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Abstract— This work seeks to quantify the benefits of using
energy storage toward the reduction of the energy generation
cost of a power system. A two-fold optimization framework
is provided where the first optimization problem seeks to find
the optimal storage schedule that minimizes operational costs.
Since the operational cost depends on the storage capacity,
a second optimization problem is then formulated with the
aim of finding the optimal storage capacity to be deployed.
Although, in general, these problems are difficult to solve, we
provide a lower bound on the cost savings for a parametrized
family of demand profiles. The optimization framework is
numerically illustrated using real-world demand data from ISO
New England. Numerical results show that energy storage can
reduce energy generation costs by at least 2.5%.

I. INTRODUCTION

The electric power grid is undergoing one of the most
fundamental transformations since its inception [1]. Techno-
logical development of renewable energy sources [2] coupled
with the need to reduce carbon emissions is transforming
the generation mix [3]. Alongside, the electrification of
transportation is driving a rapid growth on global electricity
demand [4]. Among the many challenges that this paradigm
shift introduces is the lack of synchronism between the times
when renewable energy is available and the time when energy
demand is required. Energy storage is often seen as tentative
solution towards addressing this challenge due to its ability to
dispatch energy to shift energy availability across space, via
deployment of distributed storage [5], and across time [6].
Thus the additional flexibility that storage provides, together
with the steady decrease on build and installation prices,
has stimulated the deployment of several grid-scale storage
systems, e.g., [7] and [8].

However, despite the clear benefits that storage introduces,
many questions regarding storage investment as well as
efficient storage operation remained, to this day, unanswered.
The key difficulty on this regard is that the cost of using
storage is not a function of the instantaneous power, as it is
the case for generators, where the cost can be mapped to the
cost of the fuel consumed for generating electricity. Instead,
the cost of using storage indirectly arises from the unit
degradation that is experienced during charging/discharging
cycles [9].
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This last observation is in contrast with the vast majority
of existing works which formulate the cost of storage with-
out detailed degradation model. Examples of this approach
includes [10]-[12], which typically approach the storage
operation by solving an optimization problem whose cost
depend on fixed storage life-span. Only very recently, the
question of how to optimally coordinate resources whose cost
depend on instantaneous power with resources whose cost
depend in energy trajectories, has started to be considered.In
[13], the problem of optimal coordination of limited-energy
demand response and generation is considered. Similarly,
[14], [15] consider the cost storage degradation and proposes
an online algorithm with optimality guarantees.

In this paper, by perusing a path aligned to the works
[14], [15], we seek to quantify the economic benefit of using
storage arbitrage as means to reduce energy production costs.
To this aim, we formulate a two-fold optimization frame-
work aiming at: (a) finding the optimal storage operation
that minimizes the total operational cost (including storage
degradation cost); and (b) finding the optimal amount of
storage that need to be deployed in the system to achieve the
maximum benefit. Despite the complexity of such problems,
we provide a sub-optimal policy for a paramterized family
of demand trajectories that allow us quantify a lower bound
on the potential operational savings.

The rest of the paper is organized as follows. Our problem
setting, including the energy system model, as well as
a general problem formulation of the optimal operational
problem that seeks to optimally control storage to reduce
operations costs, and the planning problem, that seeks to
find the optimal storage deployment, are presented in section
II. In Section III, we describe the proposed approach to
quantify the potential benefits by reformulating the above-
mentioned general problems. The analytical solutions to our
reformulations are presented in Section IV and Section V.
Finally, preliminary numerical analysis, and conclusions, are
provided in sections VI and VII, respectively.

II. PROBLEM FORMULATION

In this section, we describe the energy system that we seek
to study and formalize the two problems that we consider in
this paper.

A. System Model

We use d(t) > 0 to denote the net uncontrollable power
demand —possibly including renewable— and p(¢) the total
aggregate power generation of a system operator at time ¢ €
[to,ts]. The total energy stored in the system at time ¢ is



denoted by e(t). The energy e(t) evolves according to
é(t) = u(t), (1

where u is the rate of change of stored energy. We adopt the
convention that u(t) > 0 implies charging, whereas u(t) < 0
means discharging. The total storage capacity is denoted by
C' and the maximum charging/discharging rate by r, i.e.,

C

—r <ut) <r=—,
€

and 0<e(t)<C. (2

The ratio € = % referred as technology parameter and it is
aimed at representing different technological features of the
storage. We further let T}, denote the total lifespan of the
energy system.

Finally, the net load of the energy system d(t) + wu(t) is
supplied by external power supply p(t), i.e.,

p(t) = d(t) + u(t). 3)

For simplicity, we assume in this paper that the charg-
ing/discharging process is lossless. A more realistic model
that relaxes this assumption is subject of current research.

B. Cost Model

We are interested in quantifying the benefits of using
energy storage as a way to reduce the overall cost that the
system incurs in meeting the demand d(t).

1) Generation Cost: We model the aggregate generation
cost using quadratic cost function L, : R — R for power

supply, i.e.,

a
Ly(p) = 5p* + bp, “)

where a and b are positive cost coefficients. Equation (4)
represents either the generation cost derived from fuel con-
sumption (see, e.g., [16]) or the integral of the inverse
aggregate supply function derived empirically from the ISO
(see, e.g., [17], [18]).

2) Storage Cost: Unlike generation cost that originates
from cost of producing energy, storage cost is a result of
battery degradation that occurs with each discharge cycle.
To compute this cost we first let functional D; : C[Otf) 4
R>( denote the ith Depth of Discharge (DoD), i € NT,
of the stored energy trajectory e € C’[‘;"O’t - The DoD is
the capacity that has been discharged from tLe fully charged
battery. And it is often normalized as a fraction of the total
capacity. Given the normalized DoD y € (0, 1], the storage
degradation is given by the cycle depth stress function ®(y),
with ® : R>9 — R>¢. This function quantifies the battery
loss of life due to a cycle of depth y = % for a DoD D and
capacity C.

Thus the total storage cost due to the energy trajectory e

is represented by the cost functional L : C[%tf] — R>o
given by '
(oo}
Di(e)
Ls(e) = P Cp, 5
() ; ( C ) p 5)

where p represents the one-time unit building cost.

C. The Value of Storage

As mentioned before, we seek to quantify the benefit that
storage brings to an ISO. We will investigate this benefit in
two settings. We first consider the operational problem of
how to optimally operate the available storage to minimize
the system cost. Because such problem implicitly depends on
the amount of storage available, we then move towards the
planning problem of finding the optimal amount of storage
that one needs to deploy.

1) Operational Problem: The first difficulty on seeking
to optimally use storage arises from the difference in the
argument between (4) and (5). While (4) is a function of
the instantaneous power being generated, (5) depends on the
entire energy trajectory, which implicitly depends on w().
We overcome this issue by expressing (4) in terms of the
total energy production cost over the interval [to,¢s]. This is
given by the generation cost functional £, : Cﬁ‘; i R>o,
ie.,

ty g
£ypitosty)= [ Lywo)ii= [ 5o+ ©
t() tO
Using (6) and (5) one can formally define the optimal
storage control problem as

‘](07 [t07tf]) = muin ‘C’g(pa thtf) +[’S(e7t07tf)a (73-)
st (1),(2),0). (7b)

The optimal control problem (7) has the advantage of com-
bining both, the cost of using the energy storage, together
with the cost generation power in a common setting.

However, there are two main difficulties in using (7) to-
wards quantifying the benefits of storage. Firstly, the solution
will depend on the boundary conditions at g and ¢y, which
can make the interpretation of the benefits hard to asses.
Secondly, the cost functional (5) is hard to evaluate and
highly dependent on the demand d.

We overcome the dependence on the boundary conditions
by consider the following average operational cost problem.
The latter issue will be addressed in the next section.

Problem 1. (Average Operational Problem)

lim
to——00 tf —
ty—>00

J(C) = o J<C7 [tUa tf]) 8

Given the tuple (C'), Problem 1 quantifies the average
operational cost J(C'). This value can be used to measure
the benefits of including storage by looking at difference in
cost between J(0) and J(C), i.e.,

By (C) = J(0) — J(C).

2) Planning Problem: We now turn to the formulation of
the planning problem. More precisely, we seek to capture
the effect of C' on the operational cost and find the optimal
storage capacity. However, because certain values of C' may
not be feasible, we will implicitly constraint them including



a bound on the life-span 75 < Tjs max. This leads to the

following optimization problem.
Problem 2. (Planning Problem)

mcin J(O), (9a)

st. T (C) < Tismax- (9b)

where TL(C) is the life span of a storage of capacity C
under the control u, and u* is the optimal policy derived in
Problem 1.

We finalize by noting that the relationship between 7;, and
(C) is not straightforward, and only appears in cases were
the optimal capacity in (9) leads to an optimal policy with
very low storage degradation per unit of time that requires
unrealistic life-spans.

III. SOLUTION APPROACH

As mentioned before, problems 1 and 2 are either in-
tractable due to the complexity of evaluating £, or unin-
formative of the overall benefits of using storage due to
the dependence of (7) on boundary conditions. In order to
overcome this limitation, we relax some of the constraints
and seek to find an upper bound on a family of instances of
such problems. This allows us to characterize the dependence
of J(C) on the frequency and amplitude of intra-day demand
cycles and, in this way, get an upper bound on the benefits
that storage can introduce.

We focus on demand functions that capture the fluctuating
demand behavior. We start by assuming a realistic case
where power demand d is perturbed around certain baselines
dy > 0. We further assume the perturbations around d is a
periodic sinusoidal deviation with amplitude d; < dj, i.e.

d(t) = do + d1 sin(wot). (10)

A. Operational Problem Reformulation

As mentioned above, instead of considering explicitly the
storage functional L in (5) that depends on the whole stored
energy trajectory, we use quadratic storage cost functional
Ly(57):C 1= Rxo

[es)
[to.ts

ty y )
Ly(e to,ty;y) :/ = (e(t) —eo)dt (11)

to 2
that penalizes the instantaneous stored energy deviation from
a reference energy eg. The penalty parameter v > 0 not
only limits the amount of energy being used, thus limiting
degradation, but it also implicitly constraints the control
effort u. Thus we remove constraints (2) and solve instead
the following auxiliary optimal control problem,

J(rY? [t07 tf]) = I'Iluil’l ‘Cg(pa t07 tf) + Eq(eat()vt,f;rY)a (123.)
(12b)
(12¢)

st.p=d+ u,
é = u,

which after taking tp — —oo and ty — oo leads to the
following auxiliary operational problem.

Problem 3. (Auxiliary Average Operational Problem).

J(v) = p ﬂj(% [to. ty]).
ty—o00

13)

where d is defined by (10).

Remark 1. For problem 3, our approach is to firstly solve
the finite time case and then extend it to infinite time horizon
by taking limit of the starting and final time. By doing this,
even though the solution to (12) is optimal for any finite
time interval, it raises questions about the sufficiency and
uniqueness in infinite horizon setting. We will show that our
constructive solution is optimal over the set of all bounded
solutions, which is the set of solution elevates practical
interest. We remark, however, that the optimal solution is
no longer unique.

Although the value .J () does not have a specific economic
meaning, we will show that the optimal solution of Problem
3 is pure sinusoidal around certain baselines with frequency
wo. The amplitudes of u(t) and e(t) are functions of 7, i.e.,

(14a)

u(t,y) = —uq (y) sin(wot),
e(t (14b)

(t,v) = e + e1(7y) cos(wpt).

Note that for control and storage trajectories (14), every
cycle is identical. Thus, for this particular choice of demand
and class of problems it is possible to express the DoD for
every cycle as:

D(v) = 2e1(7)- (15)

as well as compute explicitly, the average generation cost

a a
Jg(v) = Z(dl —ui(7))* + gd(z) + bd, (16)

the average storage cost of the original storage model £;(e)

Ji(7,C) = ®(2e1(+)/C)Cp 2, a7)

and the total operational cost of the control policy (14):

J(v, C) = Jg(v) + Js(7,C). (18)
As a result, since (14) is a feasible solution to Problem 1, it
is an upper bound on the total operational cost.

B. Planning Problem Reformulation

Once we have explicit expressions for the long term aver-
age generation and storage cost as functions of v and C, we
can further reformulate the planning problem in the following
form. Note that we will optimize it with respect to vy and C
and the solution of this reformulated planning problem gives
optimal storage capacity and penalty parameter that achieves
an upper bound on the optimal planning problem Problem
2.



Problem 4. (Reformulated Planning Problem)

min J(v,C), (19a)
~,C
s.t. D(v) <C, (19b)
ui(y) <r= g, (19¢)
€
Ti(C) < Thsma (19d)
where D(v), J(v,C), and (u(t,v),u1(y)) are defined in

(15), (18), and (14), respectively.

IV. OPERATIONAL PROBLEM

In this section we provide an analytical solution to the
auxiliary problem as well as Theorem 1 unveils the analyt-
ically optimal solution of the auxiliary average operational
problem.

Theorem 1. Given the operational problem (13), a optimal
storage control over all bounded e(t) in an infinite time
horizon follows equation (14) with

2
w,
Ul(’Y) = d1027027

( ) d102

(20a)
(20b)

where 0 = /L.

Proof. By substituting (10) and (12b) into (12a) and defining
ds(t) := dy sin(wpt) as the sinusoidal part of demand (10),
we can explicitly express the operational cost as

L(p,e,to,ty;y) = Ly(p,toty) + Ly(e,to tr;7),
ty
_ / (58 + ado(ds (1) +u(t)) + 5(ds(8) + u(t))*
to

by + b{d(£) + u(t)) + 2 (e(t) — e)?)dt.  (21)

2

Since the optimal control does not depend on the constant
terms, we can drop the terms bdy and %dQ, and further let
ps(t) == ds(t) + u(t) and es(t) := e(t) — e to get

tfa
ﬁ(p,e,to,tfw):/ §ps(t)2+ﬂps(t)+ges(t)zdt, (22)
to

where (8 := adg + b.

By introducing a Lagrange multiplier A for the storage
dynamics (12c), the Euler-Lagrange equation demonstrates
the optimal conditions for this problem:

a(ds (t) +u(t)+ 5+ A) =0
A (t) = —7es (t) :

Combining (23a) and (23b) eliminates A and yields a
second-order differential equation for which the optimal
storage control needs to satisfy:

a (ds (t) + (t)) — yeu(t).

(23a)
(23b)

(24)

At the starting time o, let df := ds(to), ej, = es(to)
and €7 := é,(to). Then the closed-form solution to (24) is

0 1 ,
es (1) = <_d102 2 sin(woto)+ 7 (éfo—i-dfo)) sinh @(t—to))

d 0
(19+

+di—5——=

5 cos (woto) + et(]) cosh (6 (t — tg))
Wo

5 cos(wot), (252)

9+0
2

9 _ o e
u(t) = <—d1 msm (woto)+ (€f, +dt0)> cosh@(t—to))

wo 2
+6 (_d192+w8 cos (wotp) + eto) sinh (6 (t — o))

2

5 sin(wot), (25b)

w
—dy—=0
Vo2t wg
where 0 = \/g, ¢;, and ef  are unknowns.
We further check the sufficient condition for optimally by
solving the Jacobi Accessory Equation (26b) to (26d) with
conditions in (26e) [19, p. 52]

L{u,e,) = 5(ds +w)? + B(ds +w) + J(e)% (26
1 /0L 1
R_§ (a(u768)> d_;,:db(t) - 5@, (26b)
es=es(t)
u=u(t)
oL d OL
©= <a2 (u ’es)_ﬁauaes (“’€S)> i)
;:ué(t)
L 26
- 577 ( C)
d,_.
Quit) = 5 (Ro(1)); (260)
v(tg) =0; wv(t) #Z0. (26e)
The solution is the given by
v(t) = cle\/g(t_to) - 27

for some constant ¢;. Note that the solution v(¢) # 0 for all
t > to leads to non-existence of conjugate points within the
time interval [to, ¢ ¢]. This, together with the fact that R > 0,
shows that the extremal is a strict minimum.

Now, we are able to derive the closed-form expressions
of ey(t) and wu,(t) with two remaining unknowns e; and
é; . Since e,(to) and es(ty) are constraint-free, by the
transversality condition [19, p. 83] A(to) = A(ty) = 0, it
follows from (23a) that

~S B S

&y, = u(to) = . —dy, (28a)

u(tf) = —g — d(tf). (28b)
Note that (28a) immediately gives rise to the ¢; . Then

evaluating (25b) at ¢; and plugging in the expression (30b)
yields an algebraic equation in ej
Substituting both unknowns in (25) gives,



es (t) =sinh (6(t —to)) <d1€2 —iw%
ol (1

Sll’l(thO) — ;i)

——(cosh(0Ta) — 1)

sinh(0Tx) 0a
0 . i
gy g (inlento) cosh(BTa) = sinuty >)>
wo
— N 2
+ 5 + Wl cos(wot); (292)

2
u (t) =cosh (9(t — to)) (dlmi—w%Sin(thO) — 5)
sinh (6 (t — t))

B (cos
sinh(0TA) (a(CObh(GTA) -1

92

+d1m (Sin(WOto) COSh(eTA) — SIH(WOtf))>
wg o

g s 3 sin(wot); (29b)

where Ta :=ty — to is the total operational time.

After taking the limits £y — oo and ¢y — —oo, the non-
periodical terms in (29) that rely on the initial and final
conditions vanish. Indeed, we have:

. wo
togriloo es(t) =di——— e cos(wot); (302)
ty—o00

Wl

li =—d
i u(t) = ~di s
ty—o00

5 sin(wot); (30b)
wo

2
lim A(t) = —ady —— sin(wot) — B.

to*}*()o 9 + wO
ty—00

(30c)

Finally, we observe that one can show the expression
ﬁ/\(t)(é(t) — es(t)) converges to 0 as tg — —oo and
ty — oo for all é(t) that have sub-linear growth in Th.

By [20], it is sufficiently to state the limiting policy (30)

is an optimal solution of (13). O]

Corollary 1. Given the operational problem (13), the opti-
mal average generation cost L4(e) and average storage cost
Ls(e) are expressed in (16) and (17), respectively.

Proof. We find the average generation cost by substituting
(29b) into the generation cost model L,(p) defined in (6)
and then taking the average, i.e.

lim
to——00 tf — t
tf—><>o

a
Lldy —ur (7)) + 5o + by,

Jy(v) = Ly(p,to,ty)

= Z 3D

Moreover, since we found the explicit expressions of D(e)
and r(y) for every cycle as functions of +y, we can express
the long term average storage cost by the original storage
model L;(e) that we defined in (5), i.e.

Js(7,C) = togmoo tf - Z@ 2e1 (7

ty—00
=P(2 C 32
(261(1)/C)Cpa2. (32)
Thus, result follows. O

We can further use Theorem 1 to explicitly compute the
life span of the storage under the control policy of (14).

Corollary 2. Given the operational problem (13), the life
span of a storage with capacity C under the optimal control
u(t,~y) in Theorem 1 is

(2e1(7)/C) 1=

V. PLANNING PROBLEM

Tu(t”Y)(C) _

ls

(33)

We now leverage Theorem 1 and Corollary 2 to solve our
operational problem (19). To do this we first require a model
on the storage degradation. Thus, we further assume the
following storage degradation cost function experimentally
derived in [9].

Assumption 1. For a battery with monotonically increasing
cycle depth stress function ®(y), we assume ®(y)y~! is
strongly convex, which holds if and only if

(@(y)y "

Lemma 1. Given the planning problem (19a)-(19d) with
degradation model in Assumption 1, we can express the
optimal cycle depth y* and penalty parameter v* as follows

)" > 0. (34)

Yt = [ys]g;;n(yuml) (35a)
00, if vs <0,

v = { 7 (35b)
Yss oW..

where

Vs = 2wiap/ (dima®(y*) 'yt — 2p)

and ys solves (®(y)y~t) = 0. (vs,ys) is the stationary
point. And y* is the projection of ys onto the interval of
[Y1p, min(yup, 1)]. In addition, yy, = ®~1((T}s, max;’ﬂ)fl) €
(0,1] and yu, = -2 > yy are lower and upper bounds
on y introduced by the maximum life span constraint (19d)
and maximum charging/discharging rate constraint (19c),

respectively.

Proof. Recalling y = D/C = 2e;(v)/C is the normalized
DoD, we can rewrite (17) such that the cost function (19a)
is

J(v,y)= =Jy(v) + 261(7)¢(y)y’1p%,

with constraints on C' (19b) to (19d) and on  becoming:

J(7,C) (36)

2
max(0, P ((Thsmax =2 ) 1) < y < min[l, —], (37a)
27 €W

v =0. (37b)



Clearly, for a solution to the problem to exist, we require the
above equations to have a non-empty intersection, i.e.,

2
(0%

wo

@71((ﬂs,max27)71) S (38)
™

Under this assumption, we can solve this optimization
problem with respect to y and . Solving KKT conditions
gives unique KKT point (v*,3*) expressed in Lemma 1.
We then claim that (y*,y*) is the optimal cycle depth and
penalty parameter for all y € (0,1] and v € [0, 00). Indeed,
we calculate the bordered Hessian:

el a7

T
a7 0> 7 9% 7§

37;‘] 87311‘] Byay‘]

Note that both the first order leading principal minor and
determinate of H" are strictly negative under Assumption 1,
which is sufficient to show J(v,) is quasi-convex [21].

When the constraints (37) are not binding, i.e. (v*,y*) =
(7vs,ys), we have the Hessian of Lagrangian evaluated at
(v*, y*) Positive-definite. Thus the (v*, y*) is the strict local
minima point.

Also, for the case that the KKT point binding any
constraint, we have V.J(v*,y*) # 0 and J(v*,y*) twice
differentiable in the neighborhood of (v*,y*).

In both cases, the unique KKT point globally minimize
this quasi-convex objective function [21]. Then Lemma I
follows. O

To understand the implications of Lemma 1, it is useful
to consider the explicit dependence of J(y,y) with respect
to u; = wpe; and p; := dj — uy using equations:

J(p1,ur) = Jg(ur) + jg(pl); (40a)
. 1
Js(u1) = ul@(y)y_lp;; (40b)
Jy(p1) = %p% + gdo + bdo. (40¢)

By taking the derivative of the storage cost Js(uy) and
the generation cost Jy(p1), we can get marginal cost for
both cases:

0 = B 4 1

a—ule(ul) =Py~ p (41a)
0 = «

ijg(pl) —5291. (41b)

With these marginal costs, one can observe that it is not
optimal to use any storage under the following condition,

0 0 =
%Js(ul) > 371)11]9(]91)7 Vui +p1 =dy.

More precisely, p1 = d; and u; = 0 solve the following
problem when (42) holds.

(42)

min  J(p1,uy) (43a)
P1,u1
st. di = p1 +ur. (43b)

Remark 2. When v; < 0, Lemma 1 states that v* = o0,
which implies that the optimal amount of storage is zero.

This can occur, in particular, when dima®(y*)~ly* < 2p.
Note that this inequality can be written as

0 = 0 =
——Js(ur) > =—Jy(p1) ; (44)
P1

ouy 0 p1=d1
which implies condition (42).

Theorem 2. Given the planning problem (19a)-(19d) with
degradation model in Assumption 1, the optimal capacity is

C* =2e.(")/y", (45)

where (v*,y*) are defined in Lemma 1 and e, () is defined
in (20b).

Proof. For optimization problem (19a)-(19d), (v*,C*) sat-
isfy all the KKT conditions and J (v, C) is also quasi-convex.
Similarly, when the constraints (19b) to (19d) and v > 0 are
not binding, we have the Hessian of Lagrangian evaluated at
(v*,C*) positive-definite. And for the case that the KKT
point binding any constraint, we have V.J(y*,C*) # 0
and J(v*,C*) twice differentiable in the neighborhood of

(y", C").
Therefore, by [21] again, (v*,C*) is the global minima
point. O

VI. NUMERICAL RESULTS

In this section, we use our analysis to shed light on
the potential savings that can be achieved, by using real-
world demand data from ISO New England [22] on (data:
07/17/2019). Based on the mentioned data, we choose dj
and d; in (10) by selecting the DC and first harmonic of
a one-day data. Thus, dy = 18091 MW, d; = 4671 MW,
and wy = 0.26rad/hr, which corresponds to one cycle
per day. Therefore the demand variation dy cos(wgt) in (10)
represents the demand fluctuations for the main daily cycle.

The storage degradation function in our numerical test is:

®(y) = (ka(y)* + ks) ™", (46)

where kq = 1.4 x 10%, ky = —0.5, k3 = —1.23 x 10° and
the largest battery life spans 1,4, = 76 years according to
the LMO battery degradation test [9]. Note that this function
satisfy our general assumptions in Assumption 1.

The generation cost coefficients are selected to be a =
0.02 and b = 16.24 base on the energy system model
[16]. And the capacity-power ratio is set as ¢ = 2 by
[23]. At last, by [9], the one-time unit building cost p =
209000USD/MWh.

We study the impact of varying the demand frequency
wp on the cost performance by varying wg from 1 cy-
cle per day (wo = 0.26rad/hr) to 144 cycle per day
(wo = 37.66rad/hr). Note that the non-empty intersection
assumption (38) is satisfied for the given frequency range.
The cost composition are plotted in the upper panel of Fig
1 in where the reference cost is the cost without using any
storage. Moreover, we calculate the ratio between saving and
investment on storage as returning rate and plot it in the lower
panel of Fig 1.
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Fig. 1: Cost composition (upper) and returning rate (lower).
versus demand power frequency

Simulation results indicate cost saving between 2.77% —
2.56% can be achieved. Moreover, the storage is not used for
both extremely low and extremely high frequencies (beyond
the range of the plot). This is intuitive, since the storage
operation will only incur extra cost when the demand is flat.
Similarly, if the demand variation are extremely frequent, the
storage runs out of degrades quickly and the building cost
increases. Our results also show that larger generation cost
coefficient a leads to higher savings.

VII. CONCLUSION

In this work, we propose an optimization framework that
aims at estimating the operational cost benefits of using
storage in an energy system as well as the optimal storage
amount that should be deployed into the system. Analytical
closed form solutions to this framework bring insight on
the effect of the frequency of demand fluctuations and
capacity on the overall system cost. Numerical examples are
provided to illustrate our framework. Analysing the effect
of charging/discharging inefficiency on this framework is an
ongoing topic of research.
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