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Abstract—We present an approach for joint image recon-
struction and foreground-background separation for synthetic
aperture radar (SAR) using deep learning (DL). Network struc-
ture of the deep model is derived by unwrapping the stages
of an iterative algorithm that solves an underlying optimization
problem. This leads to physical model based deep network with
learned network parameters having meaningful interpretation.
Combined image reconstruction and segmentation approach
allows joint optimization of both tasks that enhances performance
and prevent inadvertent loss of useful information. Numerical
results are included to show feasibility of the proposed approach.

I. INTRODUCTION

In recent year, there have been significant interest in ap-

plying DL based approach to a wide variety of SAR related

problems including image reconstruction [1], [2], transmission

signal recovery for passive SAR [3], automatic target recog-

nition (ATR) [4]–[11], direct ATR from SAR received signal

without intermediate imaging step [12], [13] etc.

Both image reconstruction and segmentation are important

tasks in remote sensing, and image and video signal process-

ing. They are often used as preliminary steps for subsequent

processing tasks such as ATR, navigation etc. Segmentation

refers to the process of isolating different parts of an image

based on their content. In this paper, we consider segmentation

as a foreground-background separation problem, where the

foreground is composed of elements from a specific set of

objects of interest while the background is refers to the

remaining parts of the scene. Accurate foreground-background

separation is highly desirable for ATR since locating and

identifying various objects from a separated foreground is

relatively easier than classification from the complete scene

with complex background.

Joint reconstruction and segmentation instead of segmenting

from a reconstructed image can be beneficial in terms of

both reconstruction and segmentation quality. For the two

step process, quality of the reconstructed image affects the

performance of the segmentation algorithm. This is because

the isolated reconstruction algorithm does not take subsequent

processing steps into account and finer details that are impor-

tant for the segmentation task may be lost while enhancing

overall reconstruction quality.

Various joint reconstruction and segmentation methods have

been previously studied in the literature including [14]–[16].

There are some recent works on DL based joint image recon-

struction and segmentation problem in medical imaging field

including [17], [18]. Both of these approaches are based on

convolutional neural network (CNN). In [17], a joint multi-

stage CNN model is proposed for parallel reconstruction

and segmentation of 7T magnetic resonance (MR) images

from 3T MR images in order to provide higher resolution

and contrast quality. Reconstruction and segmentation tasks

require separate cascaded CNN networks with mutual feed-

backs during forward propagation step which allows for joint

optimization. In [18], a joint reconstruction and segmentation

network for magnetic resonance imaging (MRI) for com-

pressed sensing (CS) measurement condition is presented.

Proposed deep network, referred to as SegNetMRI, is com-

posed of repetitive CNN based encoder-decoder pairs where

the cascaded networks for reconstruction and segmentation

share the same encoders. Outputs of the multiple decoders

for the segmentation network are then combined to give the

final output.

In this paper, we propose an approach that combines model

based image reconstruction (MBIR) with the learning aspect

of deep networks for simultaneous image reconstruction and

segmentation. The network structure is derived based on an

iteration algorithm for the optimization problem for this joint

task. The resulting deep network takes a repetitive structure

with various stages sharing common set of parameters. Such

network architectures are commonly referred to as recurrent

neural network (RNN), and the parameter sharing aspect

makes them particularly suitable for SAR related task due

to the scarcity in labeled dataset for training. Deep model

based approach have the potential to utilize highly non-linear

mapping capability to generate a better iteration sequence,

optimized for a specific dataset, to improve performance

while reducing computational cost by solving the optimization

problem within a fixed number steps.

The rest of the paper is organized as follows: In Sec-

tion II, we present the forward model and establish different

notations. In Section III, we discuss the theory for the joint

optimization problem and a corresponding iterative algorithm.
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In Section IV, we present the deep network. In Section VI,

we present numerical results to verify feasibility of the model.

Finally, Section VII concludes the paper.

II. PROBLEM STATEMENT

Let x ∈ R, xxx = [x1, x2] ∈ R
2 and x = [xxx, ψ(xxx)] ∈ R

3

denotes the one, two and three dimensional co-ordinate vari-

ables, respectively. ψ(xxx) denotes the surface topography at

coordinate xxx. Let s ∈ [s1, s2] and ω ∈ [ω1, ω2] denote the

slow-time points and fast-time frequencies, respectively. The

SAR is mounted on a moving platform that travels along a

known trajectory. We assume that start-stop approximation

is applicable, i.e. the SAR location remains effectively un-

changed while the pulse is being transmitted and reflected back

due to relatively small platform velocity compared to the speed

of light in free space c. Location of the SAR transmitter and

receiver are denoted by γγγT (s) : R→ R
3 and γγγR(s) : R→ R

3,

respectively. Received signal for slow-time point s and fast-

time frequency ω, assuming single scattering model, can be

expressed as [19]

d(s, ω) =

∫
A(s, ω,x)e−

iω
c R(s,x)ρ(x)dx+ n(s, w), (1)

= F [ρ](s, ω) + n(s, w). (2)

ρ(x) : R
3 → C denotes the reflectivity of the surface at

co-ordinate x. F [.](s, ω) is the forward mapping operator.

R(s, x) = |γγγT (s) − x| + |x − γγγR(s)| is the total distance

travelled by the transmitted signal and n(s, w) is the additive

Gaussian noise. Suppose a finite dimensional representation of

the forward mapping operator F is denoted by F ∈ C
M×N .

Corresponding discrete forward model can be expressed as:

d = Fρ+ n. (3)

Here, d ∈ C
M and ρρρ ∈ C

N are the discrete data and reflectiv-

ity vectors, respectively. n ∈ C
N is a complex Gaussian vector

distributed as N (0, σ2(1+1i)I). Suppose the foreground and

background parts of the image ρ are denoted by ρf and ρb,

respectively. Our goal is to jointly reconstruct ρf and ρb given

the received signal d.

III. JOINT IMAGE RECONSTRUCTION AND SEGMENTATION

We perform joint reconstruction of the image segments from

the sensing data by estimating the complete image ρ and a

mapping vector w of length N with its nth element equal to 1
if the corresponding component of ρ belong to the foreground,

else it is 0. The two segments, ρf and ρb, can be calculated

from these estimated quantities by ρf = diag(w)ρ and ρb =
(I − diag(w))ρ, where diag(w) refers to a diagonal matrix

with w along its main diagonal.

An optimization problem for this joint task can be derived

from the formulation of the Maximum Apriori Probability

(MAP) estimation of ρ and w. Suppose ρ∗ and w∗ denote the

MAP estimations of unknown signals ρ and w, respectively.

Then

ρ∗,w∗

= argmax
ρ,w

logPr(ρ,w|d), (4)

= argmax
ρ,w

logPr(d|ρ,w) + logPr(ρ|w) + logPr(w),

(5)

= argmax
ρ,w

−‖d− Fρ‖2 + logPr(ρ|w) + logPr(w). (6)

Data fitting term ‖d− Fρ‖2 measures the consistency of the

reconstructed image with the measured data and is a convex

function of ρ. Let Φ(ρ,w) := logPr(ρ|w)+ logPr(w), and

it imposes constraints on the unknown quantities ρ and w. In

case the joint prior distribution Pr(ρ,w) is known in advance,

we can get an explicit expression of φ(.) as a function of

the unknowns. For example, the separated foreground part is

likely to be sparse with a higher expected value compared to

the background part, while the background may or may not

be sparse.

Similar to the formulation in [20], we assume generalized

Gaussian distribution for the image ρ given w. Let Nf

and Nb denote the sets of indices of ρ that belong to the

foreground and the background parts, respectively. Let the

shape parameters for the generalized Gaussian distribution

for the foreground and background segments are ζf and ζb,

respectively. The scale parameters for these two parts are

denoted by γf and γb, respectively. The probability distribution

of ρ given w is as follows:

Pr(ρ|w) = 1Å
2γ

1
ζf

f Γ(1 + 1
ζf
)

ã|Nf | exp

Ç
−
∑

i∈Nf
|ρ[i]|ζf

γf

å

× 1Å
2γ

1
ζb

b Γ(1 + 1
ζb
)

ã|Nb| exp

Ç
−
∑

j∈Nb
|ρ[j]|ζb
γb

å
.

(7)

Mapping vector w is assumed to have the Gibbs distribution,

i.e.,

Pr(w) =
1

K
exp

Ñ
N∑

n=1

∑
n1∈ε(n)

δ(w[n]−w[n1])

é
, (8)

ε(n) denotes the set of indices that are in the neighbourhood

of the nth element, δ(.) denotes the Kronecker delta function

and K is the normalizing constant.

By replacing the expressions for Pr(ρ|w) and Pr(w)
in (6), we get

ρ∗,w∗ = argmin
ρ,w

J(ρ,w) + iC(w), (9)

where

J(ρ,w)

= ‖d− Fρ‖2 + (N − 1Tw) log

Å
2γ

1
ζb

b Γ

Å
1 +

1

ζb

ãã
+ 1Tw log

Å
2γ

1
ζf

f Γ

Å
1 +

1

ζf

ãã
+

1

γb
‖(I−W)ρ‖ζb
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+
1

γf
‖Wρ‖ζf + ‖Aw‖2. (10)

iC(.) is an indicator function that takes a large value if its

argument vector lies outside of set C, and otherwise it is 0.

Here, C is a set of all N dimensional vectors with components

equal to 0 or 1. 1 denotes an N dimensional vector of all 1’s.

A is a deterministic N×N matrix whose component at the ith

diagonal element Ai,i equals to |ε(i)|, and Ai,j for all j ∈ ε(i)
equals to −1. W is a diagonal matrix with w along its main

diagonal.

The optimization problem in (9) can be solved using prox-

imal gradient descent algorithm with alternating minimization

steps for ρ and w. At each iteration, there is a gradient

descent step and an projection step for each unknown. Current

estimations of the scene ρ and the mapping function w at the

lth iteration, ρ(l) and w(l), respectively, are updated by the

following optimization problems:

ρ(l+1) = argmin
ρ

J1(ρ;w
(l)), (11)

J1(ρ;w
(l)) = ‖d− Fρ‖2 + 1

γb
‖(I−W(l))ρ‖ζb

+
1

γf
‖W(l)ρ‖ζf , (12)

and

w(l+1) = argmin
w

J2(w;ρ
(l+1)) + iC(w), (13)

J2(w;ρ
(l+1))

= ‖Aw‖2 + (N − 1Tw) log

Å
2γ

1
ζb

b Γ

Å
1 +

1

ζb

ãã
+ 1Tw log

Å
2γ

1
ζf

f Γ

Å
1 +

1

ζf

ãã
+

1

γb
‖(I−W)ρ(l+1)‖ζb

+
1

γf
‖Wρ(l+1)‖ζf . (14)

We set ζf and ζb as tuning parameters whose values are

adjusted based on the dataset. As an example case, we assume

ζf = 1 and ζb = 2, and formulate an algorithm and

corresponding deep network for this selection. This case is

equivalent to imposing sparsity constraint on the foreground

and normal prior distribution on the background.

Let K1(ρ;w
(l)) := ‖d−Fρ‖2+ 1

γb
‖(I−W(l))ρ‖2. Value of

reconstructed image can be updated at the lth iteration step by

performing a forward step along the steepest descent direction

of K1 and then applying a proximity operator on the updated

image to apply the sparsity constraint imposed by the term
1
γf
‖W(l)ρ‖1. The update steps for ρ are stated below:

ρ
(l+1)
1 = ρ(l) − λρ∇ρK1(ρ,w)|(ρ,w)=(ρ(l),w(l)), (15)

ρ(l+1) = Pτ (ρ
(l+1)
1 ), (16)

where λρ is the learning rate and

∇ρK1(ρ,w) =

Å
∂K1

∂ρ

ã
(17)

= −FH(d− Fρ) +
1

γb
(I−W)2ρ. (18)

Proximity function Pτ (.) applies componentwise on its argu-

ment vector and has the following expression:

ρ(l+1)[i] = Pτ (ρ
(l+1)
1 [i]), (19)

=

⎧⎪⎨
⎪⎩
ρ
(l+1)
1 [i], |w(l)[i]ρ

(l+1)
1 [i]| ≥ τ,w(l)[i] = 1

0, |w(l)[i]ρ
(l+1)
1 [i]| < τ,w(l)[i] = 1

ρ
(l+1)
1 [i], otherwise

,

(20)

for all i ∈ [1, N ] and τ ∈ R
+.

Similarly, we define K2(w;ρ
(l+1)) := ‖Aw‖2 + (N −

1Tw) log
(
γ0.5b

√
π
)
+ 1Tw log (2γf ) +

1
γb
‖(I−W)ρ(l+1)‖2.

Gradient descent update of w is based on the derivative

of this term and the constraints imposed by iC(w) and
1
γf
‖Wρ(l+1)‖1 are applied via proximity operatorsQ andRβ ,

respectively. At the lth stage, estimation of w is updated as

follows:

w
(l+1)
1 = w(l) − λw∇wK2(ρ,w)|(ρ,w)=(ρ(l+1),w(l)), (21)

w
(l+1)
2 = Q(w(l+1)

1 ), (22)

w(l+1) = Rβ(w
(l+1)
2 ). (23)

where λw is the learning rate and

∇wK2(ρ,w) = 2ATAw +

Å
log(2γf )−

1

2
log(γbπ)

ã
1

+
2

γb
diag(ρ� ρ)(w − 1). (24)

Functions Q and Rβ operate componentwise on the input

vectors and are defined as follows:

w
(l+1)
2 [i] = Q(w(l+1)

1 [i]), (25)

=

®
1, w

(l+1)
1 [i] ≥ 0.5

0, otherwise
, (26)

and

w(l+1)[i] = Rβ(w
(l+1)
2 [i]), (27)

=

®
w

(l+1)
2 [i], w

(l+1)
2 [i]ρ(l+1)[i] ≥ β

0, otherwise
. (28)

IV. DEEP NETWORK

Similar to the deep networks presented in [1], [3], [12], L
stages of the proximal gradient descent updates are unwrapped

to form two L stage RNNs whose parameters are learned

from a training set. At the lth stage of the network, the

weight matrix, bias vector and activation function for the RNN

corresponding to ρ are Wl
ρ = f(w(l)) := I−λρFHF− λρ

γb
(I−

W(l))2, bρ = λρF
Hd and Pτ (.), respectively. Similarly,

for the mapping vector w, weight matrix, bias vector and

activation functions at the lth stage are Wl
w := g(ρ(l+1)) =

I−2λwATA− 2λw

γb
diag(ρ(l+1)�ρ(l+1)), bl

w := h(ρ(l+1)) =
2λw

γb
diag(ρ(l+1) � ρ(l+1))1 − λw

(
log(2γf )− 1

2 log(γbπ)
)
1

and Q◦Rβ(.), respectively. Network diagram for joint image

reconstruction and segmentation is shown in Figure 1.
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Fig. 1: Deep network for joint image reconstruction and foreground-background separation.

V. TRAINING

Optimum values of the network parameters are learned

by the training process from a set of examples. Suppose T
denotes the training set and it has T samples. For a supervised

training scenario, T comprises of a set of sensor data dt, for

all t, collected by the SAR receiver from different scenes,

and the corresponding true foreground and background image

segments, ρf,t and ρb,t, respectively. During training, a loss

function LΘ that quantifies the deviation of the estimated

foreground segment ρ∗f,t = w∗t � ρ∗t and the background

segment ρ∗b,t = (1 − w∗t ) � ρ∗t from the ground truths, is

minimized with respect to Θ. Θ is the set containing all the

network parameters to be learned and it includes λρ, λw, γf ,

γb, τ and β. Additionally, from empirical evidence, learning

process converges faster if F is included in Θ with its known

value used for initialization. Training loss function LΘ is

defined as follows:

LΘ =
1

T

T∑
t=1

‖ρf,l − ρ∗f,l(Θ)‖2 + ‖ρb,l − ρ∗b,l(Θ)‖2. (29)

Learning process is based on stochastic gradient descent

updates of the parameter set Θ, and at the kth training its

value is updated as

Θ(k+1) = Θ(k) − λt∇ΘLΘ. (30)

The RNN network requires initial values for the quantities

to be estimated i.e. ρ(0) and w(0). We set ρ(0) equal to the

back-projected image FHd, and w(0) equal to all 1’s.

VI. NUMERICAL RESULTS

To verify the feasibility of the proposed approach, we evalu-

ate model performance on simulated SAR received signal. For

simulation purpose, we have considered both ζf and ζb equal

to 1. In the full version of the paper, we will include numerical

results for more datasets, and comparative performances for

different choices of ζf and ζb.

The sample scenes in the training and test set are simulated

using MATLAB. Each scene is 32 × 32 pixels in dimension

and contains one of the two kinds of objects, triangular and

circular, located at a random position with different orienta-

tions. The background has non-zero reflectivity and the pixel

values in the background varies from sample to sample.

Fig. 2: Reconstruction and segmentation output for sample

scenes with triangular and circular objects. On each row, the

left-most images are the original scenes, the images on the

center are the reconstructed foreground images and the images

on the right-most column are the reconstructed backgrounds.

The SAR received signal is simulated assuming that the data

collection geometry remains unchanged for different samples.

We assume a mono-static SAR on a moving platform traveling

in circular trajectory at a fixed height of 10km and radius

10km with the center of the scene as its origin. The sampled

received signal has 28 slow-time and 28 fast-time points.

Number of samples in the training and test set are 29500 and

500, respectively. Reconstructed foreground and background

separated images for two samples in the test set are shown

in Figure 2. For both types of object, reconstruction and

segmentation performance appears to be accurate.

VII. CONCLUSION

We have proposed a framework for joint MBIR and seg-

mentation approach for SAR received signal using DL. This

approach allows for the incorporation of different prior mod-

els for the foreground and background parts of the image.

Based on the prior models, derived network structures takes

different forms. Preliminary numerical results on simulated

SAR dataset shows promising reconstruction and segmentation

performance.
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