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Cellular automata are interacting classical bits that display diverse behaviors, from fractals to
random-number generators to Turing-complete computation. We introduce entangled quantum
cellular automata subject to Goldilocks rules, tradeoffs of the kind underpinning biological, social,
and economic complexity. Tweaking digital and analog quantum-computing protocols generates
persistent entropy fluctuations; robust dynamical features, including an entangled breather; and
network structure and dynamics consistent with complexity. Present-day quantum platforms—
Rydberg arrays, trapped ions, and superconducting qubits—can implement Goldilocks protocols,
which generate quantum many-body states with rich entanglement and structure. Moreover, the
complexity studies reported here underscore an emerging idea in many-body quantum physics: some
systems fall outside the integrable/chaotic dichotomy.

I. INTRODUCTION: PHYSICAL
COMPLEXITY IN QUANTUM SYSTEMS

Classical cellular automata evolve bit strings (se-
quences of 1s and 0s) via simple rules that generate di-
verse emergent behaviors. Quantum cellular automata
(QCA) evolve quantum bits (qubits), supporting super-
positions and entanglement (See 1). In computer sci-
ence, complexity characterizes the number of steps in an
algorithm. The algorithmic-complexity perspective on
cellular automata has received much attention [1]. In
contrast, physical complexity characterizes emergent be-
haviors, such as materials’ rigidity, spontaneous symme-
try breaking [2], and self-organized criticality. Biological,
social, and economic complexity features complex net-
works, natural selection, diversity, power-law statistics,
and robustness-fragility tradeoffs [3, 4]. Does the com-
plexity arise in the quantum regime, or only at classical
and biological scales?

We study QCA’s physical complexity [9–11], iden-
tifying Goldilocks QCA rules that enforce tradeoffs.
These rules generically generate complexity, quantified
with the quantum generalizations of measures used
in electroencephalogram/functional-magnetic-resonance-
imaging (EEG/fMRI) measurements of the brain [12]:
mutual-information complex networks. Non-Goldilocks
QCA tend toward equilibration, whereas Goldilocks
QCA generate (i) robust dynamical features, (ii) persis-
tent entropy fluctuations, (iii) average complex-network

measures consistent with classical complexity, and (iv)
nontrivial network and entanglement dynamics. Such
systems, we show, can be created on present-day ana-
log quantum-computers, or quantum simulators [6]: Ryd-
berg atoms in optical lattices [7, 13] and trapped ions [14,
15]. Our QCA can also be implemented on digital-
quantum-computing platforms, including superconduct-
ing qubits, used to demonstrate quantum supremacy [16].
Quantum simulators [6, 17, 18] have energized the de-
veloping field of nonequilibrium quantum dynamics [19].
Our work provides a direction for such exploration, a
physical question: the origins of features discovered in
multiscale complexity science, which, we show, occur in
simple, abiological quantum systems.

We emphasize physical complexity in our work because
many early QCA studies spotlighted single-particle or
semiclassical approximations [1, 20–22] or weak correla-
tions at the level of density functional theory [23, 24]. An-
other line of work has highlighted Clifford operators [25–
28], which can efficiently be simulated classically [29].
Our QCA generate states whose quantum entropies scale
in a manner between area and volume laws and remain
exceptionally structured and dynamic. Therefore, semi-
classical QCA have little relevance to our study of phys-
ical complexity. Other entangled QCA appear in the lit-
erature, such as in [9], which concerns the entanglement
generated from specific initial conditions by a single QCA
model within our paradigm, in [30], which concerns in-
formation transport and entanglement distribution, and
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FIG. 1. (a) The classical-elementary-cellular-automaton [5]
rule C201 flips a classical bit (black=1, white=0) if and only
if its nearest neighbors are 0s. This L=19-site chain is ini-
tialized with a 1 centered in 0s. A periodic pattern, called
a blinker, propagates upward in discrete time steps. (b) We
extend C201, for QCA, to rule T1. The classical bit becomes a
quantum bit in an L=19-site chain. The average spin

〈
σ̂zj

〉
has

richer discrete-time dynamics, oscillating between the classi-
cal extremes of 0 (black) and 1 (white) and filling the lattice.
A truly quantum analog of the classical blinker—a quantum
entangled breather—appears in Figs. 2(g)-(h). (c) The quan-
tum lattice evolves into a high-entropy entangled state. sj
denotes the site-j second-order Rényi entropy, routinely mea-
sured in quantum simulators [6]. (d) Such an analog quantum
computer has implemented rule T1, recently named the PXP
model. Optical tweezers were used to trap a Rydberg-atom
chain [7, 8]. (e) A quantum circuit can realize digital T1 dy-
namics. One QCA time step requires two layers of controlled-
controlled-Hadamard gates. The first layer evolves even-index
qubits; and the second, odd-index. The dashed line represents
the boundary qubits, which remain fixed in |0〉’s.

in [31–34], which studies entanglement growth in Clif-
ford and Clifford-like QCA. Some experimental work has
touched upon QCA-like systems including nuclear mag-
netic resonance studies on three-spin molecules [35] and
the PXP model realized in Rydberg atom chains [7].
However, QCA’s physical complexity has not been ad-
dressed.

This paper is organized as follows. Section II overviews
the time-evolution protocols in our QCA models. With
this high-level understanding in place, Section III demon-

strates our central claim: Goldilocks QCA generate phys-
ical complexity despite their simple underlying structure,
based in unitary quantum mechanics. Sections II-III suf-
fice for grasping the power of Goldilocks to QCA to pro-
duce complexity. For those who wish to reproduce our
work completely and understand every aspect, our QCA
models’ mathematical details are described in Section IV;
and our quantifiers, in Section V. In Section VI, we pro-
pose a physical implementation of our models in Ryd-
berg systems, an experimentally realized quantum sim-
ulator [6]. In section VII, we conclude with this work’s
significance.

II. OVERVIEW OF DISCRETE AND
CONTINUOUS QCA

The best-known classical cellular automata are the
elementary cellular automata (ECA), one-dimensional
length-L bit strings. Each bit updates in discrete time
steps, according to a function defined on the bit’s neigh-
borhood. The neighborhood is defined as the bit and its
nearest neighbors. The 256 possible transition functions
are encoded in the rule number, CR = 0, 1, . . . , 255. A
time step t ends when all bits have been updated. Rule
C110 is Turing-complete, or capable of simulating any
computer program.

Our entangled QCA are one-dimensional. They extend
ECA’s neighborhood-dependent update rule while re-
maining spatially discrete. Five new features distinguish
QCA: First, the classical bit is traded for a qubit pa-
rameterized by two angles: cos(θ/2) |0〉+ eiφ sin(θ/2) |1〉,
wherein |0〉 and |1〉 denote the ±1 eigenstates of the Pauli
z-operator, σ̂z, and θ, φ ∈ R. Second, time updates en-
tangle qubits. The entanglement generates quantum en-
tropy and long-range nonlocal features absent from ECA.
Third, our QCA can run in discrete or continuous time.
Hence QCA can be implemented on digital and analog
quantum computers. Fourth, updates can depend on
more neighbors, ≤ 4. Fifth, in digital QCA, all sites
cannot update simultaneously, due to the no-cloning the-
orem. Site updates within a time step must be ordered.
Similarly, the update of a site must not depend on the
site itself. Our digital three-site QCA therefore parallel
the 16 locally invertible ECA.

Section IV will detail our QCA mathematically.
Briefly, each QCA is defined by a rule number that en-
codes under what conditions on a qubit’s neighbors the
qubit evolves nontrivially. Site j has a set Ωj of neigh-
bors: the sites, excluding j, within some radius r of j.
The boundary conditions are fixed: For sites within < r
sites of a boundary, we imagine neighbors extending to
additional sites fixed to |0〉’s. Ωj corresponds to a Hilbert
space on which is defined a vector space spanned by pro-

jectors P̂(i)
Ωj

. The i enumerates the neighbors’ possible

configurations, and
∑
i P̂

(i)
Ωj

= 1̂.

To define digital time evolution, we convert an ECA
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rule number into a neighborhood-sized unitary gate. The
gate evolves different neighborhoods in different circuit
layers, in a time-ordering scheme illustrated in Fig. 1(e).
The single-neighborhood unitary has the form

Ûj =
∑

i

V̂ cij P̂
(i)
Ωj
. (1)

V̂j denotes a unitary activation operator on site j. The
rule number’s binary expansion determines the ci ∈
{0, 1}. The matrix power implies that V̂ ci ∈ {1̂, V̂ }. We
illustrate with radius-1 digital QCA whose activation is
the Hadamard gate (the Bloch-sphere rotation that in-
terchanges the x- and z-axes) times a phase gate (which
rotates about the z-axis). Even-j sites are updated first;
and odd-j sites, second [Fig. 1(e)]. We denote these
QCA by TR. T evokes three-site neighborhoods, and
R = 0, 1, . . . , 15 denotes the rule number.

To define analog time evolution, we convert the rule
number into a many-body Hamiltonian

∑
j Ĥj . The

single-neighborhood Hamiltonian

Ĥj = ĥj
∑

i

ciP̂(i)
Ωj
. (2)

ĥj denotes a Hermitian activation operator. The rule
number’s binary expansion determines the ci ∈ {0, 1}.
We explore analog, radius-2, totalistic QCA with acti-

vation ĥj = σ̂xj , the Pauli x-operator. Totalistic rules
update a neighborhood’s central site conditionally on
the total number of neighbors in |1〉. We denote these
simulations by FR. F refers to five-site neighborhoods;
R = 0, 1, . . . , 31 denotes the totalistic rule number.

An example QCA is the Goldilocks rule T6. The lo-
cal update unitary has the form Û = P̂ (0)⊗ ÛH⊗ P̂ (1) +
P̂ (1)⊗ÛH⊗P̂ (0). The P̂ (m) = |m〉〈m| for m = 0, 1 are the
projectors onto the single qubit σ̂z eigenspace. The acti-
vation operator, the Hadamard gate UH = (σ̂z+ σ̂x)/

√
2,

acts if exactly one neighbor is in |1〉—not zero (too few)
or two (too many); hence the name “Goldilocks.” Such
tradeoffs generate and maintain complexity [36]. We ex-
plored diverse digital and analog activation operators,
site-update orderings, boundary conditions, and neigh-
borhoods. Complexity outcomes, quantified with entropy
fluctuations and network structure and dynamics, were
always similar. This Report summarizes our findings
with a few representative cases. Only Goldilocks rules
produce complexity, defined below, independently of all
other variables.

Figure 1(a) features the ECA rule C201, well-known to
produce a periodic pattern called a blinker. The equiva-
lent digital QCA rule, T1, generates Figs. 1(b)-(c). T1

produces richer dynamics, including the generation of
quantum entropy. The analog version of T1 is the PXP
model [7], realized with Rydberg-excited neutral atoms
[Fig. 1(d)]. Such models display diverse quantum dy-
namical features, including many-body scars [37]. The
important point is that a QCA has been created exper-
imentally. However, it is not widely realized that the

PXP model is a QCA, albeit not a Goldilocks rule. In
this analog QCA, the activation operator, a spin flip, acts
if and only if no neighbor occupies |1〉. Adding a longi-
tudinal field to a common quantum-simulator Hamilto-
nian, the transverse-field Ising model suffices to realize
more-general QCA. We propose an implementation of
the five-site F -rules in Rydberg-atom chains in Fig. 9
of Section VI.

III. DEMONSTRATION: GOLDILOCKS QCA
GENERATE COMPLEXITY

Figure 2 shows a sampling of dynamical QCA out-
comes. Although rule T1 has been explored experimen-
tally and rule T14 has been explored theoretically [38],
only the Goldilocks rule T6 displays nonequilibrating
complexity at late times, visible in robust dynamical pat-
terns. Complexity is produced by such Goldilocks rules
for diverse initial states, activation unitaries, and time-
evolution schemes. Conversely, rule T13 activates site j if
(i) |1〉 appears as a left neighbor or (ii) zero or two neigh-
bors occupy |1〉’s. T13 quickly equilibrates in almost all
cases.

Figure 2(g)-(j) concern analog quantum computation
and five-site blocks. Rule F4 is a Goldilocks rule.
It activates a site whose neighbors contain two |1〉’s
but not zero, one, three, or four. The initial condi-
tion |. . . 000 101 000 . . .〉 generates a quantum entangled
breather, which parallels the breather of discrete nonlin-
ear wave theory [39]. In contrast, the non-Goldilocks rule
F26 rapidly destroys the state’s structure.

The Goldilocks rules T6 and F4 exhibit late-time dy-
namical features. These features appear in the expecta-
tion value

〈
σ̂zj
〉

(top row of Fig. 2) and the second-order
Rényi entropy (bottom row). The non-Goldilocks rules
exhibit no such persistent features. How can we quantify
this lack of persistence? What is complexity?

Figure 3 quantifies complexity with the quantum
mutual information, which generalizes a measure used
throughout classical complexity theory. Complex net-
works can be imposed on quantum systems, such as net-
worked NISQ (noisy intermediate-scale quantum) com-
puters and in a quantum-Internet [40]. Yet complex net-
works can also emerge from a quantum state generated by
noncomplex systems or models. This emergence has been
demonstrated with the Ising and Bose-Hubbard models
near quantum critical points [41, 42].

Figure 3(a) shows mutual-information networks for
various states. We compare states produced by QCA
with well-known examples: random (|R〉) [16], GHZ
(|G〉), W (|W 〉), and cluster (|C〉) states. The cluster
state is defined in terms of a 1 × 19 lattice and a phase
angle υ = π/4 (see Section V for the definition). The
Goldilocks rule T6 has a visibly unusual network. Fig-
ure 3(b)-(c) show the time dependence of the network-
averaged clustering (C) and disparity (Y). These mea-
sures (also defined in Section V) quantify complexity near
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FIG. 2. Entangled QCA create diverse dynamical behaviors. For (a)-(f), an L=19-site chain was initialized with one |1〉
centered in |0〉’s, then evolved in discrete time. The rule-T6 (a) spin and (b) entropy dynamics show patterns that resist
equilibration for long times, as shown in each panel’s upper block. (d) Under rule T14, the spin dynamics rapidly equilibrate.
(d) The entropy exhibits persistent patterns on a lower-entropy background. (e)-(f) In contrast, the rule-T13 dynamics rapidly
equilibrate to a high-entropy state. For (g)-(j), we extend QCA to 5-site rules, initialize to |101〉, and evolve in continuous time.
(g)-(h) The Goldilocks rule F4 generates a quantum generalization of the blinker in Fig. 1(a), a quantum entangled breather.
(i)-(j) In contrast, rule F26 promotes rapid equilibration to a high-entropy state.

quantum critical points. Solid curves show an activation
phase angle of υ = 0. Dashed curves show υ = π/2, for
T14; other rules’ features do not depend qualitatively on
υ. We studied many other complexity measures, includ-
ing degree and path length [3]. Two measures suffice to
illustrate that only rule T6 consistently maintains more
complexity: First, a large clustering often signals com-
plexity [3]. The clustering remains large despite network
growth only under the Goldilocks rule T6 [Fig. 3(d)]. In
fact, the network-and-time-averaged T6 clustering grows
with the network. Second, disparity fluctuations, while
studied less commonly, signal a lack of equilibration. In
Fig. 3(e), the disparity fluctuates the most under T6.

Figure 3(f) shows the time-averaged clustering vs. the

central bond entropy, sbond
L/2 , for various initial conditions.

T6 generates complexity similarly to, but higher bond
entropy than, the cluster state. The random state has
a large bond entropy, low average clustering, and low
average disparity, like the most non-Goldilocks rule, T13.

Figure 3(g) shows how various initial conditions lead to
states whose average disparity contrasts with well-known
quantum states’. The GHZ and W states have high clus-
terings, low disparities, and low bond entropies. A high
bond entropy can signal volume-law entanglement and
chaos; and a low bond entropy, area-law entanglement
and integrability. Goldilocks rules create new kinds of
states, which are highly entangled (with bond entropies
larger than the W and GHZ states’) and highly complex
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FIG. 3. (a) Four QCA were initialized with a central |1〉 centered in |0〉’s, then evolved for 500 time steps. The QCA complex
networks (left-hand side) contrast with four well-known entangled states’ networks (right-hand side). The networks’ labels
provide a legend for the panels below. (b)-(c) Clustering and disparity, well-known complex-network measures [3], averaged
over the networks, vs. time. Solid lines result from an activation phase-gate angle υ = 0. Dashed lines result from υ = π/2 for
T14; the other rules’ behaviors depend on υ negligibly. Under the Goldilocks rule T6, the clustering remains high. The disparity
oscillates rapidly, evidencing a lack of equilibration. In contrast, non-Goldilocks rules’ clusterings decrease, and the disparities
oscillate less. (d)-(e) Clustering and disparity, averaged over the network and time, vs. system size. Solid lines show exponential
fits. Clustering tends to decrease exponentially with L, except for rule T6, whose clustering increases. Disparity, too, tends to
decrease, but at size-dependent rates (the rule-T1 slope even changes sign). Each colored band depicts one standard deviation.
Only T6 generates fluctuations larger than the data points. Black lines in (b)-(c), and black data points in (d)-(e), follow from
initializing the system in |R〉 and evolving with one of the four QCA, then averaging over the QCA. (f)-(g) Time-averaged
clustering and disparity vs. central-bond entropy for various initial conditions (one or a few |1〉’s). QCA generate complexity
only when initialized in low-enough-entropy states.

(exhibiting high disparity fluctuations and clustering).

Complexity is signaled by the convergence of several
lines of evidence [3]. We emphasize high disparity fluc-
tuations and clustering, together with entropy fluctua-
tions (discussed below). Overall, Fig. 3 shows that the
Goldilocks rule T6 stands out from other rules and from
well-known quantum states. For small-enough systems,
T1 presents a borderline case.

QCA defy the chaos/integrability classification scheme
based on entanglement spectra, shown in Fig. 4(a) and
detailed in Section V. Figure 4(b) shows the bond en-
tropy’s time derivative, ∆sbond

L/2 . The derivative remains

an order of magnitude higher for rule T6 than for the
other rules. This largeness signals complexity alterna-
tively to network properties [45]. Dark lines show a
moving average over L time steps. Faint lines, showing
unaveraged data sampled every L time steps, illustrate
fluctuations. The random background (gray shading) ex-
tends between the mean ± the standard deviation of data
from initializing with |R〉, then evolving under different
rules in different trials.

The Page curve distinguishes area-law and volume-law
entanglement. Let ` = 0, 1, . . . , L − 2 denote the bipar-
titionings of the lattice. The bond entropies for all the
bipartitionings, sbond

` , form the Page curve. Figure 4(c)
shows the Page curves for QCA-generated states. The T6

curve, being lowest, suggests an area law the most. If the
initial state contains exactly one |1〉, the Page curve fits
the scrambled-state ansatz in [47]. Many initial |1〉’s lead
to T6 Page curves (not shown) that disobey a volume law
and deviate significantly from the scrambled-state predic-
tion. Similarly, many-body scars—nonequilibrating fea-
tures discovered under T1 evolution (the PXP model)—
are theorized to arise from a few area-law energy eigen-
states states amidst a volume-law sea. Yet observ-
ing many-body scars requires special initial conditions.
Fine-tuning is not necessary for resistance to equilibra-
tion under Goldilocks rules: Complexity emerges for di-
verse initializations, activation operators, time-evolution
schemes, and update orderings.

This complexity survives perturbations and noise. Fig-
ure 4(d) demonstrates robustness of the quantum en-
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FIG. 4. Dynamical many-body features distinguish
Goldilocks QCA. (a) The Brody parameter η interpolates
between integrable systems’ Poisson statistics (η = 0) and
chaotic systems’ Wigner-Dyson statistics (η = 1). We cal-
culate η from entanglement spectra [43]. η grows to chaotic
values under rules T13 and T14, remaining Poissonian under
T1. The T6 η defies the paradigm and so is not plotted: Many
eigenvalues ≈ 0. Bars represent the error prescribed by the
η-extraction procedure. (b) Entropy fluctuations distinguish
integrable from chaotic systems alternatively to the Brody
parameter [44] and suggest complexity [45]. The fluctuations
are 1-3 orders of magnitude larger for T6 than for T1, T14, and
the random background (gray shading). (c) The Page curve
distinguishes between area and volume laws, characteristic
of integrable and chaotic many-body models [46, 47]. The
T13 curve, bending far upward, suggests a volume law; T6

and T1 come closer to achieving area laws. The T14 curve
deviates from the scrambled-state ansatz. Dots represent
time-averaged Page curves; solid curves, the best fits to the
scrambled-state ansatz; and shaded regions, time fluctuations.
(A-C) report on L = 19 sites initialized with one centered |1〉.
(d) The continuous-time rule F4 produces robust quantum
entangled breathers [Fig. 2(g)-(h)]. F4 was perturbed with a
non-Goldilocks rule, F26, at strength ε. The breather’s life-
time decays as a power law: τ ∝ ε−1.3.

tangled breather generated with the Goldilocks rule F4

[Fig. 2(g)-(h)]. We perturbed F4 with the non-Goldilocks
rule F26, with strength ε. The breather’s lifetime, τ ,
varies with ε as a slow power law. Quantum entangled
breathers survive also imperfect initializations and limi-
tations on entanglement (Schmidt truncation). Emergent
power laws, with features such as high clustering, dispar-
ity fluctuations, and entropy fluctuations, provide evi-

dence of complexity’s emergence under Goldilocks rules.

IV. MODEL DETAILS

In this section, we present explicit formulae for the
T -type unitaries and the F -type Hamiltonians, as func-
tions of rule number. We then interrelate the two time-
evolution schemes by considering a three-site analog pro-
tocol. Our rule numbering is inspired by elementary-
cellular-automata rule numbering, so we first discuss
those classical models.

A. Classical Elementary Cellular Automata

A classical-ECA neighborhood consists of a central bit
and its two nearest neighbors. Classical ECA rules are
denoted by CR. The rule number R encodes the local
transition function, which prescribes a bit’s next state
for any possible neighborhood configuration. A bit has
two possible values (0 or 1), and ECA neighborhoods
consist of three sites. Hence a neighborhood can occupy

23 = 8 configurations, which lead to 223

= 256 rules.
The system is evolved through one time step as fol-

lows. First, a copy of the bit string is produced. Each
site’s neighborhood is read off of the copy and is inputted
into the local transition function. The function’s output
dictates a site’s next state, which is written to the origi-
nal bit string. The copying allows all sites to be updated
independently, simultaneously.

The rule encoding works as follows. Given CR, ex-
pand R into 8 binary digits, including leading zeroes:
R =

∑7
n=0 cn2n. The index n enumerates the neigh-

borhood configurations when expressed as a sequence of
three binary digits: n =

∑2
m=0 km2k. The binary ex-

pansion of n is the equivalence of the base-10 number n
and the base-2 number k2k1k0. The binary expansion
n ≡ k2k1k0 encodes the neighborhood’s state. In the bi-
nary expansion of R, the coefficients cn ∈ {0, 1} dictate
the next state of the neighborhood’s central site. Fig-
ure 5 shows the update table for rules R = 30, 60, and
110. Also depicted are the time evolutions of a 1 centered
in 0s.

B. Entangled quantum cellular automata

Entangled QCA can be realized with 1D chains of L
qubits, or sites. Dynamics are governed by a QCA Hamil-
tonian (equivalently, by analog quantum computation,
or a quantum simulator) or by a quantum circuit (by a
digital quantum computer). Each time-evolution scheme
specifies how a site j updates conditionally on the state
of the site’s neighbors. The neighbors within a radius r
of site j form a set denoted by Ωj . (Ωj does not include
j.) Some of our QCA have three-site neighborhoods, of
a central site j and its nearest neighbors. Some of our
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FIG. 5. (a-c) Classical-elementary-cellular-automata (ECA)
evolutions of a 1 centered in 0s. (d) Rule tables for C30,
which generates pseudorandom numbers; C60, which gener-
ates a fractal structure; and C110, which is Turing-complete
(capable of simulating any computer program).

QCA have five-site neighborhoods, of site j and its near-
est neighbors and next-nearest neighbors. The QCA rule
number encodes the coupling’s form, i.e., conditions on
the neighbors which activate site j.

Neither of our update schemes (discrete-time or
continuous-time) decomposes into a component governed
by left-hand neighbors and a component governed by
right-hand neighbors. Our schemes’ bidirectionality con-
trasts with the structures of most many-body Hamilto-
nians in the literature and solved on quantum comput-
ers. Examples include the Hubbard, Ising, and Heisen-
berg models; the PXP model constitutes an exception [7].
Nevertheless, our scheme can be realized experimentally,
as we show later.

Our QCA’s definitions differ from ECA’s definitions
in four ways: (i) Sites are evolved in place, rather than
via copying. How the lattice evolves, therefore, depends
on the order in which sites update. Complexity out-
comes, we find, do not depend on how site updates are
ordered. For instance, site 0 can update, followed by site,
1, and so on: ({0}, {1}, . . . ). Alternatively, the even sites
can update simultaneously, followed by the odd sites:
({0, 2, . . .}, {1, 3, . . .}, {0, 2, . . .}, . . .). Other options ex-
ist, e.g., ({0, 3, 6, . . .}, {1, 4, 7, . . .}, {2, 5, 8, . . .}, . . .). We
therefore present about only the second scheme, even-
odd ordering. (ii) Rules dictate how a site evolves, not
the state to which the site evolves. (iii) In QCA, how
site j evolves depends only on the site’s neighbors, not
on the site itself. (iv) An ECA neighborhood consists of
three sites. We present QCA that have three-site neigh-
borhoods and QCA that have five-site neighborhoods.

Our QCA models’ rule numbering is defined in terms
of the neighborhood size, the rule number R, and
whether the rule numbering is totalistic. The three-
site-neighborhood rules are labeled as TR; the five-site-
neighborhood rules are labeled as FR.

Under a totalistic rule, whether the activation opera-
tor transforms a neighborhood’s central site depends only
on the total number of neighboring |1〉’s. If the neighbor-
hood consists of three sites, zero, one, or two neighbors
can be in the state |1〉. Hence 23 = 8 totalistic three-site

rules exist. They form a subset of the general 222

= 16
TR rules. Similarly, 25 = 32 FR rules exist. They form

a subset of the 224

= 65536 general five-site rules. The
number of rules grows combinatorically with the neigh-
borhood’s size. Under a Goldilocks rule, whether a site
updates depends on a neighborhood’s total value, satisfy-
ing the “not too many and not too few” tradeoff common
in complexity theory [36]. If we did not invoke totalis-
tic labeling of five-site-neighborhood rules, rule F4 would
have rule number R = 5736.

To specify a QCA model, one must specify, in addi-
tion to a rule number R, a time-evolution scheme (dig-
ital or analog) and an activation operator. Equations
(1) and (2) of Section II formalize these requirements.
We narrow down the options to two illustrative choices:
The T -type simulations discussed involve digital evolu-
tion with a Hadamard-and-phase-gate activation. The F -
type simulations discussed involve analog evolution and
a σ̂x activation. (Below, we present the T -rule unitaries’
and F -rule Hamiltonians’ forms.) Yet analog and digi-
tal evolutions can be performed with any neighborhood
size. We discuss analog TR rules (i) when interrelating
the digital and analog evolution schemes and (ii) when
proposing physical implementations. Digital evolution of
rules with larger neighborhoods can be generalized as fol-
lows: Recall that r denotes the radius of neighbors that
determine whether a central site updates. Instead of up-
dating even sites, then odd sites, we run r + 1 layers of
a quantum circuit. Layer k ∈ {0, 1, . . . , r} updates site j
if j mod (r + 1) = k.

C. T -type simulations

Rules TR denote digital simulations of the 3-site-
neighborhood rules. To expose such a rule’s dynamics,
convert R from base-10 into four base-2 bits (including
leading zeroes). The leftmost bit should be the most
significant; and the rightmost bit, the least significant:
R = c1123 + c1022 + c0121 + c0020 =

∑1
m,n=0 cmn22m+n.

The m specifies the left-hand neighbor’s value; and n
specifies the right-hand neighbor’s value. cmn ∈ {0, 1}
specifies whether the central bit evolves under a single-
qubit unitary V̂ (cmn = 1) or under the identity 1̂

(cmn = 0), given the neighbors’ values. More concretely,
the three-site update unitary has the form

Ûj(V̂ ) =

1∑

m,n=0

P̂
(m)
j−1 V̂

cmn
j P̂

(n)
j+1 . (3)

The superscript on V̂j denotes a matrix power. We up-

date the lattice by applying Ûj(V ) to each 3-site neigh-
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borhood centered on site j, for every j. Even-j neigh-
borhoods update first; and odd-j neighborhoods, second.
Each boundary qubit is fixed to |0〉. We explored alter-
native boundary conditions, including periodic boundary
conditions and boundaries fixed to |1〉’s. The complexity
outcomes are similar.

The local update unitary V̂j is the product of the
Hadamard and phase gates familiar from quantum com-
puting:

V̂j ≡ V̂j(υ) = ÛHÛP(υ) =
1√
2

(
1 eiυ

1 −eiυ
)
. (4)

The Hadamard gate rotates the Bloch sphere’s north pole
to the x-axis. A phase gate of υ = π/2 rotates the x-axis
into the y-axis. These gates can rotate a qubit state to
any point on the Bloch sphere. In most of the simulations
investigated here, υ = 0; the dynamics is restricted to the
xz-plane. Behaviors are mostly robust with respect to
changes in υ. T14 forms an exception: Nonzero υ values
strongly suppress entropy fluctuations.

D. F -type simulations

FR denotes analog simulations of five-site totalistic

rules with a Hermitian activation operator ĥj = σ̂xj . The
value of R dictates the form of the many-body Hamilto-
nian Ĥ =

∑
j Ĥj . We expand R into 5 digits of binary:

R =
∑4
q=0 cq2

q. Site j evolves conditionally on its neigh-
bors:

Ĥj = σ̂xj

4∑

q=0

cqN̂ (q)
j . (5)

N̂ (q)
j denotes the projector onto the q-totalistic subspace,

in which exactly q neighbors are in |1〉’s:

N̂ (q)
j =

∑

perm(Kq)

P̂
(Kq [0])
j−2 P̂

(Kq [1])
j−1 P̂

(Kq [2])
j+1 P̂

(Kq [3])
j+2 . (6)

Kq represents a sequence of q ones followed by 4 − q
zeroes. Kq[i] ∈ {0, 1} denotes the sequence’s ith element.

The sum is over the
(

4
q

)
permutations of the bits in Kq.

Qubits near the boundary do not have a complete set
of neighbors. Any missing neighbors are fixed to |0〉’s.
Other boundary conditions yielded similar results.

We illustrate continuous-time evolution with five-site
neighborhoods, the smallest we found to produce quan-
tum entangled breathers. These emergent features sug-
gest complexity greater than the three-site scheme’s.
The three-site analog scheme, too, generates complex-
ity but provides no information beyond the discrete-time
scheme. Likewise, we explored diverse Hermitian activa-

tion operators ĥj . They generate complexity when cou-

pled with a nontrivial ĥj and initial state. By “nontriv-
ial,” we mean that the initial state is not an eigenstate
of the Hamiltonian. In trivial cases, the evolution only
introduces a global phase.

E. Relation between analog and digital
time-evolution schemes

We will prove that evolution under analog three-site
QCA is equivalent to evolution under the digital three-
site QCA, TR. [48] Consider the radius-1 analog QCA
TR, with rule number R =

∑
m,n cmn22m+n. According

to Eq. (2), the three-site Hamiltonian has the form

Ĥj =

1∑

m,n=0

cmnP̂
(m)
j−1 σ̂

x
j P̂

(n)
j+1 . (7)

The state vector is evolved for a time δt by the propagator
Û = exp(−iδtĤ). For all j and k such that |k − j| 6=
1, [Ĥj , Ĥk] = 0. Hence the propagator factorizes into

even and odd parts at order δt2: Û ≈
(

Πj∈{1,3,5,...}Ûj

)
·

(
Πj∈{0,2,4,...}Ûj

)
. The local propagator has been defined

as Ûj = exp(−iδtĤj). This Û is equivalent to the circuit
that runs the digital TR simulations, up to the unitary
activation operator V̂j .

Now, we relate the discrete-time scheme’s V̂j to the

continuous-time scheme’s ĥj = σ̂x. We expand the local

propagator as Ûj = 1̂− iδtĤj − δt2Ĥ2
j /2! + iδt3Ĥ3

j /3! +

. . . The projectors are orthogonal, P̂
(m)
j P̂

(n)
j = δmnP̂

(m)
j ,

and the Pauli operators square to the identity: (σ̂x)2 = 1̂.
Therefore, powers of the Hamiltonian can be expressed

as Ĥ2k
j =

∑
m,n cmnP̂

(m)
j−1 1̂P̂

(n)
j+1 and Ĥ2k+1

j = Ĥj for
k = 1, 2, . . . Hence the matrix exponential simplifies to

Ûj =

1∑

m,n=0

P̂
(m)
j−1

[
(1− cmn)1̂ + cmn exp(iδtσ̂xj )

]
P̂

(n)
j+1

=

1∑

m,n=0

P̂
(m)
j−1 exp(iδtσ̂xj )cmn P̂

(n)
j+1.

The last line has the form of the three-site update unitary
in Eq. (3). The parallel suggests an activation unitary
exp(iδtσ̂x).

V. METHODS AND DEFINITIONS

Throughout this work, we use various numerical and
statistical methods, quantifiers of dynamics, and com-
plex networks. This section details those methods and
definitions.

A. Well-known quantum states

Figure 3 involves four well-known quantum states:
the GHZ state, the W state, a random state, and a
cluster state. The GHZ state is defined as |G〉 =
2−1/2(|00 . . . 0〉 + |11 . . . 1〉); and the W state, as |W 〉 =
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2−L/2(|100 . . . 0〉 + |010 . . . 0〉 + · · · + |00 . . . 01〉). We de-
fine the random state as |R〉 = C

∑
n ξn |n〉. The nor-

malization constant is denoted by C. The ξn are random
complex numbers with real and imaginary parts drawn
independently from a flat distribution over [0, 1). The |n〉
are the 2L computational-basis elements for an L-qubit
system.

A cluster state is a quantum state defined by a regular
graph G(V,E). The set of vertices, or nodes, is denoted
by V ; and the set of edges, or links, by E. The num-
ber of nodes equals the number of qubits in the cluster
state. We focus on planar rectangular grids of L vertices.
No matter the graph, the cluster state is constructed in
two steps. First, each qubit is initialized in |0〉 and trans-
formed, by a Hadamard gate, to 2−1/2(|0〉+ |1〉). Second,
a controlled-phase gate

Ĉphase(υ) =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiυ


 (8)

acts on every pair of nodes in the edge list E. The second
step tends to generate entanglement along the graph’s
links.

B. Local expectation values

Let Ôj denote an observable of qubit j. The observ-

able has a dynamical expectation value of
〈
Ôj
〉

(t) =

Tr
(
ρ̂j(t)Ô

)
, where ρ̂j(t) denotes the site-j reduced den-

sity matrix, calculated by partially tracing over the
whole-system density matrix ρ̂(t) = |ψ(t)〉 〈ψ(t)|, i.e.,
ρ̂j(t) = Trk 6=j ρ̂(t).

C. Entropy

Let A denote a subsystem in the state ρ̂A. The order-α
Rényi entropy is defined as

s
(α)
A =

1

1− α log2 [Tr(ρ̂αA)] (9)

for α ∈ [0, 1) ∪ (1,∞). In the limit as α → 1, the Rényi
entropy becomes the von Neumann entropy:

s
(1)
A = −Tr (ρ̂A log2 ρ̂A) = −

dim(A)∑

i=0

λi log2(λi) . (10)

The sum runs over the eigenvalues {λi} of ρ̂A. The set
{λi} of eigenvalues is called the entanglement spectrum
of subsystem A.

We distinguish three Rényi entropies. First, the local

entropy s
(α)
j is the jth site’s entropy. Second, the two-

point entropy, s
(α)
j,k for j 6= k, is of a pair of sites. Third,

consider cutting the lattice between sites ` and ` + 1.

The smaller subsystem has an entropy s
bond,(α)
` called the

bipartition bond entropy. The central cut’s bond entropy

is denoted by s
bond,(α)
L/2 . If the system has an odd number

L of sites, the central bond lies between sites (L − 1)/2
and (L+ 1)/2.

The α = 2 Rényi entropy is routinely measured exper-
imentally [49]. Therefore, Section III focused on α = 2,
where we dropped the superscript (2)to simplify nota-
tion.

Temporal fluctuations in entropy are captured with the
absolute value of a second-order central finite difference.
[50] In discrete-time simulations, the time step has unit
length. Hence the fluctuation at time step ti is

∆s
(α)
A (ti) =

1

2

∣∣∣s(α)
A (ti+1)− s(α)

A (ti−1)
∣∣∣ . (11)

For simplicity, we suppress the time dependence in the
left-hand side’s notation. The absolute value highlights
the fluctuations’ magnitudes, suppressing the signs.

The set of all the bond entropies s
bond,(α)
` , for ` = 0

to L− 2, is called a Page curve. Consider averaging the
α = 2 Page curve over the last half of the time evolution.

We denote with an overbar the late-time average of any
length-T time-series Q that includes only times greater

than t0 ∼ T/2: Q(ti) =
∑T
ti=t0

Q(ti)/(T − t0). The

average Page curve is fit with the ansatz [47]

s
bond,(2)
` = (`+1) log2(a)−log2

(
1 + a2(`+1)−L

)
+log2(K) .

(12)
a and log2(K) denote free parameters. The first term
in Eq. (12) represents volume-law entanglement growth
with slope log2(a). a = 1 signals an area law. When
` ∈ [0, L/2], the second term represents a deviation from
the volume law. The deviation grows as the cut nears
the lattice’s center. The third term represents an offset
to the volume law.

Figure 6(a) shows Eq. (12) for different a values.

log2(K) is fixed so that s
bond,(2)
0 = 0. Nonintegrable

systems are conjectured to have Page curves that tend
towards Eq. (12); and integrable systems, to have Page
curves that deviate. More information appears in [47],
whose conventions deviate from two of ours: (i) Our def-
inition of ` is shifted relative to theirs; hence the `+ 1 in
Eq. (12). (ii) Our entropies’ logarithms are base-2.

D. Entanglement-spectrum statistics

Consider cutting the lattice down the center. Each
subsystem’s reduced state has eigenvalues λi, which form
the entanglement spectrum [51]. We index the eigenval-
ues such that λ1 ≤ λ2 ≤ . . . How many spacings λi+1−λi
have size d? The density of size-d gaps forms a distribu-
tion that we fit to the Brody ansatz [52],

D(d) = β(η + 1)dη exp(−βdη+1) . (13)
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FIG. 6. (a) The Page-curve ansatz (12), for a = 2.0 (red)
1.5 (purple), and 1.1 (brown). log2(K) is fixed, for all curves,
such that the minimum entropy vanishes. The dashed lines
represent the corresponding volume law, the first term in
Eq. (12). Integrability can cause a high-energy Hamiltonian
eigenstate’s Page curve to deviate from such a best fit [47].
(b) The Brody ansatz (13) for η = 0.0 (blue), 0.5 (orange),
and 1.0 (green). Poisson (η = 0) statistics promote small
gaps; Wigner-Dyson (η = 1) statistics promote eigenvalue re-
pulsion. The gap d is normalized to have a unit average.

Γ denotes the gamma function, β = Γ
(
η+2
η+1

)η+1

, and

η ∈ [0, 1] is the Brody parameter. This ansatz interpo-
lates between Poisson statistics (η = 0), characteristic of
integrable systems, and Wigner-Dyson (η = 1) statistics,
characteristics of nonintegrable systems [Fig. 6(b)].

The ansatz is derived under the assumption that d
averages to one. This condition is often enforced via
a spectral unfolding procedure. We use the polyno-
mial method [53]: We remove all λi < 10−10, then the
10 smallest and 10 largest λi values. This clipping is
a standard preprocessing tool, eliminating outliers and
λi ≈ 0. Next, we fit a generic ninth-order polynomial
f(x) =

∑9
n=0 bnx

n to the set of ordered pairs (λi, i). The
unfolded spectrum is defined by the dimensionless vari-
able λ′i = f(λi). The rescaled spacings di are calculated
from the λ′i. This procedure ensures that di averages to
1 because λ′i ≈ i, so every di ≈ 1.

Consider initializing the lattice with a |1〉 centered in
|0〉’s. Evolving with rule T6 leads to only 11 values of
λi > 10−10. A small sample size dooms any statistical
measure, so we omit T6 from Fig. 3(a). Entropy fluctua-
tions distinguish integrability from nonintegrability alter-
natively, as we showed in work on the quantum ratchet’s
many-body chaos [44].

E. Mutual information

The mutual information quantifies networks’ complex-
ity. A complex network is network, or graph—a collection
of nodes, or vertices, and links, or edges—that is neither
regular nor random [3]. For example, completely con-
nected graphs and Erdős-Rényi graphs are not complex
networks.

The order-α quantum Rényi mutual information be-

tween sites j and k 6= j is

M
(α)
jk =

1

2

∣∣∣s(α)
j + s

(α)
k − s(α)

jk

∣∣∣ . (14)

The 1/2 is unconventional but normalizes the mutual in-

formation such that 0 ≤ M
(α)
jk ≤ 1. We define M

(α)
jj = 0

and interpretM
(α)
jk as the adjacency matrix of a weighted,

undirected graph that lacks self-connections. The abso-
lute value in Eq. (14) is necessary only for α > 1.

For α = 1, the mutual information is positive-definite.
It has the physical interpretation of an upper bound on

every two-point correlator [54]. Hence a nonzero M
(1)
jk

reflects two-point correlations. Yet the order-2 Rényi en-
tropy is routinely measured in experiments, so we fo-

cus on M
(2)
jk . The complexity outcomes for α = 1, 2 are

qualitatively similar, as in the context of quantum phase
transitions [42]. To simplify notation, we drop the (α)
superscript in Section III. An adjacency matrix can be
defined alternatively in terms of two-point correlators,
but they capture complexity less than mutual informa-
tion does [42].

F. Network measures

Network measures are functions of an adjacency ma-
trix; they quantify the corresponding graph’s connec-
tivity. We evaluate two network measures on mutual-
information adjacency matrices: the clustering coefficient
and the disparity. They capture complexity in the con-
text of quantum phase transitions near quantum critical
points [41, 42].

First, the clustering coefficient C quantifies local,
small-scale community structure. Clustering is a key fea-
ture of social and biological networks. It quantifies tran-
sitivity: Suppose that node A connects to node B, which
connects to node C. A likely connects to C if the network
has high clustering. The clustering coefficient equals the
number of connected triangles, divided by the number
of possible connected triangles. If M denotes an L × L
adjacency matrix,

C(M) =
Tr
(
M3
)

∑L−1
j,k=0
j 6=k

[M2]jk
. (15)

Clustering is known to be high for complex networks,
e.g., Watts-Strogatz networks [3].

The second complex-network measure, disparity, quan-
tifies how much a network resembles a backbone. The
disparity is defined as

Y(M) =
1

L

L−1∑

j=0

∑L−1
k=0 (Mjk)

2

(∑L−1
k=0 Mjk

)2 . (16)

Two examples illuminate this definition. First, consider
a uniform network: Mjk = a, except along the diago-
nal, where Mjj = 0. This network has a disparity of
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Y = 1/(L−1). Second, a 1D chain has an adjacency ma-
trix of Mjk = a(δj(k+1) + δj(k−1)) and so a disparity of
Y = (L+2)/(2L). If L = 2, the two networks describe the
same graph, so each has Y = 1. As L increases, the fully
connected network’s disparity approaches 0, while the
1D chain’s approaches 0.5. Figure 3(b)-(g) show average
clusterings and disparities for various quantum states.
Fluctuations in the disparity [3] indicate a lack of equi-
libration under the Goldilocks rule T6: The network re-
peatedly forms and breaks a backbone.

G. Quantum-entangled-breather lifetime

Rule F4 generates a quantum entangled breather
[Fig. 2(g)-(h)]. The system is initialized with two cen-
tered |1〉’s separated by a |0〉. Left unperturbed, the
state oscillates indefinitely. Figure 4(d) shows how the
breather decays under perturbations of three types.

First, we add the rule-F26 Hamiltonian, scaled by a
positive ε� 1, to the F4 Hamiltonian. Rule 26 activates
a site whenever its neighbors contain at least one |1〉. Sec-
ond, we perturb the QCA via Schmidt truncation: We
evolve the system with a matrix-product-state approx-
imation. The Hilbert space’s effective dimensionality is
reduced from χ = 2L/2 until the breather becomes unsta-
ble. This truncation time-adaptively caps the amount of
entanglement in the state [55]. Third, imperfect initial-
ization affects τ . The initial |1〉’s are replaced with copies

of εeiφ |0〉 +
√

1− ε2 |1〉. The perturbation’s strength is
quantified by the positive ε � 1; φ turns out not to af-
fect the breather’s stability. Consider the qubit one site
leftward of the center, the qubit at site j = bL/2c − 1
(since j = 0, 1, . . . , L − 1). This qubit’s projection onto
|1〉 is fitted with
〈
P̂

(1)
bL/2c−1

〉
(t) =

1

2

[
1−

〈
σ̂zbL/2c−1

〉
(t)
]

= A+Be−t/τ .

(17)
From the fit, we extract the lifetime τ . Figure 7 illus-
trates the fitting procedure used to produce Fig. 4(d),
run on L = 17 sites.

The quantum entangled breather is robust with respect
to all three perturbations. The breather’s lifetime de-
pends on the Hamiltonian perturbation as a slow inverse
power law: τ ∝ ε−1.3. Under Schmidt truncation, the
lifetime exhibits a sharp threshold at χ =8-10. Below
the threshold, τ ∝ χ−7; above, τ exceeds the simulation
time, T = 1, 000. For imperfect initialization, we find
stability for ε ≤ 1/2, independently of φ: The breather
has an infinite lifetime. However, increasing ε decreases
the visibility of the breather’s oscillations between |1〉
and |0〉 [Fig. 2(g)].

H. Numerical and statistical methods

In simulations, quantities are rescaled such that ~ = 1,
and energies and times are dimensionless. We deviate
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FIG. 7. A quantum entangled breather’s robustness. (a)
The breather is generated by the Goldilocks rule F4. We per-
turb F4 with the non-Goldilocks rule F26 at strength ε. Black
curves show the exponential fit of Eq. (17). Each curve is
shifted by 0.1 from the curve below it, to ease visualization.
(b)-(d) Space-time dependence of the average excitation den-
sity, defined through the projection of each site’s state onto
|1〉. The lifetime, defined as τ in Eq. (17), ends at double bars
color-coded in accordance with (a).

from this convention only when discussing physical im-
plementations of QCA. If multiple energy scales must be
specified, time units are presented.

We have developed a custom QCA-simulation library,
used to generate most of the data analyzed in this Re-
port. The library simulates time evolution using opti-
mized diagonalization code. Analog QCA propagators
are represented exactly or are approximated to second
or fourth order in the time-step length. We introduced
the second-order approximation analytically when prov-
ing the equivalence of our analog and digital time evolu-
tions. The analog scheme involved a Hamiltonian Ĥ that
generated a unitary Û . Û factorized into even and odd
unitaries at order (δt)2. The fourth-order approximation



12

10−2 10−1 100

Time step, dt

10−9

10−7

10−5

10−3

10−1
E

rr
or

slope: 1.98

slope: 4.05

FIG. 8. Convergence of numerical time-evolution algorithm
for order-2 routine (squares) and order-4 routine (circles). We
initialized an L=11-site lattice to a random state |R〉, then
simulated one time step of the analog rule T6.

partially updates even-j sites, fully updates odd-j sites,
then finishes updating even-j sites. By definition, the
digital QCA are exact, to numerical precision.

We define the error as 1 − |〈ψ̃|ψ〉|2. |ψ〉 denotes the
state at the last time step of evolution by the full prop-

agator.
∣∣∣ψ̃
〉

denotes the analogous state after evolution

by the approximate propagator. Figure 8 shows the er-
ror after one time step, plotted against the time step’s
length. The data exhibit the anticipated order-2 and
order-4 scalings, as compared with the exact evolution.

We simulate F -type QCA using the OpenMPS library,
which has been tested thoroughly. OpenMPS allows us to
represent state vectors compactly, with matrix product
states [55]. This Schmidt truncation enables us to test
the quantum entangled breather’s robustness [Fig. 4(d)].

Throughout this work, fits are made via standard chi-
squared minimization routines. Such fits appear in the
Brody-parameter estimation of Fig. 4(a), the Page-curve
ansatz of Fig. 4(c), and the entangled-breather lifetimes
of Fig. 4(d). The standard error in the fit parameters is
defined as the square-root of the diagonal entries of the
fit-parameter covariance matrices. This prescription was
used to calculated error bars for the Brody parameter
and the entangled-breather lifetime. In the Page-curve
fits, we illustrated with shaded bands the temporal fluc-
tuations of data used to calculate the long-time averages.
The fluctuations are defined as the standard deviations
in the data used to calculate the averages. The shaded
bands in Fig. 3(d)-(e) show the standard deviations in
the network-measure data used to calculate the long-time
averages shown with data points. Often, the standard
deviations are smaller than the data points.

The bond-entropy fluctuations in Fig. 4(b) are

smoothed with a moving average whose temporal win-
dow equals the system size, L. The data shown come
from L = 19. Therefore, a 19-time-step window low-
pass-filters the data. Numerical derivatives amplify high-
frequency fluctuations. Hence filtering is important
for observing lower-frequency trends. We visualize the
smoothing effect with faint lines that show the raw data,
sampled every L time steps.

VI. PHYSICAL IMPLEMENTATION OF
QUANTUM CELLULAR AUTOMATA

We prescribe a scheme for implementing QCA phys-
ically, beginning with general results before narrow-
ing to an example platform. First, we show that the
longitudinal-transverse quantum Ising model can, in a
specific parameter regime, reproduce QCA dynamics.
Many experimental platforms can simulate this Ising
model and so can, in principle, simulate QCA. Exam-
ples include superconducting qubits, trapped ions, and
Rydberg atoms.

We focus on Rydberg atoms trapped in an optical-
tweezer lattice. The atoms interact through a van der
Waals coupling that induces a Rydberg blockade: Two
close-together atoms cannot be excited simultaneously.
We exploit this blockade to condition a site’s evolution
on the site’s neighbors. Moreover, Rydberg atoms can
be arranged in various geometries subject to short- and
long-range interactions [56]. We exploit these freedoms
to engineer nearest-neighbor rules, with a linear atom
chain and next-nearest-neighbor rules with a ladder-like
lattice [Fig. 9(h)].

Related work appeared in the literature recently: A
Rydberg-chain realization of QCA was proposed in [57].
Wintermantel et al. focus on 3-site neighborhoods and a
spin-flip activation. The spin-flip QCA is closely related
to classical cellular automata: Initial states on the Bloch
sphere’s poles remain on the poles. However, [57] involves
applications to engineering entangled states. We present
a general framework for Rydberg-atom QCA: Our pro-
posal encompasses 3-site and 5-site neighborhoods, as
well as entanglement-generating activation unitaries.

The present paper presents results about analog three-
site-neighborhood QCA in only two sections; this is
one of the two. Usually, we feature digital three-site-
neighborhood QCA (TR rules) and analog totalistic five-
site-neighborhood QCA (FR rules). These choices nar-
row down the plethora of possibilities to illustrative ex-
amples, though we tested many more possibilities and
found similar results. Here, we discuss the analog three-
site-neighborhood QCA, Eq. (7), to demonstrate our
physical implementation’s generality.
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A. From QCA to the Ising model

In analog QCA, the Hermitian activation operator

ĥj = σ̂xj . According to Eq. (2), ĥj contributes to the
Hamiltonian if the neighboring sites satisfy the condi-
tions imposed by the projectors. Such a state change
can be modeled with the Ising Hamiltonian.

Let hx denote the transverse field hx; and hz, the lon-
gitudinal field. The Ising Hamiltonian has the form

Ĥ = hx
∑

j

σ̂xj + hz
∑

j

σ̂zj +
J

2

∑

j

∑

k∈Ωj

σ̂zj σ̂
z
k . (18)

The interaction strength J is uniform across the neigh-
bors k ∈ Ωj and vanishes outside. If hx � J ≈ hz,
spin j evolves as though the other spins belonged to
a static, classical external magnetic field, rather than
to an interacting global quantum system. hx serves as
the jth qubit’s gap frequency. hz + Jm serves as the
effective external field’s frequency. The magnetization

m =
〈∑

k∈Ωj
σ̂zk

〉
counts the |0〉’s in Ωj and subtracts

off the number of |1〉’s.
Under each of several TR rules, the activation operates

only if a certain number of neighbors occupy |1〉’s: m
must have a particular value. (Under each of the other
TR rules, the activation operates if m has one of several
activating values.) Examples include T1, T6, and T8. The
Ising model can implement these rules if the longitudinal
field’s to hz = −mJ . The central spin’s oscillations will
be resonant with the effective external field at the de-
sired m value. If m does not have the desired value, the
central spin’s oscillations are strongly off-resonant. This
off-resonance effects the projectors in Eq. (2). The cen-
tral spin’s maximum probability, across a Rabi cycle, of
flipping is hx/

√
h2
x + (hz + Jm)2. Rules that activate at

multiple m values would require additional fields and res-
onances [57]. Examples include rule T14, which activates
when m = 0, 2.

B. From the Ising Model to the Rydberg-atom
quantum simulator

Each atom has a ground state |g〉 coupled to a highly
excited Rydberg state |r〉 of principle quantum number
� 1. Atoms j and k 6= j experience the isotropic van der
Waals interaction Vj,k = C6/a

6
j,k. C6 denotes an experi-

mental parameter; and aj,k, the interatomic separation.
Rydberg atoms evolve under the effective Hamiltonian

ĤRyd. =
Ω

2

∑

j

σ̂xj + ∆
∑

j

n̂j +
1

2

∑

j,k

Vj,kn̂j n̂k . (19)

Ω denotes the Rabi frequency of the coupling between
the ground and excited states. ∆ denotes a detuning in
the natural Hamiltonian that is transformed and approx-
imated to yield Eq. (19). The detuning affects all atoms
uniformly.

We map the Rydberg Hamiltonian onto the Ising
Hamiltonian as follows. First, we set Ω = 2hx and
∆ = 2(hz − 2rJ). 2r equals the number of neighbors
k ∈ Ωj . Second, we set Vj,k = 4J for the neighbors
k ∈ Ωj and Vj,k = 0 for all other k. The second condi-
tion is easily satisfied in a linear chain, if Ωj consists of
the nearest-neighbor sites. Next-nearest neighbors can
be neglected due to the rapid decay, with separation, of
the van der Waals interaction’s strength. Modifying the
lattice geometry, we show later, enables us to include
next-nearest neighbors in Ωj .

We numerically simulated an L=17-atom chain evolv-
ing under the Hamiltonian Eq. (19). The simulations
show the equivalence of a Rydberg-atom simulator’s dy-
namics and QCA. We focused on the analog versions
of rules T1, T6, and F4. The numerical parameters re-
flect the physics of 87Rb atoms with the excited state
|r〉 =

∣∣70S1/2

〉
, for which C6 = 863 GHz µm6. We

fixed Ω = 2 MHz and Vj,j+1 = 36 MHz, which corre-
spond to an interatomic distance of a ' 5.4 µm, such
that Vj,j+1 � Ω.

We simulated interactions within each QCA neighbor-
hood, as well as interactions with the closest neighbors
outside the neighborhood. The latter, we checked, do
not significantly alter the dynamics. The QCA, recall,
has boundary sites set to |0〉’s. We implemented these
boundary conditions by tailoring the external field ∆ ex-
perienced by the boundary sites.

The numerical results are shown in the top row in
Fig 9. The Rydberg-atom dynamics agree strongly with
the QCA. Thus, Rydberg atoms offer promise for quan-
tum simulation of QCA and for studying QCA’s robust-
ness with respect to physical-implementation details.

C. Analog T -type implementation

Here, we introduce implementations of several analog
TR rules: T6, T1 and T8. Under these rules, a neighbor-
hood’s central spin is activated if m = 2, 0,−2, respec-
tively. Consider a linear atom chain with interatomic
distance aj,j+1 = a ∀j in the Rydberg-blockade regime
[Fig. 9(g)]. Appropriately setting the detuning ∆ can
enhance the oscillations undergone by a neighborhood’s
central spin, conditionally on the spin’s neighbors.

Figure 9 shows the numerically computed evolution.
The system was initialized with one |1〉 centered in |0〉’s.
Rule-T1 simulations are depicted in Figs. 9(a)-(b); and
rule-T6 simulations, in Figs. 9(c)-(d). The QCA sim-
ulations (depicted on the left-hand side of each figure
pair) agree qualitatively with the Rydberg simulations
(depicted on the right-hand side).

The analog version of rule T1 evolves the system under
the Hamiltonian

Ĥ =
∑

j

P̂
(0)
j−1σ̂

x
j P̂

(0)
j+1 . (20)

The projectors’ action is implemented with the Ising
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Hamiltonian when the resonance condition is imposed
between |000〉Ωj

and |010〉Ωj
. In each of these states,

two neighbors occupy |0〉; two neighbors point upward;
the magnetization m = 2. Hence the resonance condition
implies that hz = −2J , or ∆ = −2Vj,j+1. Rule T8 effects

the Hamiltonian Eq. (20), except each P̂ (0) is replaced

with a P̂ (1). Hence m = −2, and hz = 2J , i.e., ∆ = 0.
The Goldilocks rule T6 evolves the system under the

Hamiltonian

Ĥ =
∑

j

(
P̂

(0)
j−1σ̂

x
j P̂

(1)
j+1 + P̂

(1)
j−1σ̂

x
j P̂

(0)
j+1

)
. (21)

The resonance must be enhanced when the neighboring
sites satisfy m = 0. Hence we set hz = 0 or, equivalently,
∆ = −Vj,j+1 in the Rydberg Hamiltonian.

D. F -type implementation

Simulating the F -rules with Rydberg atoms requires
that excited next-nearest-neighbor atoms have the same
interaction energy as nearest-neighbor atoms. One
can meet this condition by forming a zigzag lattice,
as shown in Fig. 9(h). The distance ann between
next-nearest-neighbor atoms equals the distance between
next-nearest-neighbor atoms. Hence the interaction en-
ergies are Vj,j+1 = Vnn ≡ V .

We discuss, as an example, the F4 rule’s implementa-
tion. A neighborhood’s central spin must oscillate if two
of its four neighbors are excited. As for T6, m = 0, lead-
ing to the resonance condition ∆ = −2V . Figure 9(e)-
(f) depict the numerical results, and Fig. 9(h) depicts
the atomic arrangement. The plots confirm strong qual-
itative agreement between the QCA dynamics and the
quantum-simulator dynamics.

VII. CONCLUSIONS

We have discovered a physically potent feature of en-
tangled quantum cellular automata: the emergence of
complexity under Goldilocks rules. Goldilocks rules bal-
ance activity and inactivity. This tradeoff produces new,
highly entangled, yet highly structured, quantum states.
These states are persistently dynamic and neither uni-
form nor random. The two Goldilocks rules focused
on here—T6 for the 3-site-neighborhood QCA and F4

for the 5-site-neighborhood QCA—activate a neighbor-
hood’s center site when the neighbors are half in |1〉’s
and half in |0〉’s. Complexity signatures of Goldilocks
rules include complex-network structure, high clustering
and high disparity fluctuations; persistent entropy fluc-
tuations; and robust emergent features, such as quan-
tum entangled breathers. Non-Goldilocks rules still dis-
play interesting dynamical features. Indeed, the PXP
model, equivalent to rule T1, has received much atten-
tion in the literature and serves as an edge case, showing

FIG. 9. Upper panel: Comparison of QCA evolution and
Rydberg-atom-quantum-simulator dynamics. We study the
rules T1 (a)-(b) and T6 (c)-(d), whose dynamics are gener-
ated for a linear atom chain (g) with an appropriate detun-
ing. We study also rule F4 (e)-(f), for which the lattice has
the shape in (h): Two parallel chains of atoms, represented
by circles, are trapped in a plane. The nearest-neighbor dis-
tance a (red lines) equals the next-nearest-neighbor distance
nn (orange lines), so Va = Vnn. A local detuning is applied
at the boundaries to simulate the QCA boundary conditions.
The higher-order effects of next-nearest-neighbor interactions
(for rules T1 and T6) and next-next-nearest-neighbor interac-
tions (for rule F4) are simulated. Parameters: L = 17. In the
Rydberg simulations, Ω = 2 MHz, and Va = 36 MHz. Time
is expressed in units of 2π µs.

some persistent dynamical features. However, the con-
fluence of several complexity signatures distinguishes the
Goldilocks rules.

Moreover, we have demonstrated that our QCA time-
evolution protocols are implementable in extant digital
and analog quantum computers. In particular, we have
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shown that Rydberg atom arrays can be arranged to
engineer five-site QCA neighborhoods, large enough to
support a robust quantum entangled breather. Digital
quantum computers, programmed with discrete gate se-
quences, can also simulate QCA dynamics that support
emergent complexity even with three-site neighborhoods.
Our work uncovers a direction for quantum computation:
to demonstrate that the rich features of biological and so-
cial complexity manifest in abiological quantum systems.
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Appendix: Cluster-state mutual information

A cluster state’s mutual-information adjacency matrix
forms a graph that can have more links than the original
graph that defined the cluster state. For example, con-
sider a three-qubit cluster state defined by a 3 × 1 grid
(a 1D chain). The state vector is

|ψ〉 =
1

23/2




1
1
1
eiυ

1
1
eiυ

e2iυ




.

The 1-site and 2-site reduced density matrices are

ρ̂0 = ρ̂2 =
1

4

(
2 1 + e−iυ

1 + eiυ 2

)
,

ρ̂1 =
1

8

(
4 (1 + e−iυ)2

(1 + eiυ)2 4

)
,

ρ̂0,1 =
1

8




2 1 + e−iυ 2 e−iυ + e−2iυ

1 + eiυ 2 1 + eiυ 2e−iυ

2 1 + e−iυ 2 e−iυ + e−2iυ

eiυ + e2iυ 2eiυ eiυ + e2iυ 2


 ,

and,

ρ̂0,2 =
1

8




2 1 + e−iυ 1 + e−iυ 1 + e−2iυ

1 + eiυ 2 2 1 + e−iυ

1 + eiυ 2 2 1 + e−iυ

1 + e2iυ 1 + eiυ 1 + eiυ 2 .


 .

(A.1)
We index rows and columns such that (0, 0) appears in
the upper left-hand corner. The reduced density matrix
ρ̂1,2 equals the result of taking ρ̂0,1, swapping row 1 with
row 2, and swapping column 1 with column 2. Diago-
nalizing these density matrices yields the entanglement
spectra {λ±} for ρ̂0 and ρ̂2, as well as {λ±, 0, 0} for ρ̂0,1

and ρ̂1,2. The λ± = [1±| cos(υ/2)|]/2. Zero-valued eigen-
values do not contribute to the entropy, so

s
(2)
0 = s

(2)
2 = s

(2)
0,1 = s

(2)
1,2 = 2− log2 (3 + cos υ) , (A.2)

wherein υ ∈ [0, 2π). The entanglement spectrum of ρ̂1

is {λ1, λ2} = {(1 − cos υ)/4, (3 + cos υ)/4}, and the en-
tanglement spectrum of ρ̂0,2 is {λ1, λ2 0, 0}. Hence the
remaining entropies are

s
(2)
1 = s

(2)
0,2 = 3− log2

(
5 + 2 cos υ + cos2 υ

)
. (A.3)

The mutual-information adjacency matrices’ nonzero en-

tropies can be expressed as M
(2)
0,1 = M

(2)
1,0 = M

(2)
1,2 =

M
(2)
2,1 = s

(2)
1 /2 and M

(2)
0,2 = M

(2)
2,0 = s

(2)
0 − s

(2)
1 /2.
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The graph that defines the cluster state lacked a link
between nodes 0 and 2. The nodes share mutual infor-

mation, however: M0,2 6= 0. For the same reason, the
1 × 19 cluster state of Fig. 3 has a large clustering and
an intuitively large disparity.
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