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A Generalization of Wirtinger Flow for Exact Interferometric Inversion*

Bariscan Yonel™ and Birsen Yazicit

Abstract. Interferometric inversion involves recovery of a signal from cross-correlations of its linear transfor-
mations. A close relative of interferometric inversion is the generalized phase retrieval problem, for
which significant advancements were made in recent years despite the ill-posed and nonconvex nature
of the problem. One such prominent phase retrieval method is Wirtinger flow (WF) [E. J. Candes, X.
Li, and M. Soltanolkotabi, IEEE Trans. Inform. Theory, 61 (2015), pp. 1985-2007], a computation-
ally efficient nonconvex optimization framework that provides high probability guarantees for exact
recovery under certain measurement models, specifically coded diffraction patterns, and Gaussian
sampling vectors. In this paper, we develop a generalization of WF for interferometric inversion,
which we refer to as generalized Wirtinger flow (GWF). Our approach treats the theory of low rank
matrix recovery and the nonconvex optimization approach of WF in a unified framework. Such a
treatment facilitates the identification of a new sufficient condition on the lifted forward model for
exact recovery via GWF and results in a deterministic framework based on geometric arguments for
convergence. Thereby, GWF extends the model specific probabilistic guarantees in [12] to arbitrary
measurement maps characterized over the equivalent lifted domain in the context of interferomet-
ric inversion, covering both random and deterministic measurement models. We then establish our
sufficient condition for the cross-correlations of linear measurements collected by complex Gauss-
ian sampling vectors. In the particular case of interferometric inversion with the Gaussian model,
we show that the exact recovery theory of standard WF implies our sufficient condition when we
have cross-correlations, and the regularity condition of WF is redundant. Finally, we demonstrate
the effectiveness of GWF numerically in a deterministic, interferometric multistatic radar imaging
scenario.
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1. Introduction. Interferometric inversion involves the recovery of a signal of interest
from the cross-correlations of its linear measurements, each collected by a different sensing
process. Let LT,L}" € CV denote the mth sampling vectors of the ith and jth sensing

processes and let p; € CV be the ground truth/signal of interest. We define
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as the linear measurements and describe the cross-correlated measurements as

(1.2) a = = WM ppf LT, m=1,..., M,
where U denotes complex conjugation. Thus, interferometric inversion involves recovery of
p: € CVN from dii € C, m=1,..., M, using the model in (1.2).

The interferometric inversion problem arises in many applications in different disciplines.
These include radar and sonar interferometry [2, 27, 41], passive imaging in acoustic, elec-
tromagnetic, and geophysical applications [1, 33, 44, 45, 51, 52, 55, 56, 57, 58, 59, 60, 61,
63, 64, 65], interferometric microscopy [37], beamforming and sensor localization in large
area networks [46], [26, 29, 36] among others. Additionally, cross-correlations were shown
to provide robustness to statistical fluctuations in scattering media or incoherent sources in
wave-based imaging [25, 32] and with respect to phase errors in the correlated linear trans-
formations [6, 23, 28, 34]. Therefore, in applications such as passive imaging [1, 33, 44, 45,
51, 52, 55, 56, 57, 58, 59, 60, 61, 63, 64, 65] and interferometry [2, 27, 41], cross-correlations
are formed as a part of the inference process after acquiring linear measurements by sensors
that are configured differently in space, time, or frequency. Additionally, the cross-correlated
measurement model arises naturally from the underlying physical sensing processes in certain
applications such as optical and radio astronomy [19, 30] or quantum optical imaging [42].

A special case of the interferometric inversion problem is when i = j in (1.2), in which
the model becomes the autocorrelations of linear measurements collected by a single sens-
ing process. In this case, the interferometric inversion problem reduces to the well-known
phase retrieval problem. Notably, both problems are nonconvex due to the quadratic equality
constraints enforced by the correlated measurement model. In recent years, several phase
retrieval methods with exact recovery guarantees have been developed despite the noncon-
vex nature of the problem. These methods are characterized by either one or both of the
following two principles: convexification of the solution set, which includes lifting-based ap-
proaches [9, 10, 53], or a provably accurate initialization, followed by an algorithmic map that
refines the initial estimate which is most prominently established by Wirtinger flow (WF) [12]
and its variants [4, 15, 16, 43, 54, 69, 70, 71].

In methods that deploy lifting, such as PhaseLift [9, 10], signal recovery from quadratic
measurements is reformulated as a low rank matrix recovery (LRMR) problem. While the
LRMR approach offers convergence guarantees via convexification, it has limited practical
applicability in typical sensing and imaging problems since lifting increases the dimension
of the inverse problem by an order of magnitude and requires demanding memory storage
in implementation. The WF framework, on the other hand, avoids lifting and hence offers
considerable advantages in computational complexity and memory requirements. Despite
solving the non-convex problem directly, convergence to a global solution at a geometric rate
is guaranteed by WF for coded diffraction patterns and Gaussian sampling vectors [12] and
more recently for short time Fourier transforms [4]. These advantages promote WF as a
theoretical framework suitable for large scale imaging problems.

Conventionally, interferometric inversion in imaging applications has been approached by
Fourier-based techniques, such as time or frequency difference of arrival backprojection [50, 51,
52, 56, 58, 60, 63, 64]. While these methods are practical and computationally efficient, their
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applicability is limited to scenes composed of well-separated point targets due to underlying
assumptions. As an alternative, LRMR theory has been explored for interferometric inversion
[21, 33]. In particular, [21] assesses the robustness of solutions to several convex semidefinite
programs (SDPs) in a deterministic framework after lifting the interferometric measurements.
Notably, these SDP solvers are inspired by the PhaseLift method [9, 10, 20] and hence suffer
from the same drawbacks in practice. In [33], an iterative optimization approach to LRMR was
developed for interferometric passive imaging to circumvent the poor scaling properties of SDP
approaches. The methodology in [33] is based on Uzawa’s method for matrix completion [7,
38]. While this method is computationally more efficient than the SDP solvers, it still operates
on the lifted domain and hence requires significant memory and computational resources.
Additionally, these convexified lifting-based solvers require stringent theoretical conditions on
the measurement model, which poses a major theoretical barrier for interferometric inversion
problems with deterministic forward models.

In this paper, motivated by its advantages over lifting-based methods, we develop a gener-
alization of WF applicable to interferometric inversion problems with exact recovery guaran-
tees. We refer to this method as the generalized Wirtinger flow (GWF). Beyond the immediate
extension of algorithmic principles of WF to the interferometric inversion, our mathematical
framework differs from that of WF in two significant ways. (i) The GWF theory is established
in the lifted domain. This lifting-based perspective allows us to develop a novel approach that
bridges the theory between LRMR and the nonconvex methodology of WF and culminates
in derivation of a new sufficient condition for exact recovery in the context of interferometric
inversion. Namely, GWF guarantees exact recovery to a general class of problems that are
characterized over the equivalent lifted domain by the restricted isometry property (RIP) on
the set of rank-1, positive semidefinite (PSD) matrices. Specifically, we provide an upper
bound for the restricted isometry constant (RIC) over the set of rank-1, PSD matrices so that
RIP directly implies convergence to a global solution. (ii) Given the sufficient condition, we
derive exact recovery guarantees for an arbitrary mapping over the lifted domain using solely
geometric arguments in a deterministic framework, rather than model specific probabilistic
arguments of standard WF. Notably, our analysis proves that the regularity condition, which
forms the basis of convergence in standard WF, is redundant for the case of interferometric
inversion.

In addition, developing the GWF framework through the equivalent lifted problem allows
us to identify the key theoretical advantages of the nonconvex optimization approach over
lifting based convex solvers beyond the immediate gains in computation and applicability. Our
exact recovery condition for GWF proves to be a less stringent RIP than that of the sufficient
conditions of LRMR methods. As a result of its fundamental differences from standard WF,
and less stringent exact recovery requirements than those of LRMR methods, GWF offers a
promising step toward exact recovery guarantees for interferometric inversion problems which
are governed by deterministic measurement models. One such application is array imaging,
for which RIP was shown to hold over rank-1 matrices for sufficiently high central frequencies,
albeit asymptotically in the number of receivers [14]. Accordingly, we consider GWF as an
exact interferometric imaging method alternative to LRMR for multistatic radar imaging, and
we design imaging system parameters for the lifted forward model to satisfy of our sufficient
condition in the nonasymptotic regime [66].
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In our key results, we first prove that the RIP over rank-1, PSD matrices on the lifted
forward model implies an accurate initialization by the spectral method and ensures that the
regularity condition is satisfied in the e-neighborhood defined by the initialization if RIC is less
than 0.214. Next, although not applicable to the case of autocorrelations in [12], we show that
this sufficient condition is satisfied for the cross-correlation of linear measurements collected
by independent and identically distributed (i.i.d.) Gaussian sampling vectors. Essentially,
our results establish that the probabilistic arguments used for the Gaussian sampling model
in [12] are fully captured by the single event that the RIP is satisfied over rank-1, PSD
matrices in the case i # j in (1.2). To validate our analysis we conduct numerical experiments
for the Gaussian sampling model by counting empirical probability of exact recovery. We
then demonstrate the effectiveness of GWF in a realistic passive multistatic radar imaging
scenario. Our preliminary numerical simulations confirm our theoretical results and show that
the interferometric inversion is solved in an exact manner by GWF.

The rest of our paper is organized as follows. We first introduce the problem formulation
for interferometric inversion on the signal domain and discuss lifting based prior art in sec-
tion 2. We then formulate the GWF algorithm in section 3 and present key definitions and
terminology followed by the main theorem statements in section 4. The proofs of the main
theorems are provided in section 5. The numerical simulations for Gaussian sampling model
and interferometric multistatic radar imaging are presented in section 6. Section 7 concludes
our paper. Appendices A, B, and C include proofs of lemmas used in section 4. The notations
used in the paper are provided in Table 1.

2. Problem formulation and prior art. In this section, we introduce the nonconvex for-
mulation of the interferometric inversion problem and its key challenges. Next we discuss
lifting-based, convex formulations which address these key challenges in solving quadratic
systems of equations via LRMR theory.

2.1. The Nonconvex objective function. To address the interferometric inversion prob-
lem, we define the following objective function and set up the corresponding optimization
problem:

M
1
(2.1) T(0) = 5 S0 1L oLy — .
m=1
(2.2) p = argmin J(p).

p

Lety = [yl-lj, yfj, . yl]_\;[ " and £ : CV — CM be the cross-correlated measurement map defined
as

(2.3) L(p) =y, where pe CV, it = (L") pp"'LI".

The objective function in (2.1) is the ¢3 mismatch in the range of L, i.e., the space of
cross-correlated measurements, which is solved over the signal domain CV in (2.2). The
difficulty in (2.2) is that the objective function J is nonconvex over the variable p due to the
invariance of cross-correlated measurements to global phase factors. Essentially (2.2) has a
nonconvex solution set with infinitely many elements, which casts interferometric inversion as
a challenging, ill-posed problem.
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Table 1
Table of notation.

Symbol Description

L mth measurement vector of ith receiver

LY mth measurement vector of jth receiver

L™ mth measurement vector of a single receiver, i.e., i = j
di; Interferometric data from correlating receivers ¢ and j
am Self-correlated (phaseless) measurements

M Number of measurements

N Number of unknowns

p Signal in CV

X Variable in the lifted domain in CN*V

Pt Ground truth signal in CV

p Lifted signal pp™

Pt Lifted ground truth p¢pf?

L (Nonlinear) Operator of quadratic correlation mapping
y Element in the range of £

Ep Equivalence class of p under £ over R

Py Equivalence set of p under £ over R

P Global solution set with P,, = P

F Lifted forward model

FH Adjoint of F/backprojection operator

J Objective function

A4 Gradient of the objective function with respect to p
e Mismatch between correlated measurements

X Set of rank-1, PSD matrices

P Projection operator

S Set of symmetric matrices

PSD Positive semidefinite cone

) Successive operation of projections

dist Distance metric

Y Backprojection estimate of the lifted unknown

X Spectral matrix of GWF

Po Initialization from spectral method

Po Initial lifted signal

Ao, Vo Leading eigenvalue-eigenvector pair of X

E(e) e-neighborhood of the global solution set

I Identity operator on any domain

1) Additive perturbation operator on I

é Error in the lifted domain

RIP, Restricted isometry property over the PSD cone
RIC — 41 Restricted isometry constant over rank-1 matrices

Definition 2.1 (global solution set). We say that the points

P = {eid)pt c ¢ €10, 27?)}

form the global solution set for the interferometric inversion from the cross-correlated mea-

surements (1.2).

More generally, for any p € CV, let £, = {z € CV : L(z) = L(p)} be the equivalence class
of p under £. We then define the following collection of signals as the equivalence set of p.
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Definition 2.2 (equivalence set). Let p € CV and

(2.4) Py = {c%p,0 € [0,27)} .
We refer to P, as the equivalence set of p.

Remark 2.3. Note that P, C &,, and P,, is identical to the global solution set in Definition
2.1.

Alleviating the noninjectivity of the measurement map is a key step in formulating methods
that guarantee exact recovery in phase retrieval literature [3] and offers us a blueprint in
addressing (2.2). A key observation is that one can consider (2.3) as a mapping from a
rank-1, PSD matrix ppt € CV*¥ instead of a quadratic map from the signal domain in
CN and attempt to recover p;pf’. This approach is known as the lifting technique, which is
the main premise of LRMR-based phase retrieval [9, 10, 11, 53] and interferometric inversion
methods [20, 21, 33].

2.2. Low rank matrix recovery via lifting. We adopt the concepts of the LRMR ap-
proach to the interferometric inversion problem based on PhaseLift [33], [10] and introduce
the following definitions.

Definition 2.4 (lifting). Each correlated measurement in (1.2) can be written in the form
of an inner product of two rank-1 operators, p; = p;pf! and F" = L}-"(L;”)H, such that'

(2.5) dr = (F™ pyp, m=1,...,M,

where (-, -)p is the Frobenius inner product. We refer to the procedure of transforming inter-
ferometric inversion over CN to the recovery of the rank-1 unknown p; in CN*N as lifting.

The lifting technique introduces a new linear measurement map which we define as follows.

Definition 2.5 (lifted forward model). Let d = [dilj,dfj,---d%] € CM denote the vector
obtained by stacking the cross-correlated measurements in (1.2). Then using (2.5), we define

F:CNXN _y M 4
(2.6) d=F(p)

and refer to F as the lifted forward model/map.

Remark 2.6. The map F can be interpreted as an M x N? matrix with F™ as its rows in
the vectorized problem in which NV x N variable p; is concatenated into a vector.

We refer to the problem of recovering of p; from d using the model (2.6) as the lifted
problem, or interferometric inversion in the lifted domain.

The main advantage of lifting is that Vp € CV, each nonconvex equivalence set P, is
now mapped to a set with a single element p = pp’. Using the definition of the lifted
forward model, quadratic equality constraints reduce to affine equality constraints to define a
convex manifold in CV*¥_ Using the rank-1 PSD structure of the unknown py, interferometric
inversion in the lifted domain can be formulated as the following optimization problem:

1(T) denotes elementwise complex conjugation.
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(2.7) find: X s.t. d=F(X), X >0, rank(X) = 1.

Here, we refer to X € CV*¥ as the lifted variable. Due to the fact that there surely exists a

rank-1 solution from (2.6), (2.7) is equivalent to
(2.8) minimize: rank(X) s.t. d = F(X), X *= 0,

which is known to be an NP-hard problem [7, 38]. Given its rank-minimization form, (2.8) is
approached by LRMR theory analogous to compressive sensing [13, 22]. Most prominently, the
nonconvex rank term of the objective function is relaxed by a convex surrogate, which under
the PSD constraint corresponds to the trace norm. This results in the following formulation
[9, 10, 14]:

(2.9) minimize: tr(X) s.t. d=F(X), X >0,

which can be solved in polynomial time via semidefinite programming. To obtain a robust pro-
gram, (2.9) is commonly perturbed using the least squares criterion, which under the additive
i.i.d. noise assumption can be written as

1
(2.10) minimize: tr(X) s.t. §H}-<X) —d|3 < 0(c?), X =0,
where 02 corresponds to the variance in the case of Gaussian noise, and the order in the
threshold can be tuned to obtain a desired lower bound on the log-likelihood of observing d.
Alternatively, one can equivalently formulate the Lagrangian of (2.10) with a proper choice
of the regularization parameter A in relation to the threshold, as follows:

T | 2
(2.11) minimize: §||]-"(X) —d||3 + Atr(X).

(2.11) can be solved by Uzawa’s method [7, 38] which is analogous to the singular value
thresholding algorithm with a PSD constraint [33] with the following iterations:

(2.12) Xy, =Py oPry (FMvp1),
(2.13) Vi = Vi_1+ ;Lk(d — ]'-(Xk))

In (2.12) and (2.13), v = [}, - - vM]T denotes the Lagrange multipliers initialized as vy = 0,
p is the step size, and subscript k& denotes the iteration number. P, is the shrinkage operator
acting on the singular values of its argument with threshold 7, = pgA, which through the
parameter A\ of trace regularization enforces the low rank constraint. Py is the projection
operator onto the PSD cone.

As M < N? in typical estimation problems, the lifted forward model has a nontrivial null
space. LRMR theory encapsulates identifying necessary and sufficient conditions on F in order
to guarantee exact recovery despite having an underdetermined system of equations in (2.6).
The key conditions on F are primarily characterized by its null space [35, 39, 40] or restricted
isometry properties [5, 8, 38] on low rank matrices. Methods such as PhaseLift [9, 10] and
PhaseCut [53] assert conditions on the mapping F such that there exists no feasible element
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in the PSD cone with a smaller trace than the true solution p;, from which exact recovery
results to a unique minimizer are directly implied by the standard arguments of semidefinite
programming [10]. Iterative optimization via Uzawa’s method on the other hand requires RIP
over rank-5 matrices with a sufficiently small RIC (< 1/10) for the convex problem in (2.11) to
have the identical solution to the original nonconvex problem in (2.8). Notably, in this scenario
the PSD constraint can simply be dropped due to the guaranteed uniqueness of the solution
to the original problem and the convexity of the problem in (2.11). Furthermore, under the
properties on F asserted by PhaseLift, it is observed in [20] that the lifted problem can be
robustly solved as a convex feasibility problem by Douglas—-Rachford splitting by eliminating
the trace minimization step completely. These indicate a level of redundancy between trace
regularization and the PSD constraint, which arises from the convexification of the problem.

Altogether, lifting-based approaches provide a profound perspective to the interferometric
inversion problem. Our observation is that the key principles of lifting-based methods in
establishing exact recovery guarantees are reciprocated in the nonconvex framework of WF.
In fact, WF corresponds to solving a perturbed nonconvex feasibility problem over the lifted
domain, and in this sense it is reminiscent of the optimizationless PhaseLift method of [20] and
Uzawa’s iterations in [33]. To observe this, we introduce the GWF iterations for interferometric
inversion and develop the method as a solver in the lifted problem framework. The basis of
our extension from WF to GWF framework is the identification of conditions on the lifted
forward model for the exactness of a solution in the lifted domain.

It is worth noting that low rank models and LRMR theory cover a rich area of research
with a wide range of applications in fields such as control theory and machine learning. Several
of the LRMR methods discussed in this subsection were first proposed for matrix completion
and relate strongly to the problem of low rank matrix factorization. Nonconvex optimization
theory for low rank matrix factorization has undergone notable developments in recent years,
with methods that offer exact recovery results for quadratic or bilinear equations of rank-r
matrices in the random Gaussian model [73], or if the measurement map satisfies RIP over
rank-6r with a RIC < 1/10 [48]. More recently a primal-dual analysis was conducted in [72]
to show that there exists no spurious local-minima in the nonconvex LRMR problem for
restricted strongly convex and smooth objective functions. For further discussion on advances
in nonconvex LRMR, we refer the reader to [18, 62].

3. Generalized Wirtinger flow framework for exact interferometric inversion. In this
section, we present the algorithmic principles of the GWF framework for exact interferomet-
ric inversion. We specifically identify and present the theoretical advantages obtained from
viewing the algorithm in the lifted domain, despite operating on the signal domain. We first
present the GWF iterations, then proceed with generalizing the spectral method for initial-
ization using our lifted formulation of GWF. We finally provide an algorithm summary with
specifications of computational complexity of each step.

3.1. GWF Iterations. In presenting the GWF iterations, we begin by extending the iter-
ative scheme of WF to the case of the interferometric measurement model in (1.2), with ¢ # j.
We next introduce an equivalent, novel interpretation of these iterations in the lifted domain,
which yields the basis of our GWF framework for exact recovery with arbitrary lifted forward
models.
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3.1.1. Extending WF. In contrast to the lifting-based approaches, the nonconvex form of
the problem in (2.2) is preserved in WF. Given an accurate initial estimate pg, WF involves
using the following updates to refine the current estimate py:

(3.1) prit = pr = 5V T ()

Notably, J is a real-valued function of a complex variable p € CV and, therefore, non-
holomorphic. Hence, the gradient over J is defined by the means of Wirtinger derivatives

B W)H _ <3~7)T
(3.2) VJ = (3p =35/ where
3_1<8_-8> 3_1<8 -8>
(3:3) 0~ 2\Gpr 'opr)" 35 " 2 \Gpn T opr )

and p = pg +ipz, with pr, pr € RY. Thus, the iterations in (3.1) correspond to that of the
steepest descent method [12], where pj11 is the step size. For interferometric inversion by
solving (2.2), VJ evaluated at py is given by

M
(3.4) VI (o) = g - [ (L @) o) + e (L (1) )]
m=1

where e} = (@™ prpl L7 — df7) is the mismatch between the synthesized and cross-
correlated measurements. Note that in the case of phase retrieval we have ¢ = j. Letting
L™ =L" = LT and d™ = (L™, p)|?, for m = 1,..., M, (3.4) reduces to the standard WF

iterations of [12]. See Appendix A.1 for the derivation of V.J for i # j.

3.1.2. Interpretation of GWF updates in the lifted domain. Our formulation of the
GWF framework resides in the lifted domain and reveals an illuminating interpretation of the
updates in (3.4). Moving the common term of the current iterate p; outside the summation,
(3.4) can be expressed as

11 (& e P
(3.5) VI(pr) = 57 [2 (Z e (L @™ + 37 e (L (L) ))] Pk

m=1 m=1

From the definition of the lifted forward model in (2.6), the second term inside the brackets
in (3.5) becomes the backprojection of the measurement error onto the adjoint space of F.

Definition 3.1 (backprojection). Lety = [y, y?,---yM] € CM. For the lifted forward model
F : CNXN — CM in Definition 2.5, we define the adjoint operator FH : CM — CN*N g5

M
(3.6) Fiy)y=>"ym (L wm™)

and refer to (3.6) as the backprojection of y.
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Since (3.5) consists of the average of terms that are Hermitian transposes of each other,
the update term in (3.1) corresponds to backprojecting the mismatch between synthesized
and true measurements, and then projecting it onto the set of symmetric matrices S, i.e.,

(3.7) VI (k) = %735 (F™(e)) pr,

where e = [e}j, e?j, . ef\f ] € CM is the measurement mismatch vector and Pg(-) denotes the
projection operator onto S.

The representation in (3.7) provides a novel perspective in interpreting GWF as a solver
of the lifted problem. Consider the structure enforced by (3.1) for the nonrelaxed form of the
low rank recovery problem in (2.8). In the GWF updates, the rank of the lifted variable X
in (2.8) is merely fixed at one, and the rank minimization problem is converted to its original
nonconvex feasibility problem in (2.7). Knowing that (2.1) corresponds to the ¢ mismatch in
the space of cross-correlated measurements, the GWF solver of (2.1) is equivalently the solver

of the following lifted problem:
1
(3.8) minimize: WH}"(X) —d||3 s.t. rank(X)=1and X > 0.

Observe that the rank-1, PSD constraint precisely corresponds to minimization over the
set of elements of X = {pp!, p € CV} and that (3.8) can be equivalently cast as

1
(3.9) minimize: ——||F(X) —d|3 st. X=pp".
2M

The updates to solve (3.9) then can be performed on the leading eigenspace of the lifted
variable X directly by means of the Jacobian %—)ﬁ(. Since X = X*| this yields’

— T

0X (&7 N >
(3.10) Pk+1 = Pk — Hk+1 (aﬁ X + X ) , where
(3.11)

oxXog\ 1 oxXos\" 1 H
H H H H
(apax) g (P F) = F1d) p. (apax) g (P FO0 = Fd)p

Initializing the algorithm with a proper estimate in the constraint set X', i.e., Xg = po péf , and
substituting X = pp’, we precisely obtain V.7 (px) derived in (3.7) when (3.10) is evaluated
at p = pg.

3.2. The distance metric and equivalence of convergence in signal and lifted domains.
While the view of GWF in the lifted problem and the formulation in (3.9) are illuminating,
the algorithmic map of GWF operates exclusively on the signal domain in C. The duality
between the lifted domain and the signal domain is established by the distance metric of WF
framework, which is defined as follows [12].

w

2We use the property of Wirtinger derivatives in writing the update (3.10), such that the derivative of a
real-valued function of a complex variable has the property that (g—)j() = (22

QO
M
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Definition 3.2. Let p; € C be an element of the global solution set in (2.1). The distance
of an element p € CN to p; is defined as [12]

(3.12) dist(p, pr) = |p — P py||, where ®(p) := argminlle pec'®||.
¢€[0,27

For the purpose of convergence, the metric implies that we are primarily interested in the
distance of an estimate p to any of the elements in the nonconvex solution set P. In technical
terms, invoking Definition 2.2, (3.12) is a measure of distance between the equivalence sets
P, and P. By Definition 3.2, the ambiguity due to the invariance of the cross-correlation
map, £, to the global phase factors is evaded on CV, without lifting the problem. Observe
that the phase ambiguity is indeed removed analytically, since the £» norm is minimized when
Re((p, é®®) p,)) = |(p, e7®P) p,)| = |(p, pt)|, which is achieved at e!®(P) = %. Hence, the
squared distance becomes

(3.13) dist*(p, pe) = lplI* + llpel* = 2l(p, p1)]

and is independent of any global phase factor on p or p;. Geometrically, the metric suggests
that the cosine of the angle 6 between the elements p and p; is given by

(3.14) cosf = e, pu)|

lelllodl

which can be viewed as the angle between the subspaces spanned by the elements pp? and
pipl!l in the lifted domain CV*¥. This can be seen by evaluating the error between the lifted
terms as follows:

(3.15) lop™ — piot |7 = lop™ 7 + oot [ — 2Re ((pp™, piot") ) -

For two rank-1 arguments, the Frobenius inner product in (3.15) reduces to |{p, p;)|?, and
the cosine of the angle between the elements becomes equal to cos?(f). Since (3.14) is non-
negative, the relationship between the two angles is one-to-one. Therefore, WF distance metric
can be interpreted as a measure of distance between the lifted variables, and the convergence
with respect to the metric (3.12) in signal domain is equivalent to convergence with respect
to (3.15) in the lifted space.

3.3. Theoretical advantages of GWF via the lifted perspective. The lifted perspective
of GWF reveals its connection to convex LRMR methods, such as those proposed in [20]
and [33], as the objective in (3.8) simply corresponds to solving the quadratic data-fit over a
more exclusive search space. In the scope of lifting-based approaches, we discussed Uzawa’s
method as a solver for the trace regularized problem in (2.11). Consider solving (3.8) by
Uzawa’s method described in (2.12)—(2.13), which essentially reduces to projected gradient
descent: a gradient step over the smooth ¢5 mismatch term is followed by a projection onto
the intersection of the PSD cone and the set of rank-1 matrices. While in general projections
to the intersection of two sets is an optimization problem on its own, and the rank-1 constraint
constitutes a nonconvex manifold, there exists a simple projection onto the set X = {X €
CN*N : rank(X) = 1N X = 0} such that
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(3.16) Px =Pr=10Pq,

which is the successive operation of the projection onto the PSD cone, followed by a rank-1
approximation.

Although a solver can be formulated, recovery guarantees of Uzawa’s method do not cover
this case due to the nonconvexity of the projected set. Simply, a gradient step over the convex
PSD cone is not guaranteed to improve the rank-1 approximation of an estimate, which is
after all the original motivation behind pursuing the convex solvers. Essentially, the GWF
framework circumvents convexification and presents an alternative update scheme to Uzawa’s
for minimizing the objective in (3.8). This alternative update form stems from the fact that
the PSD rank-1 constraint of the lifted unknown can be enforced by a variable transformation
in the update equation, rather than by projections given in (3.16).

Clearly, the immediate advantage of the GWF formulation in (3.9) over the convex re-
laxations is the dimensionality reduction of the search space, attributed to iterating in the
signal domain. There is yet another significant advantage to the GWF formulation relating to
exact recovery guarantees. By (3.9), an iterative scheme for the unrelaxed, nonconvex form
of the lifted problem is formulated, which enforces the rank-1, PSD structure on the iterates.
This allows the constraint set to be considerably smaller than that of the trace relaxation
or the convex feasibility problems. Formally, the problem (3.9) has a unique solution if the
equivalence set of any p € CV is its equivalence class under the correlation map £ as defined
in Definition 2.2.

Condition 3.3 (uniqueness condition).  There exists a unique solution pipl! € X for the
problem in (3.9) if

(3.17) P,=&, YpecCh.

In other words, there should exist no element H in the null space of F, such that p;pf + H
is a rank-1, PSD matrix. Therefore, for exact interferometric inversion by GWF, the null space
condition of the lifted forward model has to hold over a much less restrictive set than any of
the approaches discussed in section 2.2.

3.4. The spectral method for GWF initialization. Having to solve a nonconvex problem,
exact recovery guarantees of the WF framework depend on the accuracy of the initial estimate
po- The initial estimate of the standard WF algorithm is computed by the spectral method
which corresponds to the leading eigenvector of the following PSD matrix:

M
_ my m/t m\H
(3.18) Y_MZdL@),

m=1

where L™ = L* = L, and d™ = [(L™, pt)|? for i = j. The leading eigenvector is scaled by
the square root of the corresponding largest eigenvalue A\g of Y. In [12], the spectral method
is described from a stochastic perspective. By the strong law of large numbers, under the
assumption that we have L™ ~ N(0, 3I) +iN(0, 3I),m = 1,..., M, the spectral matrix Y

becomes equal to
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M

1 " 2 "

(3.19) E [M > 1dmLm(Lm) = [lpell"L+ pepy’
m=

as M — oo, which has the true solution p; as its leading eigenvector. The concentration of
the spectral matrix around its expectation is used to show that the leading eigenvector of Y is
sufficiently accurate, such that the sequence of iterates {py} of (3.1) converges to an element
in the global solution set P.

In developing the GWF framework, we view the spectral method as a procedure in the
lifted domain. In fact, we observe that the spectral matrix of phase retrieval in (3.18) is
the backprojection estimate of the lifted unknown p; = p;p’. Having different measurement
vectors Li" and L7 in the cross-correlated measurement case, using the definition of the
backprojection operator in (3.6), we extend (3.18) and redefine Y as follows:

1 H my m m
(3.20) Y =--7"(d MZd L (L

As noted, the true solution p; = pypf? of the lifted problem lies in the PSD cone. In
standard WF for phase retrieval, the spectral matrix Y is formed by summation of PSD outer
products that are scaled by R+ valued measurements {dm}m 1, as autocorrelations are by
definition squared magnitudes. Hence, the WF spectral method generates an estimate of the
lifted unknown within the constraint set by default. This obviously is not the case for the
backprojection estimate (3.20) with the cross-correlated measurement model. Therefore, the
extension of the spectral method to cross-correlations includes a projection step onto the PSD
cone. Since the PSD cone is convex, its projection operator is nonexpansive and yields a closer
estimate to pyp!! than that of (3.20). The GWF spectral matrix then becomes

(3.21) X = 2MdeLm L) gL (Lt

We discard the positive semidefinitivity in (3.21) and only project onto the set of symmetric
matrices, which is also convex. This is simply because only the leading eigenvector will be
kept from the generated lifted estimate, which is unaffected by the projection onto the PSD
cone.® Letting Ao, vo denote the leading eigenvalue-eigenvector pair of X, the GWF initial
estimate pg is given by

(3.22) PO =V )\()V().

Using the representation in the lifted problem in (3.20) and plugging in (2.6) for the
measurements, the GWF spectral matrix X can be written as

(3.23) X = %Pg (F7(a)) = %PS (F F(piplh))

3Unless the leading eigenvalue is negative, a scenario that is excluded due to the conditions for exact recovery
in section 4.
4Note that (3.21) yields a symmetric matrix and hence has eigenvalues \; € R.
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Hence, the leading eigenvalue-eigenvector extraction corresponds to keeping the rank-1, PSD
approximation, pg := pg péf , of the backprojection estimate in the lifted domain. Furthermore,
by definition in (3.23), the accuracy of the spectral estimate fully hinges on the properties of
the normal operator of the lifted problem, i.e., F#F over the set of rank-1, PSD matrices, X.

As a comparison, consider the LRMR, approach for the interferometric inversion by the
PSD constrained singular value thresholding algorithm in [33]. It can be seen that, setting
pe = 1/M in (2.13), the first iterate generated by (2.12) is X = P (4 Fd), which, prior to
the singular value thresholding, is identical to the backprojection estimate computed by the
spectral method. Hence, the spectral method simply differs from the first Uzawa iteration by
keeping the rank-1 approximation via the projection operator Py defined in (3.16), instead
of a low rank approximation. This precisely corresponds to the first Uzawa iteration to solve
the nonconvex rank-1 constrained problem in (3.8).

3.5. Algorithm summary and computational complexity. Compared to the lifting-based
LRMR approaches, GWF provides significant reductions in computational complexity and
memory requirements per iteration. As shown in section 3.4, GWF uses the first iteration of
the Uzawa’s method to compute an initial estimate pg and replaces the following iterations
over the lifted domain with iterations on the leading eigenspace. The GWF algorithm is
summarized as follows:

e Input: Interferometric measurements d{? and measurement vectors LZm,Lgn Vi #£ j,
m=1,..., M.

e Initialization: Run Uzawa’s method in (2.12) initialized with y = 0, uop = 1/M, and
A =0, i.e., trace regularization free, for 1 iteration, yielding

X = s (F(a)).

Keep the rank-1 approximation )\opopgl . The initialization step consists of the outer
product of the two measurement vectors for each of the M samples, resulting in
O(M N?) multiplications, followed by an eigenvalue decomposition with O(N?) com-
plexity.

e Iterations: Perform gradient descent updates as pri1 = pg — ﬁ‘;O*ng VJ(px), with

VI (pr) = %7’5 (7™ (ex)) pr,

where (ex)™ = (L") prpf/LY" — d7t).
Fach iteration requires the following operations:
1. Computing and storing the linear terms (L;’;)H pPr, requiring M number of N
multiplications for each, resulting in O(M N) multiplications.
2. Computing the error by cross-correlating linear terms, requiring O(M ) multi-
plications.
3. Multiplication of the linear terms (L;"J)H pr and the error e;} for each m =
1,..., M, requiring O(M) multiplications.
4. Multiplication of the result in operation 3 with vectors {L™}_, and {L;”}%:l,
requiring O(M N) multiplications.
These operations result in O(M N) multiplications for each iteration.
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4. Theory of exact interferometric inversion via GWF. In this section we present our
exact recovery guarantees for interferometric inversion by GWEF. Notably, we merge the ex-
act recovery conditions of standard Wirtinger flow that rely on statistical properties of the
sampling vectors into a single condition on the lifted forward model in the context of interfer-
ometric inversion (i # j). In Theorem 4.6, we state that if F satisfies the RIP on the set of
rank-1, PSD matrices with a sufficiently small RIC, GWF is guaranteed to recover the true
solution up to a global phase factor for any p; € CV. Following Theorem 4.6, we establish
the validity of our condition in Theorem 4.9 for the case of O(N log N) measurements that
are cross-correlations of i.i.d. complex Gaussian sampling vectors.

We begin by introducing the definitions of some concepts that appear in our theorem
statements.

4.1. The e-neighborhood of P and the regularity condition.

Definition 4.1 (e-neighborhood of P). We denote the e-neighborhood of the global solution
set P in (2.1) by E(e) and define it as follows [12]:
(4.1) E(e) = {p e C : dist(p, P) < ¢} .

The set E(e) is determined by the distance of the spectral initialization to the global
solution set, i.e., € = dist(pg, p¢). The main result of the standard WF framework is that,
for Gaussian and coded diffraction pattern measurement models [12], € is sufficiently small so
that the objective function J satisfies the following regularity condition.

Condition 4.2 (regularity condition). The objective function J satisfies the regularity con-
dition if Vp € E(e), the following holds:

(4.2) Re ((VT(0). (p = pie™?))) = ~dist*(p.po) + 5 IVT ()|

for firted a > 0 and 8 > 0 such that af > 4.

The regularity condition guarantees that the iterations in (3.4) are contractions with
respect to the distance metric (3.12), which ensures that all gradient descent iterates remain
in E(e), which is established by the following lemma from [12].

Lemma 4.3. Assume that J obeys the regularity condition in (4.2) for some fized «, 3
Vp € E(€). Having py € E(¢), and assuming p < 2/, consider the following update:

(4.3) Pi+1 = pr — WV T (pr)-

Then, Yk we have py, € E(€) and

) 2u\" 2
dist™(pr, pe) < 1= = | dist™(po, pr)-

Proof. See [12, Lemma 7.10]. [ |

Furthermore, from the definition of V.7 in (3.4), the regularity condition implies that
there exists no p € E(e) that belongs to the equivalence class of p; under the mapping L.
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Hence, the uniqueness condition for exact recovery is satisfied locally, and (4.2) is a sufficient
condition by Lemma 7.1 of [12] such that the algorithm iterates {px} converge to P at a
geometric rate. The spectral initialization is said to be sufficiently accurate, if (4.2) holds

Vp € E(e).

4.2. Sufficient conditions for exact recovery. The condition we assert on the lifted for-
ward model F is the RIP on the set of rank-1, PSD matrices, X.

Definition 4.4 (restricted isometry property). Let A : CKXN — CM denote a linear op-
erator. Without loss of generality assume K < N. For every 1 < r < K, the r-restricted
isometry constant is defined as the smallest 6, < 1 such that

(4.4) (1= IX[E < JAX)* < (1 + 61X %

holds for all matrices X of rank at most v, where || X||p = / Tr(X#X) denotes the Frobenius

norm.

Suppose (4.4) holds VX € D C CEXN that have rank-r with some constant 0 < §, < 1;
then A is said to satisfy the RIPp with RIC-0,. For the interferometric inversion problem,
having K = N, if there exists d; < 1 such that F in (2.6) satisfies the RIP on the PSD cone,
we say that the lifted forward model satisfies RIP, with RIC-61, i.e., RIP over the set of
rank-1, PSD matrices, X.

(4.4) quantifies how close F F is to an identity over rank-1, PSD matrices through the
following lemma.

Lemma 4.5. Suppose F satisfies RIP on the set rank-1, PSD matrices of size N X N, i.e.,
X = {pp" : p € CN} with RIC-61. Then, for any X € X we have

(4.5) (FHF -1) (X) = 6(X),

where § : X — CM s a bounded operator such that

16 (pp™) Il

O|lx = x =41,
ol = e Pl '

where || - || denotes the spectral norm.
Proof. See Appendix A.2. [ |

In the GWF framework, we identify RIP over rank-1, PSD matrices with RIC-6; < 0.214
as a sufficient condition for an arbitrary lifted forward model F, which guarantees that the
spectral initialization of GWF provides an initial estimate that is sufficiently accurate, i.e.,
GWEF iterates are guaranteed to converge to a global solution in P starting from py.

Theorem 4.6 (exact recovery by GWF). Assume the lifted forward model F° satisfies the
RIP condition over rank-1, PSD matrices with RIC-61. Then, the initial estimate pg obtained
from the spectral method by (3.21) and (3.22) satisfies

5 o 1
Up to a normalization factor, such as VTR
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(4.6) dist2(po, 1) < €] |2

where € is an O(1) constant with €2 = (2+61)(1—4/1 — 1i161)+§7 and the regularity condition
in (4.2) surely holds for the objective function in (2.1) if & < 0.214, with any «, B satisfying

1 c?(81)llpe ]

4.7 PR 3

< h(d):=(1—02)(1—¢€)(2—¢),

where dy = % and c(01) = (2+€)(1 + €)(1 + 01). Thus, for the iterations of (4.3)
with the update term in (3.4) and the fized step size p < 2/f3, we have

. 20\ *
(4.8) dist?(pg, pt) < € (1 - Ctb) ot 1.

Proof. See section 5.1. [ |

We refer to d2 as the RIC of the local RIP-2 condition by Lemma 5.5 which is exclusively
over elements of the form {pp — pypf : p € E(e)} and c as the local Lipschitz constant of
VJ by Lemma 5.6, both stated in section 5.

Remark 4.7. We summarize the implications of Theorem 4.6 by the following remarks.

1. Theorem 4.6 establishes a regime in which the regularity condition holds by default
as a result of the RIP over rank-1, PSD matrices, captured by (4.7). This regime also
defines the range of values the RIC-§; can attain, through the quantity o which must
satisfy do < 1, as shown in Figure 1. Notably, having do < 1 guarantees the uniqueness
of a solution locally in E(e) and the restricted strong convexity of J since there exists
a fixed «, 8 satisfying (4.7). Numerically, plugging in the € constant defined by 1, this
is satisfied for d; < 0.214.

2. Figure 1 demonstrates the values the constants ¢ and h attain in the valid range for §;.
These O(1) constants directly impact the convergence rate of the algorithm, as « and
are required to be sufficiently large values for (4.7) to hold. Observe that (4.7) implies
setting a = o'/||p¢||?, and B = B'||p¢|?, where o/, 3’ = O(1), hence a3 = O(1). Since

8, and € vs. RIC-§; e(dy), h(dy) vs. RIC-§,

0sf —C 4 _le} 4

07 5 —h(5)|

L " " " L " ° L L L L !
0 002 004 008 008 01 012 044 046 018 02 0 002 o0p4 06 008 01 042 044 046 048 02

Restricted Isometry Constant - 61 Restricted Isometry Constant - 61

Figure 1. Numerical evaluation of €, RIC-62 and c, h values with respect to the RIC-61 < 0.214 of the RIP
on the set of rank-1 PSD matrices.
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clearly h < 2, and ¢? > 4, and the regularity condition can at best hold when o/’ > 4
by definition. Therefore, the RIP over rank-1, PSD matrices with RIC-§; < 0.214 is a
sufficient condition for the exact recovery via GWF.

3. Since ||p¢|| is unknown a priori, a suitable approximate scaling in setting constants
a, 3 is ||pol|?>. This scaling factor is merely the leading eigenvalue Ao of the spectral
matrix in (3.21). From Lemma 5.2, for F satisfying RIP over rank-1, PSD matrices
with the RIC-61, Ag is lower bounded by 1 — d1; hence the condition in (4.7) can be
enforced by setting o/, 8/ = O(1) such that

L+6 2(61)
o (1 — (51),3/

< h(d1).

Similarly, picking p < % to yield convergence rate of %"“ < aflﬂ,, the iterations in (4.3)
must have a step size u that is O(1/||p¢||?). This is essentially where the normalization
term in (3.1) originates from, with ||po||? serving as an approximation to ||p¢||?. As a
result, Lemma 4.3 for (3.1) simply holds for pu; < (1 — 51)% due to the effect of the
mismatch in the scaling factors, in agreement with what is noted in [12].

4. Overall, Theorem 4.6 establishes that the convergence speed of the GWF algorithm
is controlled by RIC-4;. As d; approaches the critical limit of 0.214, ¢ and J2 values
increase superlinearly as shown in Figure 1. This has strong implications on the
convergence speed, as /3’ is inversely proportional to the choice of step sizes py and is
quadratically related to the magnitude of c.

5. A consequence of our result is a universal upper bound on e under our sufficient
condition of RIP over rank-1, PSD matrices. As depicted in Figure 1, Theorem 4.6
determines what sufficiently close means numerically.

Remark 4.8. Despite solving the identical perturbed problem, GWF iterations provably
converge, whereas the convergence guarantees of Uzawa’s method vanish due to inclusion of
a nonconvex constraint. Similarly, the special structure of the constraint set and the GWF
iterates suffice the RIP condition to be satisfied only over rank-1 matrices in the PSD cone,
whereas the uniqueness condition of Uzawa’s method requires RIP over the set of rank-2
matrices in the nonconvex rank minimization problem.

4.3. Restricted isometry property for cross-correlation of Gaussian measurements. In
standard WF for phase retrieval with the i.i.d. complex Gaussian model, i.e., L, ~ N(0,1/2)+
iN(0,1/2), the accuracy of the spectral estimate (3.18) is established as

(4.9) 1Y — (peoi + llpelPD < 8l

with probability 1 —10e"Y —8/N?2, where + is a fixed positive numerical constant. This result
is derived from the concentration bound of the Hessian of the objective function around its
expectation at a global minimizer p; such that

(4.10) IV2T (1) = EIV2T (p)]ll < 6llpel|?,

where ¢ is the concentration bound.
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In the problem of phase retrieval, plugging the definition of phaseless measurements into
(3.18), the autocorrelations yield the fourth moments of the elements of the Gaussian mea-
surement vectors. This introduces a bias of ||p¢||*I in the spectral estimate Y, as can be
seen in (4.9). Moving from the autocorrelations to cross-correlations removes this bias com-
ponent from the spectral matrix of GWF. Hence, for the Gaussian model, cross-correlated
measurement map, i.e., F when ¢ #£ j, satisfies the RIP over the set of rank-1, PSD matrices.

Without loss of generality and following [12], we present our result for the case ||p:|| = 1.

Theorem 4.9 (RIP over rank-1, PSD matrices for cross-correlated Gaussian measurements).
Let the measurement vectors L;”,L;” in (1.2) follow the i.i.d. complex Gaussian model, i.e.,
L LT ~ N(0,1/2) +iN(0,1/2). Then, the lifted forward model ﬁ]—" in (2.6) for cross-
correlated measurements (when i # j) satisfies RIP defined in (4.4) for r = 1 over the PSD
cone, with probability 1 — 8¢~ "N — 5/N? given O(N log N) measurements, where v is a fized
positive numerical constant. Moreover, the spectral matrix X defined in (3.21) satisfies

(4.11) IX — pip'|| < 61,

where py is the ground truth signal with ||p¢|| =1 and §1 is the RIC of ﬁf.
Proof. See section 5.2. [ |

Remark 4.10. Outcomes of Theorem 4.9 are explained with the following remarks.

1. Theorem 4.9 establishes the relationship between the concentration bound of the spec-
tral matrix and the RIP-1 condition for interferometric inversion. This indicates that
the regularity condition of the WF framework is redundant for our problem if §; is
picked properly, since by Theorem 4.6, RIP with RIC-§; < 0.214 directly implies the
regularity condition.

2. Note that the equivalent linear model in the lifted domain actually has N? unknowns.
By our formulation of GWF in the lifted problem, having measurements of the order of
N log N, therefore, corresponds to an underdetermined system of equations in which
exact recovery guarantees of GWF hold.

3. Note that our measurement complexity is identical to that of standard WEF. This is
an expected result, as the cross-correlations impact only the removal of the diagonal
bias in the spectral matrix Y, not the concentration of Y around its expectation.

4. Tt should be reiterated that when ¢ = j, the backprojection estimate Y contains a
diagonal bias of the form ||p¢||*I, which breaks our RIP condition over rank-1, PSD
matrices. In such a case, the concentration bound then holds around the expectation
term that includes this diagonal bias. Establishing a sufficient condition for the phase-
less case under our framework is not in the scope of this paper, and we leave it for
future work.

Remark 4.11. Tt should be noted that phaseless measurements in the Gaussian model are
known to satisfy a RIP under the ¢; norm in the range of the lifted forward map. This is
referred to as the RIP-1 condition in literature and is prominently featured in exact recovery
theory of standard WF, more recently in [43] for nonconvex optimization via gradient descent,
even in the presence of nonconvex regularizers.



2138 BARISCAN YONEL AND BIRSEN YAZICI

A critical difference of our work is that such a RIP-type condition isn’t used as a tool
to obtain local curvature and local smoothness conditions to assert the regularity condition
with a high probability. Instead, under the RIP studied in this paper, a regime is derived
in which the regularity condition is guaranteed to hold, deterministically. Notably, for the
interferometric inversion problem with ¢ # j, d; values tested in [12] are confidently within
the range in which our GWF theory applies.

5. Proofs of Theorems 4.6 and 4.9. In this section, we present the proofs of Theorems
4.6 and 4.9. We first present key lemmas, and next prove the theorems using these lemmas.
We provide the detailed proofs of the lemmas in Appendices B and C.

To prove Theorem 4.6, we begin by showing that the RIC-§; of our RIP condition deter-
mines the distance e of the spectral initialization in a one-to-one manner. We then establish
that the regularity condition is directly implied by RIP with RIC-6; < 0.214. In achieving
this result we first show that the structure of the rank-1, PSD set allows for RIP to hold
locally for the difference of two rank-1 PSD matrices, i.e., a local RIP-2 condition similar to
the one in [31], with a RIC-d5. The upper bound on d; ensures that RIC-d2 of the local RIP-2
satisfies d2 < 1. The local RIP-2 condition, in turn, ensures that restricted strong convexity
holds in the e-neighborhood of the global solution set, which leads to exact recovery conditions
of GWF.

For Theorem 4.9, we first show that the bias term in (4.9) resulting from the fourth
moments of the random Gaussian entries disappears when we have cross-correlations instead of
autocorrelations of measurements. We then establish that the spectral matrix is concentrated
around its expectation, using the machinery in [12], adapted for cross-correlations. Finally,
we use the definition of the spectral matrix to derive the RIP over rank-1, PSD matrices from
the concentration bound, which yields the RIC-§;.

5.1. Proof of Theorem 4.6. Without loss of generality, we assume p; is a solution with
llpt]l = 1. In establishing the exact recovery guarantees for GWF, we take a two-step ap-
proach. For a lifted forward map F satisfying RIP, with RIC-§1, we first show that the
initialization by spectral method yields an estimate that is in the set F(e). We then establish
the regularity condition (4.2) for the objective function (2.1) in the e-neighborhood defined
by the initialization. These two results culminate into convergence to a global solution at a
geometric rate as stated in Theorem 4.6.

5.1.1. e-neighborhood of spectral initialization. Rather than the law of large numbers
approach in [12], we take the geometric point of view of [54] in establishing the e-neighborhood
of the spectral initialization. We begin by evaluating the distance of the leading eigenvector
vo € CV of the spectral matrix in (3.21) to the global solution set (2.1). Recall the definition
of the distance metric

9

(5.1) dist(vo, pt) = HVO — Vo) p,

which is essentially the Euclidean distance of vy to the closest point in the solution set P
n (2.1). Without loss of generality, we fix ®(vg) = ®¢ and incorporate it into p; such that
pr = €®0p; represents the closest solution to v in P. We break down the key arguments of
our proof into the following three lemmas.



GENERALIZED WIRTINGER FLOW 2139

Lemma 5.1. Let p; be a solution with ||p¢|| = 1 and p; is the closest solution in P to vy.
Th6n7 Re<i7t7VO> - <pt7V0>7 and

(5.2) pr = cos(f)vo + sin(0) vy,

where ||vo| = 1, cos(0) = Re(pt, Vo), and vy is a unit vector lying in a plane whose normal
is vo. Similarly, there exists a perpendicular unit vector, pi-, to py such that

(5.3) pi- = —sin(f)vo + cos(0) vy

Proof. See Appendix B.1. [ |

Lemma 5.2. Consider the spectral matriz X given by (3.23), and denote the spectral matriz
projected onto the PSD cone as Xpsp. Then, for a lifted mapping F satisfying RIPy with
RIC-61 =9, X and XPSD have the identical leading eigenvalue-eigenvector pair \g, vo such
that

1-6< X <1+6.

Furthermore, X and XPSD generate identical spectral initialization, pg.
Proof. See Appendix B.2. |

Lemma 5.2 allows us to analyze the distance of the initial estimate pg to the solution set
by the convenience of either the PSD X psp or the symmetric spectral estimate X since they
generate the same initial estimate pg.

Next, using Lemmas 5.1 and 5.2 we reach the following key result.

Lemma 5.3. In the setup of Lemmas 5.1 and 5.2, for the angle 0 between the one-dimensional
subspaces spanned by p; and vy we have

0
4 in%(0) < ——
(.4 n?(0) < .
where § is the RIC-61 of the lifted map F satisfying RIP, .
Proof. See Appendix B.3. [ |

From Lemma 5.3, we can now lower bound the inner product of p; and vg such that
(Re(py, vo))? = cos?(0) = 1 —sin?(0) > 1 — &,

where kK = 1%5. Writing the distance of the spectral initialization pg = v/Agvg to the solution
set, we have

distQ(po, pt) =X +1—2Re <eiq>(p0)pt, \/)\ov0> .
It is easy to see that Re(e®(P0) oy, \/Agvp) is maximized when ®(po) = ®(vy), hence we get
(5.5) dist?(po, pr) = Mo + 1 — 23/ XoRe(pr, vo) < Ao+ 1 — 24/ XV1 — k.

From Lemma 5.2, we know that 1 — & < Ay < 14 §. Moreover, the upper bound on the right-
hand side of (5.5) is simply a quadratic term with respect to v/Ag since v Ag(v/Ao—2v1 — k)+1,
which is maximized at the boundary of the domain of values v/Ag takes. Since the quadratic
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equation is minimized at /1 — k and we have 1 — k < 1 — ¢ for the domain of possible values
of 0 <0 <1, \gp =140 is an upper bound for the right-hand side of (5.5). Hence, we obtain

dist?(po, pr) <2+ 6 —2V1 +6vV1 — k.

Writing the Taylor series expansion of v/1 4+ ¢ around 0, and discarding the components of
order O(6%) and higher, we have the final upper bound

(5.6) dist*(po, pr) < (2+6) (1-VI—r) + (Z

which sets the e-neighborhood as
52
(5.7) E=2+0)(1-vVi—r)+ =

5.1.2. Proof of the regularity condition. Recall that we seek a solution to the interfero-
metric inversion problem by minimizing the loss function

M
(5.3) T(p) = 512 3 [@ ppl'Ly
m=1

and address the optimization by forming the steepest descent iterates

(5.9) P =pF —uvI(ph),

where p is the learning rate and V.7 is the complex gradient defined by the Wirtinger deriv-
atives.
As shown in section 3.1, the gradient evaluated at a point p can be expressed as

(5.10) VI (p) =Y(p)p:
where
(5.11) Y(p) =Ps (FHF(p—p1))

with p and p; denoting the lifted variables p = pp and p; = p;p!!, respectively. Invoking
Lemma 4.5 and the linearity of F#F and & of (4.5), (5.11) can be represented as

Y(p) =Ps(p—pt+6(€)),

where € = p — p; is the error in the lifted problem. Since the lifted variables are already
symmetric we can take them out of the projection operator due to its linearity. Hence, for
the update term we obtain

(5.12) VI(p) =Y(p)p = pp— pp +Ps(d(€))p
(5.13) = llpl*p — (p{ p)p: + Ps(8(&))p.

Reprising the regularity condition under consideration, we need to establish that there exists
constants « and (3 such that aff > 4 Vp € E(e) and
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(5.14) Re ((V(p), (p— ™)) > ~dist?(p, pu) + ;Wﬂp)u?.

To show the existence of constants o and (3 that satisfy (5.14), we upper bound the gradient
term, which converts the regularity condition to a restricted strong convezxity condition [17, 47].
We begin the proof by introducing the following key lemmas.

Lemma 5.4. Let p; be the ground truth signal with ||pi|| = 1, and let p; denote the global
solution closest to p such that p, = ¢®P) p,. Then, for any p € E(e), we have

(5.15) (Va=a@=a)llo— bl <llpe™ = piplllle < 2+ )lo - il

Proof. See Appendix B.4. |

Lemma 5.5. Let p; be the ground truth signal with ||p¢|| = 1, and let the linear map F
satisfy RIPy with RIC-61. Then, for § < 0.214 and any p € E(€), we have 62 < 1 such that

2
(5.16)  (1—&)lpp™ — pipf!IF < IF (pp™ — peot' ) I* < (1+62) | o™ — piot ||

V2(2+€)
(1—9@2—0 '
We refer to (5.16) as the local RIP-2 condition in the lifted domain with RIC-d2 for the
mapping F. The two lemmas culminate into the local Lipschitz continuity of V.7.

Proof. See Appendix B.5. |

where 09 =

Lemma 5.6. In the setup of Lemmas 5.4 and 5.5, for any p € E(e), the objective function
J in (5.8) is Lipschitz differentiable with

(5.17) VI (p)|l < c-dist(p, pt),

where ¢ = (1 4 €)(2 + €)(1 + 61) is the Lipschitz constant. Furthermore, to establish the
reqularity condition for J, it is sufficient to show that

CQ
(5.18) Re ((VI(p). (p = pic™®))) = (5 + 5 ) disi*(p.p)

for any p € E(e).
Proof. See Appendix B.6. [ |

We finally utilize the following lemma to obtain an alternative form of the restricted strong
convexity condition [68].

Lemma 5.7. For the objective function J in (5.8), the condition in (5.18) is satisfied if

(5.19) J(p) = gdistQ(p, pt),

where n = i + %
Proof. See Appendix B.7. [ |
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Writing the objective function explicitly in terms of the lifted terms, and applying the
lower bound from the local RIP-2 condition of the lifted forward model, we can express the
regularity condition simply as

1 2 1— 09 2 N,
3 Hf [pp™ — pipf!] H > (2) lep™ = puof’|[ - = 5 dist*(p, pr),
where Jo is as defined in Lemma 5.5. From Lemma 5.4, the regularity condition is then
satisfied by identifying «, 8 with a8 > 4 such that
H H||2 ) IR P
(1=32) [lpp" = pupt' || = (1 = 02)(1 = )(2 = e)dist™(p, pr) > | — + 5 ) dist (P, p1),
where, from Lemma 5.6, ¢ = (1 +¢€)(2+€)(1 + 7).
5.2. Proof of Theorem 4.9.

Lemma 5.8 (expectation of spectral matrix). Let measurement vectors Li", LT be statis-
tically independent and distributed according to the complex Gaussian model as L,;,L;n ~
N(0, %I) +iN(0, %I) Let p; be independent of the measurement vectors, and let' Y denote the
backprojection estimate of the lifted signal generated by the spectral method given as

1
Y = F o),

where F is the lifted forward map in (2.6). Then,
E[Y] = p:pf".

Proof. See Appendix C.1. [ |

Lemma 5.9 (concentration around expectation). In the setup of Lemma 5.8, assume that

the number of measurements is M = C(9) - Nlog N, where C' is a constant that depends on
6. Then,

(5.20) IY ~E[Y]| <o

holds with probability at least p =1 — 8¢~ "N —5N~2, where v is a fived positive constant.
Proof. See Appendix C.2. |

Plugging the expectation from Lemma 5.8 into (5.20), and using the definition of § from
Lemma 4.5, Lemmas 5.8 and 5.9 culminate to

(5.21) |6 (pnt")|| <0

for any p; with ||p:]| = 1 with probability at least p. From the definition of the spectral norm
on CV*N we can write the left-hand side of (5.21) equivalently as

5.22 max ‘pHé pipl p‘ <é.
(5:22) PECN p|=1 (ef’)
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Since the spectral norm corresponds to the maximum over the unit sphere in CV, we have

(5.23) ’pt 5 ppl pt‘ < H6 pp? H <.

Observe that the left-hand side can equivalently be represented as a Frobenius inner product
via lifting as

(5.24) ’pfla (pipf") pt( = )<5 (ppf") ,ptpr>F) :

Having Lemmas 5.8 and 5.9 hold for any element p; € CV with ||p¢|| = 1 via unitary invariance,
for any p € CV we obtain

(4 F"F =1) (pp") . pp") 5|

5.25 <4,
(5:25) Tt =
which yields
1 2
(5.26) =)o | < 57 |7 (eo™) | < 0 0) 0™

for any p € CV. Therefore, RIP with RIC-¢ is established with probability at least p for
mapping r]—" with L, L7 ~ N(0, 1) +1N(0, 3I), where M = C(8) - N'log N.

Furthermore, we know that the true lifted unknown pyp} lies in the PSD cone, which is
a convex set. Since the spectral matrix X is the projection of ﬁ]—" HFE(pipl) onto the set
of Hermetian symmetric matrices, from the nonexpansiveness property of projections onto
convex sets we have

FHF (pipf!) — pipf!

<

et < |57

which completes the proof of Theorem 4.9.
6. Numerical simulations.

6.1. Signal recovery from random Gaussian measurements. We begin by considering
recovery of random signals from cross-correlations of complex random Gaussian measurements,
L7, L7 ~ N(0,3I) +iN(0, 3I). For our numerical evaluations of the Gaussian model, we
conduct an experiment similar to that of [12]. We set N = 128 and run 100 instances of
interferometric inversion by GWF with independently sampled Gaussian measurement vectors
on two types of signals: random low-pass signals, p’*, and random Gaussian signals, p©.
The entries of the signals are generated independently of the measurement vectors at each
instance by

p N
2 27i(p—1)(I—1) 2 1 27i(p—1)(I—1)
61) o= > (X+i)e T w® o, = Y (X i) v
I N
-2 2

V8

where P = N/8, and X; and Y] are i.i.d. N(0,1). As described in [12], a random low-pass
signal corresponds to a bandlimited version of this random model and variances are adjusted
so that the expected signal power is the same.
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Recovery Probability (Error < 1e-5) Recovery Probability (Error < 1e-3)
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Figure 2. Empirical recovery probabilities based on 100 random trials versus oversampling factor of the
number of measurements M/N. The red curves correspond to empirical recovery probability of the Gaussian
signal, whereas the blue curve corresponds to that of realization of the random low-pass signal model. The two
figures vary with respect to the values of success criterion assumed for successful recovery, with a relative error
of 1075 and 1073, respectively.

We implement the GWF algorithm with the learning rate heuristic of WF in [12] such that
the descent algorithm takes smaller steps initially due to higher inaccuracy of the iterates.
The step size is gradually increased such that p; = min(1 — ek/ ™ lbmaz ), Where 75 = 33000,
and ez = 0.2. For 2500 iterations, the learning parameter corresponds to a nearly linear
regime and attains the maximum value of 0.073.

In the experimentation, we compute the empirical probability of success after 2500 iter-
ations by counting the exact recovery instances of GWF recovery from different realizations
of Gaussian measurements for {L!", L;-”}%[:l. We evaluate the exact recovery by the relative
normalized error of the final estimate, pgw r, such that dist(pgwr, pt)/||pel] < err = 1075,
In addition, we evaluate the probability of moderately precise recovery by setting err = 1073,
As shown in Figure 2, our experimentation indicates that beginning with 3V interferometric
Gaussian measurements, GWF achieves exact recovery with high probabilities. Furthermore,
the method provides robust recovery with as low as 2.3N interferometric Gaussian measure-
ments, with a relative error of 1073 and below at over 95 percent.

6.2. Multistatic passive radar imaging. An interferometric inversion problem of great
interest is multistatic passive radar imaging. We consider an imaging setup in which several
static, terrestrial receivers are placed in a circle of radius around the scene of interest, which
is illuminated by a transmitter of opportunity. An exemplary multistatic imaging geometry is
illustrated in Figure 3. At receiver i, the backscattered signal is collected at a fixed location by
a linear map L; parameterized by the temporal frequency variable w. The linear measurements
collected at two receivers ¢ and j are then pairwise correlated in time to yield the cross-
correlation model (1.2) defined in the temporal frequency domain.

The key advantage of the interferometric model is the elimination of the dependence of
measurements on the transmitter location and phase of the transmitted waveform, both of
which are unknown in the passive scenario. In prior studies, the interferometric wave-based
imaging was approached by low rank recovery methods [33, 44, 67]. We postulate that the
GWF framework provides a computationally and memorywise efficient alternative to LRMR-
based passive radar imaging.
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Figure 3. An illustration of a multistatic imaging configuration. A scene is illuminated by a stationary
illuminator of opportunity, located at a*. The backscattered signal is measured by a collection of stationary
recetvers, encircling the scene of interest at locations aj.

6.2.1. Received signal model. Let a] € R? denote the spatial locations of the receivers,
and assume S number of receivers such that i = 1,2,...,5. We assume that scattered signals
are due to a single source of opportunity located at a’. The location on the surface of the
earth is denoted by x = (x,1(x)) € R3, where & = (21, 22) € R? and ¢ : R?> — R is a known
ground topography, and p : R? — R denotes the ground reflectivity.

Under the flat topography assumption and Born approximation, and assuming waves
propagate in free space, the fast-time temporal Fourier transform of the received signal at the

ith receiver can be modeled as [64]

—iw 9i(x)

(6.2) filw) = Lilpl(w, 5) :=p(w,S)/De 0 aj(x,a’)p(x)de,

where w is the temporal frequency variable, ¢ is the speed of light in free space, p(w, s) is the
transmitted waveform, o;(z,a?) is the azimuth beam pattern, and

(6.3) ¢i(x) = |x —aj| + [x —al,

is the bi-static delay term.
Following the derivations in [33] and discretizing the domain D of p into N samples, the
cross-correlated data model for the multistatic scenario is obtained as

N N
(64) dij (w) = Z e*iw(|xkfa:|+ét_xk)/60pk Z eiw(|xk/—a§|+ét.xk/)pk/’
k=1 k'=1

where py = p(x}) is the kth entry of the discretized scene reflectivity vector p € CV, and &’ is
the unit vector in the direction of the a’. We next discretize the temporal frequency domain
Q into M’ samples and define the measurement vectors with entries

(6.5) L)), = ewm (Fe—all=atxi)/co  p—1 N,

Rewriting (6.4) using (6.5), we obtain the interferometric measurement model as
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Figure 4. The ground truth image and the initial estimate by the spectral method of GWF by (3.21) and
(3.22).

(6.6) A (wny) = (LY, p) (LT, p), m/=1,.... M, i=1,....8, j#i,

which corresponds to total of M = M’ (g) cross-correlated measurements® In [66], we show
that the model in (6.4) satisfies the sufficient condition of Theorem 4.6, and hence GWF can
provide exact image reconstruction for multistatic passive radar.

6.2.2. Simulation setup and results. We assume isotropic transmit and receive antennas,
and we simulate a transmitted signal with 20MHz bandwidth and 1GHz center frequency. We
assume isotropic transmit and receive antennas, and we simulate a transmitted signal with
20MHz bandwidth and 1GHz center frequency. We place the center of the scene at the
origin of the coordinate system and generate a phantom, which consists of multiple point and
extended targets as depicted in Figure 4. The transmitter is fixed and located at coordinates
al = [11.5,11.5,0.5] km. We simulate a flat spectrum waveform and sample the temporal
frequency domain into 32 samples.

(i) GWF reconstruction: To evaluate the performance of GWF for interferometric mul-
tistatic radar imaging, we simulate a 300 x 300m? scene and discretize it by 10m, which
corresponds to 31 x 31 pixels, hence, N = 961. We use 16 receiver antennas that are placed in
a circle of radius 10km around the scene at height of 0.5km, which corresponds to 120 unique
cross-correlations at each temporal frequency sample. We generate the backscattered signals
at each receiver by the linear measurement map of (6.2) and correlate linear measurements
of each pairwise combination of receivers to generate interferometric data. In reconstruction,
we deploy the approximate measurement vectors in which the transmitter distance is removed
as defined in (6.4) and (6.5), hence only the transmitter look-direction is used at recovery by
GWEF.

In Figure 5, we demonstrate the reconstruction obtained by GWEF after 10000 iterations,
using the gradually increasing step size heuristic described in section 6.1. In addition, we plot
the relative error of GWF iterates, which displays a geometric rate of convergence as stated

5Note that since we have multiple receivers to cross-correlate, the m = 1, ..., M summation of the objective
function in (2.1) now consists of two sums, one over all unique cross-correlations ¢ # j, and one over the temporal
frequency index m/'.
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Figure 5. Reconstructed image by GWF after 10000 iterations of (3.1) and the relative error with respect
to the ground truth in log-scale versus iterations.

in Theorem 4.6. The numerical results on our phantom image indicate GWF has the capacity
to form accurate imagery of complex extended scenes.

(ii) Comparison to LRMR by Uzawa’s method: We next perform smaller sized experiments
to compare with Uzawa’s method for LRMR by lifting. Namely, we compare GWF to three
different formulations that yield Uzawa’s iterations of the form in (2.12). These are the
convex-relaxed trace regularization problem solved by [33], the rank-1 constrained nonconvex
version with projections defined in (3.16), and the convex formulation obtained by dropping
the rank constraint fully, i.e., a projected gradient descent analogue of [20].” Notably, we
assess the reconstruction performance with respect to amount of computations, and we run
the algorithms for identical number of flops. For our problem size, we run GWF for 8000
iterations, which roughly corresponds to 56 iterations of Uzawa’s method. As complexity is
known only up to an order, to avoid positive bias toward GWF we run the variations of the
Uzawa’s method for 110 iterations, i.e., double what the mismatch in computation from lifting
the unknown indicates.

The simulated scene corresponds to 144 x 144m, discretized uniformly by 12m, to yield
a 12 x 12 unknown, hence N = 144. We use 12 receiver antennas that are placed in a circle
of radius 10km around the scene at a height of 0.5km, yielding 66 unique cross-correlations
at each temporal frequency sample. The transmitted waveform bandwidth is set at 10MHz,
around 1.9GHz central frequency, which corresponds to imaging below the range resolution
limit of the system [66]. We provide mean squared error with respect to number of flops in
computation over the lifted and the signal domains, and the final images reconstructed by each
algorithm in Figures 6 and 7, respectively. Overall, our results indicate that GWF achieves
exact reconstruction considerably faster than LRMR by Uzawa’s method when compared at
an identical number of flops. Furthermore, the convergent behavior of the convex LRMR
methods under consideration supports our observation that their exact recovery guarantees

"Note that the original proposed method in [20] follows the Douglas—Rachford splitting framework to solve
the nontrace regularized convex program in the lifted domain, which has different exact recovery arguments to
Uzawa’s method. To avoid the computational burden required to solve a linear system in the lifted domain,
we use the projected gradient approach under the identical problem formulation.



2148 BARISCAN YONEL AND BIRSEN YAZICI

MSE in the Lifted Domain vs. Number of Flops MSE in the Signal Domain vs. Number of Flops
007 03
006
—— Trace Regularized Uzawa 025
—T larized U
ik —— Rank-1 Gonstrained Uzawa Rorke f’;g;m',‘:n e
= No-Trace Uzawa .
ST * & No-Trace Uza
Sgoes —— Generalized WF < o-Trane Leana
= & oz Generalized WF
= S
B
004 1y +
sl 2 o
= e
[ 00a
H oo
E 002 =
=
ags
001
o L - o
o 1 2 3 4 5 & 7 8 k] 10 L] 1 2 3 4 5 & 7 8 a 10
Number of Flops «10° Number of Flops «10°

Figure 6. Mean squared error curves in the lifted and signal domain versus number of flops, respectively.
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(a) Ground truth scene. (b) Spectral initialization. (¢) GWF reconstruction.
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Figure 7. Reconstruction results of GWF and variations of Uzawa’s method at identical number of flops
(8000 iterations for GWF, 110 iterations for Uzawa’s methods).

are more stringent than those of GWF. Thereby, our numerical results demonstrate its superior
performance at an identical number of flops to lifting-based approaches and promote GWF
as a favorable alternative to state-of-the-art interferometric wave-based imaging methods.

7. Conclusion. In this paper, we present a novel framework for exact interferometric in-
version. We approach the interferometric inversion problem from the perspective of phase
retrieval techniques. We examine two of the most prominent phase retrieval methods, namely
LRMR-based PhaseLift, and nonconvex optimization based WF, and bridge the theory be-
tween the two frameworks. We then generalize WF and formulate the GWF framework for
interferometric inversion and extend the exact recovery guarantees to arbitrary measurement
maps with properties that are characterized in the equivalent lifted problem. Thereby, we
establish exact recovery conditions for a larger class of problems than that of standard WF.
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We identify the sufficient conditions for exact interferometric inversion on the lifted forward
model as the RIP on rank-1, PSD matrices, with a RIC of § < 0.214. In developing our theory,
we use the special structure of the rank-1, PSD set of matrices to show that the RIP directly
implies the regularity condition of WF. Furthermore, we show that the concentration bound of
the spectral matrix directly implies the RIP over rank-1, PSD matrices for cross-correlations
of the complex Gaussian model. Hence, in generalizing the theory of WF for interferometric
inversion in the complex Gaussian case, we demonstrate that the regularity condition becomes
redundant. We illustrate that the empirical probability of exact interferometric inversion by
GWEF requires smaller oversampling factors than that of phase retrieval in the Gaussian model.
Finally, we demonstrate the applicability of GWF in a deterministic, passive multistatic radar
imaging problem using realistic imaging parameters. In conclusion, our paper shows that the
computational and theoretical advantages promote GWF as a practical technique in real-world
imaging applications.

Appendix A. Derivations.
A.1. Derivation of V.J. Recall the objective function J in (2.1),

M
1 m m i
(A1) J(p) = oW Z | (L3 )HPPHLj — .
m=1

. H
Letting e™ = (L") ppHLm di7, we write

m

oJ 1 emEmy — o o
(A.2) dp  2M Z 8p 2M Z op

Having p and p” independent by properties of Wirtinger derivatives, we compute the partial
derivatives in (A.2) as

em m Hym m\H
(A.3) ap QMZ (P (@) +em (p Ly (L)) .
Using the definition of complex gradient provided in (3.2), we finally get
1 M H
(A4) VI =g 2 'Ly LM p+emL (L7) 7 p.
m=1

A.2. Proof of Lemma 4.5. Assuming the RIP on F over rank-1, PSD matrices with
RIC-4, we write

(A.5) (1) lop" 5 < |7 (o) < (14 ) 00"}

Equivalently, from the definition of the Frobenius inner product and the adjoint operator FH,
we reexpress (A.5) as

(A6)  (1=08)(pp™,pp") < (F'F (pp").pp") < (1+0) (pp", pp")
(A7) ’<(FHf—I) (0™, pp™) . ‘<5HPPHH§:;
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hence for any p € CV we have

((FTF =T) (pp™) , pp™) 1|

(A.8) T <.
lpp™ I3
Now consider the definition of the spectral norm with
(A.9) Hé(ppH)‘ = r‘?”axl) H5 pp ) —”I‘I,l”ale)<5 (ppH),va>F‘.
From the Hermitian property of 8, we have
(A.10)
H
o) - s B 0. 8" (1), = s o) 50

where V& : CN*N s CN*N with V6V = 4, and the inequality follows from the matrix
Cauchy—Schwarz property and the fact that the Frobenius norm is unaltered by conjugation.
Observe that using the Hermitian property of & via Definition 6.1 in [24], for any p € CV, we

have [[V&(pp™)|1%/llppll3 < 8, hence

it (Voo s [ ), < ) <5
Using the definition of the spectral norm, we simply obtain
l6 (ep™)| _
A.12
(12 oo™ =

for any p € CV if (A.6) holds. Furthermore since § is the smallest constant such that (A.6)
is satisfied, let

AN (Gl

A.13 )= =
(A.13) 0y lpp? | o) TppP I

Revisiting (A.10), since from (A.12) we know for any p, [|6(pp™)| < d||pp™ ||F, the maximal
value of § is reached at v = p/||p||, as

H H
(A 14) pe{c%i\}f{o} H5 H < peg}‘?\%{o} ”m”aX1 H\/g (pp ) HFH\@ (VV )HF
. o
C e VOl

pec™\{0}  llpp|IF
and by definition

8™ o [0 (ee™) v )|

(A.15) pec™\(o} lppt|r = pECN\{O}HvH 1 Prr
S 8 (pp™) PP | _
~eec™o} "% '

Hence the proof is complete.
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Appendix B. Lemmas for Theorem 4.6.

B.1. Proof of Lemma 5.1. Since p; = €'®(V0) p,. we have
(B.1) dist*(vo, pr) = [[vo — pill* = [[voll* + [|£el|* — 2Re(pr, vo).
Knowing that ®(vq) achieves Re(p¢, vo) = |(pt, Vo)|, we have

(B.2) Re(py, vo) = (e, vo) = [(€ 7 py, vo) .

Since p; and v are unit norm, the geometric angle between them can be written as
(B.3) cos(0) = (p¢, vo)-

Invoking the representation theorem in Hilbert spaces, there exists a unit vector v(} that lies
in the plane whose normal is v such that

(B.4) (Pt vo) = cos(6)(vo, Vo) + sin(6)(vq', vo),

(B.5) (Pt — (cos(B)vo + sin(B)vy ), v) = 0.

The inner product is zero only when (1) p; = cos(0)vo+sin()vy, 2) pr— (cos(0)vo+sin(f)vy)
is perpendicular to vo. The latter case occurs iff p, —cos(6)vy = 0, which is true only for § = 0,
which indicates the identical solution as the former; hence we have the unique representation

(B.6) pr = cos(6)vo + sin() vy

Using the same representation, it is straightforward to see that the unit length element p;- =
— sin(0)vo + cos(f)vy satisfies

(B.7) (P, pi,) = <— sin(6)vo + cos(0) vy, cos(8)vo + sin(&)vé> =0

and hence lies in the plane whose normal is p;.

B.2. Proof of Lemma 5.2. Recalling the representation of the spectral estimate in the
lifted problem we have

(B.8) X =Ps (F'F (pirf')).
where Pg is the projection onto the set of symmetric matrices. Xpsp is similarly written as

(B.9) Xpsp = Ppsp(X) = Prsp (fH]: (Ptpt ))

since the PSD cone is a subset of the set of symmetric matrices S, and Ppgsp projection
consists of projection onto S by Pg, followed by suppression of negative eigenvalues. From
Lemma 4.5, denoting p; = pypf’ for the solution p; obeying ||p¢|| = 1 we have

- N 1 - 1 _\NH
(B.10) X — py| < ’ §fo(Pt) + B (]:H}-(Pt)) — Pt

1
(B.11) - H]—“H}' pe) — pe|| + =

| A

|7 60)" - 2]

< *5‘1'*H 1) +0(p:)" — pel|-
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And since p; is Hermitian symmetric and the spectral norm is unaffected by adjoint operation,
we have

1

(B.12) = H t) +6(pt))" — PtH =5 H HH = *H‘S(Pt)H 55-
Hence the spectral norm of the lifted error is upper bounded as follows:
(B.13) IX = pull <.
For the maximal eigenvalue Ay of X, we can write
(B.14) Xo > p{Xpi=p' (X —pi)pr+1>1-3.
On the other hand, we have

Hi~x = o . |?
(B.15) VX = povo| < IX =il <8 = o= |vi | | <0,

Ao <0+ ‘V(l)qpt|2’ <1+34.
Hence we obtain
(B.16) 1-06< <146

Since the PSD estimate X pgp only differs from X by the suppression of negative eigenvalues,
and since spectral initialization only preserves the leading eigenvalue-eigenvector pair A, vg
and A\g > 1 — § where é > 0, we have the identical pg = v/Agvo.

B.3. Proof of Lemma 5.3. We consider the case where the spectral estimate (3.21) is
projected onto the PSD cone as in LRMR. In this case, the estimate obtained in spectral
initialization is projected onto the PSD cone to obtain X psp, which yields the identical
initial point pg per Lemma 5.2. Since its a symmetric, PSD matrix, we can decompose Xpsp
such that R

Xpsp = SoSo,

where Sg is a PSD matrix with its eigenvalues as /)\XPSD. Since

(B.17) vo := argmax v’ X pgpv,
l[vil=1

where v X pspv = vESSyv = ISov||?2. Then using the definitions of p; and pi- from Lemma
5.1, we have

(B.18) Sopt = cos(#)Sevo + sin(0)Sovy,
(B.19) Sop; = —sin(#)Sovo + cos(8)So, v
and from the Pythogorean theorem, since we have orthogonal components, we get

(B.20) 1Sopl|* = cos®(8)]|Soval|* + sin®(6)[Sovy 1%,
(B.21) 1S0p7 |I* = sin®(8)[|Sovol|® + cos®(0) [Sovq >
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Consider the expression f = sin?(6)||Sop:||> — ||Sop; ||?. Following the algebra in [54], we have

f = sin®(0) (cos?(8)[Sovol|* + sin?(8)[[Sova [|?) — (sin®(8)[|Sovol|* + cos®(8)]|Sovy[1%)
= sin*(0) (cos”(8)[|Sovol|* — [|Sovol|* + sin*(0)[|Sovy ) — cos(0) [ Sovyy 1%,
which finally yields

(B.22) f = sin®(0) ([ISovg ||* = [Sovo|*) — cos*(6)|Sovg|I*.

Since vy is the unit vector that maximizes ||Sov||?, with the fact that vg is also a unit vector,
this expression is always nonpositive, hence

sin(0)[|Sop¢||> — 1Sopy||” < 0,

. Sopi-||?

B.23 sin’(# < Hif
(B.23) ©) < Soprl?

Equivalently, expressing the upper bound with the spectral estimate, we obtain

© L \VH .l
(B.24) sin(h) < (pf 2{ Xpspbi_
Py Xpsppt

Now we consider the spectral estimate X psp. We know that X psp is obtained by pro-
jecting the intermediate estimate Y = F7F(p;) onto the feasible set of PSD matrices as
defined in Lemma 5.2. From Lemma 4.5, we know that 7 F is approximately an identity on
the domain of rank-1, PSD matrices, hence we can write the perturbation model

(B.25) Xpsp = Ppsp (Pt + 6[p]) -

Since projection onto the PSD cone is nonexpansive under the spectral norm, we have the
following:

(B.26) IXpsp = pell < 1Y = pull.

Setting Xpsp = pr + €, the upper bound in (B.24) can be written as

| (b1) pubt + ()T et
(B.27) sin’(f) <~
Py PPt + piepy

Since we have that p; = p;pf?, the bound reduces to

PURY: Pl
(B.28) sin2(6) < %
L+ piepy
as pi is orthogonal to p; and the global phase component in p; = eI®0) p, vanishes in
the quadratic form. Moreover, we know that (p;-)”ép;- is nonnegative from positive semi-
definitivity of X pgp. Hence we further upper bound the numerator by the spectral norm of
€ and follow with the series of bounds
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N 5(a 5z
(B.29) n(p) < 10 < 0@ ool
L+pieps — 1+piep. — 14 piep

where the last two inequalities follow from the nonexpansiveness property of the projection
operator onto the PSD cone, and the definition of § from Lemma 4.5, such that the spectral
norm of § is upper bounded by the RIC-§ of F. For the term in the denominator, since we
established that ||€||2 < J, we have that —d < p;€p; < ¢ to finally obtain

5 5
B.30 in?(g) < < :
(B30 O S pep =1

B.4. Proof of Lemma 5.4.

B.4.1. The upper bound. Noting that p; is the closest solution in P to an estimate p,
we define p. = p — p. Since p € E(e), dist(p, pr) = ||pe]| < €, and from reverse triangle
inequality we have

ol = 11oelll < llp— pell < e.

Since ||p¢]| = |lpt]| = 1, we have that 1 —e < ||p|| < 1+ e. Having pipff = pipl, we
let & = pp™ — pypf denote the error in the lifted problem. Then, writing the lifted error

Pe = pepl! as

Pepf =(p—pt)(p— f)t)H = PPH - Pf)tH - thPH + bti)z{{ + (213152751 - zﬁti}{{)
(B.31) =&—(p—p)pt — pi (p™ — pf)

finally yields the expression

(B.32) & = pepl + pepf’ + prpl!

for the error in the lifted domain. We can then write the upper bound for ||€|r as

(B.33) Iellr < llpepe 7 + lpepi |7 + | ept |-

Since all the arguments of the Frobenius norm in the right-hand side have rank-1, we have
|- ll2= |7 Knowing that ||p:|| =1 we get

(B.34) lelle < 2lipidlloel + loell? < 2+ e)lpell
Hence we obtain the upper bound
(B.35) lpp™ — pipf | < (2+ €)dist(p, pr).
B.4.2. The lower bound. Expanding the error in the lifted domain, we get
(B.36) €% = lep™ % + oo |7 — 2Re(pp™, pip’) F.

Since we have the rank-1 lifted signals, the Frobenius norms and the inner product reduce to

1elE = lloll* + loell* = 2o, po)* = (ol = 1o, ) *) + (lpell* — [{p, o))
B.37) = lpll* +{p. p))Ulpl* = [{p. o)) + (lpell* + [{p, p) Dl 2el* — [, P2)])-



GENERALIZED WIRTINGER FLOW 2155

Having dist*(p, pt) = llpl* + [lp¢]* = 2l(p. pe)| = lp — |l = 0, we can lower bound (B.36)
using (B.37) as

(B.38) el = min (([loll* +1{p, o)1), (loel* + (o, D)) (Il” + llpell? = 21(p, pe)]) -

Knowing that dist?(p, p;) < €2 and the result from the reverse triangle inequality on ||p|,
the terms within the minimization are further lower bounded using

Ipll* + [lpel|* — €
(1 —e).

We then get the bound on the scalar multiplying dist?(p, p;) as

(B.40) min (([lpl* + [, po)l), (loell® + 1{p, o)) > (1= €)* + (1 = e),

which yields the final lower bound as

)

2[{p, p1)|
|

>
(B.39) |(p, pt)| >

(B.41) lop™ = pipl|| = /(1 = €)(2 =€) dist(p, p).

B.5. Proof of Lemma 5.5. From the adjoint property of the inner product we have

|7 (oo™ — piof! H (oo™ = puol! . FIF (pp" — pupl))

Splitting the linear operator FX F over the rank-1 inputs, we can use the perturbation model
from Lemma 4.5 such that

(pp" = pupl . F'F (pp™)) . — (oo™ — piol' . FIF (pipf)) .
(B.42) = |loo" — pil!|[- + (pp™ — piot .6 (pp™) — & (pipf")) .
Using the representation of & = pp — p;pf! in (B.32) and the linearity of & we get
(B.43) 5 (pp™) = (pipf") = 0 (pepl’) + 6 (pedi' + pupl!) .

Notably, the domain of § is by definition the set of rank-1, PSD matrices. Having pepf! +pip!
a symmetric matrix of at most rank-2 in the argument of § on the right-hand side, we can
represent (B.43) by an eigenvalue decomposition and use the linearity of § to obtain

(B.44) ) (ppH) -9 (ptpfl> =9 (pepf) + A6 (vlvl ) + A28 (ngf)

where popf! + pipt = S22 \ivivH | with | vy = 1. Plugging (B.44) into (B.42) and applying
the triangle inequality, we have

’<é,5(ppH)—5(pmf)>F’ < ’ (&8 (penl")) . ’

(B.45)
+ il (8,8 (vivl’)) 1+ Dol (&,8(vavsh))

ol
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Furthermore, knowing that € is symmetric and at most rank-2, let € = 23:1 O'Z'llzll , Where
|lu;|| = 1. Then, using the triangle inequality on the right-hand-side terms in (B.45), and the
outcome of Lemma 4.5 to RIP over rank-1, PSD matrices with RIC-§;, we have

2
(B.46) (e.5(p0") 5 (pupl")),| < <Z |o—z-> 1 (loept 1+ Al + al)
i=1
Furthermore, since € is rank-2 by definition, and 25:1 los] = ||&]l« < V/2||é||r, we obtain
(.8 (pp"") =6 (perl")) | < 51v2lpp" = pupl! I (lpept e+ Nl + el
(B.47) < 51v2)pp™ = pipt |F (llpepl 7 + ot I + |2l 4 .

where again we use the fact that ||p.pf? + pipf |« = |A1] + |A2| by definition, from which the
triangle inequality follows. Invoking the rank-1 property on the terms inside the parentheses
n (B.47), the Frobenius norm and the nuclear norms can be computed by the spectral norm,
since |- || = |l ||z = - ||« for a rank-1 argument. Then, having ||p:|| = 1, for the right-hand
side we obtain

(<ppH —pipt' 8 (pp™) -6 (ptptH)>F( < ov2llpp™ = pio | (2lloclllpell + llpel?)
(B.48) <6vV22+6)llpp” — pup! | ¢ dist(p, pr).
Using the bound

(B.49) V(1= e)(2—eydist(p, pr) < |lpp™ — pipf!]| -

from Lemma 5.4, we finally obtain the upper bound on the perturbation on ||pp” — p:pf ||%
as

(2+€)V2
(1—€)(2—¢)

Hence, setting do = 51%, we have the local RIP-2 condition satisfied with RIC-d5.
B.6. Proof of Lemma 5.6. Having p; = pipf’ = pypf’, we rewrite the gradient term in
(5.12) as

o™ — pipf |12

(B.50) ‘<ppH —pipt’ 0 (pp™) — & (ptpf{)>F‘ <6

VI (p) = lpl*p — (pf'p) pr + Ps(5(8))p,

where & = pp! — p;pf!. Then, simply from the triangle inequality and the definition of
projection operator on the set of symmetric matrices, we get

. . I Tye -
VT < llllel*e = (6" p) pell + 5 18@)l2llell + 5 [[6(&) l2llo]
(B.51) IVT ) < lllel*e = (6" ) bell + 15(@) Il

since the spectral norm is unchanged by the Hermitian transpose operation. For the spectral
norm of d(€), we use the representation in (B.44) and apply the triangle inequality such
that
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(B.52) 18@)1 < (& (pent®) | + il |6 (vavi?) | + 12l |8 (vavdl) |

where again p.pff + pipl = Z?ZI \ivivil ] with [|v;|| = 1. We obtain the identical form in
(B.48) such that

(B.53) 18(e)l < 61 (lpell® + 2llpelllpell) < 61(2 + €)llpell,

which overall yields

(B.54) Iv7 ()]l < lele = (607 p) ]| + 12+ )l o

(B.55) < [lell (el + ot lle = pill + 612 + €)llpell) -

Using the fact that p € E(e¢), and p; = €P)p;, we know that 1 — e < ||p|| < 1 + € from
triangle and reverse triangle inequalities. Hence,

(B.56) IVT(P)I < (1 +€) (2 +€)llpell +01(2+ €)llpel)
(B.57) < (1+(1+8)2+p - pll-
Thereby, setting ¢ = (1 + €)(1 + 61)(2 + €) the right-hand side of the regularity condition is
upper bounded as

1 ~ 112 1 2 ( 1 C2> ~ 112
B.58 e - - <(2+%)p-
(B.58) o=l + 5 IVT@IF =+ 5 ) le= Al
and the regularity condition (5.14) is established if the following condition holds:

2
(B.59) Re (<Vj(p), (p — e@(”)pt») > <é + 5) dist?(p, py).

B.7. Proof of Lemma 5.7. Indeed, the form of the regularity condition is nothing but
the restricted strong convexity condition. Since Vj(pte@(p)) = 0 for any ®(p) = @ € [0, 27),
by definition, one can equivalently write (5.18) as

(B.60) Re (<(Vj(p) VT (pte@(p))) ’ (p _ pte@(P)>>) > nllp — pre®@ |12,

where n = (é + %) Reorganizing the terms, we have

(B.61) Re (((VI(p) = VT (pe®@)) =1 (p— pee® @), (p— pie®®))) > 0.
Letting g(p) = J(p) — 2||p||*, we can write (B.61) as
(B.62) Re (((Va(p) — Vg (pe'* @), (p— pu'®®)))) > 0.

For any p in the e-ball of p;e'®(®)| (B.62) is merely the local convexity condition for g at point
pr = pe'®P). Since the e-ball around py is a convex set, we can use the equivalent condition

(B.63) glp) > g (pteiq)(p)) + Re (Vg (pteiq’(”))H (p — pteiq)(p))) .
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Plugging in the definition for g, we obtain
B6d)  T(p)>JT (pte@(m) 4 Re (Vj (pte@(m) (pf pte@(m)) i ngf el ®P)2,

Since p¢e'®®) is a global minimizer of 7, it satisfies the first order optimality condition with
VJ (p:e'®®)) = 0, and the minimum it attains is 0. Hence the condition reduces to

(B.65) I(p) = Jdist*(p. pr).

Appendix C. Lemmas for Theorem 4.9.

C.1. Proof of Lemma 5.8. For the intermediate stage, Y, of the spectral estimate, we
write

M
(C.1) Y = -7: F(ptpt) = 1 Z( ptpt Lm) Lm(Lm)H-
m:l

Reorganizing the terms in (C.1) and taking the expectation, we have

M
(©2) E[Y] = = 3" BILI L) o) (L (L) p) ).

For fixed m, and having p, is independent of sampling vectors, the N x N matrix inside the
summation has the entries of the form

N N
(C.3) Yo > B )@ @)Ly )] penPen

n=1n'=1

where k, [ denote the row and column indexes, respectfully. Since Lj" and L'" are independent
of each other and have i.i.d. entries, the fourth moments of Gaussian entries are removed as
E[(LT)k(W)n(W)l(LT)n/] = E[(LZ”);C(W)H]E[(W)Z(L;”)n/], in which the expectations are
only nonzero for n = k, n’ = [, yielding

(C4) =E [|(L?q’)k:|2] E [|(L§n)l’2] PPt

where L, L ~ N (0, 1) +1NV(0, 1I) have unit variance. Hence,

(C.5) E[Y]k: = priptrs
which is precisely equal to E[Y] = p;pf’.

C.2. Proof of Lemma 5.9. We use the machinery in the proof of the concentration bound
of the Hessian in [12].® By unitary invariance, we take p; = e1, where e is the first standard
basis vector. We want to establish that

8Corresponds to Lemma 7.4 in the source material.



GENERALIZED WIRTINGER FLOW 2159

M

(06) 1Lm(Lm)H — elel <.

m:

The inequality in (C.6) is equivalent to

(C.7) Iy(y) = ( L7) 1Lm(Lm)H — eler{) y
(©3) = L S g e gy - | <o
m=1

for any y € CV obeying |y|| = 1. Letting y = [y1,y] where y € CN~! and similarly
partitioning the sampling vectors as L = [(L"), L[] we have

yHLP (LM Ty = (L1 (L) iy + (L] )1y1(L;”)Hy
+ L L)y + gLy

(C.9)

This yields

M

= % Do A@PIE) P = Dyl + @9 P @y @)y -

m=1

o [ POy y L+ (L) (L)L My

M M

Z: ERFILRE i+ S iy

<l m ~HTm 1 J m Hym Hg

(C.10) Z MLy L+ 7 Y @y L L) Ty
m=1

Due to the independence L;" and L7, and from the fact that they are zero mean, unit variance
i.i.d. Gaussian entry vectors, all four terms on the right-hand side are measures of distance
to expected values.

For the second and third terms, we have

M M
b S PSS < [ e S
(Cll) m m=1 m=1
M 1 M ~
<yil+7 Nm:1|( )L (m;\( T)HS’>,

where the inequalities follow from Cauchy—Schwarz and fo < ¢1. We then invoke Hoeffding’s
inequality from Proposition 10 in [49]. For any dy and +, there exists a constant C(do,y) such

that M > C(d0,7)\/N S0 [(Lm)1 [*|(L7)1 |2, where
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(C.12) Zufw ™y E) 5| < boll§ 1] < o,

with probability 1 — 3e=2Y"N. For the final term, we invoke the Bernstein-type inequality of
Proposition 16 in [49] per [12], such that for any positive constants dp, 7, there exists the
constant C(do,y) with

M
(C.13) M > C(do,7) N Z [(L7)1 ]2 (L) ]2 +N max [(Lg")1 (7)1l ) s
m=1
where
M
(C.14) Z TN TLPL) g | < oll3 )1 < 6o

with probability 1 — 227V
To control the remaining terms, we use Chebyshev’s inequality, per [12]. For any ¢y > 0
there exists a constant C' with M > C - N such that the following hold:

M
1
(C.15) i (@ PP = Dlyal?] < eolyr]?,
m=1
M M
(C.16) Z (L)L - 1) < e, Z (LI - 1) < e

with probability at least 1 — 3N 2. Moreover, from union bound we have

(C.17) _max |(Li%)1] < +/101log M

=1

with probability at least 1 — 2N~2. As in [12], we denote the event that the results from
Chebyshev’s inequality hold by FEy. Then, in the event Ey, combining all the terms, the
inequality

(C.18) Io(y) < eoly1|* + dolyalI¥[| + olI¥[I* < €0 + 20
holds with probability at least 1 — 8e~2"N. We then follow by the e-net argument of [12] via

Lemma 5.4 in [49] to bound the operator norm such that
C.19 I <2 I <2 449,
(C.19) o o(y) ma o(y) < 260 +4do

where Scw is the unit sphere in CV and N is an 1/4-net of Scv. Then, choosing appropriate
€0, 09, and v and applying the union bound we have

1 M

M
m=

(C.20) (L) (L) LML — eref

%
1

<4
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with probability 1 — 8¢ for § = 2¢y + 44¢, and

(C.21) M > Z]Lm AL 2 + Z\Lm L 2(T)]?

+N max (L)L)

From Ey, we have M > C - N, which gives M = O(N log N), where an overall event holds
with probability at least 1 — 8¢~"N — 5N =2, hence the proof is complete.
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