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Abstract: This study examined eight Great Plains moderate-sized (832 to 4892 km?) watersheds.
The Soil and Water Assessment Tool (SWAT) autocalibration routine SUFI-2 was executed using
twenty-three model parameters, from 1995 to 2015 in each basin, to identify highly sensitive parameters
(HSP). The model was then run on a year-by-year basis, generating optimal parameter values for each
year (1995 to 2015). HSP were correlated against annual precipitation (Parameter-elevation Regressions
on Independent Slopes Model—PRISM) and root zone soil moisture (Soil MERGE—SMERGE 2.0)
anomaly data. HSP with robust correlation (r > 0.5) were used to calibrate the model on an annual basis
(2016 to 2018). Results were compared against a baseline simulation, in which optimal parameters
were obtained by running the model for the entire period (1992 to 2015). This approach improved
performance for annual simulations generated from 2016 to 2018. SMERGE 2.0 produced more robust
results compared with the PRISM product. The main virtue of this approach is that it constrains
parameter space, minimizesing equifinality and promotesing modeling based on more physically
realistic parameter values.

Keywords: SMERGE 2.0; PRISM; root zone soil moisture; SWAT; US Great Plains; mass balance

1. Introduction

The Soil and Water Assessment Tool (SWAT) is a physically based model with demonstrated global
applications and has been validated at the watershed scale through the publication of thousands of
referred papers (see [1]). The SWAT model is moderate in terms of complexity, i.e., it is a semi-distributed
model where the watershed is divided into subbasins, in which water balance is calculated on a daily
basis. Many SWAT modeling studies have focused on matching simulated and observed streamflow
at the basin’s outlet. Calibration based on multiple gauges within a basin has been demonstrated
to more realistically capture surface flow throughout an entire watershed (e.g., [2,3]). However,
this approach, while an improvement, can fail to provide a realistic depiction of landscape conditions
that strongly influence runoff production. During recent years, hydrologists have begun to leverage
remote sensing observations to improve model calibration and achieve a more accurate picture of
processes at a watershed scale. Examples of such studies that utilized the SWAT model span diverse
aspects of the hydrologic cycle and include quantifying total terrestrial water [4,5], soil moisture [6-8],
evapotranspiration [9-11], and groundwater recharge [12,13].

Since SWAT was designed as a tool to first and foremost simulate runoff, issues can arise when
simulating other fluxes and state variables, such as soil moisture or evapotranspiration. New approaches
have been developed to facilitate the incorporation of remotely sensed data to support watershed scale
studies [14]. Of particular promise are data assimilation (DA) techniques adopted from the atmospheric
science community, which have been increasingly applied to watershed hydrology studies [15-17].
However, the improvements that can be potentially conferred by DA have limitations. DA has difficulty
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in improving streamflow performance under high flow conditions [15,16] because runoff production is
largely decoupled from the control of soil moisture under these circumstances. In addition, SWAT has
some structural issues related to how soil moisture is accounted for that limits the benefits of DA of
root zone soil moisture (RZSM) in this model. For example, the authors in reference [17] used DA to
incorporate RZSM into SWAT and achieved worse results than open loop simulations. This is because
the physics of the SWAT model without modification are not sufficiently complicated to account for
vertical coupling between different soil layers. Despite these issues, soil moisture remains an important
control on surface runoff production. One of the most important parameters within SWAT is the Curve
Number (CN2), which is initialized based on the moisture content within soils. Therefore, finding a
way of leveraging soil moisture to support more realistic modeling of streamflow remains important.

Another approach that provides a more holistic prospective is a mass balance accounting
of the overall water budget. This method has yielded meaningful insights particularly at the
regional and watershed scales (e.g., [18-20]). In reference [21], it is indicated that inter-seasonal and
inter-annual variations in surface water storage volumes, as well as their impact on precipitation
(P), evapotranspiration (ET), surface water storage (S), and runoff (Q), are not well understood.
There remains a fundamental lack of knowledge, both in terms of spatial and temporal scales, regarding
the hydrologic processes that influence each of the terms of the basic hydrologic equation. Incorporation
of multiple observations (both in situ and remotely sensing) into model calibration can force modeling
to be based on more realistic parameter selection. Therefore, the objective of this study is to demonstrate
whether diverse remote sensing observations can improve simulated SWAT streamflow in eight Great
Plains watersheds.

2. Watersheds Examined

Eight, moderate-sized (832 to 4892 square km) watersheds were examined (Table 1; Figure 1).
Basins generally have a dendritic drainage pattern with a rounded shape, except for Chickaskia (CH)
and Ninnescah (NI), which are elongated. Bird Creek (BC), CH, Little Arkansas (LA), and Little Nemaha
(LN) flow in general toward the southeast. Black Vermillion (BV) drainage is oriented southwest
and Walnut (WN) toward the south. Mill Creek (MC) and NI flow toward the east. The SWAT
model is subdivided into subbasins as computational units. To enhance inter-comparability of the
results, the number of subbasins was set as consistently as possible. The eight basins had subdued
topography typical of the Great Plains region. Overall relief varied between 130 to 313 m in the
examined watersheds (Table 1). In terms of soils, most watersheds were dominated by some variants
of loam within the top layer that roughly correspond with the upper root zone. The only exception
was NI, where loamy sand was the most abundant texture. Land use/land cover in five watersheds
was dominated by agricultural activity (BV, CH, LA, LN, NI). BC, MC, and WN also had significant
rangeland and grasses.

Table 1. Watershed characteristics.

Elevation Dominant Soil Dominant Land

Basin Size (sq. km.) Subbasins (m) Texture Cover
Bird Creek (BC) 2360 31 177 to 403 Loam Rangeland/Grass
Black Vermillion (BV) 1071 31 338 to 468 Clay Loam Agricultural
Chickaskia (CH) 4892 33 295 to 608 Silt Loam Agricultural
Little Arkansas (LA) 3402 33 409 to 544 Silt Loam Agricultural
Little Nemaha (LN) 2061 31 274 to 444 Clay Agricultural
Mill Creek (MC) 832 29 291t0 488  Silt Clay Loam  Rangeland/Grass
Ninnescah (NT) 2049 35 446 to 637 Loamy Sand Agricultural

Walnut (WN) 4855 33 330 to 512 Silt Loam Rangeland/Grass
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Figure 1. Locality map illustrating the position of the eight examined watersheds.
Figure 1. Locality map illustrating the position of the eight examined watersheds.

3. Datasets Used

3. Datasets Used
3.1. SWAT Model Input
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3.2. Other Soft Data

3.2. QtheREND4te SMERGE 2.0 product (US National Aeronautics and Space Administration, NASA,

Washiggtroydrt, HrAdmpresiedas roladbiserodustiBrayided sastieladxdoBpstresudiin e fersat

NASA, Washington, DC, USA) was selected [22]. This product provided particularly robust results
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Plains region and reflects a product that blends equally remote sensing and land surface model datasets.
SMERGE 2.0 is available at a daily time step and has a 0.125-degree spatial resolution. Like with
PRISM precipitation data, SMERGE was averaged for each of the eight basins on an annual basis (1992
to 2018). Unlike PRISM data anomalies, not raw volumetric data were used for RZSM.

Three ET products were applied to this study (Moderate Resolution Imagining Spectrometer,
MODIS16A2v5, US NASA Earth Observing System Data and Information System (EOSDIS) Land
Processes Distributed Active Archive Center (DAAC), [23]; Simplified Surface Energy Balance,
SSEBopv4, US Geologic Survey, Center for Integrated Data Analytics, Middleton, Wisconsin [24];
Global Land Evaporation: the Amsterdam Model, GLEAMv3.3a, Vrije Universiteit Amsterdam,
The Netherlands [25]). The MODIS product was obtained in a monthly HDF file with a 1 km resolution.
This dataset was extracted into a raster layer and zonal statistics tools were utilized to obtain the
average of the pixels intersecting with the watershed outline. The same method was applied to SSEBop,
which was obtained in a GeoTiff raster format with a 0.009-degree spatial resolution in monthly files.
GLEAM was available in netCDF files in a grid of 0.25 x 0.25 degrees with a monthly temporal
resolution. The values of the grids with centroids within the watershed were extracted and summed to
obtain the average. Values were summed to calculate an annual estimate of ET (2016-2018) for the
eight examined watersheds.

Total terrestrial water was estimated from the NASA Gravity Recovery and Climate Experiment
(GRACE) using the GRCTellus JPL-Mascons dataset [26,27]. This product combined monthly gravity
solutions from GRACE and GRACE-FQO, as determined from the JPL RL06Mv2 mascon solution with
the coastline resolution improvement filter. The GRACE product was available in a monthly netCDf file
(missing values exist) at a 0.5-degree spatial resolution. The average of intersecting GRACE grids with
the watershed was summed to obtain an annual estimate (2015-2018) of total terrestrial water change.

Finally, to constrain an interception-related SWAT parameter, the MOD15A2H Terra version 006
combined Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation (US NASA
EOSDIS Land Processes DAAC, Sioux Falls, ND, USA) was used [28]. This product had a 500 m spatial
resolution and was an eight-day composite dataset based on the best available from acquisitions from
each period. Values were aggregated to obtain a basin-wide estimate of LAL

4. Methodology

4.1. SWAT Model Setup

In SWAT, the automatic watershed delineation tool was used to define the stream network and
number of subbasins within a watershed. Subbasin number was based on the area of the watershed
present upstream of the beginning point for each tributary channel. Within each subbasin, water
balance calculations were based on the aerially weighted proportions of unique combinations of
soil and land use, referred to as hydrologic response units (HRU). Each HRU had a unique Curve
Number (CN), adjusted for antecedent moisture conditions, which was used to determine infiltration
and surface runoff within each subbasin. Another component of the SWAT model that enhanced
its ability to calculate the water balance within each subbasin was the calculation of daily potential
evapotranspiration values using the Priestley—Taylor method [29]. SWAT does not consider the spatial
location of HRUs within each subbasin, and consequently, this is why SWAT is not considered a
fully distributed model. Excessive runoff generated within each subbasin was conceptually routed as
overland flow. Once overland flow water intersected a stream reach or channel, water was routed
downstream using the variable storage method [30].
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To facilitate autocalibration of the SWAT model, the stand-alone SUFI-2 autocalibration [31]
routine was utilized. Of the autocalibration programs available for the SWAT model, SUFI-2 converges
on an optimal solution with a relatively small number of executed simulations (500 to 1000 model
runs; [32,33]) and was ran at a daily time step. In addition, SUFI-2 provided an estimate of parameter
sensitivity. Note that HRU parameter values were averaged at the subbasin level. Only highly sensitive
parameters (HSP; p-value < 0.02) were varied after the first two global simulations executed, which are
described below.

To evaluate model performance, standard objective measures were used, including the mass
balance error (MBE) and Nash-Sutcliffe efficiency coefficients (NS). To collapse these metrics into one
measure, all model results were evaluated based on the Relative Performance Scale [34]. This combined
metric was based on the criterion of reference [35] (see Table 2). To calculate the RPS, both the MBE
and NS were translated into a single RPS metric. For example, if a simulation has a NS = 0.75 and
MBE of 15%, these values constituted provisional RPS values of 3.00 and 2.00, respectively. To be
conservative, the lower provisional RPS value was always selected so that in this example, the final
RPS value assigned was 2.00. The best model run for each simulation type was evaluated with a single
RPS score to facilitate inter-comparison of results.

Table 2. The Relative Performance Scale (RPS).

Description Nash Sutcliffe (NS) ~ Mass Balance Error ~ Relative Performance Scale (RPS)

Perfect 1.00 0% 4.00
Very Good 0.75 10% 3.00
Good 0.65 15% 2.00
Satisfactory 0.50 25% 1.00
Unacceptable <0.50 >25% <1.00

4.2. Simulation Series

Three series of model runs were executed in this study and include: (1) global simulations
(1995 to 2015); (2) individual year-by-year models runs for each year between (1995 to 2015); (3) final
calibration year-by-year simulations (2016 to 2018). For all series, a three- to four-year warm up period
was executed to initialize SWAT.

4.2.1. Global Simulation Series

For global simulations, one RPS value was calculated for the entire simulation period (1995 to 2015)
in each watershed; shorter for MC (2005 to 2015). This simulation series consisted of two model runs.
The initial simulation was referred to as Base_Q. In this model run, there were no constraints on
parameters values, except for the outer bounds established by reference [29]. Parameter value ranges
for the Base_Q are presented in Table 3.

The next type of global simulation consisted of iterative model runs, which constrained parameters
to improve objective metrics and was referred to as IT_Q. Model parameters were limited in two ways:
(a) using a priori data to set CANMX and ALPHA_BF and (b) examining Dotty plots (Figure 2) to
identify limits for optimal performance for variable HSP. The CANMX parameter was set by using
MODIS_LAI product and the following equation [36].

Smax = f log (1 + LAI) 1)

where Sy, was the maximum water storage within the canopy, f was a specific factor dependent
upon vegetation type, and LAI was determined from MODIS_LAI product (MOD15A2). ALPHA_BF
was determined using the baseflow program from reference [37] and was set within a factor of two of
the calculated value. Parameter sensitivity was examined and HSP were identified (Table 4). These
parameters can be divided into two groups (variable and non-variable). Examination of Dotty Plots
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can further constrain variable, HSP values. While some of the parameters lack an optimal range of
values (Figure 2a), others do not (Figure 2b). An iterative approach was used in adjusting parameters
with optimal values to yield better performance. HSP specifically, in all basins, the tightening of the
range of CH_K2 improved results. Additional iterations in BC and WN focused on CH_N2; in NI,
with CN2; in WN, on OV_N. The tightening of variable HSP values had a beneficial impact on the final
IT_Q model executed. From this simulation, the values of non-sensitive (p > 0.02) and non-variable
HSP are set from the optimum parameter values calculated (Table 5). Only variable, HSP (Table 6)
were left unconstrained in subsequent modeling series.

4.2.2. Individual Year-By-Year Series

Individual year-by-year model runs between 1995 to 2015 were executed. In this modeling series,
objective results were obtained for each year (n = 21). All variable, HSP were correlated with annual
SMERGE 2.0 RZSM anomalies and raw PRISM precipitation. Note that years with unacceptable
RPS values were omitted from this analysis. Correlation values based on this modeling series weare
presented in Table 7. The range and average for variable, HSP are shown in Table 8. Only parameters
with a correlation (r) that exceeds 0.5 were considered in the third modeling series described next.

Table 3. Base_Q parameter ranges for all basins.

Parameter Name Low High
CN2 Initial SCS runoff curve number for moisture condition IT 35 95
ALPHA_BF Baseflow Alpha Factor 0 1
GW_DELAY Groundwater delay time (days) 30 450
CH_N2 Manning’s “n” value for the main channel 0 0.3
CH_K2 Effective hydraulic conductivity in main channel alluvium (mm/h) 0 500
CH_N1 Manning’s “n” value for the tributary channels 0 0.3
CH_K1 Effective hydraulic conductivity in tributary channel alluvium (mm/h) 0 300
OV_N Manning’s “n” value for overland flow 0.01 0.6
SURLAG Surface runoff lag coefficient 1 34
GWQMN Threshold depth of water in the shallow aquifer required for return 0 5000
flow to occur (mm H,O)
SOL_AWC Available water capacity of the soil layer (mm H;O/mm soil) -0.2 0.4
ESCO Soil evaporation compensation factor 0 1
GW_REVAP Groundwater “revap” coefficient 0.02 0.2
Threshold depth of water in the shallow aquifer for “revap” or
REVAPMN percolagon to the deep aquifer to ocgur (mm Hy0O) F 0 500
CANMX Maximum canopy storage (mm H,O) 0 100
EPCO Plant uptake compensation factor 0 1
SFTMP Snowfall temperature (°C) -5 5
SMTMP Snow melt base temperature (°C) -5 5
SMFMX Melt factor for snow on June 21 (mm H,O/°C-day) 0 10
SMFMN Melt factor for snow on Dec 21 (mm H,O/°C-day) 0 10
TIMP Snow pack temperature lag factor 0.01 1
SOL_K Saturated hydraulic conductivity (mm/h) -0.8 0.8
SOL_BD Moist bulk density (g/cm3) -0.5 0.6
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Figure 2. Dotty plots for BV basin. (a) NS versus CN2 and (b) NS versus CH_K2 parameter value with
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zone of optimum performance indicated.
Table 4. Highly sensitive parameters (HSP) from IT_Q simulation.
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P‘AI_]’\ET AV 2892 134 43 6 ] 'A 108 442 166 189
ParametdrN2 BC BV 0.25CH LA LN 022MC 0.267N1 WN 0.065
CH.K2 30.

ALPH FI1\<I1 0. 1861112 08P 34973 0 0 404270 045012, 5d):033 5 1§,0572; 545
GW_DEEAY 252 110136 99743.6 23981.4 g38105 739443 575166 123189 199
CH_N2vV N 0.255 0.221  0.2670.582 0.065

CH FHRLAG 39 6 16 126 163 9033, 484 702 205 392
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CH @@ - 184 ) 0. 2 0091, 5,300, 35§ 084, OO§1049 0.254 ) {).044 §5242 0114
CH_Kdsco 11.0 0.04297 239  83.8 08539 275 123 0_186190
OGW REVAP 0118 0056 0077 0068 01595820191 0177  0.026
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ESCBMTMP () 043-0.845 1 24 2.9 865 o 975 0765 45§ 1gg 498  —2.69
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EPCRPE-BP 0 8637018243593 736 9082743 0.058  0.8947 908554 03469281
SFTMP  -238 -425 -432 233 -0245 -0735 -156 0.905
SMTMP  -0.845 124 296 0975 0765 451 498 -2.69
SMEMX  0.095 646 0965 7.46 140 338 949 970
SMEMN 545 0665 678 0305 565 495 429 757
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Table 6. IT_Q SWAT ranges for parameters that are variable and HSP.

Parameter BC BV CH LA LN MC NI WN
CN2 60-84 76-924 72-88 68-84 68-84 70-88  45.9-80 76-90.3
ALPHA_BF 0.035-0.139 0-0.3
CH_N2 0.015-0.04 0-0.3 0-0.3 0-40 0-40 10-30
CH_K2 0-20 0-40 0-40 0.01-0.6 0.01-0.6 0.4-0.6
OV_N 0.01-0.60 0.01-0.6 0.01-0.6 0.01-0.6 -0.2-0.4
ESCO 0-1.0 0-1.0 0-1.0 0-1.0 0-1.0
SOL_BD -0.5-0.6 —0.5-0.6 -0.5-0.6

Table 7. Parameter correlation (r) versus PRISM precipitation and SMERGE 2.0 root zone soil moisture

anomalies based on individual year (1992 to 2015) runs.

SMERGE 2.0
Parameter BC BV CH LA LN MC NI WN
CN2 0.618 0.457 0.658 0.240 0.361 0.727 0.791 0.725
ALPHA_BF 0.266
CH_N2 0.114 -0.116 0.290 0.399 0.179
CH_K2 0.191 0.324 0.345 0.129 —0.150 0.437
OV_N 0.342 0.246 0.015 -0.437 -0.237 0.231
SOL_AWC 0.048
ESCO -0.301 -0.251 -0.707
SOL_BD -0.450 -0.075 0.041
PRISM
Parameter BC BV CH LA LN MC NI WN
CN2 0.462 0.515 0.499 0.293 0.347 0.662 0.539 0.440
ALPHA_BF 0.297
CH_N2 0.031 —-0.121  -0.052 0.329 0.321
CH_K2 0.512 0.346 0.577 -0.124 -0.255 0.227
OV_N 0.201 0.172 -0.092 -0493 -0.433 0.033
SOL_AWC —0.247
ESCO -0.384 -0.572 —-0.651
SOL_BD -0.336 -0.219 0.058
HCP with r > 0.5 are in bold.

Table 8. Range and average (in parentheses) of HSP from individual year (1992 to 2015) runs.

Parameter BC BV CH LA
CN2 67.1 to 83.9 (76.7) 77.9 to 89.7 (84.5) 75.4 to 85.6 (81.5) 69.0 to 83.2 (75.8)
ALPHA_BF 0.035 to 0.127 (0.092)
CH_N2 0.016 to 0.060 (0.033) 0.044 to 0.206 (0.104) 0.065 to 0.180 (0.112)
CH_K2 1.5t010.5(7.7) 4.7 t0 15.5 (10.1) 2.6 t017.7 (9.6)
OV_N 0.022 to 0.591 (0.365) 0.101 to 0.441 (0.303) 0.206 to 0.572 (0.381) 0.274 to 0.585 (0.396)
ESCO 0.456 to 0.868 (0.612)
SOL_BD —0.431 to 0.443 (0.008)
Parameter LN MC NI WN
CN2 69.8 to 82.8 (77.8) 70.7 to 85.2 (77.7) 47.9 t0 76.3 (68.0) 76.6 t0 90.1 (84.7)
CH_N2 0.018 to 0.283 (0.164)
CH_K2 4.0 to 23.1 (11.5) 2.21t024.0 (13.4) 10.4 to 25.1 (16.8)
OV_N 0.301 to 0.581 (0.410) 0.211 to 0.578 (0.387) 0.407 to 0.591 (0.519)
SOL_AWC —0.172 t0 0.362 (0.089)
ESCO 0.583 to 0.959 (0.756) 0.171 to 0.981 (0.639)
SOL_BD —0.422 to 0.588 (0.0175) —0.389 to 0.523 (0.065)
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4.2.3. Final Calibration Year-By-Year Series

Information from the two prior modeling series was leveraged to improve calibration in the final
year-by-year calibration series (2016 to 2018). Unacceptable objective metrics (RPS < 1.00 for Sens_Q)
were used to omit the following basin—year combinations (BC-2016, BC-2018, NI-2017, and WN-2017).

Four model runs that were executed in this series, which include: (a) Global_Q that applied
IT_Q parameter values (Tables 4 and 6) on a year-by-year basis (i.e., 2016 Global_Q); (b) Sens_Q in
which variable, HSP (Table 8) were set between the range observed during the 1995 to 2015 runs;
(c) SMERGE_Parameter (i.e., 2016 SMERGE_CN2); (d) PRISM_Parameter (i.e., 2016 PRISM_CN2).
For the parameter-based model runs variable, HSP were set at £10% of the average value obtained
between 1995 to 2015 (Table 8), except for the highly correlated parameters (HCP). HCP values were
calculated using the SMERGE 2.0 RZSM anomaly or raw PRISM precipitation for the examined year
(i.e., 2016; Table 9) using the 1995 to 2015 regression relationship. The parameter range for HCP was
set at £10% of the calculated value.

4.3. Mass Balance Calculations

Streamflow (Q) simulated from year-by-year series (2016 to 2018) was compared against USGS
gauge observed streamflow (with a nominal +10% error). The range of simulated Q were produced by
extracting all simulations in a model run that yielded acceptable results (RPS > 1.00). Streamflow was
calculated based on mass balance within each basin based on:

QCalculated =P - AS-ET (2)

where P was the annual average PRISM precipitation value within a watershed; AS was the change in
annual terrestrial water determined from the GRACE product; ET was evapotranspiration and was
estimated with three products (MODIS16A2v5; GLEAM v.3.3a; SSEBop v.4). A nominal 10% error was
applied to calculated Q values. Note that LN-2018 was omitted in the mass balance analysis because of
incomplete observed USGS streamflow data at the end of 2018.

5. Results

5.1. SWAT Simulations

The initial global series included Base_Q and IT_Q simulations. Only BV and CH have acceptable
Base_Q simulations. The IT_Q results are dramatically better. Only MC was not satisfactory. BC, LA, NI,
and WN were satisfactory to good, CH good to very good, and BV and NH exceeded the threshold for
a very good simulation. Figure 3 combines the results from all eight basins into box plots. The average
for the Base_Q model runs had an RPS value of 0.781, which was unacceptable. The iterative approach
IT_Q improved objective results, with an average RPS of 1.886. T-test comparison between Base_Q
and IT_Q simulations yielded a significant difference (based on t-test results) between the means of
these model runs (p value = 0.0058). This comparison shows how constraining parameters improved
model performance.

The final calibration year-by-year series had four types of model runs that included Global_Q,
Sens_Q, SMERGE_Parameter, and PRISM_Parameter (Figure 4). Global_Q, which was based on
IT_Q parameter values, had an average RPS of 1.282, considered satisfactory to good. In BC and NI,
performance was unsatisfactory for all years (2016 to 2018). In other basins, simulations varied greatly
on a year-by-year basis. In BV, results ranged from unsatisfactory to very good and in LA and MC,
from unsatisfactory to good. LN recorded results between satisfactory and very good. In CH and WN,
performance ranges between unsatisfactory to satisfactory.

The three other model series (Sens_Q, SMERGE_Parameter, and PRISM_Parameter) leveraged the
results from the individual year-by-year simulation series (1995 to 2015) to constrain parameter values.
These series yielded average RPS values (2.032 to 2.623), which ranged from good to very good in
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terms of performance. Notable improvements in the three-model series over Global_Q were noted for
the following basin—year combination, which recorded an over 2.00 increase in RPS values (BV-2018,
CH-2018, LA-2018, MC-2016, and NI-2016). Table 10 provided a summary of t-test results for these
simulation series. The Global_Q model run had a statistically significant difference compared with the
three other simulation series. Conversely, Sens_Q, SMERGE_Parameter, and PRISM_Parameter did
not differ significantly between each other (Table 10). These results demonstrated a range of optimal
solutions achieved with differing parameter values—a prime example of how equifinality can limit the

utility of hydrologic simulations.

Table 9. Highly correlated parameter values for final calibration year-by-year (2016 to 2018) runs.

Basin Year Product CN2 CH_K2 ESCO
BC 2017 SMERGE 2.0 78.5
BC 2017 PRISM 82.5
BV 2016 SMERGE 2.0 84.4 6.7
BV 2016 PRISM 84.2 6.6
BV 2017 SMERGE 2.0 81.0 4.1
BV 2017 PRISM 80.2 35
BV 2018 SMERGE 2.0 81.8 4.7
BV 2018 PRISM 83.3 5.8

CH 2016 SMERGE 2.0 81.2

CH 2016 PRISM 81.6

CH 2017 SMERGE 2.0 80.5

CH 2017 PRISM 80.1

CH 2018 SMERGE 2.0 80.1

CH 2018 PRISM 83.7
LA 2016 SMERGE 2.0 12.8
LA 2016 PRISM 17.2
LA 2017 SMERGE 2.0 7.1
LA 2017 PRISM 7.6
LA 2018 SMERGE 2.0 8.0
LA 2018 PRISM 15.7
LN 2016 SMERGE 2.0 0.824
LN 2016 PRISM 0.798
LN 2017 SMERGE 2.0 0.726
LN 2017 PRISM 0.761
LN 2018 SMERGE 2.0 0.798
LN 2018 PRISM 0.810
MC 2016 SMERGE 2.0 79.5 0.693
MC 2016 PRISM 85.1 0.943
MC 2017 SMERGE 2.0 77.5 0.602
MC 2017 PRISM 84.3 0.907
MC 2018 SMERGE 2.0 74.1 0.453
MC 2018 PRISM 81.1 0.764
NI 2016 SMERGE 2.0 62.4
NI 2016 PRISM 67.1
NI 2018 SMERGE 2.0 65.0
NI 2018 PRISM 78.9

WN 2016 SMERGE 2.0 85.0

WN 2016 PRISM 89.2

WN 2017 SMERGE 2.0 81.3

WN 2017 PRISM 82.1

WN 2018 SMERGE 2.0 80.3

WN 2018 PRISM 85.5
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unlike SWAT simulated Q. The highest calculated Q was yielded by using the MODIS16A2v5 ET
product, followed by GLEAM v.3.3a, and SSEBop v.4, which best matched with observed Q.

The significant implication derived from this work is the demonstration that constraining
parameter values can markedly improve SWAT model performance. In addition, that RZSM from
SMERGE 2.0 can be leveraged to also greatly improve SWAT model performance. Therefore, this
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The significant implication derived from this work is the demonstration that constraining
arameter values can markedly improve SWAT model performance. In addition, that RZSM from

Water 2020, 12, x FOR PEER REVIEW . 8 0f 22
ugf\/l%zlgéE 2.0 canEbe everaged to also greatly improve SWAT model performance. Therefore, d’llg work

wdtiehighis hevhdivers semofsaensing e, caniedsesd e uandr thpdetoairmadsing A fispmitow
str@gmﬁ%%ﬁt@%@8@}Pég‘éic%il%%)%%@lﬂﬁﬁ%?‘ﬁ%ﬁ%@ﬂf}y%ﬂﬁﬁﬁciigsults.yz g

400 250 H
2004 H H H
300 H H
< H E] 150
£ 200 ]
E | ]
o 100
1004 ]
504
0 T T 0 T T T T T \
2 %3 ® £ E E B
300 E § 5§ 9 5 o ¢
C 2 3 3 ¢ 2 3z 3
© [v]
(&) 3 6] » GE} g OI
250 | I | © @ @
)l @ = g @ @ =
o < m a o =
o WY w [ o
1 =S § @ W= |
200— O] W (O] (72} %)
o ] x o 3
] = a 9
£ 150
é i
o B
100 [m]
50
0_ T T T T T T
? B 8 E E E B
E E E c‘0| cﬂ| m| g
3 3 3 ¢ 35 3 2
© [\1]
(&) S S 0 % % o|
@ = g 5 5 O
o < el o a =
(@) u % o E| o
= S o [0 ® o
T g ¢
s &~ 3
7]
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Figure 9. Same as Figure 5. (a) MC-2016, (b) MC-2017, and (c) MC-2018.



Water 2020, 12, 2039
Water 2020, 12, x FOR PEER REVIEW

18 of 21
19 of 22

400 600
300.] E] 500 H
400 H
< 200} ]
£ i
£ 300
G 100+
. 200}
ey 3 ]
o -
T 100 i
[m] o
:
-100 0 T T T T
700 600 d
600 - H 500} H
500 ] ]
= 400}
3400 E EI E
£ 300
=300 ] El
200 -
200 E - ]
100- 100
0 | T T T T T T O T T T T T T
T B B E E E B T B8 B E E E B
T 5 8 9 ©® O = T 5 = O ©® & ¢
8 3 3 ¢ g g & g 3 2 5 2 g 2
© ©
o| Ol O‘ n Ol OI OI Ol OI O] %) o Ol OI
2 = g G 3 9 2 =z g S 3 9
a < sl o = 3 a < fis) o T =
S o 4 b o o e o 4 4 o o
O] n wn (j)l G wn wn U)l
O O
w w
-] -]

Figure 10. Same as Figure 5, except red symbol indicates an unacceptable simulation (RPS < 1.00).
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