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Abstract: Root zone soil moisture (RZSM) is one of the least-monitored variables within the hydrologic
cycle. Given the importance of RZSM to agriculture, more effort is needed to understand the potential
impacts of the El Niño southern oscillation (ENSO), Pacific decadal oscillation (PDO), and Atlantic
multidecadal oscillation (AMO) on this critical variable. This study focused on the CONtiguous
United States (CONUS) RZSM (0 to 40 cm depth) over nearly three decades (1992 to 2018). Basic
trend analysis with the Mann–Kendall test and wavelet transform coherence (WTC) was utilized.
The RZSM product examined was Soil MERGE (SMERGE 2.0). More CONUS pixels exhibited drying
(56 to 75%) versus wetting (25 to 44%) trends between 1992 and 2018. Seasonal wetting trends were
observed particularly during winter in the Southwest and Northwest regions associated with El Nino
and La Nina episodes, respectively. The noted long-term RZSM trends are more clearly attributable to
oceanic-atmospheric teleconnections than global climate change. The most significant result was the
strong drying trend in central CONUS reflected a shift to La Nina and cool PDO conditions during
the 2000s, further amplified by a change to positive AMO corresponding with this period.

Keywords: root zone soil moisture; SMERGE 2.0 RZSM; Mann–Kendall test; wavelet transform
coherence; El Niño Southern Oscillation; climate change

1. Introduction

Root zone soil moisture (RZSM) is a key variable that controls the rainfall–runoff relationship and
mediates the impact of water limitations on evapotranspiration at a watershed scale. As such, RZSM
plays a pivotal role in modulating terrestrial water and energy fluxes [1]. However, RZSM is one of the
least-monitored variables within the hydrologic cycle. Traditionally, RZSM has been monitored with in
situ measurements which might not be representative over larger spatial scales [2]. The direct remote
sensing of RZSM is a long-term goal of the community that has yet to be achieved. Preliminary RZSM
results from NASA’s Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS)
initiative were a step in this direction [3]; yet, at present, no clear path exists for continuous space-based
monitoring of this variable. Land surface models can provide spatially continuous estimates of RZSM;
however, their output can be strongly influenced by errors in forcing data [4,5].

Given the importance of soil moisture to agricultural and water resource applications, more
effort is needed to understand the impacts of climate change on trends in RZSM. Previous efforts
have connected long-term changes in the terrestrial hydrologic cycle to anthropogenic forcing [6–9].
However, a problem with linking any long-term trend to climate change is that natural cyclic processes
may mask the signal. A prime example of this is the El Niño Southern Oscillation (ENSO); an ocean
phenomenon localized in the eastern equatorial Pacific with a pronounced two to seven year periodicity.
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The impact of ENSO on soil moisture has been studied using data from space-based remote sensing [10],
sparse in situ sites [11], or model-based estimates of RZSM [12–16]. In this unique contribution, a
recently developed RZSM product (Soil MERGE or SMERGE) that optimally leverages remotely sensed
and land surface modeled data [17] was used to examine trends in RZSM between 1992 and 2018.
As such, SMERGE combines the strengths of remote sensing and land surface modeling approaches.
Additionally, this product facilitated an examination of RZSM across all of the conterminous United
States (CONUS)—unlike most other studies that were limited to a specific watershed or region [12–16].
Therefore, the research objectives of this study were to identify trends in RZSM across CONUS
from 1992 to 2018 and to link these trends with potential causal mechanisms. The remainder of this
paper discusses the datasets utilized (Section 2), methodologies applied (Section 3), results obtained
(Section 4), discussion (Section 5), and key conclusions (Section 6).

2. Dataset Description

2.1. Root Zone Soil Moisture (RZSM)

SMERGE 2.0 combined two RZSM inputs for the 1992 to 2018 period. (1) Land surface model
estimates acquired from Noah Land Surface Model (version 2.8) produced by the North American Land
Data Assimilation System, Phase 2 (NLDAS-2, NOAH0125_H.002; DOI 10.5067/47Z13FNQODKV),
which is referred to as NLDAS Noah. (2) Satellite-based soil moisture retrievals obtained from the
European Space Agency Climate Change Initiative (ESA-CCI) Combined Version 3.3). The merger
of these products produced a 0.125-degree, daily, shallow (0 to 40 cm) RZSM product within the
conterminous United States (CONUS). The weighting procedure utilized in the combining the two
parent inputs to make SMERGE RZSM was detailed in [17]. Additional details about NLDAS Noah
and ESA-CCI Combined products are given below. An example of a time series for the SMERGE RZSM
product is given in Figure 1.
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Figure 1. Representative time series for a SMERGE (a root zone soil moisture product) pixel (Latitude
37.5625 N; Longitude 93.6875 W) for calendar year 2016.

NLDAS Noah is a daily product with a 0.125-degree spatial resolution [18]. Data from the top two
layers (0 to 10 cm; 10 to 40 cm) of this model were combined by simple weighted averaging generating
an estimate of overall soil moisture for the shallow root zone (0 to 40 cm). Noah version 2.8 was selected
as the backbone for SMERGE 2.0 RZSM because of its consistent performance across CONUS [19].

The ESA-CCI Combined product represented a surface (0–5 cm) soil moisture retrieval. This
product combines retrievals from active and passive microwave orbiting sensors. [20] described the
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harmonization procedure used to generate this dataset. The ESA-CCI Combined product is a daily
product with a courser 0.25-degree spatial resolution compared with NLDAS-2 Noah. [17] described in
detail how ESA-CCI surface soil moisture is converted into an estimate of RZSM between 0 and 40 cm.
Basically, the approach used the exponential filter [21,22] combined with bilinear interpolation to fill in
temporal data gaps.

2.2. Normalized Difference Vegetation Index (NDVI)

The normalized difference vegetation index, third generation using the Global Inventory
Monitoring and Modeling System (GIMMS) from 1992 to 2015 was selected [23] to provide an
independent estimate of land surface conditions across CONUS. This vegetation index reflects a
corrected composite from an array of advanced very high-resolution radiometer (AVHRR) sensors,
which is referred to below as AVHRR NDVI. The product is daily and has a 0.125-degree spatial
resolution similar to SMERGE 2.0 RZSM.

2.3. ENSO, PDO, and AMO Indices

National Weather Service, Climate Prediction Center ENSO indices for cold and warm episodes
for the period 1992–2018 were used in this study (Table 1). The episodes are defined based on a
“threshold of ± 0.5 ◦C for the oceanic Niño index, which is a three-month running mean of Extended
Reconstructed Sea Surface Temperature anomalies in the Niño 3.4 region (5◦N–5◦S, 120◦–170◦W) based
on the 1971–1999 base period” (NOAA, 2005). El Niño, La Niña, and neutral episodes were designated
based on the average seasonal sea water temperature for northern hemisphere winter (DJF), spring
(MAM), summer (JJA), and fall (SON) seasons. The only significant protracted periods of warm Pacific
decadal oscillation (PDO) anomalies (based on the same 0.5 ◦C threshold as ENSO) corresponded
with most of 1992 to early 1994, the mid-1997 to early 1998 strong El Niño episode, and 2014 to 2016.
Several studies [24,25] have indicated that, during the late 1990s, there was a general shift to cool-PDO
conditions. These conditions dominated during the following years (late 1998 to 2002 and 2005 to
2014). Finally, the Atlantic multidecadal oscillation (AMO) recorded negative anomalies from 1992 to
early 1997 and turned mainly positive afterward through 2018 [26].

Table 1. El Niño Southern Oscillation–Pacific decadal oscillation (ENSO–PDO) phases by season (E—El
Nino, L—La Nina, N—neutral, W—warm, C—cold). In phases ENSO–PDO, episodes are in bold.

Year DJF MAM JJA SON

1991 N–C N–C E–C E–N
1992 E–N E–W N–W N–W
1993
1994 N–N N–W N–W N–W

1994 N–W N–N N–C E–C
1995 E–C N–N N–N L–N
1996 L–W N–W N–N N–N
1997
1998 N–N N–W E–W E–W

1998 E–W E–N L–C L–C
1999 L–C L–C L–C L–C
2000 L–C L–C L–C L–C
2001 L–N N–C N–C N–C
2002 N–C N–C E–C E–N
2003 E–W N–N N–N N–N
2004 N–N N–N E–N E–N
2005 E–N N–W N–N N–C
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Table 1. Cont.

Year DJF MAM JJA SON

2006 L–N N–C N–N E–C
2007 E–C N–C L–N L–C
2008 L–C L–C N–N N–N
2009 L–C N–C E–C E–N
2010 E–N N–N L–C L–C
2011 L–C L–C L–C L–C
2012 L–C N–C N–C N–C
2013 N–C N–C N–C N–C
2014 N–C N–W N–N N–W
2015 E–W E–W E–W E–W
2016 E–W E–W N–N L–N
2017 N–N N–N N–N L–N
2018 L–N N–C N–N E–C

3. Methods

Our approach is twofold. (1) To examine the long-term RZSM anomaly record across CONUS
to determine regions with significant drying and wetting trends and (2) to use wavelet transform
coherence (WTC) to elucidate connections between RZSM and ENSO based on sampled ranked
correlation coefficients at 61 sites scattered across CONUS that have a robust record of in situ RZSM
observations [17].

3.1. Trend Analysis

The Mann–Kendall test has been widely used to discern the significance of monotonic trends
present in hydrological and hydrometeorological time series datasets [27,28]. This is a nonparametric
test supporting the analysis of data distributions that do not necessarily have a normal distribution.
The test compares a time series against a null hypothesis where the data was distributed so that there
was no trend. The Mann–Kendall test has been commonly applied in the analysis of precipitation time
series e.g., [29–33] and streamflow [34]. However, application of this test for soil moisture datasets has
been more limited e.g., [35] especially for RZSM [36]. Trend analysis was conducted at a seasonal time
scale corresponding with northern hemisphere winter (DJF), spring (MAM), summer (JJA), and fall
(SON), and focused on RZSM anomalies.

To document teleconnections (sea surface temperature indexes lagged –12 months compared with
RZSM anomalies) based on the Multivariate ENSO Index Version 2 (MEI.v2; El Niño, La Niña, neutral)
was utilized. This approach calculates trends for each specific ENSO phase and each season. Since
hydrologic response occurs up to 12 months behind atmospheric forcing [12], the lagged analysis
approach is justified. Analysis for a specific ENSO phase was completed only if at least six years of
that phase were available. This eliminated MAM from both El Nino and La Nina from consideration.

Finally, trend analysis of AVHRR NDVI (no lag and +1 month lag) at the above seasonal timescales
were completed for comparison purposes. Across CONUS, we have noted a nominal one-month
lag between RZSM and vegetation response [17]. All datasets examined the period 1992 to 2018
except NDVI, which is limited to the period between 1992 and 2015 by the availability of this product.
Percentage of pixels with drying (wetting) trends and absolute trend correlation (r value), based on
the linear trend between RZSM anomalies and time, were used for evaluation. Analysis included all
CONUS pixels and only pixels that exhibited a significant trend (p < 0.10). Additionally, the distribution
of r values was examined. Finally, to provide a more focused analysis, trends were examined within
four CONUS states that have a particularly strong response to ENSO, PDO, and AMO (Arizona,
Georgia, Iowa, Texas).
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3.2. Wavelet Transform Analysis

Wavelet transform coherence (WTC) elucidated teleconnections present between ENSO and RZSM
anomalies [37]. This approach has been used in previous studies examining trends in soil moisture and
groundwater [15,38]. We applied WTC to a total of 77 time series from 61 sites. Locations corresponded
with Soil Climate Analysis Network (SCAN) and the U.S. Climate Reference Network (USCRN) sites
across CONUS that have been previously screened [17] as having at least five years of reasonable
complete and accurate in situ RZSM data (Figure 2).
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Figure 2. CONtiguous United States (CONUS) locality map with the location of sites analyzed using
wavelet transform coherence (WTC) and five CONUS regions are shown (Northeast, Southeast, Great
Plains, Southwest, Northwest).

WTC analysis allowed us to determine the periodicity at which ENSO was modulating RZSM
across CONUS between 1992 and 2018. The continuous WTC method selected was an appropriate choice
to analyze nonstationary signals like soil moisture. In addition, this method identified the time scale
associated with forcing events that produced nonstationary signals. Specifically, the Morse wavelet
transform applied was appropriate for analyzing signals with time-varying amplitude and frequency.
Also, this approach was useful for analyzing datasets with localized discontinuities. This approach has
the advantage that it is a balanced method that allows for delineation of variability properties based on
both time and frequency and is adept at capturing the oscillatory characteristics of a dynamic system.
A Spearman’s rank correlation coefficient was applied to determine the rank correlation (R value) of the
two-time series. The scale-averaged wavelet power was determined by analysis of ENSO versus RZSM
anomalies (and NDVI) at 61 sites (77 time series) scattered across CONUS (Figure 2).

4. Results

4.1. Trend Analysis

CONUS-wide, the number of pixels with a long-term drying trend outnumbers those with a
wetting trend for SMERGE 2.0 RZSM (Table 2). This tendency was more evident when examining
pixels that have a significant trend and was particularly pronounced during JJA, where the number of
pixels with a significant drying trend exceeded wetting by almost 50% of CONUS. The drying tendency
was mirrored by AVHRR NVDI retrievals that records significant browning, especially during the
warm season across CONUS (Table 2). For all seasons, the absolute r values yielded from trend analysis
for all CONUS pixels on a seasonal basis were higher when focusing on significant pixels (p < 0.10;
average r = 0.4 to 0.5) as opposed to all CONUS pixels (average r = 0.2 to 0.3). A more detailed analysis
by season and ENSO phase follows.
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4.1.1. Winter (DJF)

During winter (DJF) there were a greater number of pixels that exhibit drying (browning) versus
wetting (greening) for all products (Table 2). Overall spatial variations of these trends were as follows.
SMERGE 2.0 RZSM had scattered significant drying localized in the central Mississippi Valley and
California (Figure 3a). In addition, drying was noted in the Northern Plains (Minnesota and the
Dakotas). One-month lagged NVDI AVHRR had a greater number of significant pixels with scattered
browning and greening across all of CONUS (Table 2). A coherent area of browning extended from the
Great Plains (Kansas) eastward into the Great Lakes region (Michigan; Figure 3b).

Examination of spatial trends based on ENSO phase provided a more nuanced portrayal. High
absolute r values obtained from trend analysis were noted for each ENSO phase (CONUS-wide average
= 0.3 to 0.4; significant pixels average = 0.7; Figure 4a). During El Nino episodes, SMERGE 2.0 RZSM
had significant wetting in the Southwest and drying along the Pacific Northwest coast and in an area
that extended from the central Mississippi Valley into the Mid-Atlantic states (Figure 3c). La Nina
phases exhibited discontinuous areas of wetting scattered across the Northwest (Figure 3d). Finally,
during neutral phases, there were a fewer number of significant pixels (Table 2), and no coherent
large-scale regional trends were noted.

4.1.2. Spring (MAM)

During spring (MAM), the CONUS bias toward drying (browning) over wetting (greening) was
noted for both SMERGE 2.0 RZSM and AVHRR NDVI (Table 2). Spatial variations in these trends were
illustrated in Figure 5. SMERGE 2.0 RZSM exhibited significant wetting trends that were spatially
scattered across the Pacific Northwest (Figure 5a). In addition, SMERGE 2.0 RZSM had wetting across
the Appalachian region of eastern CONUS (Figure 5a). The NDVI AVHRR product had significant
greening in the upper Great Plains (Montana to Dakotas; Figure 5b). Significant drying (browning)
was scattered throughout the Southwest and upper Great Plains regions for SMERGE 2.0 RZSM and
NDVI AVHRR (Figure 5). In terms of ENSO phase, there were an insufficient number of El Nino and
La Nina events to support analysis. Not surprisingly, the neutral ENSO phase strongly mirrored the
overall MAM results (Figure 4c).

Table 2. CONUS seasonal trends. Numbers reflect percentage of CONUS pixels with a wetting (left
number)/drying (right number) trend for SMERGE 2.0 anomaly and greening (left number)/browning
(right number) for normalized difference vegetation index (NDVI).

Product Overall
CONUS

Sign.
CONUS

Overall
El Nino

Sign. El
Nino

Overall
La Nina

Sign. La
Nina

Overall
Neutral

Sign.
Neutral

SMERGE 2.0
RZSM

DJF 40.1/59.9 3.5/10.5 50.8/49.2 10.2/7.9 56.3/43.7 7.5/2.5 47.8/52.2 3.1/3.7
MAM 43.6/56.4 9.5/14.3 — — — — 47.8/52.2 8.8/9.4

JJA 25.1/74.9 5.0/21.5 34.4/65.6 1.2/2.0 30.5/69.5 1.2/7.1 32.5/67.5 5.6/16.9
SON 41.1/58.9 5.7/11.3 40.7/59.3 3.1/7.8 54.8/45.2 3.0/2.7 42.5/57.5 3.7/6.9

AVHRR NDVI (No
Lag)
DJF 42.2/57.8 9.6/18.4

MAM 33.2/66.8 6.4/25.6
JJA 45.2/54.8 16.0/21.1

SON 49.3/50.7 21.0/16.2
AVHRR NDVI (+1

month lag)
JFM 40.2/59.8 8.8/22.8
AMJ 42.7/57.3 11.6/20.1
JAS 37.6/62.4 11.8/25.9

OND 49.0/51.0 17.7/16.2

Significance is calculated at an Alpha = 0.1. Significant is indicated by Sign. Months used to define seasons are
abbreviated (DJF—December, January, February; JFM—January, February, and March; MAM—March, April, May;
AMM—April, May, June; JJA—June, July, August; JAS—July, August, September; SON—September, October,
November; OND—October, November, December).
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4.1.3. Summer (JJA)

Summer (JJA) was the season with the most pronounced drying (browning) and this was noted
by both SMERGE 2.0 RZSM and AVHRR NDVI (Table 2). For SMERGE 2.0, RZSM drying was
scattered across the west (California to the Pacific Northwest) and upper Great Plains region (Figure 6a).
Conversely, SMERGE 2.0 RZSM recorded an overall propensity for wetting scattered across the
Northeast (Figure 6a). NDVI AVHRR had a more widespread distribution of significant pixels with
browning in southern and eastern CONUS with greening concentrated in the upper Great Plains to
Great Lakes regions (Figure 6b).

Focusing on ENSO phase, only La Nina and neutral episodes exhibited large clusters of significant
pixels (Figure 6c–d). The La Nina phase had a higher average absolute r value than JJA averages
(CONUS-wide = 0.4; significant pixels = 0.8; Figure 7a). SMERGE 2.0 RZSM showed significant areas
of drying scattered from the southern Great Plains into Great Lakes regions (Figure 7c) during La Nina
episodes. The neutral phase largely mirrored overall JJA results with absolute r values based on trend
analysis (CONUS-wide = 0.3; significant pixels = 0.6; Figure 7a). SMERGE 2.0 RZSM showed drying
scattered across the west (California to the Pacific Northwest), the upper Great Plains, and to a lesser
extent, the lower Mississippi Valley regions (Figure 6d). SMERGE 2.0 RZSM also had some wetting
across the Southwest and Northeast (Figure 6d).Remote Sens. 2020, 12, 2037  8 of 17 
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Figure 3. Trend correlation (r value) of all significant pixels for across CONUS. Blue indicates pixels that
exhibit long-term wetting (or greening) and red pixels with long-term drying (or browning). (a) DJF
Overall SMERGE 2.0, (b) JFM AVHRR NDVI, (c) DJF SMERGE 2.0—El Nino, and (d) DJF SMERGE
2.0—La Nina.

4.1.4. Fall (SON)

Finally, during fall (SON), SMERGE 2.0 RZSM exhibited a bias toward drying while AVHRR
NDVI had close to an equal proportion of pixels with drying and wetting (Table 2). Strong significant
drying was noted in the Southeast and Upper Great Plains (Minnesota, Dakotas) for SMERGE 2.0
RZSM (Figure 8a). Throughout the west, there were small areas of both drying and wetting present.
SMERGE 2.0 RZSM also had significant wetting in the Northeast (Figure 8a). AVHRR NDVI also had
small areas of browning and greening scattered across much of CONUS with larger areas of greening
noted in the northern Great Plains (Montana to Minnesota) and the Northeast (Figure 8b).

In terms of ENSO significant spatial trends were noted during all three phases. El Nino absolute
r values based on trend analysis were higher than SON averages (overall CONUS = 0.4; significant
pixels = 0.8; Figure 7c). SMERGE 2.0 RZSM had drying concentrated in the Southeast (Figure 8c).
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La Nina episodes had similar relatively high average absolute r values based on trend analysis (overall
CONUS = 0.3; significant pixels = 0.7; Figure 7c). SMERGE 2.0 RZSM had both highly scattered drying
and wetting in the west (Figure 8d). In addition, SMERGE 2.0 RZSM exhibited areas of significant
wetting in eastern CONUS. Finally, SON neutral average absolute r values based on trend analysis
were also higher than seasonal averages (overall CONUS = 0.3; significant pixels = 0.7; Figure 7c).
Areas of drying and wetting were more scattered with SMERGE 2.0 RZSM exhibiting significant drying
in central CONUS (Figure 8e).Remote Sens. 2020, 12, 2037  9 of 17 
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Figure 4. Frequency of number of pixels and absolute r value based on trend analysis for (red—AVHRR
NVDI and overall SMERGE 2.0, black—SMERGE 2.0 El Nino, dark gray—SMERGE 2.0 La Nina, light
gray—SMERGE 2.0 Neutral) with average r indicated on the top of each graph. Thin lines represent all
CONUS pixels and thicker lines for only pixels that have a significant (Sign.) trend (p < 0.10). (a) DJF
SMERGE 2.0, (b) JFM AVHRR NDVI, (c) MAM SMERGE 2.0, and (d) AMJ AVHRR NDVI.
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Overall SMERGE 2.0 and (b) AMJ NDVI AVHRR.
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Figure 6. Trend correlation (r value) of all significant pixels for across CONUS. Blue indicates pixels
that exhibit long-term wetting (or greening) and red pixels with long-term drying (or browning). (a) JJA
Overall SMERGE 2.0, (b) JAS NDVI AVHRR, (c) JJA SMERGE 2.0—La Nina, and (d) JJA SMERGE
2.0—neutral.

4.2. Wavelet Transform Analysis

The higher absolute r values based on trend analysis exhibited by ENSO phases compared with
overall seasonal averages hints that ENSO had a strong influence in modulating long-term RZSM
trends. This assertion was validated by using WTC analysis. Three regions were examined (Southwest,
Great Plains, Southeast). ENSO exhibits a cyclicity between two to seven years. Years with a strong
signal were determined within a particular region if greater or equal than 50% of the 77 examined
ground-based soil moisture time series across CONUS had a strong R value (>0.5) determined based
in WTC analysis.

In the Southwest, SMERGE 2.0 RZSM had years with a strong signal for every cyclicity period
examined (Table 3; Figure 9a). For two-to-three-year cyclicities, SMERGE 2.0 RZSM had a strong signal
between 2005 and 2012. The ENSO signal with a four-year periodicity shifted to earlier in the time
series (1994 to 1998). A similar strong ENSO signal also is present at a five-year cyclicity (1995, 1997 to
2000). At six years, the influence of ENSO shifted back to later years in the time series (2010 to 2015).
Finally, seven-year cyclicity ENSO was strong during three distinct periods (1997–1998, 2000–2003,
and 2011–2014).

In the Great Plains region, there was no significant ENSO signal with a two-to-four-year or
seven-year cyclicity (Table 3). Periodicity at five years has a limited strong ENSO signal (2014 to 2015).
At six years, a strong ENSO signal is present both early (1995–1996, 1998) and late (2010-2015) within
the time period examined (Figure 9b).

Finally, in the Southeast region, there was a difference between two-to-three and four-to-seven-year
cyclicities (Table 3; Figure 9c). At two years, a strong ENSO signal was noted between 2006 and 2010
and during 2017. Three-year cyclicity was strong between 2007 and 2008 and during 2010. The strong
ENSO signal shifted to earlier in the time series for four-to-seven-year cyclicities. For a four-year
cyclicity the ENSO signal was strong between 1994 and 2000. At a five-to-six-year cyclicity, strong
ENSO years were present between 1995 and 2002 with a cyclicity noted at seven years between 1996
and 2000.
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Figure 7. Frequency of number of pixels and absolute r value based on trend analysis for (red—AVHRR
NVDI and overall SMERGE 2.0, black—SMERGE 2.0 El Nino, dark gray—SMERGE 2.0 La Nina, light
gray—SMERGE 2.0 Neutral) with average r indicated on the top of each graph. Thin lines represent all
CONUS pixels and thicker lines for only pixels that have a significant (Sign.) trend (p < 0.10). (a) JJA
SMERGE 2.0, (b) JAS AVHRR NDVI, (c) SON SMERGE 2.0, and (d) OND AVHRR NDVI.

5. Discussion

This paper documents a bias toward drying of RZSM and browning of vegetation across CONUS
between 1992 and 2018, which was most pronounced during JJA (Table 2). An interesting question
is whether these long-term trends can be connected to a reorganization of the terrestrial hydrologic
cycle forced by global warming or instead reflect natural multidecadal cyclicity associated with
atmospheric teleconnections associated with oceanic phenomena such as ENSO, PDO, and/or AMO.
On a warming world, increased temperatures should support greater evaporation, atmospheric
moisture, and precipitation reflective of a general acceleration of the terrestrial hydrologic cycle [6–9].
An overall increase of roughly 1 ◦C per decade with greater warm season increases has been observed
across much of CONUS during 1989 to 2018 [39]. However, strong support for the hydrologic cycle
acceleration is not consistently found across the literature [40–45]. Specifically, soil moisture provides
the reservoir from which atmospheric moisture is derived in the terrestrial realm. The positive feedback
relationship resulting from increased warm season air temperatures and soil moisture deficits is also
well documented in the literature e.g., [46,47]. So, the question remains: can the long-term trends in
RZSM be clearly connected to a causative agent?
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Figure 8. Trend correlation (r value) of all significant pixels for across CONUS. Blue indicates pixels
that exhibit long-term wetting (or greening) and red pixels long-term drying (or browning). (a) SON
Overall SMERGE 2.0, (b) OND NDVI AVHRR, (c) SON SMERGE 2.0—El Nino, (d) SON SMERGE
2.0—La Nina, and (e) SON SMERGE 2.0—Neutral.

Clear signals related to ENSO were noted on a seasonal basis. During DJF, significant long-term
wetting of RZSM moisture was noted both during the El Nino (Southwest; Figure 3c) and La Nina
(Northwest; Figure 3d) phases, which have been documented in numerous previous studies [48–52].
WTC analysis in the Southwest region revealed many years with a strong ENSO signal within the
two-to-seven-year cyclicity band (Table 3). During MAM and JJA, the ENSO signal was not as coherent
as during winter. For example, in the Southeast region, El Nino periods during JJA can support more
localized convective systems, but at the same time, this phase also suppresses large-scale tropical
cyclone development e.g., [53]. Summer (JJA) La Nina episodes recorded significant drying across the
Great Plains (Figure 6c). This trend has been noted by [54] and is particularly amplified by a positive
AMO that has dominated since the late 1990’s. In the Southwest, neutral ENSO periods produced
scattered wetting during JJA (Figure 6d) that is perhaps linked to the development of the Pineapple
Express that transports tropical Pacific moisture to western CONUS during periods that immediately
precedes a strong El Nino episode [55,56].
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Table 3. WTC by region. Only years indicated with greater or equal than 50% of time series within
a region.

Cyclicity (Years) Southwest (n=25) Great Plains (n = 13) Southeast (n = 25)

2 2005–2010 — 2006–2010, 2017
3 2007–2012 — 2007–2008, 2010
4 1994–1998 — 1994–2000
5 1995, 1997–2000 2014–2015 1995–2002
6 2010–2015 1995–1996, 1998, 2010–2015 1995–2001

7 1997–1998, 2000–2003,
2011–2014 — 1996–2000
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Figure 9. WTC analysis between SMERGE 2.0 and ENSO for three representative sites within the
(a) Southwest, (b) Great Plains, and (c) Southeast regions. White dashed line represents the cone of
influence, inside which edge effects are not negligible. The relative phase of the relationship between
SMERGE 2.0 and ENSO is shown by arrows for domains with a magnitude-squared coherence in excess
of 0.5. In phase relationship is reflected by arrows pointing to the right and anti-phase pointing to the
left. Straight down arrows indicate SMERGE 2.0 leading ENSO by 90 degrees and straight up arrows
depict ENSO leading SMERGE 2.0 by 90 degrees.

The above-described winter and summer trends can be further understood by considering the
interplay between ENSO and PDO. [57] explained how warm PDO eras can amplify the magnitude of
El Nino with cool PDO enhancing the effect of La Nina. In-phase ENSO and PDO periods (12-month
lagged) were noted during 1998–2001, 2011–2013, and 2016–2017. It is noteworthy to mention that
during these years most of the strong ENSO signals were recorded in Southwest, Great Plains, and
Southeast CONUS regions (Table 3).

The strong evidence supporting the influence of ENSO on CONUS RZSM does not necessarily
negate the hypothesis that global warming plays a role in amplifying the observed trends. To further
elucidate this possibility, SMERGE 2.0 RZSM anomaly trends were analyzed for four CONUS states that
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have a particularly strong response to ENSO (Figure 10). These states (Arizona, Georgia, Iowa, Texas)
all had negative long-term trends, but only Iowa and Texas had statistically significant (p < 0.05) trends.
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In-phase ENSO and PDO had a distinct signal particularly between 2011 and 2013. During this
period, La Nina coupled with cool PDO conditions produced exceptional negative RZSM anomalies in
central CONUS (Iowa, Texas). These conditions were likely further amplified by a warm AMO that
has been documented to favor drought conditions [54]. Negative anomalies in all four states were also
present during the La Nina–cool PDO period from 1998 to 2000. The 2016 to 2017 El Nino–warm PDO
was muted compared to the response during the previous La Nina–cool PDO event during 2011 to
2013. This was perhaps due to positive temperature anomalies in the Atlantic causing a very warm
AMO that was out-of-phase with the ENSO and PDO signals. The interplay of ENSO, PDO, and AMO
seem to be a significant driver in influencing long-term RZSM response that obscures the potential
presence of long-term, secular trends in RZSM.

The seasonal and spatial trends of RZSM and NDVI largely mirror previous studies that focused
on how ENSO can influence precipitation and runoff across CONUS. For example, [10] documented
trends in soil moisture that largely mirror Global Precipitation Climatology Centre precipitation
anomalies. Despite this fact this study remains significant. RZSM plays a large role in modulating the
rainfall–runoff relationship that impacts flooding and groundwater recharge. Soil moisture has the
ability to memorize the variability of climate signals making it more useful for long-term trend analysis
than runoff [12]. At a watershed scale, soil moisture acts as a buffer better preserving long-term trends
than precipitation. In addition, soil moisture is a more robust drought indicator than precipitation.
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So, RZSM provides an observation that is more directly relevant to agricultural and water resource
applications than either precipitation or runoff, bolstering the significance of the results presented.

6. Conclusions

Key results and conclusions from this study are therefore summarized below:

(1) Long-term trends across CONUS between 1992 and 2018 RZSM favor drying over wetting and
were particularly strong during JJA in which 75% of CONUS exhibited a drying trend; in 22% of
pixels were significant (Table 2).

(2) These trends cannot be clearly connected to climate change and instead have a more obvious
link to oceanic-atmospheric teleconnections connected to ENSO (Table 3; Figure 9). In particular,
amplification of ENSO by cool PDO and warm AMO can explain in part the pronounced drying
noted during the early 21st century, particularly in central CONUS (Figure 10c,d). This is
particularly evident during the 2011–2013 La Nina, which was amplified by in-phase cool PDO
and warm AMO conditions.

(3) WTC analysis documents a robust ENSO signal across much of CONUS. Wetting was noted during
DJF during El Nino (La Nina) episodes in the Southwest and Northwest regions, respectively
(Figure 3d). A pronounced drying trend in the southeast was also noted during SON El Nino
(Figure 8c).
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