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Abstract—We present an approach for joint image recon-
struction and foreground-background separation for synthetic
aperture radar (SAR) using deep learning (DL). Network struc-
ture of the deep model is derived by unwrapping the stages
of an iterative algorithm that solves an underlying optimization
problem. This leads to physical model based deep network with
learned network parameters having meaningful interpretation.
Combined image reconstruction and segmentation approach
allows joint optimization of both tasks that enhances performance
and prevent inadvertent loss of useful information. Numerical
results are included to show feasibility of the proposed approach.

I. INTRODUCTION

In recent year, there have been significant interest in ap-
plying DL based approach to a wide variety of SAR related
problems including image reconstruction [1], [2], transmission
signal recovery for passive SAR [3], automatic target recog-
nition (ATR) [4]-[11], direct ATR from SAR received signal
without intermediate imaging step [12], [13] etc.

Both image reconstruction and segmentation are important
tasks in remote sensing, and image and video signal process-
ing. They are often used as preliminary steps for subsequent
processing tasks such as ATR, navigation etc. Segmentation
refers to the process of isolating different parts of an image
based on their content. In this paper, we consider segmentation
as a foreground-background separation problem, where the
foreground is composed of elements from a specific set of
objects of interest while the background is refers to the
remaining parts of the scene. Accurate foreground-background
separation is highly desirable for ATR since locating and
identifying various objects from a separated foreground is
relatively easier than classification from the complete scene
with complex background.

Joint reconstruction and segmentation instead of segmenting
from a reconstructed image can be beneficial in terms of
both reconstruction and segmentation quality. For the two
step process, quality of the reconstructed image affects the
performance of the segmentation algorithm. This is because
the isolated reconstruction algorithm does not take subsequent
processing steps into account and finer details that are impor-
tant for the segmentation task may be lost while enhancing
overall reconstruction quality.
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Various joint reconstruction and segmentation methods have
been previously studied in the literature including [14]-[16].
There are some recent works on DL based joint image recon-
struction and segmentation problem in medical imaging field
including [17], [18]. Both of these approaches are based on
convolutional neural network (CNN). In [17], a joint multi-
stage CNN model is proposed for parallel reconstruction
and segmentation of 7T magnetic resonance (MR) images
from 3T MR images in order to provide higher resolution
and contrast quality. Reconstruction and segmentation tasks
require separate cascaded CNN networks with mutual feed-
backs during forward propagation step which allows for joint
optimization. In [18], a joint reconstruction and segmentation
network for magnetic resonance imaging (MRI) for com-
pressed sensing (CS) measurement condition is presented.
Proposed deep network, referred to as SegNetMRI, is com-
posed of repetitive CNN based encoder-decoder pairs where
the cascaded networks for reconstruction and segmentation
share the same encoders. Outputs of the multiple decoders
for the segmentation network are then combined to give the
final output.

In this paper, we propose an approach that combines model
based image reconstruction (MBIR) with the learning aspect
of deep networks for simultaneous image reconstruction and
segmentation. The network structure is derived based on an
iteration algorithm for the optimization problem for this joint
task. The resulting deep network takes a repetitive structure
with various stages sharing common set of parameters. Such
network architectures are commonly referred to as recurrent
neural network (RNN), and the parameter sharing aspect
makes them particularly suitable for SAR related task due
to the scarcity in labeled dataset for training. Deep model
based approach have the potential to utilize highly non-linear
mapping capability to generate a better iteration sequence,
optimized for a specific dataset, to improve performance
while reducing computational cost by solving the optimization
problem within a fixed number steps.

The rest of the paper is organized as follows: In Sec-
tion II, we present the forward model and establish different
notations. In Section III, we discuss the theory for the joint
optimization problem and a corresponding iterative algorithm.
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In Section IV, we present the deep network. In Section VI,
we present numerical results to verify feasibility of the model.
Finally, Section VII concludes the paper.

II. PROBLEM STATEMENT

Let z € R, z = [71,22] € R? and x = [z,9(z)] € R3
denotes the one, two and three dimensional co-ordinate vari-
ables, respectively. ¥ (x) denotes the surface topography at
coordinate z. Let s € [s1,82] and w € [wy,ws] denote the
slow-time points and fast-time frequencies, respectively. The
SAR is mounted on a moving platform that travels along a
known trajectory. We assume that start-stop approximation
is applicable, i.e. the SAR location remains effectively un-
changed while the pulse is being transmitted and reflected back
due to relatively small platform velocity compared to the speed
of light in free space c. Location of the SAR transmitter and
receiver are denoted by y7(s) : R — R? and yx(s) : R — R3,
respectively. Received signal for slow-time point s and fast-
time frequency w, assuming single scattering model, can be
expressed as [19]

d(s,w) = /A(s,w,x)e_%R(s’x)p(x)dx+n(s,w), (1
= Flpl(s,w) + n(s,w). )

p(x) : R® — C denotes the reflectivity of the surface at
co-ordinate x. F[.](s,w) is the forward mapping operator.
R(s,x) = |yr(s) — x| + |x —vr(s)| is the total distance
travelled by the transmitted signal and n(s,w) is the additive
Gaussian noise. Suppose a finite dimensional representation of
the forward mapping operator F is denoted by F € CM*N,
Corresponding discrete forward model can be expressed as:

d=Fp+n. 3)

Here, d € CM and p € CV are the discrete data and reflectiv-
ity vectors, respectively. n € C is a complex Gaussian vector
distributed as N(0, 02 (1 + 1i)I). Suppose the foreground and
background parts of the image p are denoted by p; and py,
respectively. Our goal is to jointly reconstruct p; and p; given
the received signal d.

ITI. JOINT IMAGE RECONSTRUCTION AND SEGMENTATION

We perform joint reconstruction of the image segments from
the sensing data by estimating the complete image p and a
mapping vector w of length N with its n'” element equal to 1
if the corresponding component of p belong to the foreground,
else it is 0. The two segments, py and py, can be calculated
from these estimated quantities by py = diag(w)p and p, =
(I — diag(w))p, where diag(w) refers to a diagonal matrix
with w along its main diagonal.

An optimization problem for this joint task can be derived
from the formulation of the Maximum Apriori Probability
(MAP) estimation of p and w. Suppose p* and w* denote the
MAP estimations of unknown signals p and w, respectively.
Then

* *
pw

= argmax log Pr(p, w|d), )
p,wW

= argmax log Pr(d|p, w) + log Pr(p|w) + log Pr(w),
pwW

&)
= argmax —||d — Fp||? + log Pr(p|w) + log Pr(w). (6)
pw

Data fitting term ||d — Fp||? measures the consistency of the
reconstructed image with the measured data and is a convex
function of p. Let ®(p, w) := log Pr(p|w) +log Pr(w), and
it imposes constraints on the unknown quantities p and w. In
case the joint prior distribution Pr(p, w) is known in advance,
we can get an explicit expression of ¢(.) as a function of
the unknowns. For example, the separated foreground part is
likely to be sparse with a higher expected value compared to
the background part, while the background may or may not
be sparse.

Similar to the formulation in [20], we assume generalized
Gaussian distribution for the image p given w. Let Ny
and N, denote the sets of indices of p that belong to the
foreground and the background parts, respectively. Let the
shape parameters for the generalized Gaussian distribution
for the foreground and background segments are (y and (p,
respectively. The scale parameters for these two parts are
denoted by vy and +,, respectively. The probability distribution
of p given w is as follows:

1 b ( Zie/\ff |P[i]cf)
e [Nl i
<27;f 1+ é)) K
1 . <_Zjer Ip[j]l“) .

a1 [N | ¢ Yo
(2%“1“(1 + C—i))

Pr(plw) =

X

@)

Mapping vector w is assumed to have the Gibbs distribution,
1.€.,

N
Prw) = esp( S dwln - win)) ). ®)

n=1n,€ce(n)

€(n) denotes the set of indices that are in the neighbourhood
of the n'" element, §(.) denotes the Kronecker delta function
and K is the normalizing constant.

By replacing the expressions for Pr(p|w) and Pr(w)
in (6), we get

p",w* = argmin J(p,w) + ic(w), )
pw
where
J(p,w)
= 1
=||d = Fp|? + (N — 1"w) log (2%“ r (1 + Z))
b

= 1 1
+1Twlog (Q'yjff r (1 + 7)) + — (T - W)p]|
Cr Yo
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o Wplr + Aw]? (10)
vr
ic(.) is an indicator function that takes a large value if its
argument vector lies outside of set C, and otherwise it is 0.
Here, C'is a set of all NV dimensional vectors with components
equal to 0 or 1. 1 denotes an N dimensional vector of all 1’s.
A is a deterministic N x N matrix whose component at the i*"
diagonal element A; ; equals to |¢(¢)|, and A; ; for all j € (1)
equals to —1. W is a diagonal matrix with w along its main
diagonal.

The optimization problem in (9) can be solved using prox-
imal gradient descent algorithm with alternating minimization
steps for p and w. At each iteration, there is a gradient
descent step and an projection step for each unknown. Current
estimations of the scene p and the mapping function w at the
It" iteration, p() and w(®), respectively, are updated by the
following optimization problems:

p*Y = argmin J; (p; w), (11)
P
1
Ji(p;w) = ||d = Fpl* + %H(I —WO)p||@
1
+ —[[WWpls, (12)
Vs
and
w D = argmin Jy(w; pH0) +io(w), (13)
JQ(W p(l+1))
1
= |Aw|® + (N —1"w) log (2% r( ?))
b

5 1 1
+1"wlog (27 T (1 + —)) + = [[(I = W)pttD |
Cr Yo

[ WptH D, (14)

s

We set (r and (; as tuning parameters whose values are
adjusted based on the dataset. As an example case, we assume
¢(f = 1 and ¢, = 2, and formulate an algorithm and
corresponding deep network for this selection. This case is
equivalent to imposing sparsity constraint on the foreground
and normal prior distribution on the background.

Let Ky (p;w()) := ||d— Fp|>+2-|(1 ~W®)p||2. Value of
reconstructed image can be updated at the [*" iteration step by
performing a forward step along the steepest descent direction
of K; and then applying a proximity operator on the updated
image to apply the sparsity constraint imposed by the term
%HW(” p||t. The update steps for p are stated below:

=—-FH4(d -Fp) + (I —~W)%p.  (18)
Proximity function P, (.) applies componentw1se on its argu-

ment vector and has the following expression:

PV = P (el V), (19)

PG, [wOlipl V) > w0l = 1
=30, w0 i)V < WD) =1,
png) [i], otherwise

(20)

forall i € [1,N] and 7 € R™T.

Similarly, we define K(w;p(*tD) = ||[Aw|? + (N —

Tw)log (v5°v/7) +17wlog (27) + o-[|(T — W) pU V12,
Gradient descent update of w is based on the derivative
of this term and the constraints imposed by ic(w) and
% W pU+D |1 are applied via proximity operators Q and R 3,
respectively. At the [*" stage, estimation of w is updated as
follows:

ngﬂ) =wl) - AV Ka(p, W)\(p,w):(p<l+1>,w(l))a (2D

Wél+1 Q( (1+1) ) 22)

wlltD) = R@(wg“)). (23)
where ), is the learning rate and

1
Vwks(p,w) =2ATAw + (log(%f) ~3 log(wr)) 1
2
+ ,y—diag(p Op)(w—1). (24)
b

Functions @ and Rp operate componentwise on the input
vectors and are defined as follows:

wy V] = Q(wi Vi), (25)
(l+1)
1 >
0, Otherwzse
and
w(HD[i] = R(wi Vi), @7
l ) l . .
_ W; +1)M) wé +1)[l]p(l+1)[z] >3 2
0, otherwise
IV. DEEP NETWORK
Similar to the deep networks presented in [1], [3], [12], L

stages of the proximal gradient descent updates are unwrapped
to form two L stage RNNs whose parameters are learned
from a training set. At the [*" stage of the network, the
weight matrix, bias vector and activation function for the RNN
corresponding to p are ij = f(wl):= I—)\pFHF—i—Z(I—

(l) 2 _ H . )

+1) _ 1) _ W2 b, = AF"d and P-(.), respectively. Similarly,
P P l)\,l,VpKl(p, W)l (p.w)=(p0 i), as) for the mapping vector w, weight matrix, bias vector and

pltY = PT(pg ) (16) activation functions at the lth stage are W' = g(p(t1) =

T-2), ATA — 2 diag(pt+) 0 pH+D), b, = h(p+D) =

1 1 T
where A, is the learning rate and %diag(p(l'ﬂ) & p(”l))l — (log(nyf) 1 log(ybw)) 1
0K, and Qo Rg(.), respectively. Network diagram for joint image
VpKi(p,w) = (Tp) (I7) " reconstruction and segmentation is shown in Figure 1.
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Fig. 1: Deep network for joint image reconstruction and foreground-background separation.

V. TRAINING

Optimum values of the network parameters are learned
by the training process from a set of examples. Suppose 7
denotes the training set and it has 7" samples. For a supervised
training scenario, 7 comprises of a set of sensor data d;, for
all ¢, collected by the SAR receiver from different scenes,
and the corresponding true foreground and background image
segments, py, and py 4, respectively. During training, a loss
function Lg that quantifies the deviation of the estimated
foreground segment p%, = w; @ p; and the background
segment p;, = (1 — w;) © p; from the ground truths, is
minimized with respect to ®. O is the set containing all the
network parameters to be learned and it includes A, Ay, 7y,
~p, T and . Additionally, from empirical evidence, learning
process converges faster if F is included in ® with its known
value used for initialization. Training loss function Lg is
defined as follows:

1 X
Lo =7 Y lesi = p3(©) + lpvs — pii(©)]. (29)
t=1
Learning process is based on stochastic gradient descent
updates of the parameter set ©, and at the k' training its
value is updated as

okth — ek _ \\Vele. (30)

The RNN network requires initial values for the quantities
to be estimated i.e. p(©) and w(®. We set p(® equal to the
back-projected image F¥d, and w(®) equal to all 1’s.

VI. NUMERICAL RESULTS

To verify the feasibility of the proposed approach, we evalu-
ate model performance on simulated SAR received signal. For
simulation purpose, we have considered both (¢ and (;, equal
to 1. In the full version of the paper, we will include numerical
results for more datasets, and comparative performances for
different choices of ¢y and (.

The sample scenes in the training and test set are simulated
using MATLAB. Each scene is 32 x 32 pixels in dimension
and contains one of the two kinds of objects, triangular and
circular, located at a random position with different orienta-
tions. The background has non-zero reflectivity and the pixel
values in the background varies from sample to sample.

0 5

) 005 W 15 2 3 N 0 5 W 15 2 X N

Fig. 2: Reconstruction and segmentation output for sample
scenes with triangular and circular objects. On each row, the
left-most images are the original scenes, the images on the
center are the reconstructed foreground images and the images
on the right-most column are the reconstructed backgrounds.

The SAR received signal is simulated assuming that the data
collection geometry remains unchanged for different samples.
We assume a mono-static SAR on a moving platform traveling
in circular trajectory at a fixed height of 10km and radius
10km with the center of the scene as its origin. The sampled
received signal has 28 slow-time and 28 fast-time points.
Number of samples in the training and test set are 29500 and
500, respectively. Reconstructed foreground and background
separated images for two samples in the test set are shown
in Figure 2. For both types of object, reconstruction and
segmentation performance appears to be accurate.

VII. CONCLUSION

We have proposed a framework for joint MBIR and seg-
mentation approach for SAR received signal using DL. This
approach allows for the incorporation of different prior mod-
els for the foreground and background parts of the image.
Based on the prior models, derived network structures takes
different forms. Preliminary numerical results on simulated
SAR dataset shows promising reconstruction and segmentation
performance.
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