

doi: 10.1093/femsle/fnaa106

Advance Access Publication Date: 26 June 2020
Research Letter

RESEARCH LETTER - Physiology & Biochemistry

Ubiquity and functional uniformity in CO₂ concentrating mechanisms in multiple phyla of Bacteria is suggested by a diversity and prevalence of genes encoding candidate dissolved inorganic carbon transporters

Kathleen M. Scott^{1,*}, Tara L. Harmer², Bradford J. Gemmell¹, Andrew M. Kramer¹, Markus Sutter⁴, Cheryl A. Kerfeld^{3,4}, Kourtney S. Barber¹, Saaurav Bari¹, Joshua W. Boling¹, Cassandra P. Campbell¹, Javier F. Gallard-Gongora¹, Jessica K. Jackson¹, Aldo Lobos¹, Jeannie M. Mounger¹, Peter W. Radulovic¹, Jacqueline M. Sanson¹, Sarah Schmid¹, Candice Takieddine¹, Kiley F. Warlick¹ and Robert Whittaker¹

¹Department of Integrative Biology, University of South Florida, Tampa, FL 33620 USA, ²Biology Program, Stockton University, Galloway, NJ, USA, ³MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA and ⁴Environmental Genomics and Systems Biology and Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

*Corresponding author: Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA. Tel: +813 974 5173; Fax: +813 974 3263; E-mail: kmscott@usf.edu

One sentence summary: Carbon dioxide concentrating mechanisms are common in carboxysome-using autotrophs.

Editor: Rich Boden

ABSTRACT

Autotrophic microorganisms catalyze the entry of dissolved inorganic carbon (DIC; = $CO_2 + HCO_3^- + CO_3^{2-}$) into the biological component of the global carbon cycle, despite dramatic differences in DIC abundance and composition in their sometimes extreme environments. "Cyanobacteria" are known to have CO_2 concentrating mechanisms (CCMs) to facilitate growth under low CO_2 conditions. These CCMs consist of carboxysomes, containing enzymes ribulose 1,5-bisphosphate oxygenase and carbonic anhydrase, partnered to DIC transporters. CCMs and their DIC transporters have been studied in a handful of other prokaryotes, but it was not known how common CCMs were beyond "Cyanobacteria". Since it had previously been noted that genes encoding potential transporters were found neighboring carboxysome loci, α -carboxysome loci were gathered from bacterial genomes, and potential transporter genes neighboring these loci are described here. Members of transporter families whose members all transport DIC (CHC, MDT and Sbt) were common in these neighborhoods, as were

members of the SulP transporter family, many of which transport DIC. 109 of 115 taxa with carboxysome loci have some form of DIC transporter encoded in their genomes, suggesting that CCMs consisting of carboxysomes and DIC transporters are widespread not only among "Cyanobacteria", but also among members of "Proteobacteria" and "Actinobacteria".

Keywords: CO2 concentrating mechanism; autotroph; carbon fixation; carboxysome

INTRODUCTION

Autotrophic microorganisms fix dissolved inorganic carbon (DIC; $CO_2 + HCO_3^- + CO_3^{2-}$) in an incredible array of habitats, including hydrothermal vents (Jannasch and Mottl 1985), terrestrial hot springs (Ward et al. 1998), the oligotrophic open ocean (Chisholm et al. 1988; Wuchter et al. 2006), acid rock drainage areas (Edwards et al. 2000) and soda lakes (Sorokin et al. 2003). Since the pH range of these habitats is 1–12 (Edwards et al. 2000; Sorokin et al. 2003), the concentration and composition of DIC also vary markedly; at acidic pH, CO_2 dominates, at near-neutral pH, HCO_3^- is abundant and at more alkaline pH values, CO_3^{2-} is the major form present.

Organisms that use the Calvin–Benson–Bassham (CBB) cycle for CO_2 fixation in these varied habitats must grapple with the catalytic constraints of ribulose 1,5-bisphosphate carboxy-lase/oxygenase (RubisCO; EC 4.1.1.39). RubisCO has poor substrate specificity; it catalyzes both the carboxylase reaction of the CBB cycle, as well as a wasteful oxygenase reaction, which results in added energetic expense to regenerate the ribulose 1,5 bisphosphate (RuBP) necessary for the CBB cycle (Tabita 1999). In addition, RubisCO enzymes have relatively low affinities for CO_2 (5–250 μ M; (Tabita 1999). RubisCO affinities for CO_2 are particularly low for autotrophic bacteria (25–250 μ M; tabulated in (Horken and Tabita 1999). Furthermore, RubisCO is only able to use CO_2 as a substrate, and not HCO_3^- (Cooper and Filmer 1969), despite the scarcity of CO_2 and abundance of HCO_3^- at the circumneutral pH typical for cytoplasm.

It is likely that many autotrophic bacteria using the CBB cycle have CO₂-concentrating mechanisms (CCMs) that compensate for RubisCO. CCMs are nearly universal among "Cyanobacteria", in which it has been demonstrated that CCMs consist of two components: (1) membrane transporters for DIC, which generate high concentrations of cytoplasmic HCO3-, and (2) carboxysomes, which are present in the cytoplasm and facilitate high rates of CO2 fixation by RubisCO (Fig. 1; reviewed in Price et al. (2009); Rae et al. (2013); Long et al. (2016)). Carboxysomes are a type of bacterial microcompartment, and consist of a protein shell filled with RubisCO and a trace of carbonic anhydrase activity (EC 4.2.1.1; Kerfeld et al. 2018). Cytoplasmic HCO₃⁻ enters carboxysomes, where carbonic anhydrase converts some of it to CO₂, which is then fixed by RubisCO. Carboxysomes are also present in many autotrophic members of "Proteobacteria" (Cannon et al. 2002); it is reasonable to suggest that they play a key role in CCMs in members of this phylum as well. Indeed, Hydrogenovibrio crunogenus, a member of Gammaproteobacteria has a CCM consisting of carboxysomes and DIC transporters (Dobrinski, Longo and Scott 2005; Dobrinski et al. 2012), and members of genera Hydrogenovibrio, Thiomicrorhabdus and Thiomicrospira upregulate genes encoding carboxysome components and DIC transporters when cultivated under low DIC conditions (e.g., (Dobrinski et al. 2012; Esparza et al. 2019; Scott et al.

Two types of carboxysomes (α and β) are currently recognized (reviewed in (Cannon, Heinhorst and Kerfeld 2010; Kerfeld and Melnicki 2016). These types can be distinguished by the form of RubisCO they carry (α -carboxysomes carry form

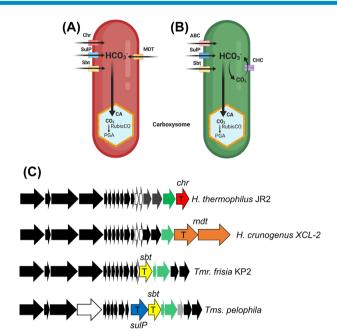


Figure 1. CO_2 concentrating mechanisms (CCMs) in members of "Proteobacteria" (A) and "Cyanobacteria" (B), and their chromosomal loci (C). For both CCMs, DIC transporters generate elevated concentrations of bicarbonate, which facilitate CO_2 fixation by carboxysomes. CA – Carbonic anhydrase; CHC – CO_2 hydration complex; CHC – Chromate family transporter; CHC – CIC hydration complex; CIC – CIC hydration complex; CIC – CIC hydration complex; CIC – CIC hydration transporter; CIC – CIC hydration bicarbonate transporter; CIC – CIC hydration bicarbonate transporter; CIC – CIC hydration bicarbonate transporter; CIC – CIC hydration encountering carboxysome structural and enzyme components (black) with transmembrane proteins (T) encode nearby, from the genomes of Hydrogenovibrio thermophilus, Hydrogenovibrio crunogenus, Thiomicrorhabdus frisia CIC and Thiomicrospira pelophila. Genes encoding regulatory (green), conserved hypothetical (grey) and hypothetical (white) proteins are also depicted.

IA RubisCO; β -carboxysomes carry form IB RubisCO), as well as differences in carbonic anhydrases and carboxysome shell components (Kerfeld and Melnicki 2016). Members of "Proteobacteria" and certain marine members of "Cyanobacteria" have α -carboxysomes, while the remaining members of "Cyanobacteria" have β -carboxysomes (Price et al. 2009; Scott et al. 2019).

DIC transporters also vary among these organisms. Among members of phylum "Cyanobacteria", three evolutionarily independent lineages of bicarbonate transporters have been identified. An ATP-binding cassette transporter couples bicarbonate uptake to ATP hydrolysis (Omata et al. 1999). Transporters belonging to the SulP family (named for the sulfate transport activity of the founding member), couple bicarbonate uptake to sodium uptake (Price et al. 2004; Du et al. 2014), as do SbtA transporters, the third type of cyanobacterial bicarbonate transporter (Shibata et al. 2002b; Du et al. 2014). In addition, some members of "Cyanobacteria" also have 'CO2 traps', which are located at the thylakoid or cell membrane, and consist of a carbonic anhydrase activity associated with NAD(P)H dehydrogenase. These CO₂-hydrating complexes (CHC) couple electron transfer to plastoquinone with the conversion of CO₂ to HCO₃⁻, perhaps via localized alkalinization around their associated carbonic

anhydrase enzymes, which minimizes CO2 losses from these cells (Price et al. 2002; Shibata et al. 2002a; Battchikova, Eisenhut and Aro 2011; Han et al. 2017; Schuller et al. 2020).

A growing body of evidence suggests that mechanisms for DIC transport by autotrophic organisms from other phyla are also diverse, and currently include members of four evolutionarily distinct transporter families: multi-subunit DIC transporters (MDT), Chr-, SulP- and Sbt-family transporters (Fig. 1; Scott et al. 2019). MDT activity was first described in Gammaproteobacterium Hydrogenovibrio crunogenus (Mangiapia et al. 2017), confirmed to transport DIC (Scott et al. 2019), and subsequently found to be active in Halothiobacillus neapolitanus (Price, Long and Förster 2019) and also in phylum "Firmicutes" (Fan et al. 2019). Indeed, homologs of MDT are widespread in many phyla (Mangiapia et al. 2017). A Chr-family transporter from Hydrogenovibrio thermophilus was found to be able to transport DIC (Scott et al. 2019). SulP- and Sbt-family transporters deeply divergent from DIC transporters from "Cyanobacteria" (~25-30% identical amino acid sequences) also demonstrate measureable DIC transport. SulP-family DIC transporters in Escherichia coli and Salmonella typhimurium may play a role in lipid synthesis (Babu et al. 2010; Srinivasan et al. 2016), while one from H. thermophilus likely facilitates CO2 fixation, as it is upregulated under low DIC conditions and is capable of DIC uptake (Scott et al. 2019). Since SulPfamily transporters are sometimes fused to carbonic anhydrase, it has been suggested that DIC uptake by these transporters may be common (Felce and Saier 2004). A Sbt-family transporter in Thiomicrorhabdus frisia also transports DIC and is upregulated under low DIC conditions (Scott et al. 2019).

Several things remain to be clarified about DIC transporters in autotrophic Bacteria. The prevalence of different types of DIC transporters among autotrophs, the partnering of carboxysomes with DIC transporters in CCMs and taxonomic distribution of DIC transporters have yet to be described. The prevalence of DIC transport capability among members of the Chr- and SulPfamily is unknown. Unlike Sbt and MDT transporters, whose characterized members only transport DIC, members of Chrand SulP-families are known to transport other compounds (Pimentel, Moreno-Sanchez and Cervantes 2002; Zolotarev et al. 2008). It also seems likely that yet more types of DIC transporters remain to be discovered.

One attractive option is to use genome data to address these unknowns. Indeed, a genomic approach has been used to successfully identify candidate DIC transporters in members of "Cyanobacteria" with α -carboxysomes (Gaudana et al. 2015). Genomes from these organisms were queried for homologs of DIC transporters characterized in "Cyanobacteria" with β carboxysomes, and several likely DIC transporters were uncovered (Gaudana et al. 2015). Gene neighborhood information gathered from genome sequences can also be helpful in inferring gene function. In members of domain "Bacteria", genes whose products function together are often collocated in operons (Price et al. 2005). Furthermore, correlations in transcript abundance have been noted for operons that are adjacent to each other on a bacterial chromosome (Junier and Rivoire 2016). This collocation of functionally related genes at the operon and supraoperon level has been used to predict functions of bacterial microcompartments by examining the genome neighborhood adjacent to genes encoding the structural components of these subcellular structures (Axen, Erbilgin and Kerfeld 2014). In the course of that study, it was noted that many microcompartmentrelated loci were collocated with putative transporters related to microcompartment functions, including NADH dehydrogenase (EC 1.6.5.11) subunit homologs now known to comprise

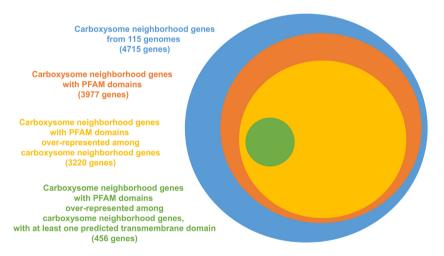
MDT (Axen, Erbilgin and Kerfeld 2014). Indeed, genes encoding MDT, Chr-, SulP- and Sbt-family DIC transporters are present downstream of carboxysome loci in members of Thiomicrospira, Hydrogenovibrio and Thiomicrorhabdus (Scott et al. 2018, 2019).

For the study presented here, a genome context approach was taken to clarify the prevalence and distribution of potential DIC transporters in autotrophic "Bacteria" beyond phylum "Cyanobacteria", and to identify new families of transporters that might be capable of DIC uptake. α -carboxysome loci encoding RubisCO, carbonic anhydrase and shell proteins were collected, and their neighborhoods were examined for potential DIC transporters.

METHODS

Selecting carboxysome loci for analysis

Carboxysome loci were selected from sequenced microbial genomes since the genome neighborhoods surrounding these loci were going to be examined for potential DIC transporters. These loci were found by gathering all members of Pfam12288 (Carboxysome shell peptide mid-region, CsoS2_M) from the Integrated Microbial Genomes & Microbiomes system (IMG; https: //img.jgi.doe.gov/; Chen et al. 2019). Pfam12288 was selected because all known α -carboxysomes contain the CsoS2 protein, which is necessary for carboxysome assembly (Cai et al. 2015). csoS2 genes closer than 25 000 nucleotides from the end of a contig were removed, as their neighborhoods were truncated. The remaining csoS2 genes were present in genomes from members of phyla "Cyanobacteria", "Proteobacteria" and "Actinobacteria", and certain genera were overrepresented (124 members of Prochlorococcus, 36 members of Synechococcus and 52 members of Thioalkalivibrio), reflecting bias in genome representation in the database. To select members from these three genera, and to diminish overrepresentation, members from each genus were placed into clusters via the 'Genome Clustering' tool at IMG, using COG presence to cluster genomes by principal components analysis. Members of each cluster were compared to eachother via pairwise average nucleotide identities (ANI) by using the IMG 'Compare Genomes' tool. To select members of different species within each genus, members of each cluster that had at most 95% ANI relative to eachother were selected for further study (Konstantinidis and Tiedje 2005; Rodriguez-R and Konstantinidis 2014). After vetting as described above, 115 carboxysome loci remained for analysis (Table 1; Table S1, Supporting Information).


Gathering carboxysome loci and their neighborhoods, and screening for potential DIC transporters

Previously it had been shown that genes encoding DIC transporters are found up to 15 genes downstream from csoS2 in genera Thiomicrospira, Thiomicrorhabdus and Hydrogenovibrio (Scott et al. 2019). Therefore, for this analysis, gene neighborhoods that included all genes up to 20 genes upstream, and 20 genes downstream, from csoS2 were gathered from the 115 genomes selected above to search for potential DIC transporters (Fig. 2, blue circle; Table S2, Supporting Information; referred to subsequently as 'carboxysome gene neighborhoods'). From these, genes with Pfam domains were collected (Fig. 2, orange circle; Table S3, Supporting Information; assignment based on Pfam v30; https://img.jgi.doe.gov/docs/pipelineV5/; Huntemann et al. 2015).

Table 1. Taxonomic distribution of organisms whose genome sequences were used for this study.

Phylum	Class	Order	Family
"Actinobacteria" (1)	"Acidimicrobia" (1)	Acidimicrobiales (1)	Acidimicrobiaceae (1)
"Cyanobacteria" (22)	unclassified (22)	Chroococcales (1)	Aphanothecaceae (1)
		"Synechococcales" (21)	Prochloraceae (5)
			Synechococcaceae (15)
"Proteobacteria" (93)	Acidithiobacillia (4)	Acidithiobacillales (4)	Acidithiobacillaceae (4)
	Alphaproteobacteria (6)	Rhizobiales (4)	Bradyrhizobiaceae (4)
		Rhodobacterales (2)	Rhodobacteraceae (2)
	Betaproteobacteria (22)	Burkholderiales (8)	Comamonadaceae (2)
			unclassified (6)
		"Ferrovales" (2)	"Ferrovaceae" (2)
		Nitrosomonadales (11)	Gallionellaceae (3)
			Nitrosomonadaceae (5)
			Thiobacillaceae (3)
		unclassified (1)	unclassified (1)
	Gammaproteobacteria (61)	Acidiferrobacterales (1)	Acidiferrobacteraceae (1)
		Alteromonadales (1)	Alteromonadaceae (1)
		Chromatiales (40)	Chromatiaceae (13)
			Ectothiorhodospiraceae (21)
			Granulosicoccaceae (1)
			Halothiobacillaceae (3)
			Thioalkalispiraceae (1)
			unclassified (1)
		Thiotrichales (18)	Piscirickettsiaceae (16)
			Thiotrichaceae (2)
		Unclassified (1)	Unclassified (1)

Numbers in parentheses indicate the numbers of members in each taxonomic unit. A full list of organisms is provided in Table S1 (Supporting Information).

 $\textbf{Figure 2}. \ Process \ for collecting \ potential \ transporter \ genes \ collocated \ with \ carboxysome \ genes. \ Numbers \ of \ genes \ are \ indicated \ for \ each \ of \ the \ four \ steps \ of \ the \ process.$

A bootstrap sampling procedure was used to determine whether certain Pfams were more common in these carboxysome gene neighborhoods than elsewhere in the genomes. To determine how common Pfams were throughout the genome, random genes were selected with replacement, and the Pfams present in the 41 gene region centered on each gene (referred to subsequently as 'random gene neighborhoods') were tabulated (Pfam assignment based on Pfam v30; https://img.jgi.doe.gov/docs/pipelineV5/; Huntemann et al. 2015). This procedure was repeated 10 000 times for each organism's genome to build the distribution of number of times each Pfam was observed in random gene neighborhoods, from which the 0.975 quantile was calculated to obtain the upper portion of the 95% confidence interval (CI) for each Pfam. This was done in R (R version 3.6.1,

2019) and code is available in the supplementary information (Supplementary Methods 1).

The Pfams occurring in each carboxysome gene neighborhood were counted in the same way, and the number of occurrences of each Pfam in each carboxysome gene neighborhood was compared to the upper bound of the 95% CI from the random gene neighborhoods from elsewhere in the same genome. If the Pfam occurred more often in the carboxysome gene neighborhood, it was scored as over-represented in the carboxysome gene neighborhood (Fig. 2, yellow circle). To determine if particular Pfams were over-represented in multiple organisms, over-represented Pfams were summed across organisms, counting once for each organism in which a Pfam was over-represented (Table S3, Supporting Information). To select potential DIC

transporters, genes falling into these Pfams that were predicted to encode proteins with transmembrane domains were collected (Fig. 2, green circle; transmembrane domains were predicted based on TMHMM; Krogh *et al.* 2001).

Making a 16S rRNA gene tree for determining taxonomic distribution of potential DIC transporters

Genes encoding 16S rRNA were collected from IMG, and aligned via SINA 1.2.11 (https://www.arb-silva.de/aligner/job/7 48971; Pruesse, Peplies and Glöckner 2012). The alignment was trimmed via GBLOCKS using stringent criteria (Talavera and Castresana 2007). PhyML 3.0 was used to construct phylogenetic trees (Guindon et al. 2010) via Maximum Likelihood (ML) analysis. Smart Model Selection (SMS) was used to evaluate best-fit models of evolution (GTR + G + I, G = 0.633, I = 0.541, where GTR = generalized timer-reversible model, G = gamma distribution parameter; I = proportion of invariant sites; Tavare 1986; Lefort, Longueville and Gascuel 2017). Clade robustness was assessed with 1000 bootstrap replicates, and the consensus tree was visualized using FigTree (Version 1.4.3; A. Rambaut).

RESULTS AND DISCUSSION

Predicted protein families for DIC transporters that are over-represented near carboxysome loci

A total of 456 genes were found, that met all selection criteria described above (Fig. 2). These genes, collected from carboxysome gene neighborhoods, encode proteins with transmembrane domains, and belong to 157 Pfams that were overrepresented in the carboxysome gene neighborhood in at least one genome (Fig. 3; complete list in Table S4, Supporting Information). Some of proteins encoded by these genes contain more than one Pfam domain (Fig. 4). The Pfams discussed below are those that were present in at least five of these 456 proteins, and were found to be over-represented in the carboxysome gene neighborhoods in at least two genomes.

87 proteins were identified as members of Pfam00361 (Proton-conducting membrane transporter). Of these, 53 also had an N-terminal Pfam00662 domain, as is common for members of Pfam00361 (https://pfam.xfam.org/family/PF00662#tabvi ew=tab1). Some were judged to be unlikely to be DIC transporters, as they were in the midst of genes encoding the other subunits of multisubunit sodium/proton antiporters (12 genes), formate-hydrogen lyase (EC 1.17.99.7; 2 genes), or NADH dehydrogenase (3 genes). The remaining 70 of the genes could be predicted to encode subunits of CHC or MDT based on their juxtaposition to genes encoding other subunits of CHC (Shibata et al. 2002b; Han et al. 2017) or MDT (Mangiapia et al. 2017; Scott et al. 2019): Pfam10216 CO2 hydration protein ChpXY (CHC; 28 genes) or Pfam10070 Uncharacterized protein conserved in bacteria (DUF2039) (MDT; 42 genes). MDT appear to have at least three forms, encoded by one, two or three subunits (Fig. 4). MDT were found to be widespread in Proteobacteria, while CHC were found exclusively in "Cyanobacteria" (Fig. 5).

A total of 29 genes were identified as coding for Pfam05982 Na⁺-dependent bicarbonate transporter superfamily. This Pfam includes the Sbt-type transporters found in "Cyanobacteria" (Shibata et al. 2002b; Du et al. 2014), and members of this Pfam had previously been noted to be encoded downstream from carboxysome loci in some "Cyanobacteria" (Gaudana et al. 2015). Among members of "Cyanobacteria", Sbt-type transporters are

encoded by sbtA genes; sbtB genes are adjacent to sbtA genes, and encode PII-type regulatory proteins, which regulate Sbt-mediated HCO₃⁻ transport by binding adenylnucleotides (Kaczmarski et al. 2019). Interestingly, the genes found here in members of "Proteobacteria" also have genes encoding PII-type regulatory proteins following them, so it seems likely that transporter regulation by the cellular adenylnucleotide pool is universal for these transporters. They were less common in carboxysome gene neighborhoods than MDT or CHC for both "Proteobacteria" and "Cyanobacteria" (Fig. 5). Their presence in these neighborhoods was common in genera Thiomicrospira and Thioalkalivibrio.

Genes for proteins that contain Pfam00916 (Sulfate permease, SulP) were almost as common, with 27 of them falling into this protein family (Fig. 3), and 22 of these also contain Pfam01740 (STAS domain). The STAS domain, like SbtB, may regulate SulP activity by interacting with the cellular adenylnucleotide pool (Aravind and Koonin 2000). The members of Pfam00916 found here had three major types of domain structure: SulP only, SulP with a C-terminal STAS domain, or two SulP domains followed by a C-terminal STAS domain (Fig. 4). None were fused to carbonic anhydrase domains, or adjacent to genes encoding carbonic anhydrase, unlike other SulP transporters implicated in DIC uptake (Felce and Saier 2004; Price et al. 2004). However, SulP transporters from "Cyanobacteria" (Price et al. 2004) and "Proteobacteria" (Scott et al. 2019) that have measureable DIC uptake activity lack this carbonic anhydrase domain, so its presence is not necessary for DIC transport. This absence of carbonic anhydrase domain in SulP capable of DIC transport makes it quite difficult to predict substrates transported by different SulP proteins based on their sequences, and phylogenetic analysis also does not cluster genes by substrate (Scott et al. 2019). Accordingly, it is not possible to predict with confidence whether these genes encode DIC transporters in the members of Thiomicrospira, Thiocapsa, or Marichromatium where they are present near carboxysome loci (Fig. 5).

Pfams of other transporters and membrane channels are less broadly distributed in carboxysome gene neighborhoods. Genes encoding the membrane component of ATP-binding cassette transporters (ABC membrane, Pfam00664) were found near the carboxysome locus in 15 organisms (Fig. 3), 12 of which were members of "Cyanobacteria" (Table S5, Supporting Information). The ABC transporters specific for HCO₃⁻ that have been studied in members of this phylum consist of four subunits: a solute-binding protein, a membrane-spanning permease and two ATPase subunits, one of which may play a regulatory role (Omata et al. 1999; Price 2011). The 15 ABC transporter genes found in this study to be present near carboxysome loci encode a transporter with a different subunit structure; no genes encoding solute-binding proteins are found nearby, and these genes encode both permease (Pfam00664) and ATP-binding domains (Pfam00005) as a fusion protein. If these transporters are specific to DIC, that would be interesting, as they are structurally distinct from the HCO₃⁻ transporting ABC transporters that have already been characterized.

Members of Pfam01925 (sulfite transporter TauE) were found in the carboxysome gene neighborhoods of 11 of the organisms studied here, ten of which were "Cyanobacteria" (Fig. 3, Table S5, Supporting Information). In other organisms, these transporters export sulfite produced from metabolizing sulfonates (Weinitschke et al. 2007). The genes neighboring these potential sulfite transporters do not encode enzymes for metabolizing these compounds, though in Ectothiorhodosinus mongoli-

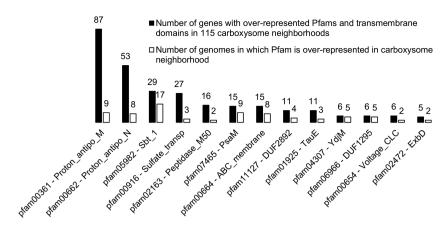


Figure 3. Tally of genes whose products are predicted to have transmembrane domains, whose Pfams that are enriched in carboxysome neighborhoods, and the number of genomes in which these Pfams are enriched in carboxysome neighborhoods. Genes that are present in at least five copies, and in at least two genomes, are represented here. A full list of all genes is provided in Table S4.

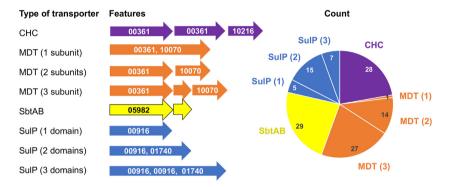


Figure 4. Features and counts of transporter types present in carboxysome neighborhoods. Transporter types shown here are those for which DIC transport activity has been measured for at least one member. Under features, each arrow indicates a gene, and each gene is labeled with the Pfam domains predicted from the amino acid sequence. The pie chart indicates the number of each type of transporter found in carboxysome gene neighborhoods from the 115 genomes studied here. Abbreviations for transporter types: CHC, CO₂-hydration complex; MDT, multisubunit DIC transporter; SbtAB, sodium bicarbonate transporter; SulP, SulP-family transporter. Pfam names: 00361, Proton-conducting membrane transporter; 10216, CO₂ hydration protein (ChpXY); 10070, Uncharacterized protein conserved in bacteria (DUF2309); 05982, Na⁺-dependent bicarbonate transporter superfamily; 00916, sulfate permease family; 01740, STAS domain.

cus a neighboring gene encodes sulfide:quinone reductase (E.C. 1.8.5.4), suggesting that this transporter may be active on sulfite or other product of sulfide oxidation.

Genes encoding six proteins belonging to Pfam00654 (voltage-gated chloride channel) are present in four members of "Cyanobacteria", and two copies are present in Acidothiobacillus ferrivorans (Fig. 3; Table S5, Supporting Information). Some members of this protein family are capable of facilitating the diffusion of other anions besides chloride across the membrane, including HCO₃⁻ (Suzuki, Morita and Iwamoto 2006). Since channels such as these allow substances to travel down their gradients, it seems unlikely that they play a role in CCMs by generating elevated intracellular DIC concentrations.

A total of five genes encoding members of Pfam02472 (biopolymer transport protein ExpD/TolR) are present in one cyanobacterium and two species of *Marichromatium* (two copies each; Table S5, Supporting Information). Since genes encoding ExpB and TonB neighbor them, it is likely that they function as part of a Ton complex, to bring large molecules past the outer membrane and deliver them to inner membrane transporters (Maki-Yonekura *et al.* 2018). They therefore seem less likely to function as part of a CCM.

Some of these genes belong to Pfams whose members are not known to act as transporters. 16 genes coding for proteins with

a Pfam02163 domain (Peptidase family M50) were found downstream from carboxysome loci in some members of "Cyanobacteria". When these proteins were aligned, the HEXXH motif necessary for metal binding by the active site was apparent (Rawlings and Barrett 1995), so it does not seem likely that these genes are involved in DIC uptake. 15 genes, all from members of "Cyanobacteria", belong to Pfam07465 (PsaM, photosystem I reaction center subunit XII). These single transmembrane domain proteins are 60–70% identical to the biochemically characterized PsaM protein from Synechococcus elongates (Uniprot P0A404), so it is likely that they are a component of photosystem I.

All six members of Pfam04307 (YdjM; LexA-binding, inner membrane-associated putative hydrolase) and Pfam06966 (Protein of unknown function DUF1295) are present near the carboxysome loci of members of Thioalkalivibrio (Fig. 5). The chances that either of these include DIC transporters is diminished by a few factors. Homologs of these genes are not collocated with genes encoding enzymes relevant to DIC metabolism in other organisms; also, their collocation with carboxysome loci in a single genus makes it seem more likely that this collocation is by chance, not by shared function.

The 11 members of Pfam11127 (protein of unknown function DUF2892) are found among "Proteobacteria", and have one or two transmembrane domains (Fig. 3 Table S5, Supporting Infor-

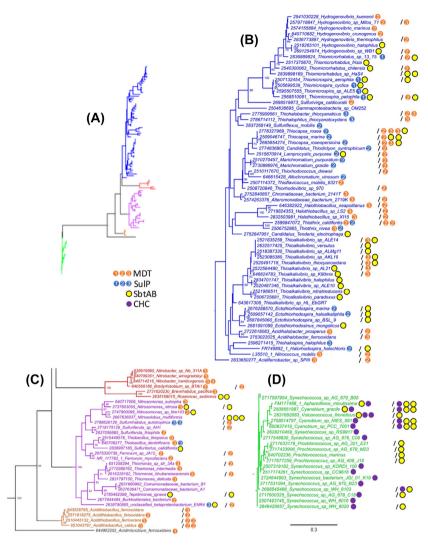


Figure 5. Transporter types distributed on an unrooted maximum likelihood tree based on 16S rRNA gene sequences of host organisms. Transporter types shown here are those for which at least one member has demonstrated DIC transport activity. Taxon names are preceded by gene object ID numbers from Integrated Microbial Genomes and Microbiomes. Taxon names are followed by transporter types whose genes are present in carboxysome gene neighborhoods. Transporter types following '/' are CHC, MDT or SbAB encoded by genes located elsewhere on the genome. Abbreviations for transporter types: CHC, CO₂-hydration complex; MDT, multisubunit DIC transporter (1-, 2-, or 3-subunit type); SbtAB, sodium bicarbonate transporter; Sulp, Sulp-family transporter (1-, 2- or 3-domain type). A. Intact tree to show original topology of the tree. B. Members of Gammaproteobacteria. C. Members of Alpha- (red) and Betaproteobacteria (purple), Acidithiobacillia (orange) and Actinobacteria (black).

D. Members of Cyanobacteria. The tree is based on 1006 sites, bootstrap values greater than 60 are displayed at the nodes, and the scale bar indicates the number of substitutions per site.

mation). Given the absence of functional information about members of this Pfam, it is not possible to infer whether they might be involved in CCMs.

It is apparent that transporter gene type near the carboxysome locus follows from host taxonomy. Members of the same genus often have the same type of transporter encoded near their carboxysome locus (Fig. 5). This pattern results from gene synteny conserved among members of the same genus (Figure S1, Supporting Information). Between genera, synteny is not conserved outside the carboxysome locus (Figure S1, Supporting Information). Despite this lack of synteny between genera, the 51 genera selected for this study share a pattern of having transporters in the neighborhood of the carboxysome locus, suggesting selective pressure for them to be encoded there. This collocation across genera of genes encoding MDT, Sbt and SulP transporters and carboxysome loci strengthens the case that these transporters act together with carboxysomes in CCMs.

Proteins from Pfams whose members solely transport DIC, that are present elsewhere on the chromosome besides the carboxysome loci neighborhoods

Members of Pfams 00361 (verified to have either members of Pfam10216 (CHC), or 10070 (MDT) nearby; see above), and 05982 (Sbt) are also encoded on the genome away from carboxysome loci. Since all biochemically characterized Sbt, CHC and MDT transporters are capable of DIC transport, it seems reasonable to suggest that the proteins encoded by these non-carboxysome loci associated genes are also capable of DIC transport.

Non-carboxysome loci associated MDT are particularly prevalent in phylum "Proteobacteria". Genes encoding these transporters are present in 65 of 92 members of Acidithiobacillia, Alpha-, Beta- and Gamma-proteobacteria queried here, and also in a member of phylum "Actinobacteria". CHC encoded elsewhere on the chromosome cluster with genes encoding CHC that are

inducible in other "Cyanobacteria", which are expressed under extreme DIC limitation (Shibata et al. 2002b; Battchikova, Eisenhut and Aro 2011). For organisms with multiple types of DIC transporters, and multiple copies of a single type of DIC transporter, having the possibility of independent regulation, as is possible if genes are distantly located on the chromosome, may lend more versatility to an organism's CCM, as different transporters may have different affinities for DIC, $V_{\rm max}$ values, or energetic expenses.

Diversity of DIC transporters argues against physical interaction of DIC transporters with carboxysomes

Intuitively, it would seem that docking transporters to carboxysomes would facilitate the transfer of DIC to these microcompartments. If such physical docking would occur, one would anticipate that genes encoding transporters and microcompartments would be tightly co-regulated, and therefore colocated on the chromosome, as genes encoding carboxysomes and DIC transporters frequently are (Fig. 5).

The advantage that docking could confer would be greatest if there were a possibility that the time it could take for DIC to diffuse from the transporter to the carboxysome would be lengthy in the absence of docking. HCO3 $^-$ has a diffusion coefficient of approximately 1000 $\mu \rm m^2/s$ in water (roughly double that of CO2). In bacterial cytoplasm, small molecules tend to have a diffusion coefficient approximately 25% of that in water (Verkman 2002); a realistic estimate for the diffusion coefficient of HCO3 $^-$ is 250 $\mu \rm m^2/s$ within a cell. The approximate timescale for a molecule to traverse a cell is

$$\tau = R^2/6D$$
,

where τ is the time scale of diffusion, R is the traverse distance and D is the diffusion coefficient (Milo and Phillips, 2015). This gives an estimate of only 0.16 ms for an idealized molecule of HCO_3^- to diffuse across a cell of 0.5 μ m width. This short timescale of diffusion over this small distance suggests that docking of the carboxysomes to transporters is not necessary to enhance flux of HCO_3^- to these microcompartments. The diversity of DIC transporters also makes carboxysome-transporter docking seem less likely, as it would have to include mechanisms to accommodate at least three different evolutionarily distinct DIC transporters (CHC, MDT, Sbt, as well as some members of SulP).

CONCLUSIONS

Based on the results presented here, MDT are very common among autotrophic members of "Proteobacteria" and CHC among "Cyanobacteria", while Sbt-type transporters are common among members of both phyla. SulP-type transporters are also well-represented in carboxysome loci, though the broad substrate specificity of members of this transporter family makes it unwise to suggest these all transport DIC. Of the 115 taxa queried here, 77 of them have confirmed DIC-transporters (MDT, CHC, Sbt) encoded near carboxysome loci, and 32 more have these transporters encoded elsewhere on their chromosomes (Fig. 5). Therefore, in total, 109 of 115 taxa with carboxysome loci have some form of DIC transporter encoded in their genomes, which is a conservative estimate since it seems likely that more types of DIC transporter remain to be found. While it is accepted that CCMs in "Cyanobacteria" consist of DIC transporters acting

with carboxysomes, whether this was also the case in other phyla has not been determined. The genome data presented here strongly suggest a uniformity in CCM components including and beyond "Cyanobacteria": carboxysomes partnering with DIC transporters.

SUPPLEMENTARY DATA

Supplementary data are available at **FEMSLE** online.

ACKNOWLEDGMENTS

We are grateful for insightful discussions with Gordon Cannon, and the helpful comments of the anonymous reviewers. KSB, SB, JWB, CPC, JFG, JKJ, AL, JMM, PWR, JMS, SS, CT, KFW and RW contributed to this study as students in the USF Genomics class in Fall 2018.

FUNDING

This work was supported by the National Science Foundation [grant numbers NSF-MCB-0643713 and MCB-1952676] to KMS and the Office of Science of the U.S. Department of Energy DE-FG02-91ER20021 to CAK.

Conflicts of Interest. None declared.

REFERENCES

- Aravind L, Koonin EV. The STAS domain a link between anion transporters and antisigma-factor antagonists. Curr Biol 2000;10:R53-5.
- Axen SD, Erbilgin O, Kerfeld CA. A taxonomy of bacterial microcompartment loci constructed by a novel scoring method. PLoS Comput Biol 2014;10:e1003898.
- Babu M, Greenblatt JF, Emili A et al. Structure of a SLC26 anion transporter STAS domain in complex with acyl carrier protein: implications for E. coli YchM in fatty acid metabolism. Structure 2010;18:1450–62.
- Battchikova N, Eisenhut M, Aro EM. Cyanobacterial NDH-1 complexes: novel insights and remaining puzzles. Biochim Biophys Acta 2011;1807:935–44.
- Cai F, Dou Z, Bernstein SL et al. Advances in understanding carboxysome assembly in Prochlorococcus and Synechococcus implicate CsoS2 as a critical component. Life (Basel) 2015;5:1141–71.
- Cannon GC, Heinhorst S, Bradburne CE et al. Carboxysome genomics: a status report. Funct Plant Biol 2002;29:175–82.
- Cannon GC, Heinhorst S, Kerfeld CA. Carboxysomal carbonic anhydrases: structure and role in microbial CO₂ fixation. Biochim Biophys Acta 2010;**1804**:382–92.
- Chen IA, Chu K, Palaniappan K et al. IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res 2019;47:D666–77.
- Chisholm SW, Olson RJ, Zettler ER et al. A novel free-living prochlorophyte abundant in the oceanic euphotic zone. *Nature* 1988;334:340–3.
- Cooper TG, Filmer D. The active species of "CO" utilized by ribulose diphosphate carboxylase. *J Biol Chem* 1969;244:1081–3.
- Dobrinski KP, Enkemann SA, Yoder SJ et al. Transcription response of the sulfur chemolithoautotroph Thiomicrospira crunogena to dissolved inorganic carbon limitation. J Bacteriol 2012;194:2074–81.

- Dobrinski KP, Longo DL, Scott KM. A hydrothermal vent chemolithoautotroph with a carbon concentrating mechanism. J Bacteriol 2005;187:5761–6.
- Du J, Förster B, Rourke L et al. Characterisation of cyanobacterial bicarbonate transporters in E. coli shows that SbtA homologs are functional in this heterologous expression system. PLoS One 2014;9:e115905.
- Edwards KJ, Bond LL, Gihring TM *et al.* An archael iron-oxidizing extreme acidophile important in acid mine drainage. *Science* 2000;**287**:1796–9.
- Esparza M, Jedlicki E, Gonzalez C et al. Effect of CO_2 concentration on uptake and assimilation of inorganic carbon in the extreme acidophile Acidithiobacillus ferrooxidans. Front Microbiol 2019;10:15.
- Fan SH, Ebner P, Reichert S et al. MpsAB is important for Staphylococcus aureus virulence and growth at atmospheric CO₂ levels. Nat Commun 2019;10:3627.
- Felce J, Saier MH. Carbonic anhydrase fused to anion transporters of the SulP family: evidence for a novel type of bicarbonate transporter. J Mol Microbiol Biotechnol 2004;8:169–76.
- Gaudana SB, Zarzycki J, Moparthi VK et al. Bioinformatic analysis of the distribution of inorganic carbon transporters and prospective targets for bioengineering to increase C_i uptake by cyanobacteria. Photosynth Res 2015;126:99–109.
- Guindon S, Dufayard JF, Lefort V et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010;59:307–21.
- Han X, Sun N, Xu M et al. Co-ordination of NDH and Cup proteins in CO_2 uptake in cyanobacterium Synechocystis sp. PCC 6803. J Exp Bot 2017;**68**:3869–77.
- Horken K, Tabita FR. Closely related form I ribulose bisphosphate carboxylase/oxygenase molecules that possess different CO/O substrate specificities. Arch Biochem Biophys 1999;361:183–94.
- Huntemann M, Ivanova NN, Mavromatis K et al. The standard operating procedure of the DOE-JGI Microbial Genome Annotation Pipeline (MGAP v.4). Stand Genomic Sci 2015;10:86.
- Jannasch HW, Mottl MJ. Geomicrobiology of deep-sea hydrothermal vents. Science 1985;229:717–25.
- Junier I, Rivoire O. Conserved units of co-expression in bacterial genomes: an evolutionary insight into transcriptional regulation. PLoS One 2016;11:e0155740.
- Kaczmarski JA, Hong N-S, Mukherjee B et al. Structural basis for the allosteric regulation of the SbtA bicarbonate transporter by the PII-like protein, SbtB, from Cyanobium sp. PCC7001. Biochemistry 2019;58:5030–9.
- Kerfeld CA, Aussignargues C, Zarzycki J et al. Bacterial microcompartments. Nat Rev Microbiol 2018;16:277.
- Kerfeld CA, Melnicki MR. Assembly, function and evolution of cyanobacterial carboxysomes. Curr Opin Plant Biol 2016;31: 66–75.
- Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci USA 2005;102:2567–72.
- Krogh A, Larsson B, von Heijne G et al. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 2001;305:567–80.
- Lefort V, Longueville JE, Gascuel O. SMS: smart model selection in PhyML. Mol Bio Evol 2017;34:2422–4.
- Long BM, Rae BD, Rolland V et al. Cyanobacterial CO₂-concentrating mechanism components: function and prospects for plant metabolic engineering. *Curr Opin Plant Biol* 2016;**31**:1–8.

- Maki-Yonekura S, Matsuoka R, Yamashita Y et al. Hexameric and pentameric complexes of the ExbBD energizer in the Ton system. Elife 2018;7:e35419.
- Mangiapia M, MicrobialPhysiology U, Brown T-RW et al. Proteomic and mutant analysis of the CO₂ concentrating mechanism of hydrothermal vent chemolithoautotroph Thiomicrospira crunogena. J Bacteriol 2017;199:e00871–00816.
- Milo R, Phillips R. Cell Biology by the Numbers. New York: Garland Science, 2015.
- Omata T, Price GD, Badger MR et al. Identification of an ATP-binding cassette transporter involved in bicarbonate uptake in the cyanobacterium Synechococcus sp. strain PCC 7942. Proc Natl Acad Sci 1999;96:13571–6.
- Pimentel BE, Moreno-Sanchez R, Cervantes C. Efflux of chromate by *Pseudomonas aeruginosa* cells expressing the ChrA protein. FEMS Microbiol Lett 2002;**212**:249–54.
- Price G, Woodger F, Badger M et al. Identification of a SulP-type bicarbonate transporter in marine cyanobacteria. Proc Natl Acad Sci USA 2004;101:18228–33.
- Price GD, Badger MR, Woodger FJ et al. Advances in understanding the cyanobacterial CO₂-concentrating-mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants. *J Exp Bot* 2009;**59**:1441–61.
- Price GD, Long BM, Förster B. DABs accumulate bicarbonate. Nat Microbiol 2019;4:2029–30.
- Price GD, Maeda S, Omata T et al. Modes of active inorganic carbon uptake in the cyanobacterium, Synechococcus sp. PCC7942. Funct Plant Biol 2002;29:131–49.
- Price GD. Inorganic carbon transporters of the cyanobacterial CO concentrating mechanism. Photosynth Res 2011;109:47–57.
- Price MN, Huang KH, Arkin AP et al. Operon formation is driven by co-regulation and not by horizontal gene transfer. *Genome Res* 2005;15:809–19.
- Pruesse E, Peplies J, Glöckner FO. SINA: accurate highthroughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012;28:1823–9.
- Rae BD, Long BM, Badger MR et al. Functions, compositions, and evolution of the two types of carboxysomes: polyhedral microcompartments that facilitate CO2 fixation in Cyanobacteria and some Proteobacteria. Microbiol Mol Biol Rev 2013;77:357–79.
- Rawlings ND, Barrett AJ. Evolutionary families of metallopeptidases. Methods Enzymol 1995;248:183–228.
- Rodriguez-R L, Konstantinidis K. Bypassing cultivation to identify bacterial species. Microb Maq 2014;9:111–8.
- Schuller JM, Saura P, Thiemann J et al. Redox-coupled proton pumping drives carbon concentration in the photosynthetic complex I. Nat| Comm 2020;11:494.
- Scott KM, Leonard J, Boden R et al. Diversity in CO₂ concentrating mechanisms among chemolithoautotrophs from the genera Hydrogenovibrio, Thiomicrorhabdus, and Thiomicrospira, ubiquitous in sulfidic habitats worldwide. Appl Environ Microbiol 2019;85:e02096–02018.
- Scott KM, Williams J, Porter CMB et al. Genomes of ubiquitous marine and hypersaline Hydrogenovibrio, Thiomicrorhabdus, and Thiomicrospira spp. encode a diversity of mechanisms to sustain chemolithoautotrophy in heterogeneous environments. Env Microbiol 2018;20: 2686–708.
- Shibata M, Katoh H, Sonoda M et al. Genes essential to sodium-dependent bicarbonate transport in cyanobacteria. *J Biol Chem* 2002b;277:18658–64.

- Shibata M, Ohkawa H, Katoh H et al. Two CO2 uptake systems in cyanobacteria: four systems for inorganic carbon acquisition in Synechocystis sp. strain PCC6803. Funct Plant Biol 2002a;**29**:123-9.
- Sorokin DY, Banciu H, van Loosdrecht M et al. Growth physiology and competitive interaction of obligately chemolithoautotrophic, haloalkaliphilic, sulfur-oxidizing bacteria from soda lakes. Extremophiles 2003;7:195-203.
- Srinivasan L, Baars TL, Fendler K et al. Functional characterization of solute carrier (SLC) 26/sulfate permease (SulP) proteins in membrane mimetic systems. Biochim Biophys Acta 2016;1858:698-705.
- Suzuki M, Morita T, Iwamoto T. Diversity of Cl(-) channels. Cell Mol Life Sci 2006;63:12-24.
- Tabita FR. Microbial ribulose 1,5-bisphosphate carboxylase/oxygenase: a different perspective. Photosynth Res 1999;60:1-28.
- Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 2007;56:564-77.

- Tayare S. Some probabilistic and statistical problems in the analysis of DNA sequences. In: Miura RM (ed.). Some Mathematical Questions in Biology: DNA Sequence Analysis, Vol. 17. Providence, RI: American Mathematical Society, 1986,
- Verkman AS. Solute and macromolecule diffusion in cellular aqueous compartments. Trends Biochem Sci 2002;27:27-33.
- Ward DM, Ferris MJ, Nold SC et al. A natural view of microbial biodiversity within hot spring cyanobacterial mat communities. Microbiol Mol Biol Rev 1998;62:1353-70.
- Weinitschke S, Denger K, Cook AM et al. The DUF81 protein TauE in Cupriavidus necator H16, a sulfite exporter in the metabolism of C2 sulfonates. Microbiology 2007;153:3055-60.
- Wuchter C, Abbas B, Coolen MJ et al. Archaeal nitrification in the ocean. Proc Natl Acad Sci USA 2006;103:12317-22.
- Zolotarev AS, Unnikrishnan M, Shmukler BE et al. Increased sulfate uptake by E. coli overexpressing the SLC26-related SulP protein Rv1739c from Mycobacterium tuberculosis. Comp Biochem Physiol A Mol Integr Physiol. 2008;149: 255-66.