequalities (3-1).

Proof Let � be a trivialization of � over the Reeb orbits at whose covers u has ends.
The algebraic count of zeroes of  is then given by

(3-3) # �1.0/D c1.N; �/Cwind� . /;

where

(3-4) wind� . /D
X
i

windCi;� . /�
X
j

wind�j;� . /:

As in [11, Lemma 3.1(a)], we have

(3-5) c1.N; �/D c� .u/��.†/;

where † denotes the domain of u. By (3-1) and (3-4), since CZ� .
/ is even if and
only if 
 is positive hyperbolic, we have

(3-6) 2wind� . /� CZind
� .u/�p.u/C hC.u/;

where p.u/ denotes the total number of ends of u.

Combining (3-3), (3-5) and (3-6), we obtain

(3-7) 2 # �1.0/� 2c� .u/� 2�.†/CCZind
� .u/�p.u/C hC.u/

D ind.u/��.†/�p.u/C hC.u/

D 2cN .u/:

Since cN .u/D 0 and all zeroes of  have positive multiplicity, we have # �1.0/D 0,
establishing (a). To deduce (b), note that the inequality (3-7) is in fact an equality. This
implies that equality also holds in (3-6) and hence (3-1).
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Lemma 3.5 Under the hypotheses in Proposition 3.3, if C 0 2MJ
C , then:

(a) The projection of C 0 to Y is an embedding.

(b) If C 0 is not obtained from C by translation of the R factor in R�Y , then the
projections of C and C 0 to Y are disjoint.

Proof We proceed in four steps. We continue to use the notation from (3-1) and (3-2).

Step 1 We first show that the projection of C 0 to Y is an immersion.

For any C 0 2MJ
C , the projection of @s (the derivative of the R coordinate on R�Y )

to the normal bundle N of C 0 is a nonzero element of Ker.DC 0/, since it is the
derivative of the family of curves obtained by translating C 0 in the R direction. Since
we are assuming that C 0 is not a trivial cylinder, the projection of @s to N does not
vanish identically. We have that cN .C 0/D 0 and by hypothesis (i), we have that C 0 is
embedded. Thus, we may apply Lemma 3.4(a) to conclude that the projection of @s
to N is nonvanishing. This means that the projection of C 0 to Y is an immersion.

Step 2 We next show that if C 0 2MJ
C and C ¤ C 0, then the algebraic count of

intersections of C and C 0 in R�Y does not depend on C 0.

It follows from the definition of Q� in [12, Section 2.7] that the algebraic count of
intersections of C and C 0 is given by

#.C \C 0/DQ� .C /C `� .C; C 0/;

where `� .C; C 0/ is the “asymptotic linking number” of C and C 0 with respect to � ,
defined in [12, Section 2.7].

To analyze this asymptotic linking number, let windCi;� .C / denote the winding number
of @s around the positive end at ˛mi

i with respect to � . Define wind�j;� .C / likewise
for the negative ends. As in [15, Lemma 5.5(b)], we then have

(3-8) `� .C; C
0/�

X
i

mi �min.windCi;� .C /;windCi;� .C
0//

�

X
j

nj �max.wind�j;� .C /;wind�j;� .C
0//:

Moreover, equality holds if:

(�) For each i , the integers mi and min.windCi;� .C /;windCi;� .C
0// are relatively

prime, and for each j , the numbers nj and max.wind�j;� .C /;wind�j;� .C
0// are

relatively prime.
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By Lemma 3.4(b), we have

(3-9) wCi;� .C /D bmi�
C
i;�c; w�j;� .C /D dnj �

�
j;�e:

The same holds for any C 0 2MJ
C . In particular, by the hypothesis (iv), condition (�)

above holds, so equality holds in (3-8). Putting all of the above together, we obtain

#.C \C 0/DQ� .C /C
X
i

mibmi�
C
i;�c�

X
j

nj dnj �
�
j;�e:

This equation implies that #.C \C 0/ does not depend on the choice of C 0 2MJ
C .

Step 3 We now show that if C 0 2MJ
C and C ¤ C 0, then C and C 0 are disjoint in

R�Y .

As in [20, Proposition 3.4, Step 5], hypothesis (iii) and condition (�) above imply that
if C 0 is obtained from C by translating a small amount in the R direction, then C
and C 0 are disjoint. It then follows from Step 2 that #.C \C 0/D 0 for all C 0 2MJ

C .
By intersection positivity, this means that C and C 0 are disjoint.

Step 4 We now complete the proof.

(a) We know by Step 1 that the projection of C to Y is an immersion. To show
that this projection is an embedding, we just need to show that it is injective. (If this
map is an injective immersion, then it is also an embedding because the ends of C
are asymptotic to Reeb orbits.) If injectivity fails, then there exist y 2 Y and distinct
s1; s2 2 R such that .s1; y/; .s2; y/ 2 C. Then C intersects the translation of C by
s2 � s1 . It follows from Step 3 that C equals the translation of C by s2 � s1 ¤ 0.
This leads to all sorts of contradictions. For example, let .s�; y�/ 2 C be a point
such that y� does not lie on a Reeb orbit. For large n, we would then have that
.n.s2� s1/C s

�; y�/ 2 C, contradicting asymptotic convergence to Reeb orbits. We
conclude that the projection of C to Y is an embedding, and the same argument works
for any C 0 2MJ

C .

(b) If the projections of C and C 0 to Y are not disjoint, then there exist y 2 Y and
s; s0 2R with .s; y/ 2 C and .s0; y/ 2 C 0. Thus C intersects the translation of C 0 by
s� s0. It follows from Step 3 that C equals the translation of C 0 by s� s0.

Proof of Proposition 3.3 (a) We have proved this in Lemma 3.5(a).

(b) If u is any immersed J –holomorphic curve in R � Y with cN .u/ < ind.u/,
then u is automatically cut out transversely; see the review in [17, Lemma 4.1],
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and see [28] for more general automatic transversality results. In the present case,
cN .C /D g.C /D hC.C /D 0, so ind.C /D 2, and the above automatic transversality
criterion holds for C, as well as for every C 0 2MJ

C . Thus MJ
C =R is a 1–manifold.

By Lemma 3.5(b), the projections to Y of different elements of MJ
C =R are disjoint.

To complete the proof that these projections give a foliation of an open subset of Y , let
C 0 2MJ

C , let .s; y/ 2 C 0, and let �Y .C 0/ denote the projection of C 0 to Y . We need
to show that the natural map

(3-10) TŒC 0�.MJ
C =R/! .N�Y .C

0//y

is an isomorphism. Here N�Y .C 0/ denotes the normal bundle to �Y .C 0/ in Y . By
Lemma 3.4(a), the map

TC 0MJ
C ! .NC 0/.s;y/

is injective, hence an isomorphism. It follows from this that the map (3-10) is an
isomorphism.

3.2 From a foliation to a global surface of section

Proof of Proposition 3.2 Note that hypotheses (i), (iii) and (iv) in Proposition 3.2
are the same as the corresponding hypotheses in Proposition 3.3, and hypothesis (ii)
in Proposition 3.2 implies hypothesis (ii) in Proposition 3.3. Then by Lemma 3.5(a),
the restriction of �Y to C, or more generally to any C 0 2MJ

C , is an embedding. To
complete the proof that �Y .C / is a global surface of section, it is enough to show the
following:

(a) For each C 0 2MJ
C , the projection �Y .C 0/ is transverse to the Reeb vector

field R .

(b) Let Z�Y denote the union of the images of the Reeb orbits at which C has ends.
Then, for each y 2 Y nZ , the Reeb trajectory starting at y intersects �Y .C / in
both forward and backward time.

We proceed in three steps.

Step 1 We first prove statement (a).

Let C 0 2MJ
C . We know from Lemma 3.5(a) that @s is nowhere tangent to C 0. Since

C 0 is J –holomorphic and J@s DR , it follows that C 0 is everywhere transverse to the
plane spanned by @s and R . This implies that �Y .C 0/ is everywhere transverse to R .
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Step 2 Let

U D
a

C 02MJ
C

�Y .C
0/:

We now show that U D Y nZ .

We first show that U � Y nZ . Suppose to get a contradiction that there exist C 0 2MJ
C

and z 2 Z such that z 2 �Y .C 0/. Then, by part (a), �Y .C 0/ contains a disk D

which intersects Z transversely at z . Now C 0 has an end asymptotic to a Reeb orbit
containing z , and �Y of points on this end must intersect the disk D. Thus �Y .C 0/ is
not embedded in Y , contradicting Lemma 3.5(a).

To prove the reverse inclusion Y nZ � U, first note that U is an open subset of Y , by
Proposition 3.3(b). Since Y nZ is connected, it is enough to show that any sequence
in U has a subsequence that converges to a point in U or a point in Z . This holds by
our assumption (v) that MJ

C =R is compact.

Step 3 We now prove statement (b).

By assumption (v) again, we can choose a diffeomorphism

�WMJ
C =R

'
�! S1 DR=Z:

By Lemma 3.5(b) and Step 2, this induces a function f W Y n Z ! S1 such that
f .y/D �.ŒC 0�/ when y 2 �Y .C 0/. By Proposition 3.3(b), the function f is a smooth
submersion. By part (a), the derivative Rf is nonzero on all of Y nZ . By composing
� with an orientation-reserving diffeomorphism of S1 if necessary, we may assume
that Rf > 0 on all of Y nZ .

Given y 2 Y nZ and T 2R, define g.y; T / 2R to be the total change in f along a
Reeb trajectory for time T starting at y . It is enough to show that for each y 2 Y nZ ,
there exists T > 0 such that g.y; T /� 1 and g.y;�T /� �1. In fact, we will show
that there is a single T > 0 which works for all y 2 Y nZ .

Suppose that C has a positive end at the m–fold cover of a simple Reeb orbit 
 .
Fix a trivialization � of �j
 , and let � 2 R denote the rotation number of 
 with
respect to � . Choose an identification of a tubular neighborhood of the image of 

in Y with S1 �D2 such that 
 is identified with S1 � f0g preserving orientation
and the derivative of the neighborhood identification along 
 agrees with � . Let
�W R=mZ! R=ZD S1 denote the projection. By the asymptotics of holomorphic
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curves reviewed in [15, Section 5.1], this end of C is described by a map

Œs0;1/� .R=mZ/!R� .R=Z/�D2; .s; t/ 7! .s; �.t/; �.s; t//:

Here
�.s; t/D e��s'.t/CO.e.���"/s/;

where 'W R=mZ!D2 is nonvanishing and has winding number less than or equal
to bm�c, and �; " > 0. More specifically, ' is an eigenfunction of the “asymptotic
operator” associated to 
m with eigenvalue �; see the review in [15, Lemma 5.2]. This
means that the Reeb flow near 
 , as it goes m times around 
 , rotates approximately by
at least m� �bm�c D fm�g relative to the eigenfunction ' describing the asymptotics
of C.

Let k be an integer with kfm�g> 1; we know that such a k exists since we assumed
in (v) that hC.C /D 0, hence m� is not an integer. Set T D kmA.
/. Then, for y
near the image of 
 , we have g.y; T / > 1 and g.y;�T / < �1.

Reasoning similarly for the other ends of C, we conclude that there exist a neighborhood
V of Z and a real number T0 > 0 such that if y 2 V nZ , then g.y; T0/ > 1 and
g.y;�T0/ < �1.

By compactness,10 there exists ı > 0 such that the derivative Rf > ı on Y n V . It
follows that if we set T D ı�1CT0 , then for every y 2Y nZ we have g.y; T /> 1 and
g.y;�T /<�1. To clarify for example why g.y; T /> 1: if the Reeb flow starting at y
stays outside of V for time at least ı�1 , then by the definition of ı we already have
g.y; ı�1/ > 1. On the other hand, if for some ı0 2 Œ0; ı�1� the image of y under the
time ı0 Reeb flow is in V , then by the definition of T0 we have g.y; ı0CT0/ > 1.

3.3 The Poincaré return map

Under the hypotheses of Proposition 3.2, we can now define the “Poincaré return map”

(3-11) f W �Y .C /! �Y .C /

as follows: If y 2 Y , then f .y/ is the first intersection with �Y .C / of the forward
orbit of y under the Reeb flow. More precisely, for t 2R, let �t W Y ! Y denote the

10One might wish to simplify the proof by finding a positive lower bound on Rf on all of Y nZ .
However, this fails in the generic situation where the first two positive eigenvalues of the asymptotic
operator of any Reeb orbit at which C has a positive end are distinct, or the first two negative eigenvalues
of the asymptotic operator of any Reeb orbit at which C has a negative end are distinct.
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time t Reeb flow. If y 2 �Y .C /, let tC.y/ denote the infimum over t > 0 such that
�t .y/ 2 �Y .C /. By the “forward” part of the third bullet in Definition 3.1, we have
tC.y/ <1. Now define f .y/D �tC.y/.y/.

Lemma 3.6 Under the hypotheses of Proposition 3.2:

(a) d� restricts to an area form on �Y .C /.

(b) The Poincaré return map (3-11) is a diffeomorphism which preserves this area
form.

(c) The Poincaré return map preserves the ends of �Y .C /.

Proof By Proposition 3.2, �Y .C / is a global surface of section for the Reeb flow. By
the first bullet in Definition 3.1, the Reeb vector field R is transverse to �Y .C /. It
follows that (a) holds, and also that f is smooth.

By the “backward” part of the third bullet in Definition 3.1, f is a diffeomorphism. And
as shown in [8, Equation (5.10)], the return map f preserves the area form d�j�Y .C/ .
This proves (b).

To prove (c), observe that the proof of Proposition 3.2 showed that if C has an end at a
cover of a simple Reeb orbit 
 , then the Reeb flow, starting a point in �Y .C / near 
 ,
will return to �Y .C / while staying in a neighborhood of 
 .

4 Existence of a special holomorphic curve

We would now like to find a holomorphic curve satisfying the criteria in Proposition 3.2,
so that it projects to a global surface of section for the Reeb flow. The goal of this
section is to prove Proposition 4.2 below, which asserts that we can do this, under
the assumptions that c1.�/ is torsion and that there are only finitely many simple
Reeb orbits. In fact, we will obtain a curve satisfying even more properties than those
required for Proposition 3.2, namely:

Definition 4.1 Let .Y; �/ be a nondegenerate contact three-manifold, and let J be
a �–compatible almost complex structure on R�Y . A J –holomorphic curve C in
R�Y is special if it has the following properties:

(a) ind.C /D I.C /D 2, and C is irreducible and embedded in R�Y .
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(b) C has at least one positive end, and at least one negative end, at elliptic Reeb
orbits.

(c) C has genus zero and at most three ends.

(d) C does not have two positive ends, or two negative ends, at covers of the same
simple Reeb orbit.

(e) C does not have any ends at hyperbolic orbits, except possibly one end at a
simple negative hyperbolic orbit.

(f) The component of the moduli space of J –holomorphic curves containing C is
compact.

Proposition 4.2 Let .Y; �/ be a nondegenerate contact three-manifold with c1.�/ 2
H 2.Y IZ/ torsion and with only finitely many simple Reeb orbits. Let J be a generic
�–compatible almost structure on R�Y . Then there exists a special J –holomorphic
curve in R�Y .

4.1 A sequence of U–curves

The first step in the proof of Proposition 4.2 is to obtain a sequence of U–curves with
some control over their J0 index.

To prepare for this, note from (2-3) and (2-13) that if ˛ and ˇ are any orbit sets with
Œ˛�D Œˇ� and if Z 2H2.Y; ˛; ˇ/, then the difference between I and J0 is given by

(4-1) I.˛; ˇ;Z/�J0.˛; ˇ;Z/D 2c� .Z/C
X
i

CZ� .˛
mi

i /�
X
j

CZ� .ˇ
nj

j /:

We will also need the following linearity property of the relative first Chern class: Let
˛0 and ˇ0 be another pair of orbit sets with Œ˛0� D Œˇ0�, and let Z0 2 H2.Y; ˛0; ˇ0/.
Then ZCZ0 2H2.Y; ˛˛0; ˇˇ0/ is defined; here ˛˛0 denotes the “product” orbit set
obtained by taking the union of the simple Reeb orbits in ˛ and ˛0 and adding their
multiplicities. Let � be a trivialization of � over all the Reeb orbits in the four orbit
sets ˛ , ˇ , ˛0 and ˇ0 ; it then follows from the definition of c� in [15, Section 3.2] that

(4-2) c� .ZCZ
0/D c� .Z/C c� .Z

0/:

Lemma 4.3 Let .Y; �/ be a nondegenerate contact 3–manifold with c1.�/2H 2.Y IZ/

torsion. Then:
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(a) There is a unique way to assign, to each orbit set ˛ with Œ˛� D 0 2 H1.Y /,
integers I.˛/ and J0.˛/, such that (i) I.∅/ D J0.∅/ D 0, and (ii) if ˇ is
another orbit set with Œˇ�D 0, then for any Z 2H2.Y; ˛; ˇ/, we have

(4-3) I.˛; ˇ;Z/D I.˛/� I.ˇ/; J0.˛; ˇ;Z/D J0.˛/�J0.ˇ/:

(b) If there are only finitely many simple Reeb orbits, then there is a constant ı1 > 0
such that if ˛ is any orbit set with Œ˛�D 0, then

(4-4) jI.˛/�J0.˛/j � ı1A.˛/:

Proof (a) We must define I.˛/D I.˛;∅; Z/ and J0.˛/D J0.˛;∅; Z/ where Z is
any class in H2.Y; ˛;∅/. These definitions do not depend on the choice of Z in view
of (2-4) and (2-15) since Œ˛�D 0 and c1.�/ is torsion. The equations (4-3) hold as a
result of the additivity property (2-5) of I and an analogous property of J0 .

(b) Let ˛1; : : : ; ˛n denote the simple Reeb orbits. Fix a trivialization � of � over
˛1; : : : ; ˛n . Let ˛D

Q
i ˛
mi

i be a nullhomologous orbit set. Define c� .˛/Dc� .˛;∅; Z/
for any Z 2H2.Y; ˛;∅/; this is well defined by (2-14). Then, by part (a) and (4-1),
we have

(4-5) I.˛/�J0.˛/D 2c� .˛/C

nX
iD1

CZ� .˛
mi

i /:

Here we interpret CZ� .˛
mi

i /D 0 when mi D 0.

To analyze the c� term in (4-5), note that ˛ D
Qn
iD1 ˛

mi

i is nullhomologous if and
only if .m1; : : : ; mn/ is an element of the set

W D

�
.m1; : : : ; mn/ 2Nn

ˇ̌̌ nX
iD1

mi Œ˛i �D 0 2H1.Y /

�
:

Thus c� defines a map W ! Z. Let WQ denote the span of W in Qn . The map
c� W W ! Z is additive by (4-2), hence c� extends uniquely to a linear map WQ!Q.
This extension is then given by the inner product with a fixed vector in WQ . We
conclude that there are constants w1; : : : ; wn 2 Q such that every nullhomologous
orbit set ˛ D

Qn
iD1 ˛

mi

i satisfies

(4-6) c� .˛/D

nX
iD1

wimi :
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To estimate the Conley–Zehnder index term in (4-5), note that by (2-2) we have

CZ� .˛
mi

i /D bmi�icC dmi�ie;

where �i denotes the rotation number of ˛i with respect to � . In particular,

(4-7) jCZ� .˛
mi

i /j � 2dj�i jemi :

Combining (4-5), (4-6) and (4-7), we obtain

(4-8) jI.˛/�J0.˛/j �

nX
iD1

dimi ;

where di D 2.jwi jC dj�i je/. In addition, we have

(4-9) A.˛/D
nX
iD1

aimi ;

where ai D A.˛i / > 0. It follows from (4-8) and (4-9) that the estimate (4-4) holds
with ı1 Dmax.di=ai /.

Lemma 4.4 Let .Y; �/ be a nondegenerate contact 3–manifold with only finitely
many simple Reeb orbits and with c1.�/ 2 H 2.Y IZ/ torsion. Let J be a generic
�–compatible almost complex structure. Let " > 0. Then at least one of the following
is true:

(1) There exist ECH generators ˛ and ˇ , and a U–curve C 2MJ .˛; ˇ/, such that
Œ˛�D Œˇ�D 0 2H1.Y / and A.˛/�A.ˇ/ < " and J0.C/� 1.

(2) For every positive integer l , there exist ECH generators ˛.0/; ˛.1/; : : : ; ˛.l/
with Œ˛.i/� D 0 2 H1.Y /, and U–curves C.i/ 2MJ .˛.i/; ˛.i � 1// for i D
1; : : : ; l , such that for each i we have

A.˛.i//�A.˛.i � 1// < ";(4-10)

J0.C.i//D 2:(4-11)

Proof Suppose that (1) is false, in particular that every U–curve C 2MJ .˛; ˇ/ with
Œ˛�D Œˇ�D 0 and A.˛/�A.ˇ/ < " satisfies J0.C/� 2. We must prove that (2) is true.

By Proposition 2.3(a) and our assumption that c1.�/ is torsion, there exists a U–
sequence f�kgk�1 in ECH.Y; �; �/ with � D 0. By (2-22), there is a constant ı2 > 0
such that

c�k
.Y; �/� ı2k

1=2:
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Recall from Section 2.3 that the map U on ECH.Y; �; 0/ is induced by a chain
map UJ;z on ECC.Y; �; 0/ counting U–curves passing through a point z 2 Y which
is not on any Reeb orbit. Fix a large positive integer k . By the definition of c�k

, the
class �k can be represented by a cycle x D

P
j xj in the chain complex ECC.Y; �; 0/

such that each xj is an ECH generator with action A.xj /� c�k
. Since U k�1�k ¤ 0

on homology, it follows that U k�1J;z x ¤ 0 on the chain level. Thus there are ECH
generators ˛.1/; : : : ; ˛.k/ such that Œ˛.i/�D 02H1.Y / for each i , the ECH generator
˛.k/ is one of the xj , and hUJ;z˛.i/; ˛.i � 1/i ¤ 0 for i D 2; : : : ; k . In particular,

(4-12) A.˛.k//� ı2k1=2;

and there exist U–curves C.i/ 2MJ .˛.i/; ˛.i � 1// for i D 2; : : : ; k .

We claim that for every positive integer l , if k is sufficiently large, then there will be l
consecutive integers i from 2 to k satisfying (4-10) and (4-11). It is enough to show
that there are at most O.k1=2/ integers i from 2 to k such that (4-10) and (4-11) are
not both satisfied.

By (4-12), there are at most "�1ı2k1=2 integers i from 2 to k such that (4-10) is
not satisfied. By our hypothesis, this also implies that there are at most "�1ı2k1=2

integers i from 2 to k such that J0.C.i//� 1.

Since the C.i/ are U–curves, they each have ECH index 2, so

kX
iD2

I.C.i//D 2.k� 1/:

It then follows from Lemma 4.3(b) and the estimate (4-12) that

kX
iD2

J0.C.i//D J0.˛.k//�J0.˛.1//� 2.k� 1/C 2ı1ı2k1=2:

Recall that J0.C.i// is an integer. Also, it follows from Proposition 2.6 that J0.C.i//�
�1 for each i . We deduce that there are at most .2ı1C 4"�1/ı2k1=2 integers i from
2 to k such that (4-11) is not satisfied.

Remark 4.5 The proof of Lemma 4.4 is the part of the proof of Theorem 1.4 where
we make essential use of the assumption that c1.�/ is torsion. Without this assumption,
we can still find U–curves in MJ .˛; ˇ/ with A.˛/�A.ˇ/< " such that Œ˛�D Œˇ�D� ,
where c1.�/C 2PD.�/ 2 H 2.Y IZ/ is torsion. However, we do not know how to
control J0 of these curves, because when c1.�/ is not torsion, J0 of these curves no
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longer depends only on ˛ and ˇ , but also on their relative homology classes by (2-15).
How to bound J0 in this case is an interesting question for future research.

4.2 Controlling topological complexity

We now use Proposition 2.6 to describe the possible structure of a U–curve CD C0tC1
with J0.C/� 2.

Lemma 4.6 Under the hypotheses of Proposition 2.6, suppose that J0.C/� 1 and that
C1 has at least one negative end. Then:

(a) C1 has genus zero and at most three ends.

(b) C1 does not have two positive ends or two negative ends at covers of the same
simple Reeb orbit.

Proof It follows from (2-16) that �.C1/ � �1. Since C1 always has at least one
positive end, and we are assuming that C1 has at least one negative end, assertion (a)
follows.

If assertion (b) is false, then it follows from (2-16) that �.C1/� 0, which is impossible
since now C1 has at least three ends.

Lemma 4.7 Under the hypotheses of Proposition 2.6, suppose that J0.C/D 2 and that
C1 has at least one negative end. Then:

(a) If for some i , both C0 and C1 have positive ends at covers of ˛i , or if for
some j , both C0 and C1 have negative ends at covers of ǰ , then C1 satisfies
the conclusions of Lemma 4.6.

(b) C1 has at most two positive ends at covers of ˛i for each i , and at most two
negative ends at covers of ǰ for each j .

(c) If C1 has two positive ends at covers of ˛i for some i , then C1 has exactly one
negative end. Likewise, if C1 has two negative ends at covers of ǰ for some j ,
then C1 has exactly one positive end.

Proof (a) This follows from (2-16) as in the proof of Lemma 4.6.

(b) If C1 has more than two positive ends at covers of ˛i for some i , or if C1 has
more than two negative ends at covers of ǰ for some j , then (2-16) implies that
�.C1/� 0, which is a contradiction since in this case C1 has at least four ends.
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(c) If C1 has two positive ends at covers of ˛i for some i , then, by (2-16), �.C1/��1.
Since we are assuming that C1 has at least one negative end, it follows that C1 has
exactly one negative end. The proof in the case where C1 has two negative ends at
covers of ǰ for some j is analogous.

4.3 Exceptional Reeb orbits

Definition 4.8 Let .Y; �/ be a nondegenerate contact three-manifold. Let 
 be a
simple Reeb orbit and let m be a positive integer. We say that the pair .
;m/ is
exceptional if jpC
 .m/jC jp

�

 .m/j � 3.

Lemma 4.9 Let .Y; �/ be a nondegenerate contact three-manifold, and let 
 be a
simple Reeb orbit. Then there are only finitely many positive integers m such that the
pair .
;m/ is exceptional.

Proof If 
 is hyperbolic, then Lemma 4.9 follows directly from (2-11) and (2-12).
So assume that 
 is elliptic. We need to show that if � is an irrational number then
there are only finitely many positive integers m with jpC

�
.m/j C jp�

�
.m/j 2 f2; 3g.

Since p�
�
.m/DpC

��
.m/, it is enough to show that there are only finitely many positive

integers m with pC
�
.m/D .m/ and jp�

�
.m/j 2 f1; 2g.

Claim If � is irrational and pC
�
.m/D .m/, then 1 2 p�

�
.m/.11

Proof Let a denote the smallest element of p�
�
.m/. By the definition of p�

�
in

Section 2.5, the triangle with vertices .m; bm�c/, .m; dm�e/ and .m�a; d.m�a/�e/
does not contain any lattice points other than its vertices. Thus, by Pick’s theorem, this
triangle has area 1

2
. But this triangle also has area a

2
, so aD 1.

It follows from the claim that if pC
�
.m/D p�

�
.m/D .m/ then mD 1.

It remains to show that there are only finitely many m with pC
�
.m/ D .m/ and

jp�
�
.m/j D 2. In this case, it follows from the claim that p�

�
.m/D .m� 1; 1/. Then,

by the definition of pC
�

and p�
�

, the quadrilateral with vertices .0; 0/, .m; bm�c/,
.m; dm�e/ and .m � 1; d.m � 1/�e/ contains no lattice points other than its ver-
tices. This quadrilateral contains the triangle with vertices .0; 0/, .m; bm�c/ and

11More generally, if � is irrational and m > 1 then 1 … pC
�
.m/ if and only if 1 2 p�

�
.m/ . This is

shown in [11, Equation (22)], and can also be proved similarly to the proof of the claim.
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.m � 1; d.m � 1/�e/, so that triangle also contains no lattice points other than its
vertices, and thus has area 1

2
. Recomputing this area using determinants, we obtain

md.m� 1/�e� .m� 1/bm�c D 1:

Since p�
�
.m/D .m� 1; 1/, we also know from [15, Example 3.13(b)] that

d.m� 1/�eC d�e D dm�e:

Substituting this equation into the previous one, we obtain

1Dm.dm�e� d�e/� .m� 1/bm�c

D .m� 1/Cdm�e�md�e

D .m� 1/Cm� C 1�fm�g�m.� C 1�f�g/

Dmf�g� fm�g:

This implies that mf�g< 2, so there are only finitely many such m.

4.4 Low energy curves

Lemma 4.10 Let .Y; �/ be a nondegenerate contact three-manifold with only finitely
many simple Reeb orbits. Then there exists a constant " > 0 with the following
property. Let ˛ and ˇ be ECH generators with A.˛/�A.ˇ/ < ". Let J be a generic
�–compatible almost complex structure on R�Y . Let C D C0 tC1 2MJ .˛; ˇ/ be a
U–curve. Then:

(a) Let ˛0 and ˇ0 denote the orbit sets for which C1 2MJ .˛0; ˇ0/. Then there is at
least one pair .
;m/ 2 ˛0 such that .
;m/ is not exceptional, and likewise there
is at least one nonexceptional pair .
;m/ 2 ˇ0.

(b) C1 has at least one positive end and at least one negative end at elliptic Reeb
orbits.

(c) If C1 has genus 0 and at most three ends, then the component of the moduli
space of J –holomorphic curves containing C1 is compact.

Proof Since there are only finitely many simple Reeb orbits, and since by Lemma 4.9
there are only finitely many exceptional pairs .
;m/, there are only finitely many orbit
sets x where every pair .
;m/ 2 x is exceptional. It follows that we can choose " > 0
such that the following holds:

(i) If x is an orbit set such that every pair .
;m/ 2 x is exceptional, and if y is
another orbit set with A.x/¤A.y/, then jA.x/�A.y/j> ".
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In particular, we also have:

(ii) If 
 is a simple Reeb orbit then A.
/ > ".

(iii) If 
 is a positive hyperbolic Reeb orbit which is either simple or a double cover
of a simple negative hyperbolic orbit, and if 
 0 is any other Reeb orbit with
A.
/¤A.
 0/, then jA.
/�A.
 0/j> ".

We claim that properties (i)–(iii) above imply assertions (a)–(c). To see this, let J be
a generic �–compatible almost complex structure, and let C D C0 tC1 2MJ .˛; ˇ/

be a U–curve with A.˛/�A.ˇ/ < ". We can write ˛ D ˛0
 and ˇ D ˇ0
 , where

 is the orbit set such that C0 D R� 
 , and C1 2MJ .˛0; ˇ0/. Then we also have
0 <A.˛0/�A.ˇ0/ < ". We now prove (a)–(c) as follows.

(a) This follows immediately from property (i).

(b) Suppose to get a contradiction that (b) does not hold. Without loss of generality,
C1 does not have a positive end at an elliptic Reeb orbit. This means that all orbits in ˛0

are hyperbolic. Then, since ˛ is an ECH generator, all orbits in ˛0 have multiplicity one.
In particular, every element of ˛0 is exceptional. Since C1 is nontrivial, A.˛0/¤A.ˇ0/.
This contradicts property (i) with x D ˛0 and y D ˇ0.

(c) Suppose to get a contradiction that C1 has genus 0 and at most three ends, but the
component of the moduli space of J –holomorphic curves containing C1 is not compact.
Then, by the compactness theorem in [15, Lemma 5.11], there exists a sequence of
J –holomorphic curves in the moduli space containing C1 which converges in an
appropriate sense to a “broken J –holomorphic current” from ˛0 to ˇ0 with more
than one level and with total ECH index 2. This broken J –holomorphic current
is a k–tuple of J –holomorphic currents .C.1/; : : : ; C.k// where k > 1, the current
C.i/ 2MJ .˛.i/; ˛.i � 1// is not a union of covers of trivial cylinders, ˛.k/ D ˛0

and ˛.0/D ˇ0, and
Pk
iD1 I.C.i//D 2. By Proposition 2.1, it follows that k D 2 and

I.C.1//D I.C.2//D 1.

Write CC D C.2/ and C� D C.1/. By Proposition 2.1(1), we can write

CC D CC0 tC
C
1 2M

J .˛0; �/; C� D C�0 tC
�
1 2M

J .�; ˇ0/

for some (not necessarily admissible) orbit set �, where each component of C˙0 is a
trivial cylinder, while C˙1 is embedded and has ind.C˙1 / D I.C

˙
1 / D 1. Note that

A.˛0/�A.�/ and A.�/�A.ˇ0/ are both less than ".

By property (ii), CC1 and C�1 each have at least one negative end (and of course at
least one positive end). In particular, �.CC1 /� 0 and �.C�1 /� 0.
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Now at least one of CC1 and C�1 must be a cylinder. Otherwise �.CC1 / � �1 and
�.C�1 /��1, so �.C1/��2 (by the definition of convergence to a broken holomorphic
current in [15, Section 5.3]), contradicting our assumption that C1 has genus 0 and at
most three ends.

Since the cylinder CC1 or C�1 has Fredholm index 1, the two Conley–Zehnder terms
in (2-1) must have opposite parity, which means that one end is at a positive hyperbolic
orbit, while the other end is at an elliptic or negative hyperbolic orbit. Since this cylinder
also has ECH index 1, it follows from the partition conditions in Proposition 2.4 and
(2-11) and (2-12) that the positive hyperbolic orbit is either simple, or the double
cover of a negative hyperbolic orbit. The existence of this cylinder now contradicts
condition (iii).

4.5 Existence of a special curve

Proof of Proposition 4.2 Suppose there are n simple Reeb orbits. We now invoke
Lemma 4.4, with the constant " provided by Lemma 4.10.

Suppose that case (1) in Lemma 4.4 holds. We then have a U–curve C D C0 tC1 2
MJ .˛; ˇ/ with A.˛/ � A.ˇ/ < " and J0.C/ � 1. We claim that the curve C1 is
special. Condition (a) in the definition of “special” holds because C is a U–curve.
Condition (b) holds by Lemma 4.10(b) above. Conditions (c) and (d) then hold by
Lemma 4.6. Since C1 has at most three ends, at least two of which are at elliptic orbits,
and since C1 has even Fredholm index, it follows that C1 cannot have an end at a
positive hyperbolic Reeb orbit. Since ˛ and ˇ are ECH generators, if C1 has an end
at a negative hyperbolic Reeb orbit, then this orbit is simple. This proves condition (e)
in the definition of “special”. Condition (f) holds by Lemma 4.10(c).

Suppose now that case (2) in Lemma 4.4 holds. We can then put l D 2nC 1 into
Lemma 4.4 to obtain ECH generators ˛.0/; : : : ; ˛.2nC 1/, and U–curves

C.i/D C.i/0 tC.i/1 2MJ .˛.i/; ˛.i � 1//

for i D 1; : : : ; 2nC 1 such that (4-10) and (4-11) hold for each i . We claim that for
at least one i , the curve C.i/1 is special. We know that for each i , the curve C.i/1
satisfies condition (a) in the definition of “special” since C.i/ is a U–curve, and
also condition (b) by Lemma 4.10(b). We need to show that for at least one i , the
curve C.i/1 also satisfies conditions (c) and (d); the conditions (e) and (f) will then
follow as before.
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We claim that for some i , the curves C.i/0 and C.i/1 have positive ends at covers
of the same simple orbit, or negative ends at covers of the same simple orbit. Then,
by Lemma 4.7(a), the curve C.i/1 satisfies conditions (c) and (d) in the definition of
“special”, and we are done.

To prove the claim, suppose that for all i , the curves C.i/0 and C.i/1 do not have
positive ends at covers of the same simple orbit, or negative ends at covers of the same
simple orbit. We then obtain a contradiction as follows.

Let us call the curve C.i/1 “Type I” if it does not have two negative ends at covers of
the same simple orbit. Call the curve C.i/1 “Type II” if it does not have two positive
ends at covers of the same simple orbit. By Lemma 4.7(c), each curve C.i/1 is Type I
or Type II (or possibly both).

Suppose that for some i > 1, the curve C.i/1 is Type I. Then, by Lemma 4.10(a),
there is a simple orbit 
 such that C.i/1 has exactly one negative end at a cover of 
 ,
of multiplicity m, and the pair .
;m/ is not exceptional. Then the curve C.i � 1/1
cannot have any positive ends at covers of 
 , by Lemma 4.7(b) and the definition of
“exceptional”, hence the component of C.i � 1/0 along 
 must have multiplicity m.
It then follows by downward induction on j that if 1� j < i , then the curve C.j /1
cannot have any positive or negative ends at covers of 
 .

Likewise, if for some i < 2nC 1, the curve C.i/1 is Type II, then there is a simple
orbit 
 such that C.i/1 has a positive end at a cover of 
 , but for i < j � 2nC 1, the
curve C.j /1 cannot have any positive or negative ends at covers of 
 .

Now, among the 2n� 1 curves C.2/1; : : : ; C.2n/1 , at least n of them have Type I,
or at least n of them have Type II (or possibly both). In the first case, there are no
possible orbits at which C.1/1 can have ends, which is the desired contradiction. In
the second case, there are no possible orbits at which C.2nC1/1 can have ends, which
is likewise a contradiction.

5 Two or infinitely many Reeb orbits

In this section we complete the proof of the main result, Theorem 1.4.

5.1 Invoking a theorem of Franks

To prove Theorem 1.4, we will need one more dynamical fact.
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Proposition 5.1 Let C be a surface diffeomorphic to S2 with k points removed. Let
! be an area form on C with

R
C !<1. Let f W .C; !/! .C; !/ be an area-preserving

diffeomorphism which acts as the identity on the set of ends. Then:

� If k D 2, then f has either no periodic orbits or infinitely many.

� If k > 2, then f has infinitely many periodic orbits.

To prove Proposition 5.1, we will use the following theorem of Franks. Below, let A
denote the open annulus VD2 n f0g.

Theorem 5.2 [6, Theorem 4.4] Let f W A!A be a homeomorphism which preserves
Lebesgue measure. If f has at least one periodic orbit, then f has infinitely many
periodic orbits.

To apply Theorem 5.2, we will need the following result of Berlanga and Epstein, gen-
eralizing results of Oxtoby and Ulam [24]. Let � be a Borel measure on a manifold X.
We say that � is “nonatomic” if �.fxg/ D 0 for each x 2 X, and that � has “full
support” if �.U / > 0 for every nonempty open set U �X.

Theorem 5.3 (special case of [2]) Let �1 and �2 be two Borel measures on a
manifold X which are nonatomic and have full support. If �1.X/ D �2.X/ <1,
then there is a homeomorphism hW X !X such that h��1 D �2 .

Proof of Proposition 5.1 We can identify C with Anfz1; : : : ; zk�2g, where the points
z1; : : : ; zk�2 2 A are distinct. Since the diffeomorphism f W C ! C preserves the
ends of C, it follows that f extends to a homeomorphism xf W A!A with xf .zi /D zi
for i D 1; : : : ; k� 2.

Let � denote the measure on C determined by ! . We extend � to a measure x� on A
by setting x�.U /D �.U n fz1; : : : ; zk�2g/ for any Borel measurable set U � A. The
homeomorphism xf preserves the measure x�. The measure x� has full support because
� does, and is nonatomic because the points z1; : : : ; zk�2 have measure zero. Thus, by
Theorem 5.3, there is a homeomorphism hW A!A such that h�x� is a rescaling of the
Lebesgue measure. In particular, the conjugate homeomorphism h ı xf ı h�1W A! A

preserves Lebesgue measure.

It now follows from Theorem 5.2 that the homeomorphism xf has either no periodic
orbits or infinitely many. Since z1; : : : ; zk�2 are fixed points of xf , Proposition 5.1
follows immediately.
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5.2 Proof of the main theorem

Proof of Theorem 1.4 Assume that � has only finitely many simple Reeb orbits;
we need to show that � has exactly two simple Reeb orbits. Let J be a generic
�–compatible almost complex structure on R�Y .

By Proposition 4.2, there exists a special J –holomorphic curve C in R � Y . By
Definition 4.1, this implies that the following conditions hold:

(a) C is irreducible and embedded and has ind.C /D I.C /D 2.

(b 0 ) C has at least two ends.

(c 0 ) C has genus zero.

(d) C does not have two positive ends, or two negative ends, at covers of the same
simple Reeb orbit.

(e 0 ) C has no ends at positive hyperbolic orbits or at nonsimple negative hyperbolic
orbits.

(f) MJ
C =R is compact.

(Conditions (b 0 ), (c 0 ), and (e 0 ) above are weaker than the corresponding conditions (b),
(c) and (e) in Definition 4.1, but are all that we need in the proof.)12

We now check that C satisfies hypotheses (i)–(v) of Proposition 3.2, so that C projects
to a global surface of section for the Reeb flow:

(i) By (d) and (e 0 ) above, C 2MJ .˛; ˇ/ where ˛ and ˇ are admissible orbit sets.
Then, by (a) and [15, Proposition 3.7(2)], every C 0 2MJ

C is embedded in R�Y .

(ii) This follows from (a), (c 0 ) and (e 0 ) above.

(iii) This is condition (d) above.

(iv) By (a) and (d) above, and by Proposition 2.4, if C has a positive end at an
m–fold cover of a simple Reeb orbit 
 , then pC
 .m/ D .m/; and if C has a
negative end at an m–fold cover of a simple Reeb orbit 
 , then p�
 .m/D .m/.
Hypothesis (iv) now follows from Lemma 2.5.

(v) This is condition (f) above.

12In fact, as explained in the discussion preceding [8, Corollary 1.4], the Brouwer translation theorem
allows one to avoid using condition (b 0 ) entirely. However, we have kept this condition in order to
streamline the exposition.
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Thus Proposition 3.2 is applicable to C, and as in Section 3.3 we obtain a Poincaré
return map

f W �Y .C /! �Y .C /:

By Lemma 3.6, we can apply Proposition 5.1 to the map f . Since we are assuming that
� has only finitely many Reeb orbits, it follows from Proposition 5.1 and condition (b 0 )
that C has exactly two ends, at Reeb orbits which we denote by 
C and 
� , and that
� has no simple Reeb orbits other than the simple Reeb orbits underlying 
C and 
� ,
which we denote by x
C and x
� . Moreover, x
C and x
� are distinct by Theorem 1.1
(one can also show this more directly using intersection theory). Thus � has exactly
two simple Reeb orbits.

6 The nontorsion case

We conclude by proving Theorem 1.7. Below, if 
1 and 
2 are Reeb orbits, let i
1;
2

denote the map

(6-1) i
1;
2
W Z2!H1.Y /; .m1; m2/ 7!m1Œ
1�Cm2Œ
2�:

Proof of Theorem 1.7(b) We know by Theorem 1.5 that there are at least three simple
Reeb orbits. Suppose to get a contradiction that there are exactly three.

Choose � 2H1.Y / such that c1.�/C 2PD.�/ is torsion. Since we are assuming that
c1.�/ is not torsion, it follows that � 2H1.Y / is not torsion either.

By Proposition 1.9, at least one of the simple Reeb orbits is positive hyperbolic.

We claim that the other two simple Reeb orbits are elliptic. To see this, note that if
there are no elliptic orbits, then there are just three hyperbolic simple Reeb orbits, so it
follows from the definition of the ECH chain complex that ECH�.Y; �; �/ is finitely
generated, contradicting Proposition 2.3(a). If there is one elliptic simple Reeb orbit e
and two hyperbolic simple Reeb orbits h1 and h2 , then let f�kgk�1 be a U–sequence
in ECH�.Y; �; �/ provided by Proposition 2.3(a). By (2-19), the spectral invariant
c�k
.Y; �/ is the symplectic action of some ECH generator ˛k D emkh

n1;k

1 h
n2;k

2 , where
mk is a nonnegative integer and n1;k; n2;k 2 f0; 1g. By (2-20), the symplectic action
of ˛k is a strictly increasing function of k . It then follows that c�k

.Y; �/ grows at
least as 1

4
kA.e/, so that c�k

.Y; �/2=k grows at least linearly with k . This contradicts
the asymptotic formula (2-22).
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Thus there are two elliptic simple Reeb orbits e1 and e2 and one positive hyperbolic
simple Reeb orbit h. We claim now that the kernel of ie1;e2

has rank one. If the
kernel of ie1;e2

has rank zero, then, as before, ECH.Y; �; �/ is finitely generated,
a contradiction. If the kernel has rank two, then the orbits e1 and e2 represent
torsion classes in homology. Since, by the definition of the mod 2 grading I2 , every
generator of the chain complex ECCeven.Y; �/ takes the form e

m1

1 e
m2

2 , we then have
ECHeven.Y; �; �/D 0, contradicting Proposition 2.3(b).

Thus the kernel of ie1;e2
has rank one, and is generated by some integer vector

.v1; v2/. Without loss of generality, v2 > 0. Consider a U–sequence f�kgk�1
in ECHeven.Y; �; �/. By (2-19), for each k the spectral invariant c�k

.Y; �/ is the
action of an orbit set em1;k

1 e
m2;k

2 in the homology class � . For each k , we may
express

.m1;k; m2;k/D .m1;1; m2;1/C ak.v1; v2/(6-2)

for some ak 2 Z. By (2-20), the ak are distinct. Since, by the definition of orbit set,
m1;k � 0 and m2;k � 0, and since v2 > 0, it follows that v1 � 0. (Otherwise there
could only be finitely many k such that (6-2) has both components nonnegative.) Since
both v1 and v2 are nonnegative, it follows that the sequence c�k

.Y; �/ grows at least
linearly with k , since each term in this sequence exceeds the previous one by at least
min.A.e1/;A.e2//. Once again this contradicts the asymptotic formula (2-22).

Proof of Theorem 1.7(a) By Theorem 1.1, there are at least two simple Reeb orbits.
Suppose to get a contradiction that there are exactly two simple Reeb orbits, and
denote these by 
1 and 
2 . Choose � such that c1.�/C 2PD.�/ is torsion. By
Proposition 2.3(a), there is a U–sequence in the class � ; it follows from (2-19)
and (2-22) that there is an infinite sequence .
m1;k

1 

m2;k

2 /k�1 of orbit sets in the
class � with strictly increasing action.

Now consider the map on homology (6-1). If the kernel of this map has rank 0, then
there is at most one orbit set in every homology class, contradicting the existence of
infinitely many orbit sets in the class � . If the kernel has rank 2, then there can not
be any orbit sets in any nontorsion homology class, which again is a contradiction
since our hypothesis that c1.�/ is not torsion implies that � is not torsion either. If the
kernel has rank 1, then we can repeat the last paragraph of the proof of Theorem 1.7(b)
to get a contradiction.
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Appendix U–sequences from Seiberg–Witten theory

We now prove Proposition 2.3. Let bHM�.Y; s/ denote Seiberg–Witten Floer coho-
mology with Z coefficients. Like bHM�.Y; sIZ=2/, the groups bHM�.Y; s/ have a
canonical Z=2 grading which refines a relative Z=d grading. This allows us to split

bHM�.Y; s/DbHMeven.Y; s/˚bHModd.Y; s/:

Since Taubes’s isomorphism (2-9) preserves the relative gradings, it follows that for
any given � , this isomorphism will either preserve or switch the decompositions of
ECH and bHM into even and odd parts.

The U–map on bHM�.Y; sIZ=2/ also lifts to a canonical degree 2 map on bHM�.Y; s/.
Define a “U–sequence” on bHM� analogously to the definition in Section 2.4. By
Theorem 2.2 and (2-10), Proposition 2.3 follows from the following lemma:

Lemma A.1 Let Y be a closed oriented connected three-manifold , and let s be a
spin-c structure on Y with c1.s/ 2H 2.Y IZ/ torsion. Then:

(a) There exists a U–sequence f�kgk�1 in bHMeven.Y; s/ such that each �k is non-
torsion.

(b) If b1.Y / > 0, then there exist U–sequences in bHMeven.Y; s/ and bHModd.Y; s/

such that each �k is nontorsion.

While this lemma is well known, we present a proof for completeness.

Proof of Lemma A.1 As explained in [23, Section 22.3], there are companion groups
zHM�.Y; s/ and HM�.Y; s/ which fit into an exact triangle

(A-1) � � �  zHM�.Y; s/� bHM�.Y; s/ HM��1.Y; s/ � � � :

By construction, as in the proof of [23, Corollary 35.1.4], the groups zHM�.Y; s/ vanish
in sufficiently negative degree. Hence, by (A-1), it suffices to prove that there are
such U–sequences in HM�.Y; s/. By the calculations in [23, Section 35], the latter
group is a module over ZŒU; U�1�. It therefore suffices to prove that HM�.Y; s/˝R

is nonvanishing in even degrees when b1.Y /D 0 and that it is nonvanishing in both
even and odd degrees when b1.Y / > 0.

By [23, Section 35], we have

(A-2) HM�.Y; s/˝R'H�.T
b1.Y /; L/˝R;
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where the right-hand side denotes the “coupled Morse homology” defined in [23,
Section 33] for the torus Tb1.Y / , equipped with a suitable family of self-adjoint
Fredholm operators L. (When b1.Y /D 0, this torus is to be interpreted as a single
point.) By [23, Theorem 34.3.1], the vector space H�.Tb1.Y /; L/˝R is isomorphic
to the homology of the twisted de Rham complex

.��.Tb1.Y //˝RŒU; U�1�; d CU�^/;

where � is a suitable closed three-form.

The rest of the proof now goes via classical topology. By [23, page 681], the homology
of the above twisted de Rham complex is computed by a spectral sequence whose E3

page is
H�.Tb1.Y //˝RŒU; U�1�

with differential
d3W x 7! U.�^ x/:

Furthermore, this spectral sequence degenerates after this page. Now, a graded module
over RŒU; U�1� may be viewed equivalently as a Z=2 graded vector space over R.
Applying this to H�.Tb1.Y /; L/˝R and taking Euler characteristics, we obtain

�.H�.T
b1.Y /; L/˝R/D �.H�.Tb1.Y ///:

If b1.Y /D 0, then �.H�.Tb1.Y ///D 1, which proves assertion (a) of the lemma in
view of the isomorphism (A-2).

If b1.Y / > 0, then �.H�.Tb1.Y ///D 0. Combined with [23, Corollary 35.1.3], which
says that H�.Tb1.Y /; L/˝R is never vanishing, and the isomorphism (A-2), this
proves assertion (b).
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