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We seek to understand the kinetic energy spectrum in the dissipation range of fully

developed turbulence. The data are obtained by direct numerical simulations (DNS) of

forced Navier-Stokes equations in a periodic domain, for Taylor-scale Reynolds numbers

up to Rλ = 650, with excellent small-scale resolution of kmaxη ≈ 6, and additionally at

Rλ = 1300 with kmaxη ≈ 3, where kmax is the maximum resolved wave number and η is

the Kolmogorov length scale. We find that for a limited range of wave numbers k past

the bottleneck, in the range 0.15 � kη � 0.5, the spectra for all Rλ display a universal

stretched exponential behavior of the form exp(−k2/3), in rough accordance with recent

theoretical predictions. In contrast, the stretched exponential fit does not possess a unique

exponent in the near dissipation range 1 � kη � 4, but one that persistently decreases

with increasing Rλ. This region serves as the intermediate dissipation range between the

exp(−k2/3) region and the far dissipation range kη ≫ 1 where analytical arguments as

well as DNS data with superfine resolution [S. Khurshid et al., Phys. Rev. Fluids 3,

082601 (2018)] suggest a simple exp(−kη) dependence. We briefly discuss our results

in connection to the multifractal model.

DOI: 10.1103/PhysRevFluids.5.092601

Introduction. Turbulent fluctuations in fluid flows span a wide range of scales and are routinely

characterized by the energy spectrum E (k), where k is the wave number, i.e., the norm of the wave

vector, whose inverse measures the scale size in real space [1,2]. The integral of E (k) over all k gives

the average kinetic energy of turbulence. The pioneering work of Kolmogorov [3] (K41 henceforth)

theorized that the small scales are universal at sufficiently high Reynolds numbers, depending

solely on the viscosity ν and the mean dissipation rate 〈ǫ〉. In addition, at an intermediate range

of scales, the so-called inertial range, the dependence on ν vanishes as well. These considerations

imply that in the range of scales much smaller than the energy injection scale, the energy spectrum

can be written as E (k) ∼ 〈ǫ〉2/3k−5/3 f (kη), where η = (ν3/〈ǫ〉)1/4 is the Kolmogorov length scale

and f is some universal function of kη, tending to a constant in the inertial range. The energy

spectrum has been extensively studied by numerous researchers, and the k−5/3 prediction (with

some small intermittency correction) seems to have received substantial validation [4–7]. However,

the functional form of f and its universality in the dissipation range are still not properly understood.
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TABLE I. Simulation parameters for the DNS runs used in the current work: the Taylor-scale Reynolds

number (Rλ), the number of grid points (N3), spatial resolution (kmaxη), ratio of large-eddy turnover time (TE )

to Kolmogorov timescale (τK ), the simulation time (Tsim) in a statistically stationary state, and the number of

three-dimensional snapshots (Ns) used for each run to obtain the statistics.

Rλ N3 kmaxη TE/τK Tsim Ns

140 10243 5.82 16.0 6.5TE 24

240 20483 5.70 30.3 6.0TE 24

390 40963 5.81 48.4 2.8TE 35

650 81923 5.65 74.4 2.0TE 40

1300 122883 2.95 147.4 20τK 18

Many attempts have been made over the years to characterize f using both experiments and

direct numerical simulations (DNS) [8–16], all of which suggest the following general form,

E (kη) ≃ (kη)α exp[−β(kη)γ ]. (1)

However, experiments have seldom resolved the range beyond kη ≈ 1 [4,8], and DNS have been

either restricted to low Rλ [9–11,13] or achieved high Rλ by sacrificing small-scale resolution [12].

Consequently, there has been no clarity regarding the values of the coefficients in Eq. (1), especially

the exponent γ . The direct interaction approximation [17] and other ideas [8,18–20] predict a pure

exponential, i.e., γ = 1 for large wave numbers or very small scales regularized by viscosity. While

this prediction was found to hold at low Rλ [10,11,13], it could not adequately describe data at

higher Rλ and often led to conflicting and ad hoc fits [4,8,21,22].

The above issues were addressed in a recent study [15] by means of a DNS with superfine

resolution. This study showed that there are two distinct regimes in the dissipation range: a far-

dissipation range (FDR) for kη > 6 consistent with a pure exponential; and a near-dissipation range

(NDR) in the vicinity of kη � 1, where the spectrum is a pure exponential at very low Rλ (γ = 1),

but evolves into a stretched exponential with decreasing γ < 1 as Rλ increases. This analysis in

Ref. [15] was restricted to Rλ � 100, which invites the question as to whether some asymptotic

high-Rλ limit for the NDR (and hence γ ) exists.

Our goal is to assess the picture by means of a well-resolved DNS of isotropic turbulence based

on highly accurate Fourier pseudospectral methods, going up to grids of 12 2883 and Taylor-scale

Reynolds number Rλ ranging from 140 to 1300. The largest Rλ here is more than an order of

magnitude larger than in Ref. [15]. We shall also interpret the findings in terms of two recent

theoretical predictions; the first, resulting from ideas based on distributed chaos, predicts γ = 3/4 or

2/3 depending on a particular choice of parameters [23]; and the second, emerging from a nonper-

turbative renormalization group (NPRG) approach, predicts that γ = 2/3 [14]. Both references have

claimed an agreement in their respective inspections with experimental or DNS data [14,16,23,24]

but, as mentioned earlier, the data were restricted to either low Rλ or limited resolution. We assess

these claims and show that there exists an intermediate bridging region between the stretched

exponential and the FDR, on which we shall remark only briefly.

DNS data. The data, summarized in Table I, are an extension of those utilized in a recent

work [25]; we have also extended the runs at Rλ = 390 and 650 for longer computational times.

In addition, we have performed a new run at Rλ = 1300, with a small-scale resolution kmaxη =

3 [26,27]. The totality of the data allows us to demonstrate that the behavior of the spectrum in the

dissipation range, while being consistent with Ref. [15], is more complex at higher Rλ than was

anticipated there.

The stretched exponential region of NDR. In Fig. 1(a) we show the compensated energy spectra for

various Rλ, as a function of kη. Consistent with earlier results at lower Rλ [15], a systematic enhance-

ment in the high-wave-number spectral density is observed with respect to Rλ. The curves clearly
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FIG. 1. (a) Compensated kinetic energy spectra E (k) as a function of kη for various Taylor-scale Reynolds

number Rλ. (b) The log-derivative of the energy spectra, i.e., φ(k) = d log E (k)/d log k.

show that f (kη) is not a universal function of its argument. Earlier studies such as Refs. [4,12,28],

which inferred a spectral collapse consistent with K41 phenomenology, were limited by technical

reasons: The scatter in Ref. [28] was sufficiently large that possible trends could have been easily

obscured; and the spectral resolution in yet others was limited to kη < 1. In order to explore the

behavior further, we consider its log-derivative of Eq. (1), given by

φ(k) =
d log E (k)

d log k
= α − βγ (kη)γ . (2)

This form allows us to isolate the stretched exponential behavior in a meaningful way.

Figure 1(b) shows φ(kη) for various Rλ. The curves clearly suggest that the f (kη) is nonuniversal

and exhibits concave curvatures, confirming that γ < 1. In contrast to the results of Refs. [16,24],

Fig. 1(b) at higher Rλ shows that the energy spectra in NDR cannot be described by one single

value of γ . We now undertake a more detailed analysis to extract γ and its dependence on Rλ. We

also make a preliminary note that the multifractal formalism should yield a nearly constant form for

φ(kη) [29], quite unlike the data (details are discussed later).

As noted in Ref. [15] and other similar contexts [25], extracting γ through a direct curve fit of

Eq. (2) results in a complex nonlinear regression, which is strongly dependent on initial seeds and

does not guarantee proper convergence. Hence, alternative strategies must be utilized. We adopt a

modified version of the strategy utilized in Ref. [15]. In order to evaluate γ , the authors of Ref. [15]

compensated φ(k) by (kη)γ for different γ values, until a reasonable plateau was observed in

the chosen fitting range. Furthermore, they noted that the precise value of α was inconsequential

for the fit (because a reasonable determination scheme yields only small values with significant

fluctuations), and one can set it to zero without any loss of fidelity. Consequently, Eq. (2) reduces to

−φ(kη) ∼ βγ (kη)γ , and one can obtain γ by simply fitting a power law for −φ(kη) in the desired

range. This procedure is similar to that of Ref. [15], but as we will see, it has the added benefit of

also identifying the appropriate ranges of power-law behaviors. Other methods for extracting γ are

also possible, e.g., see Refs. [16,24], but as described in the Appendix, they are not very robust and

can lead to incorrect conclusions, especially when the Rλ is low.

Figure 2(a) shows log-log plots of −φ(kη) vs kη and confirms that the log-derivative exhibits

two regions of distinct power laws. [An expanded version is provided in Fig. 2(b).] In the first, cor-

responding to the region immediately past the bottleneck (known to occur around kη ≈ 0.1 [30,31])

to kη � 0.5, data for all Rλ exhibit a spectral collapse, with the exponent ranging from 0.68 ± 0.03

for Rλ = 140 to 0.67 ± 0.01 for Rλ = 1300, effectively 2/3. This value of γ is in agreement with

the theoretical prediction from NPRG [14] (though a precise wave-number range is not obtainable
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FIG. 2. (a) The negative of log-derivative of the energy spectra for various Rλ. (b) Zoomed in version of the

same plot. The dashed blacks line in both panels represent a power law with exponent 2/3. In the range kη >

1, we observe only power laws with only a varying exponent from 0.70 ± 0.03 at Rλ = 140 to 0.50 ± 0.01

at Rλ = 1300.

from the theory). However, the analysis also predicts a strong Rλ
−3 dependence of the coefficient β

in the this range. Given the collapse obtained in Fig. 2, it follows that β is independent of Rλ in this

range—which invites a possible refinement of the underlying theoretical arguments in [14].

Another prediction in Ref. [23] on the basis of distributed chaos yields γ = 3/4, which seems to

be ruled out. However, the same author provided an alternative argument that yields γ = 2/3, which

is consistent with the present results. Incidentally, some support for γ = 2/3 was also provided in

a recent work [24] in the range Rλ = 60–240, though the fitting range included part of the wave-

number range (0.2 � kη � 4) that lies outside this range of universal fit—and thus produced the

considerable error bar. Our results show that the prediction from NPRG is valid only in a small

region of NDR and the behavior in the remainder of NDR (kη > 1) is quite different, as shown

next.

The remainder of NDR. From Fig. 2, the second region where power laws can be fitted is the

range 1 < kη < 4, which is similar to that utilized in Refs. [15,24]. Note that the range is slightly

smaller for Rλ = 1300, since the data do not go beyond kη = 3. It is clear that no single value of γ

is adequate to describe the entire NDR, consistent with the results of Ref. [15] at lower Rλ. We have

plotted the current data in Fig. 3(a) together with the data for Rλ � 100 from Ref. [15]. Evidently

γ continues to decrease for the Rλ range considered here, with a plausible fit that is logarithmic (on

which we comment later). Alternatively, Fig. 3(b) shows an equally plausible weak power law with

γ ∼ Rλ
−0.16, for Rλ > 20, say.

Both these dependencies are similar to how the bottleneck flattens with the Reynolds num-

ber [30]. In fact, it seems reasonable that the increase in spectral density (with Rλ) in the dissipation

range is connected to a decrease in the bottleneck region. Physically, the bottleneck is thought to

develop due to inadequate “thermalization” of the energy transferred from inertial to dissipation

scales, leading to a pileup at their crossover [32]. However, with increasing Rλ and the scale range,

the energy transfer across the scales is better facilitated, leading to the diminution of the bottleneck

and a simultaneous rise in spectral density in NDR. Recent experimental results [31] have confirmed

the decay of the bottleneck even up to Rλ ≈ 4000. Based on this behavior, we may infer that the

exponent in this part of NDR will likely continue to decrease at least up to Rλ = 4000; however,

if the trend in Fig. 3(b) persists for higher Rλ, it is clear that the asymptotic value will be zero,

achieved probably at extremely high Reynolds numbers.

It is useful to note that the multifractal (MF) analysis of Ref. [29] predicts a log dependence of the

exponent γ . Their analysis predicts the spectrum to have the form log E (kη)/ log Rλ = F (θ ), where
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FIG. 3. The exponent γ as a function of Rλ on (a) linear scales, and (b) log scales. The (blue) triangles

correspond to the data of Ref. [15]. The dashed lines correspond to fits shown in the legend.

θ = log kη/ log Rλ, and F is supposedly universal. Taking the log-derivative gives φ(kη) = F ′(θ ),

which can be reconciled with Eq. (2) (and hence the stretched exponential behavior) if γ scales

as 1/ log Rλ [since θ = log(kη)1/ log Rλ , which must match the (kη)γ behavior]. The fit shown in

Fig. 3(a) is indeed consistent with this expectation. However, it should also be noted that the MF

analysis of Ref. [29] also predicts the precise functional form of F (θ ) in the NDR, which is similar

to a power-law dependence of the spectra [since F (θ ) is an algebraic function of θ ]. This prediction

is clearly not consistent with the current data [see Fig. 1(b)]. Also, as noted in Ref. [15], the MF

prediction does not appear to work for the spectra in the FDR (kη ≫ 1), to which we will return

later. One likely reason for the disagreement is that the arguments presented in Ref. [29] are valid

in the large Reynolds number limit. This would be consistent with recent work of Ref. [25], which

suggested that the assumptions built in to the MF model can be realized only at astronomically

high Rλ (that are impossible to simulate, even without the fine resolution used here). Nevertheless,

one has to leave open the question of whether the trend observed here for γ holds up for much

higher Rλ.

A more refined application of the MF model is based on the extension of approximate

parametrizations for the second-order structure functions, aimed at characterizing the transition be-

tween viscous and inertial-range scalings [33–37]. The energy spectrum can be indirectly obtained

by appropriately taking the Fourier transform of the second-order structure function. However,

as noted in Ref. [33] and references therein, such parametrizations are not necessarily unique.

Moreover, they also do not explicitly predict a stretched exponential function as considered here.

Nevertheless, it would still be instructive to utilize the current high-resolution DNS data to test these

approaches by directly investigating the structure functions instead of the energy spectra, which we

leave for future work.

Finally, we note that β in Eq. (2) is also a parameter of the stretched exponential fit. Given

how the NDR beyond kη > 1 departs systematically from the universal regime with γ = 2/3, it

follows that the product βγ , the coefficient that appears in Eq. (2), will emerge as independent

of Rλ (since these power-law fits can be thought to have a common origin with different slopes).

This implies that β ∼ 1/γ . While this inference is consistent with the observation in Ref. [15], the

precise value of the product βγ is strongly dependent on the exact fitting range and hence not very

useful.

The far-dissipation region. As far as we know, only the authors of Ref. [15] were able to

adequately resolve the range kη > 6 (FDR). They could do it because of the comparatively low

Rλ of their simulations. Their conclusion is that the spectral shape in FDR is exponential, consistent
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with analytical arguments [8,17–20] that require viscosity to regularize the velocity field at very

small scales. Thus, it appears reasonable to expect that the spectrum in the FDR would be a pure

exponential. It has not been possible for us to have the same resolution and also extend to the

Rλ values attained in this Rapid Communication. Thus, we leave open the possibility that a pure

exponential occurs for wave numbers higher than kη > 6 even at very high Rλ. It is not lost on

us that the increasing demands on resolution could be hinting something important at the analytic

structure of the Navier-Stokes equations.

Concluding remarks. We have analyzed the dissipation range behavior of the energy spectra

obtained from very well-resolved DNS of isotropic turbulence at Taylor-scale Reynolds numbers

that are an order of magnitude higher than in earlier studies. In the process, we have extended the

work of Ref. [15] and also undertaken the verification of various theoretical predictions. Our results

indicate that the behavior of the spectra in NDR is more complex than previously realized. In a

limited range of NDR, 0.15 � kη � 0.5, our results show a universal stretched exponential fit to

the spectra, of the form exp(−k2/3). This result matches the theoretical prediction from NPRG, but

the anticipated range of validity is much smaller than that asserted in recent works [14,24]. It is

also consistent with one version of the distributed chaos [23]. In the FDR, one can anticipate a pure

exponential predicted from analyticity arguments [17]. However, the behavior of the spectra in the

near-dissipation range 1 < kη < 4 still remains an open question. While the spectra are consistent

with stretched exponential behavior in this range, our data show that the exponent decreases with

the Reynolds number, without a tendency to asymptote. Evidently, further theoretical developments

are necessary to explore this behavior with confidence.
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the draft and sustained collaboration over the years. We gratefully acknowledge the Gauss Centre

for Supercomputing e.V. [38] for providing computing time on the GCS supercomputers JUQUEEN

and JUWELS at Jülich Supercomputing Centre (JSC), where the simulations were performed. This
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petascale computing project, which was supported by the NSF (Awards No. OCI-5725070 and No.
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APPENDIX: ROBUST DETERMINATION OF THE EXPONENT IN STRETCHED

EXPONENTIAL CURVE FIT

In determining the exponent γ in Eq. (2) from experimental or numerical data, a few different

methods can be employed (other than determining the power-law exponent as done in the current

work). One method, also utilized in recent works [14,16,23,24], is to plot the log-derivative φ(kη) vs

(kη)γ for a choice of γ and thereafter compare the curve with a straight line. However, we note that

this method relies heavily on a visual comparison, rather than an explicit curve fit, and is inherently

error prone [39]. For instance, in Fig. 4 we simply plot the log-derivative of various exponential

functions f (x) as a function of x2/3. As is evident, all curves can be erroneously matched with a

straight line on the basis of a simple visual inspection, leading to the incorrect conclusion such as

the exponent being 2/3 in a larger range.

Another method is to directly determine the log-derivative of −φ(kη) with respect to kη, which in

principle allows for a direct evaluation of γ from the resulting local slopes plot, without any explicit

curve fit. However, if the parameter α is not set to zero, one needs to evaluate three successive

log-derivatives, as was done in Ref. [24] at significantly lower Rλ than here. We did not find

this method to be reliable for our data, since calculating three log-derivatives leads to substantial

numerical noise, making it nearly impossible to meaningfully extract the exponent. It is possible that

this effect is less pronounced at low Rλ [24], but does not work at high Rλ investigated here. Finally,

we note that in the method employed in Ref. [15], φ(kη) is compensated by (kη)γ until a reasonable

plateau is obtained. While this indeed results in a reasonable fit, it requires an advance knowledge
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of the fitting range (which perhaps is the reason why the 2/3 region was overlooked in that

work).
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