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Abstract

We find equilibrium stock prices and interest rates in a representative-agent model where
dividend growth is uncertain, but gradually revealed by dividends themselves, while asset prices
reflect current information and the potential impact of future knowledge. In addition to the
usual premium for risk, stock returns include a learning premium, which reflects the expected
change in prices from new information. In the long run, the learning premium vanishes, as prices
and interest rates converge to their counterparts in the standard setting with known dividend
growth. If both relative risk aversion and elasticity of intertemporal substitution are above one,
the model reproduces the increase in price-dividend ratios observed in the past century, and
implies that — in the long run — price-dividend ratios may increase a further forty percent above
current levels.
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Figure 1: Price to Dividend ratio (vertical, twenty-year averages) over time (horizontal). Source:
CRSP monthly data 1926-2015.

1 Introduction

In the past century, equity prices have increased on average relative to dividends (Figure 1). Such
an increase is inconsistent with both the standard Lucas’ model, which implies a constant price-
dividend ratio, and with more recent models, designed to resolve asset pricing puzzles, in which
price-dividend ratios are time-varying but randomly fluctuate around a long-term mean.! Al-
though some of these models were designed to reproduce time-varying dividend-price ratios that
may reproduce the in-sample predictability of stock returns, a reexamination of empirical evidence
has led some authors (Goyal and Welch, 2003; Lettau and Ludvigson, 2005; Welch and Goyal,
2007) to question the predictive power of this variable out-of-sample, while others remain con-
vinced of its relevance (Cochrane, 1992, 2007; Campbell and Thompson, 2007). In particular,
Lettau and Van Nieuwerburgh (2007) propose to reconcile the inconsistencies between in-sample
and out-of-sample results by positing shifts in steady states, which in turn call for new theoretical
developments.

Typical asset pricing models assume that investors know exactly the model’s parameters and act
accordingly. Yet, a hundred years ago equity investors could not rely on the wealth of available data
used today to estimate, often imperfectly, the parameters of even the simplest models. Thus, even
if past investors had agreed with today’s valuation models, they may have required an additional
expected return for holding stocks in view of the looming uncertainty of their dynamics — a learning
premium — which might explain in part their lower valuations at the time.

This paper develops a model in which such a premium can indeed arise. Because the learning
premium vanishes by construction, as parameters are gradually revealed, disentangling its value

1For example, see Campbell and Shiller (1988), Breen et al. (1989), Fama and French (1993), Glosten et al. (1993),
Lamont (1998), Baker and Wurgler (2000), Lettau and Ludvigson (2001), Campbell and Vuolteenaho (2004), Polk
et al. (2006), Ang et al. (2007), Binsbergen et al. (2010), Chen et al. (2013), Kelly and Pruitt (2013), Van Binsbergen
et al. (2013), Li et al. (2013), Da et al. (2014), and Martin (2013).



from the stationary equity premium is crucial to understand to which extent stocks can reproduce
in the future returns that are comparable to their historical averages.

Though it had long been pointed out by Modigliani (1977) and Lucas and Sargent (1981) that
the assumption of known parameters was a simplification, to be relaxed at some analytical cost, this
area of research has gained momentum only in the past decade, with Hansen (2007) asking explicitly
“(a) how can we burden the investors with some of the specification problems that challenge the
econometrician, and (b) when would doing so have important quantitative implications”.

In a model with multiple macroeconomic states, Johannes et al. (2016) observe that parameter
learning improves the model’s ability to reproduce stylized facts such as counter-cyclical volatility
and expected returns. In a bounded rationality model with long-run risks, Croce et al. (2014) show
that limited information generates a downward-sloping equity term structure and a large equity
premium. Jagannathan and Liu (2015) develop a latent-variable model for dividend growth which
reproduces out-of-sample predictability in stock returns. Collin-Dufresne et al. (2016) show how
Bayesian learning becomes a source of long-run risks, and find price-dividend ratios explicitly in
the case of unit elasticity of intertemporal substitution.

Learning has a dual impact on asset prices: First, prices experience larger shocks than in models
with known parameters. For example, a positive dividend shock generates a proportional shock to
prices in the Lucas model, but a more than proportional shock in a model with uncertain dividend
growth, as a positive shock also updates the growth rate upwards. Second, investors recognize that
each future shock will also affect the value of subsequent shocks, while acknowledging that they
will be less informative than present ones of similar magnitude, as parameter uncertainty declines
over time. (For example, while estimating the probability of a head in a sequence of coin tosses,
the weight of each new outcome in the running estimate declines as the number of tosses increases.)

With the exception of Collin-Dufresne et al. (2016), the literature focuses on the first type of
impact, assuming that investors update their beliefs about parameter values, but do not account
for future updates in evaluating current prices. Pioneered by Kreps (1998) and further explored
by Piazzesi and Schneider (2010) and Cogley and Sargent (2009), such an approach is known as
anticipated utility, and its main appeal is tractability, as it yields prices obtained by substituting
current estimates in the formulas obtained under the assumption of known parameters. The limit
of this approach is that it does not reflect the impact on prices of the demand for stocks that stems
from hedging against future parameter updates. For example, if a negative dividend shock implies
both a lower dividend and lower dividend growth, then stocks are more risky than in a model with
known parameters, and investors may change their demand, hence valuation, accordingly.

Exploring parameter learning in a fully rational model quickly leads to some stumbling blocks,
as appealing assumptions yield appalling results. The first counterintuitive observation, noted by
Veronesi (2000) in a Markov switching model for dividend growth, is that the familiar assumptions
of time-additive utility with constant risk aversion do not lead to a learning premium, but a
learning discount — investors have higher valuations when parameters are uncertain. Intuitively,
such a result arises because a fair lottery on a growth rate translates into a favorable lottery for its
corresponding payoff at long horizon, in view of the convexity that results from compounding the
rate over several periods, and implying — counterfactually — a secular decline for the aggregate price-
dividend ratio. Brevik and d’Addona (2010) resolve this paradox in the same Markov switching
model by reproducing a learning premium through Epstein and Zin (1989) utility with a preference
for early resolution of uncertainty.

Importantly, in typical Markov switching models agents strive to estimate an unobservable and
ever-fluctuating state of the economy. Thus, learning is transitory, as information obtained about
the current state becomes less relevant in the future, when reversion to the steady-state distribution
unfolds. By contrast, in our model learning is permanent, because the unobserved state is constant,



and the relevance of information increases over time. As new information is relevant at any future
horizon, it has a larger impact on asset prices than if learning were transitory. Indeed, assuming
an unknown but constant growth rate with a normal prior, the aforementioned issue of lower price-
dividend ratios with learning worsens dramatically — the price-dividend ratio becomes infinite. This
surprising phenomenon, which motivates the assumptions made in the paper, is described in detail
in the next section, while the appendix describes a model of transitory learning, in which prices
are finite.

We specify a discrete-time model for dividend growth in which at each period the dividend can
either increase or decrease by fixed factors, as in the binomial model of Cox et al. (1979). The
investor’s uncertainty is on the relative probability of an upward or downward move, and is resolved
over time as dividend growth unfolds. The representative investor is fully rational, hence updates
the stock price to reflect both the current probability estimate and its potential future changes.

To identify the posterior distributions at each time, we observe that they coincide with those
arising from a Polya-urn scheme, and hence yield posteriors in the Beta-Binomial class. Formally,
one can identify ups and downs of the dividend as draws of balls of two different colors from an
initial pair of different balls. After each draw, the selected ball is replaced, along another one of
the same color, before the next draw.

Then we find in closed form the stock price and its implied equilibrium rate when the repre-
sentative investor has time-additive utility. In this case, we still observe a counterfactual learning
discount, which leads us to investigate the recursive preferences of Epstein and Zin (1989), as to
explicitly embed the aversion to later resolution of uncertainty and separate risk aversion from the
elasticity of intertemporal substitution.

Although Epstein-Zin preferences do not lead to closed-form solutions for stock prices and inter-
est rates, we find an asymptotic approximation and verify its accuracy first though a convergence
result, and then through a direct comparison to the time-additive formula and a numerical com-
putation. Indeed, we find that the Epstein-Zin preferences are able to reproduce realistic values
of the price-dividend ratios and their increase over time toward a long-term value that reflects a
model with known parameters.

The message of the calibration of the Epstein-Zin model is twofold: First, while the increase in
price-dividend ratios over the past ninety years has been significant, the model suggests that, if it
is due to the gradual resolution of parameter uncertainty, further increases are likely to continue.
Indeed, our calibration implies that the rise of the price-dividend ratio from 30 to 46 over ninety
years is consistent with a long-term value of such ratio of 64, i.e., 40% more than 46. Second,
the model implies that the resolution of parameter uncertainty, and its consequent increase in the
price-dividend ratios, is going to be very slow: even if parameter estimates remained at the current
levels fifty years from now, the price-dividend ratio would increase from 46 to 50, well below its
long term value. Thus, the model suggests that parameter uncertainty still looms large in asset
prices, and that its effects are likely to persist for decades if not centuries.

The rest of this paper is organized as follows: Section 2 motivates the problem and illustrates
the pitfalls that ensnare ostensibly natural approaches. Section 3 describes the model and obtains
the posterior distribution of parameters. Section 4 contains the main result, which consists of
the explicit formulas for equilibrium stock prices and interest rates in the time-additive case, and
their asymptotic expansion in the Epsten-Zin case. It then proceeds to discuss their calibration.
Concluding remarks are in Section 5. All proofs are in the appendix.



2 Prologue
Consider the familiar Lucas Jr (1978) model, assuming that the dividend process D; is

dD; = uP Dydt + oP D, dW;,

where pP and 0P > 0 are two constants. The economy is governed by a representative agent,
who maximizes expected power utility from future consumption F [ f ® e=Bls—1) y(C, ds] where

u(c) = €7 for v > 0. (The case v = 1 corresponds to logarithmic utility, omitted for brevity,
which 1eads to the same foregoing pricing formulas.) Under the optimality and market-clearing
conditions, in this market the asset price S; and the safe rate r¢ are characterized by

D,
? =Tt — -U’D + 7(0D)2?
t
Dy2
D_ (U )
=B+p” =11 +7)——
which imply that both the price-dividend ratio and the safe rate are constant. Of course, a limit of
this model is that it assumes that parameters are known with infinite precision from the beginning.
A natural approach to relax this assumption is to assume instead that the dividend growth
rate puP is learned over time, based on the realizations of the dividend process D;. Assuming for
simplicity that pP is a normal variable and that its prior has an independent normal distribution
,u(‘? ~ N(uo,07), standard filtering results (Liptser and Shiryaev, 2013) yield that the conditional

expectation pf = E[uP|(Ds)s<t] is

I R,
~ _ ot &Py
K== 7 Tt
o ' (0P)?
where R, £ gdg:’ so that dR;, = pPdt + oPdW,. Simplifying further, let 0y — oo (which
corresponds to a vague prior for u), which yields
—_ Ry
lu’Dt = T: (1)

an intuitive formula that identifies the best predictor for the dividend growth rate u” as the average
of realized growth to date.

In this context, anticipative utility assumes that at time ¢ the agent considers the current
estimate exact (thereby contradicting himself immediately afterwards by re-estimating the same
parameter with additional information). As the estimate is considered final, the same pricing
formulas as the Lucas’ model apply, with ,uD replaced by its estimate ,u;D .

To resolve the time-inconsistency of anticipative utility, the agent must remain aware that
current estimates are imperfect and hence future dividends will change the estimates of subsequent
dividends — even further in the future. In this spirit, denoE by Fi = 0(Dy: 0 < u < t) the
observable filtration, equivalently generated by D or R. As pP, is a martingale in this filtration
(by the tower property of conditional expectation), the predictable representation property entails
that

dpP, = —dw?P;, (2)



where WD is a Brownian Motion under F;, and the diffusion coefficient o/t is determined by (1).2
Thus, the observation dynamics of D is:

d-Dt == f_:ﬁtDtdt —I— O'DDtdI/?‘HDh

the optimality condition prescribes that the state-price density M; is proportional to the marginal
utility of consumption e 5 D; 7, and therefore the asset price is

1 o0
St = E]E |:/t M3D3d5|.}rt:| . (3)
To compute this price, write
DM, — Dy M, o=PE0H1=0) i WP udu=(1=9) 32 (=) (1=)o” (WP, —WP.)
and note that, in view of (2),
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e 8 8 o e D 8 5 — y I
=ubP,(s—1) —I—/ (f du) dpP, = pPy(s —t) +o / ” dwp,.
¢ y ¢

where the last equality follows from (2). Therefore,
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Thus _];3 ;ﬁudu + oP (W’?DS — Pﬁ;) is normally distributed with mean ;ﬁ (s — t) and variance
(oP)? (% — s). Hence,
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This equality in turn implies that
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Crucially, unless v = 1 the last integral diverges for any combination of parameters (the factor
e(1=178*/t gverwhelms all others for s large enough)?, reflecting that parameter uncertainty van-
ishes so slowly over time that a forward-looking investor, keen to hedge against potentially low
consumption growth, would be willing to pay an arbitrarily high price for the asset, which is the
only source or consumption. This finding is reminiscent of the work on parameter uncertainty

— D 0
’In detail, dWD, = “2—pcdt + dW,.
3The trivial exception is v = 1, which leads to S; = D;/8, whence learning has no effects on prices, both with
anticipative utility and with rational expectations.



of Pastor and Stambaugh (2012), who note that stocks are substantially more volatile over long
horizons from an investors perspective.

The message of this negative observation is twofold: first, it shows that anticipative utility is
not an accurate approximation of asset prices in a rational-expectations model — the price difference
is infinite. Second, it shows that the ostensibly most tractable setting for filtering — a normal prior
with normal innovations — implies a level of uncertainty that is fundamentally incompatible with
isoelastic preferences.?

Thus, the ostensibly natural assumptions of, on one hand, a normal prior with normal updates,
and, on the other hand, isoelastic preferences, leads to the unnatural outcome of infinite prices.
The model below preserves isoleastic preferences, and faces the challenge of a tractable filtering
setting outside of the familiar normality assumptions.

3 Model Definition

The model is based on a Lucas’ tree economy with one unit of a risky asset, which yields at time ¢

a perishable dividend D; that starts at Dy and follows the discrete-time process:®

Dy = Dy_1e™Xt t N, (4)

where n € R,s > 0 and (Xt)s>1 denotes a sequence of i.i.d. random variables with common
Bernoulli distribution with parameter P € [0, 1], that is P(X¢ = 1|P) = 1 —P(X; = 0|P) = P for
all t > 1. However, P is unknown to the agent, who initially assumes that P ~ UJ[0,1], and then
gradually learns (i.e. filters) it from the realization of X through Bayesian® updating with respect
to the natural filtration F; = o(X1,.., X¢), t > 0.

The next lemma finds explicitly the posterior distribution of X; with respect to its past history.
Recall that the beta-binomial distribution BetaBin(n,n, ) is described by the probability mass
function f(k) = GDW’ 0 < k < n, where B is the Beta function (cf. Georgii (2013)).
Moreover, recall that the Beta distribution is conjugate to the binomial distribution, and the
compound distribution is the Beta-binomial distribution. Put differently, the Beta-binomial is
equivalently described as the distribution of X ~ BetaBin(n,n, ) or as the distribution of X ~
Bin(n, P), where P ~ Beta(n, 3) (Robert, 2007, Chapter 3.3).

Lemma 3.1. X,,|F,_ ~ BetaBin(1,1+ Z?_ll X;,n— Z;l':_ll X;) for n > 1. Moreover,

. 1 1+ 30 X
Pn—1 :f P(Xy = 1|p) fp(p|(Xi)1<i<n—1)dp = %
0

Thus, in the investor’s filtration o((X;)1<i<n—1) the distribution of X,, is Bernoulli with probability
Pn—1, Xn|(Xi)1<i<n—1 ~ B(Pn-1).

4A similar but more technical calculation with Epstein-Zin isoelastic preferences confirms that the prices still
diverge, except in the case of unit EIS (elasticity of intertemporal substitution) that nests logarithmic utility and
implies that S = Dy /5.

SFormally, consider a measurable space (£2,.F,P) supporting a uniform random variable P ~ U[0,1] and an IID
sequence (X;)¢>1, Xt ~ B(P), where B(P) denotes the Bernoulli distribution with parameter P. Additionally, define
the filtration generated by the observations of X;. Let F; = o(X1,..,X:), ¢ > 0, which is the filtration used for
Bayesian updating.

6This assumption can be relaxed to P ~ Beta(no, f0), with no, fo > 0.




The interpretation of the model (4) is as follows. The parameters 1 and s identify the mean
and the standard deviation of the dividend growth rate. Specifically:

D " D . .
En—1 [log (D - )] =1+ Spp—1, var (]og (D z ) ‘(Xz‘)lgign—l) = 52;071—1(1 _pn—l)a

n—1 n—1

where, for brevity, henceforth E;[-] denotes conditional expectation with respect to F;. In view of
the previous lemma, the distribution of D,, from the investor’s viewpoint is

Dy, ~ Do e™+¥n,

where Y,, ~ BetaBin(n,1,1) ,n > 1, and in general

Dm ~ Dn en(m—n)—f—sY,&f‘)’
where the superscript n stands for time, so that at time n, D, and hence p,, are all known. Thus
ﬂ(q,n) ~ BetaBin(m — n,(n + 2)p,,n — (n+ 2)p, +2) ,m > n > 0, so that Y, = Yﬁ@.

Define the (ex-dividend) price S, as the price of a security that entitles the holder to the
dividend Dy, for all s > t. As in the usual Lucas model, a representative agent maximizes expected
utility from current and future consumption.

Define the set of admissible consumption plans as L5 = {C D Y e OE[CY] < oo}, where the
0 < § < 1 is the time-preference parameter. The Epstein-Zin utility of consumption at time t with
horizon T is defined by the backward recursion

6
1—y

UE"(G)={(1—6)G§__“"‘+6(E4(U£I 1"”J)%} , Uty =0, (5)

where C is the consumption process and § = t—g. In addition to 8, the other preference parameters

are 0 < v # 1 for risk aversion, and ¢ = % for intertemporal elasticity of substitution, with

0 < p # 1.7 The infinite-horizon Epstein-Zin utility is defined as the limit (which exists by Lemma
B.1 below):

U(C) = Jim U (C). (6)

The agent chooses the consumption C; and the number of shares ¢¢ to hold in the risky asset
at time ¢, so that the budget equation governing the agent’s wealth X; is

Xt = ¢e—1(St — Se—1) + (1 + re—1)(Xe—1 — d¢—15t—1 — Ci—1)

where S; represents the (ex-dividend) price of the risky asset and r; the safe rate, which are
determined in equilibrium:

Definition 3.2. An equilibrium is a pair (St,7¢) of price and rate processes such that
(i) Optimal consumption equals the dividend stream, i.e., C; = Dy, t > 0;

(i) Wealth equals the risky asset, i.e. Xy =S¢, ¢ = 1,t > 0. Thus, the safe position is zero.

"Recall that time-additive power utility with risk aversion ~ recovers from the Epstein-Zin setting v = p and

Ul ol—7 _
= T i +e OB V).

# = 1, and using the transformation V; § = e ?, whence (5) becomes V; =



4 Main Results

The main result identifies the price-divide ratio and safe rate in equilibrium over time:

Theorem 4.1. For 3 > 0 large enough, and additive power utility (v = p and 6 = 1) the price-
dividend ratio and interest rate are respectively:

St 1 ) 1— e(l v)8
D, ~ 1= eta—ra 21 (1’(” Dbt + 1 e = ) ~ b ™

1 1
_ —1= -1 *
Tt+1,t e—B—m ]Et [e—’}‘SXt+1] de—B—my (1 — }33 + ﬁt e—’}‘S) ? ( )

where 2F1(a,b,c;d) is the (ordinary) hypergeometric function.

Epstein-Zin preferences do not lead to analogous closed-form solutions, but it is possible to find
expansions around the long-term solution. To this end, define

1—-1
S =¢, YD

1—1
In other words, the price-dividend ratio is ¢, Y. Then
Theorem 4.2. For 8 > 0 large enough,

(i) The price-dividend ratio and the interest rate are

— (@) ¥ = () T -1+ Z ol (9)

1
Tt+1t = ) T_% -1, (10)
59'-'?(—%) E; [Eﬁ? e_"'SXHl] (Et [Etht? e(l—’}’)SXHIDﬁ
where
CA\1-% 1 1
(Qw0) = . : s
1- 57079 (B, [t v}sXm])— 1—3e"79) (1 —pe) + e elt-5) =7

and the coefficients oy are bounded and admit explicit expressions.

(i1) In particular, for any k > 0 the error of the expansion (9) is:

s () o) o). o

Whereas the interest rate satisfies

1

T T

1— =
(B [ (&) et )

5% E [( ) 5, ))i. ve_mm] —1—reaye =o(%). (12)

Similarly, an error of O (#) ,k > 1 is achieved through a higher-order approximation (9).

9



Quantity Additive | Epstein-Zin A | Epstein-Zin B | Data
n -0.0124 -0.0124 -0.0283
B(5) 0.04 (0.96) 0.04 (0.96) | 0.0273 (0.9731)
¥ 1.37 1.37 9.53
) 0.0104 0.0104 0.4408
s 3.118 3.118 0.133
b 0.73 15 8.81
Price Dividend ratio (1926) 26.1 24.6 209 | 225
Price Dividend ratio (2016) 24.5 28.4 459 | 38.7
Price Dividend ratio (long term) 24.1 30.1 64.2
Average dividend growth 2% 2% 3% | 1.2%
St. dev. of dividend growth 30% 30% 6% | 11.1%

Table 1: Parameter calibrations with additive utility and Epstein-Zin preferences, with (A) recal-
ibration of the elasticity of intertemporal substitution v, and (B) recalibration of all parameters.
Estimates in the last column are from CRSP and Beeler et al. (2012).

Table 1 brings to life the above result through the calibration to realistic parameter values. In
Table 1, the parameter combinations Additive and Epstein-Zin B are obtained by calibrating the
model as to minimize the sum of squared errors of the empirical quantities in the last column, while
the combination Epstein-Zin A is obtained by minimizing the sum of squared errors by varying only
the EIS parameter v, while keeping the other ones equal to the Additive column. The left panel in
Figure 2 is obtained from the closed form solution (7), whereas the right panel plots a numerical
solution of the price-dividend ratio in (42), resulting from (5). For the left panel, parameters are
as in the additive utility column of Table 1, whereas the right panel uses the parameters in the
column Epstein-Zin A. Likewise, Figure 3 is obtained from the approximations in (9), combined
with a numerical solution of the recursive equation for the price-dividend ratio, using the parameters
in column Epstein-Zin B.

The central question is whether the model is able to reproduce the secular increase in the price-
dividend ratio with realistic preference parameters, while also remaining consistent with the typical
moments of aggregate dividend growth.

Both Table 1 and the left panel in Figure 2 show that additive utility does not lead to an increase,
but to a slight decrease in the price-dividend ratio, as the representative agent responds to more
uncertainty in assets’ returns by bidding their prices up to hedge against potentially low growth.
Thus, additive power utility generates a learning discount (parameter uncertainty increases prices)
that recedes over time. An additional limit of the calibration with power utility is the extreme
standard deviation of dividend growth.

A parsimonious attempt at keeping the same calibration parameters as additive utility, while
optimizing the value of the elasticity of intertemporal substitution 7/, improves the results qualita-
tively, but not quantitatively, leading to a modest increase in the price-dividend ratio from 24.6 to
28.4, as shown from the calibration Epstein-Zin A.

A marked improvement takes place by reestimating all model parameters, as in the calibration
Epstein-Zin B, which leads to higher risk aversion and lower elasticity of intertemporal substitution.
Such calibration is both able to reproduce a realistic increase in the price-dividend ratio from 30
to 46 over a span of 90 years, while also generating a standard deviation of dividend growth more
aligned to the data.

This calibration also suggests that, even after 90 years of observations, the learning premium

10
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Figure 2: Price-dividend ratio over time, with time-additive, power utility (left) and with Epstein-
Zin utility (right). Parameters are as in Table 1 (B for the right panel with Epstein-Zin).

has not vanished — parameter uncertainty still looms large. Indeed, the model implies that, if
current parameter estimates were indeed perfectly accurate, by the time that their accuracy were
resolved, the price-dividend ratio would have risen from 46 to 64, an increase of nearly 40%. Put
differently, parameter uncertainty implies that current stock prices are nearly 30% lower that they
would be if current parameter estimates could be trusted with absolute certainty.

Furthermore, the right panel in Figure 2 shows that such uncertainty is likely to be resolved
very slowly: even if parameter estimates remained at their current levels, the price-dividend ratio
would increase from 46 to 50 in the next fifty years, i.e., less than a quarter of its potential increase
from 46 to 64.

Finally, as Epstein-Zin utility, in contrast to power utility, does not lead to closed-form solutions,
Figure 3 displays the convergence of the approximation in Theorem 4.2 with the parameter values
in the Epstein-Zin A row of Table 1. The convergence of the approximations in equation (9) to the
numerical solution is significantly faster than the convergence of the price-dividend to its asymptotic
value: under the current availability of accurate stock price data, which is longer than 90 years, the
first-order approximation is within 10% of its numerical target. Yet, in the interest of precision,
Table 1 reports figures obtained numerically.

5 Conclusion

This paper explores the extent to which the resolution of parameter uncertainty explains the secular
increase in price-dividend ratios. Contrary to intuition, standard models of time-additive utility
imply that stock prices are higher in the presence of uncertainty, and hence that price-dividend
ratios counterfactually decline over time.

Epstein-Zin preferences are able to explain the empirical increase in price-dividend ratios with
risk aversion near 10 and elasticity of intertemporal substitution near 9. Out of sample, the model
implies that the current price-dividend ratio still reflects significant parameter uncertainty and that,
even if current parameter estimates are close to their true value, in the future the price-dividend
ratio may still increase considerably.

11
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Figure 3: Left: Price-dividend ratio over time for Epstein-Zin utility: numerical solution (solid),
zeroth order approximation (dashed), first order approximation (dash dotted), second order ap-
proximation (dotted) .

A Transitory vs. Permanent learning

This subsection demonstrates the difference between transitory and permanent learning by exam-
ining in detail the asset pricing implications of a model of transitory learning, and by contrasting
them with the ones obtained in the prologue for permanent learning.

Consider the case of an unobservable dividend drift that follows an Ornstein-Uhlenbeck process
with known coefficients. As before, the dividends themselves are still observable and can be used
to estimate the current drift. Let the dividends again grow geometrically, i.e.,

d_Dt = 'U;tDtdt —I— JDDtth'
However, let now the growth rate p; follow a hidden Ornstein-Uhlenbeck process
dpt = k(fp — pe)dt + 0,dBy,

which means that p; fluctuates around its long-term mean pi. Denoting by

R, = s —/ / ik e "9 dsduy :/ Stat+ = (e -1
‘ A D, 0 Jo # o Ds # K ( )

t
00 = py — ik / R (=9) g,
0

it follows that

th = Qtdt + O'Dde,
dgt = —-‘igtdt + O'}udBt.

Moreover, FP = o ((Du)o<u<t) = 0 ((Ry)o<u<t) = FE. The Kalman-Bucy filter 0, = E [9; |}_tR]

12



and its variance () = E[(6; — 6;)?] satisfy

2
dry(t) = (—257(73} - (7(?} +aﬁ) dt, (13)

%D

db, = —Kb,dt + "’(t) (th Q;dt)
D

Let v = —mJD + op; jﬁ?ch + 0' , be the two roots of the quadratic of the right hand side of

(13). Assuming again that 6y ~ N(uo,03), and setting b0 = po,v(0) = o2, then the solution to the
Kalman-Bucy filter is

B T+,
1~ —7%%% “D
v(t) = o,

1 _ '}'[]_'T— e h
nr

) ot 1 ds . t ot 1 d
PR (vt as gt Ji? S (x5 " ()R,
D

and the Brownian Motion under F£ is PT/-B, defined as

—  dR; — f,dt —0
dwD, = =1 Oudt _ 0= 6c + dW,
oD op
so that
df, — —rfdt + XD awd,
oD

Thus

dD; _ ¢ — _—K(t—s) _ — . —KL

D= dR: + | pke dsdt =dRy + ji (1 — e ™) dt (14)

t 0

= (é; +a(1- e_m)) dt + deﬁ;.

Recall the price process in (3), with the state-price density M; is proportional to the marginal
utility of consumption e 5 D; 7. Thus

2 —— —
_B(t— _ t o duti(t—s)+E (e—rt—s) _1)— 2D (t— WP,_ WD,
D:M; = D.M,e B(t—s)+(1 ’}‘)(fs u+i(t—s)+2 (e 1)—2R(t s)-|—UD( . )) .

Note that, for s < t, it holds that
t ~
0, — 0, = —;‘i/ Qudu+/ (w )dWDu,
8 8

which, combined with §; = 0 e "(t=%) 4 f; 1(—? e R(t—w) dﬁ.f-ﬁu, yields

93 1 t —
9 du = — — | ~(w)dWD,
K,O'D s
_ —n(t s) . t o
! b~ [ Awe e —1diD,
K koD Js

13



Hence,

L — — 1— e—n(t—s) R 1 t o
D, _wD ) — _ —K(t—u) 7y _ 42 D
l Oydu +op (W t— W s) - Os e l (’)f(u)(e 1) WD) dw?pb,.
(15)
Therefore,
t, — — 1— e—n(t—s) R 1 t 2
D D ~ L —K(t—u) 2
L Oudu + op (W t— W 3) N ( - s, (D)’ l ('y(u)(l ¢ ) + WD) du | .
As in the long run y(u) converges to 74, it follows that for large s,t
t o o 1 — e Kl(t—s)
/ fudu + op (WD; —_ WDS) ~N[—" 4. H(t-s) ],
s K
where
Hr) = Vi i Y3 (475 —e 2T 4267 — 3) — 4y ko? (kT — e 41) + 2&30'41'.
(koD) 2k
Hence,
)
E [MtDtl}_s] = DsM;exp { - (16 - (1 - 7) (ﬁ - 7)) (t - S) }
il — e h(t=s) H(t —
oy [P (ot ) L L= _pHE=s)
xexp{(l '}f)(,‘i (e 1)—|— - Os | +(1—7) 2 .
This equality in turn implies that
1 o0 1 &0
St = E]E [l M3D3d5|.}_t:| - El E [M3D3|Ft] dS
2
oo (11— =_ "D _ _ B{o—r(s—t) _ 1—e—Hl(s—t) » a2 _
B D;/ . (8- (s=2) )0+ (£(e 1)+ =00, ) =) (50 oo
¢

As k > 0, the expression H(7) grows at most linearly in 7. As a result, for 8 > 0 large enough, the
above expression is finite. (There is no closed form solution, even in the stationary case y(u) = v+
for all w > 0.) Thus, in contrast to the setting of permanent learning, described in the main text,
this model of transitory learning gives rise to finite prices, at least for sufficiently large discount
rates.

The same argument carries over to Epstein-Zin preferences. Denoting the aggregator by

o0y = 22 =) 16
flev) =2 e (16)

so that the indirect utility V; satisfies

dV, = —(Cs, Vo)dt + 5, (t)dWD,.

14



In order to find 6y(¢), recall that
WV, = (~F(CuVi) = JAOIED) ) de-+ 00D,

where
PP

A(v) = ”T_l

vp—1 7

_Be
f(C,U}— p

As the only source of randomness of the utility comes from the consumption, and both the con-
sumption and the utility processes are linear in consumption, oy(t) = oPV;. The transformation
to an equivalent normalized utility process is U = U o ¢, where ¢(v) = f el Ale)dz dv, which in this
case, is ¢(v) = % From Ito’s formula, it follows that

JF(C: ';ﬁ(v)) = f(ca U)(ﬁ!(’ﬂ),
To(v)(t) = ou(t)¢' (v),
A(¢(v)) = A(v)¢' (v) — ¢ (v).

It then follows that f indeed equals (16), A = 0, and
5u(t) = o™V a7

As dividends coincide with consumption, i.e. Cy; = Dy, the state-price deflator M; is (Duffie and
Epstein, 1992)

L
M; =exp {/ﬂ fv(Ds,Vs)ds}fc(DhW)

t D.o D.O—l
=B exp %(1—8) ;ds—ﬁﬂt tiﬂ_l.
pn n/ Jo 70 Py (nVyn
Using the fact that

; (V:_g) - (1 - E) vt (f(Dt,%}dt—c‘rU(t}dﬁ; . i&f,(t)dt) |

v Vi 2y V2

it follows that

1 —1 —
d( Dy ) Dy (p_l)((g‘t_g(l_e—ﬂf))dt+aDdWD;+%(p—2)(JD)2dt)

V) ) V)
DI (P [ f(DuWdt— s, (HdWP: | p 53(1)
T2\t v
(W7t v o
+(p— 1}£ (1 — E) @dt.
Wi\
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Therefore,

((é; —-p(1- e_’“)) dt + O'Ddﬁt + %(p —2) (O'D)th)

J(De Viydt — 5,(1)dWD: | p 53(1)
Vi 2y V2

p\ oPa,(t) B ( P) Dy g
Y (p—-1) (1=~ dt + 1-2) 2 _ g7 4.
(=1 ( ')f) V; oyt 1) vE i

and, substituting (16) and (17), yields

dﬁt — —rydt + (p— 1)oPdWD, + (1 - g) %@dﬁ?ﬁt
= —rdt + (7 — l)aDdPﬁt,
where
= (1) (6 - (1— ) + @ = Py - )L
Therefore
M; = Mgexp {— \/: rydu — @(JD)2@ —s)+(y— 1)oP” (ﬁ/—f’; — ﬁs) } (18)
From (14),

t . 2 .
D; = Dgexp {/ Oudu + it — s) + % (e_”(t_s) —1) — %(t —s)+op (WD; — WDS) }
s

Together with (18) it now follows that

D;M; = DM, exp { —B(t—s)+p (/t éudu +a(t—s)+ % (e_"(t_s) —1)) }

xem{(9(7—1)—72)¢(t—8)+70}3(ﬁ3—ﬁ3) }

Thus, similarly to (15),
1— e—n(t—s) R

t - —— —
/ fudu + Lop (WD; — WDS) ~N([ S g Hi(s ) |,
] p K

where
2

Hi(s,t) = ﬁ / t (7(1;,)(1 Ry n%a%) du.
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Thus
E [M;D;|Fs] = DsMexp { —B(t—s)+p (ﬁ(t —s)+ % (e_ﬁ(t_s) _1)) }

D2
) ) )(t— s)+p

1 — e K(t—s)
xexp{pr?er(p(’)f—l 5

o Hi(s,t) }

‘We now calculate

1 e 1 co
S =—EFE M.D.d = — E[M.D d
t M, |:/t slUsg S|}_t] Mt\/3 [ 8 sl}_t] S

K(s—t)

A e
t

2H1(t3)

Oe+(p(v—1) '}'2)(" 2 (s—t)+p ds.

Again, for the same reasons as in the additive utility case above, this expression is finite for a
discount rate 3 large enough, which confirms the claim that prices remain finite even for Epstein-
Zin preferences.

B Proofs

Proof of Lemma 3.1. For n = 1, it follows from the definition of X; that its distribution is X; ~
BetaBin(1,1,1). For n > 1, we calculate the posterior distribution. Recall that

n—1 . _q_sn—1
Fp(PIX1, e Xn_1) o< L(p) fpy (p) o p2i=t Xi(1 — p)n L=t X, (19)
where fp is the pdf of P and L is the log-likelihood. Hence, P|Xy,...,Xpn—1 ~ Beta(zwv:ll Xi+

1,n—1-""" X;+1), and thus X,,|X1, .., Xn—1 ~ BetaBin(1, "' X; +1,n—1-37"] X;+1).
Moreover, given the observations X1, ..., X;,—1 and using (19), for n > 1 it holds that

1
Pn—1= ]P(Xn = 1|}(11 ---1Xn—l} = / ]P(Xn = 1|p)fP(p|X1; ---:Xn—l)dp
0

_ / 1 pTil Xi(1 - p)n RS X _ X Xl

d
o PBeta(>Xr I X+ L(n—1) ST X+ 1) nt1

1

We formulate this section for the general case of Epstein-Zin utility. The case of power utility
corresponds to § = 1. First, we show the Epstein-Zin utility is well defined, i.e., the infinite-horizon
limit in (6) exists. See also (Pennesi, 2018, Theorem 1) for a related result.

Lemma B.1. Fiz an admissible consumption C € Ls5. Then

N-1
UN(C) < (1-8)T5 3 6" E[Cnl. (20)

n=t

It follows that the limit in (6) is well defined (hence so is Uy(C)). Moreover, such Uy(C) is the

unique solution to the recursive equation

2]

-

€)= {0 - 9CT +5 BV )} (21)

17



with the asymptotic condition

lim Ut (CD,N) = Ut(C), (22)

n—oo

where for any consumption streams C,C, the modified process COm s defined as

A0 Cs :s5<n
CC,'R. — ,..S — ] 23
8 { Cs :s>n. (23)
Proof of Lemma B.1. Fix any N > t. Then Ug(C] = 0. Similarly, if N > 1, then Ug_l(C) =

1
(]_ — 5) 1_P]EN_1 [CN—I]-

By (backward) induction, assume that (20) is true for ¢ = k + 1, and show it for ¢ = k. The
induction assumption and Jensen’s inequality imply that

1 N-1
B [(UR.(€)' ] < a-9)7F Y e IR, (G
n=k+1

Then

ut'e) = {a- ek +5 gy )

N-1 1=p\ 7= . N-1
(1—-8)C, P +48(1—9) ( > 5“_(k+1)IEk[Cn]) <A =8)T7 Y R [Cy],
n=k+1

A

n=~k

where the first inequality follows from the induction step, and the second from Jensen’s inequality,
proving the induction step. It follows that the limit in (6) is well defined, as {U}N} for fixed ¢ is an
increasing sequence in N > t. Hence, UtN (C) is well defined for every N, and thus so is its limit
Uy(C) in (6).

Additionally, (21) now follows by continuity, after taking the limit N — oo in U}¥ (C) =

[}
1— 1)1+
{(1 —8)C, 7 + 6 (E[(UN,)'™]) 9} " Whereas the uniqueness of the solution follows from the
uniqueness of U} and the fact that U,(C%") = UM (C).

O
Next, set
_(1=(-8)

Diyq\ 70 Upsr(D) ' t

M1 =10 ( 5—:1) bl — , My = H m;i—q for t >s. (24)
(B v @)])™
Define
U, 0 1—7 o 1 l=r 4 _

= ! =——(1-6 Uy(D)T=""D,° = (1-468)U(D)’D;” 25
et ac, C=D 1_,}{( ) 0 t( } v t ( ) t( ) t 1 ( )
Tst = Mgttt for s > t. (26)
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In view of (26), optimizing over the consumption at time s > ¢ without any constraint on initial
wealth, leads to the problem

CZO,CIEEJD(u,u#s{Ut(C) — E; [?73,1;03]} = Ut (_D} — ]E; [?Tg,t_DS] . (27)

For convenience, denote P; the cum-dividend price, defined as

o0
P,=Si+D; = !Z mn,tDn] : (28)
n=t
To complete the description of the market, define the price at time ¢ of a bond maturing at t+1 as
B(t,t+1) = E; [myq1,4], (29)
and the interest rate as
1
B(t,t+1)= —. 30
(0 +1) = T (30)

Next, to define an equilibrium in this market it remains to define admissible consumption
plans. Let X; be total the wealth of the representative agent at time t (before any consumption
takes place).

Definition B.2. The wealth process X starting from time to is admissible, if X¢ > 0 for all times
t > tg. For a given consumption stream C; > 0, t = tg,tg + 1,... set value of the consumption
stream starting from time t > ty as

o0
Wi, (C) = Z Et, [ms,t0Cs] -

s=tp

Lemma B.3. Let tg > 0, then for any admissible consumption Cs, s > tp,

T
Eto (71,60 XT+1] =Xto — ) Eeg [meso Ot , (31)
t=tp
00
and XtD 2 Z Etg [m;,tDC;] . (32)

t=tp
Moreover, if Xy, = Py, any admissible consumption C' is dominated by D, in that Wy, (C) < Wy, (D).

Proof. At any time, the agent can invest in two assets, the bond and the stock. Assume that at
time at time ¢ the portfolio is valued at X;. The dividend is paid out first. Then the portfolio can
be rebalanced, to include ¢; shares of stock and v; cash. Thus X; = ¢:+(FP; — D;) + 9, since the
stock price P; is cum-dividend, and whence ¢y = X; — ¢4(P; — D;). After which the consumption C;
happens. Then at the next period ¢ + 1, the portfolio is worth X, which is comprised of ¢;F;,
wealth invested in stock and (¢; — C;)(1 + r¢) cash, i.e.,

Xipy1 = 0P + (U — C) (1 + 1) = Py + (Xi — de(Py — Dy) — Cp) (1 + 1) (33)
Because P; = D¢ + Ei [m¢41,:Pi+1] for any ¢, from (29) it follows that
Ety [mitg+1.t0 Xtg+1] = Bto Bty [Mtg+1,60 Pro+1] + (Y19 — Cto) (1 + o410 ) Etg [Mtg+1,1]

= ¢'to (Pto - Dto) + (wto - Cto) = Xtu - Ctn-
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Repeating this argument, (31) follows.
By admissibility of X7, and the non-negativity of m it follows that X;, > Zr{:to Et, [mt,:,Ct)
for all T' > tg. Thus, (32) follows by letting T' — oo:

o0 o0
Xty = Py = Z Etq [mt,t0Dt] > Z Ety [mi1,Ct] - (34)

t=tp t=tp

B.1 Additive Power Utility
Proof of Theorem 4.1. The closed form formula for the stock price P, at time n is as follows

oo oo
, . (m)
P, — E E [e—ﬁu—n) D;_"'] = D}I—TE :e((l—'r)n—ﬁ):.- E [e(l—'r)sl’;+n] 1
— |

o0
= DLy el n=R) (_j, (n+ 1)pn;nt1;1 — e(l—'r)S)
j=0

Dl ’}'Z ((1=yIn—B)i Z( 1) (k) ”&:_:1))11:1) (l_e(l—'r)s)k?

where

1 k=0,
(Q’}kz:{ qlg+1)...(q+k—-1) k>0

Now, changing the order of the summation

P,=D, Z ((n:_:}li‘)’:}k _1)k (1 _ e(l—'r)S)kie((l—'r)n—ﬁ)j (i)

i=k
k—1

B (n+ 1}1Dn}k 1-7)s\* ((1=11=B)\ " (A=7)n-B)k
—D“Z NCEF (—1)* (l—e ) (l—e ) e

(n+ Dpa)e, g [ €@=1176) (1 — 1-7)9) K
- e((l '}')n B) 2% (n+ 1)k (=1 1 — el@=7)n-8)

L—e(i=msy \*
Kl((n + Dpp)e \ & @71
1—9((1 ‘}‘)'-'? 5)2 (n+ 1) k!

D, o 1— s
T 1 — el=n-B) 2k (1’ (n+ Dpnin+1; 1 — e ((1=)-8) |

where the second equality uses the identity Z;’ik q’ (fc) = (1— q}_k_l g* with ¢ = e((A=7n=8),
showing (7).

To show (8), recall the definition B(¢,t 4+ 1) — the price at time ¢ of a zero coupon bound
maturing at time ¢ 4+ 1 in (29). As for power utility, (24) becomes m41; = e B (D‘“) , (8)
readily follows by recalling the definition of the interest rate r¢+1¢ in (30).
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Recall the with power utility the stochastic discount factor 7 in (25), (26) is 7t = D, . Thus,

by (24), (26) it follows that E [r;,Ct] = B, [ﬁ B_‘g%ct] , 8> 1> tg, for any C; > 0 admissible

consumption. Recall that from Lemma B.3 for any admissible consumption C' with initial portfolio
wealth Prg, > 52, Eig [me60De] > 352, B [7t,60Ct] . For such consumption it follows that

1 > c
Vio(©) = 3 By |e=ple-t0) G

1—» = 1—7
0 1— o0 1—y
_a(t—ty C. gy D Vio (D)
< E B(t—to) Zt D, —C)| < E B(t—to) 't _ to
_g to !e 1_7+7Tt,t0( t t}]_g to le 1_7 1_71
where the first inequality follows from
e Cl—’}’ e Dl—’}’
Ig%%)éEto e Plt=to) 11—7 —?Tt,toCt] = E¢ [e Alt—to) 11—7 —?Tt,tth] ,

which in turn follows from (27).

Assume for convenience that tg = 0. Note that, if Xg = P, é; = D; and ¢ = 1, then
(33) implies by induction that X; = P; for all ¢ > 0. Now, consider the alternative strategy
in which at time ¢ the number of shares changes from 1 to 1 + £ on some JF;-measurable event
A cC{|P| < M,D; >1/M}, with M > 0. Note, that after the dividend is paid, the share price is
P; — D;. Thus consumption correspondingly changes from D; to Dy — e(P; — D) and to Dg(1 +¢)
for s > ¢ +1. That is, define ¢ = @5 + €144 and cg = Dg — P 1o_1yna +€Ds1{s>141)na, and
note that this strategy continues to satisfy (33). (Note that ¢ may be either positive or negative.)

1—
Setting u(t,C;) = e Pt C;‘T,:, the change in expected utility from (D, 1) to (c¢f, ¢°) is thus

A*=E

14 (u(t,D; —e(P—Dy) —u(t,Di) + > (u(s, Ds(1+€)) — u(s,DS)))] <0 (35)

s=t+1

where the last inequality reflects the assumed optimality of the consumption stream D together
with the treading strategy ¢ = 1. By concavity, note that for any ¢,z,y > 0:

uc(t, y)(y — z) < ult,y) — u(t, =) < uc(t,z)(y — ).
Whence, on the event A, for s > ¢
ue(s, Ds(1+€))eDs < u(s, Dg(1 +€)) — u(s, Ds) < ue(s, Dg)eDs.
Therefore, again on A,

IH(S, Ds(l + 5)) - U(S: Ds)l < |€| Dy max(“c('S: Ds):“c(sa Ds(l + 5}}) (36)
= |e| Dsuc(s, Ds) < |e| Dsuc(s, Ds),

where for the first equality the fact that u is increasing and concave was used. Likewise,
—EPtHC(t, Dt — E(_P; — Dt)) S u(t, Dt — E(Pt — Dt}} — u(t, Dt} S —EPtHC(t, Dt) on A.
Hence on A, for € > 0 small enough

u(t, Dy — e(P, — Dy)) — u(t, Dy)| < |e|Prue(t,1/M — e(M — 1/M)) < |e|Pruc(t, 1/(2M)).  (37)
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In view of (36) and (37), it follows that the respective incremental ratios are dominated by an
integrable random variable, uniformly in €. Thus, dividing A® in (35) by € and passing to the limit
as € | 0, Lebesgue’s dominated convergence theorem yields

11111E =E llA (_uC(ta D¢)(P; — Dy) + i “C(3=D3}D8})] <0

0 € s=t+1

Analogously, as € 1 0 it follows that lim. g % > 0, whence the limit must be zero. By the tower
property of conditional expectation,

]E l].A (—Hc(t, Dt)Pt —I— ]Et

iuc(s, DS)DS] )] =0.

s=t
As M 1 oo, the event A spans any element of F;, which implies that

P, =E iL(s’Df“)D as
=B 2 @Dy

This completes the proof by recalling the definition of the SDF m in (24). ]

We now adapt this proof to the Epstein-Zin recursive utility case.

B.2 Recursive Epstein-Zin Utility

The proof for the general recursive Epstein-Zin utility is more complicated, but the proof that the
market is in equilibrium uses the same ideas as in the equivalent part of Theorem 4.1. The major
difference is that there is no closed form solution to the price process, as opposed to the one found
in Theorem 4.1. Hence, we proceed by finding a power expansion. First, it is more convenient to
work with the following equilibrium price candidate P.

P, = Dy + E¢ [myg1,Pya] - (38)

To establish the connection between utility U and price P, substitute (24) into (38) to get
L S -1 14
(]Et [UtlJ:f‘(D}]) ’ Dt ’ lpt = (]Et {Utl—k_lq(D)D ’ Dt ?
1y 4 (-mie-1)
+ OE, thl Ut+1 ’ (D)Piya| -
Comparing this with (21) it follows that

1— 1—_4
U7 —(1-48)D," 'PB. (39)

The proof that condition (22) holds is deferred to Lemma B.12. Next, let ¢; defined by

1—

P =c,? D (40)

1
and attempt to find ¢;. In other words ¢, ® is the price dividend ratio. Then (39) becomes

U(D) = (1 — §) 77 ¢, D, (41)
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Substituting (41) into (21), it follows that
1y 1y 1y 1
¢ D,° =D,° +¢ (Et [C:;?D:;;:l)e .
and, using (4),

1—

1
¢ ? =1+ 5Tt (Ez [c:_;? e(l—’}’)SXt+l])9 . (42)

Note that this is a backward recursion. If ¢;y; is known and assuming p; is also known, then c;
can be computed. Additionally, note that (42) can be solved if it is assumed that no more learning
takes place, that is if ¢; = ct41 = c. In this case,

Cl__ﬂ'[ =14+ 53”1__91 cl_;"t (]Et [e(l—’T)SX&l})

D=

It follows that

1 1 1
c® = =

1— §emT (B, [ed—MsXer1])? T g (1= py) + prei-Ds)#

Thus, define

1
- 1
1— 5™ ((1— pn) + pn et=75)7

Cg’)(?’n} =

Next, postulate that

h ai(fz'n) : (43)

(cnlpn)' T = (D)) T+ Y 20
i=1

and seek the coefficients «a; by subsisting into (42). Henceforth, the argument p,, of cn,cgg), Qy, is
dropped for convenience. The coefficients in this expansion are solved explicitly by inserting (43)
into (42). For example, the first one equals

(p(e70% —1) + 1)} &*177 6%(p — (e % —1)2(p(e( 7 —1) + 1)572
— 3 ’
0 (™7 6(p(el—s ~1) +1)7 — 1)

a1 (P} =

and explicit formulas for higher-order coefficients follow similarly. The next auxiliary lemmas helps
to verify the expansion (43).

Lemma B.4. There exists vg > 0, such that
vo_(n_m)Dm < D, <v§ ™Dy, for anyn >m > 0. (44)
Moreover, fix the starting point ng > 0, and assume that
0<d<f 21 /\ma,x{e_(”ﬂ)l__ﬂl,e_”l__ﬂl}.

Then for n > nyg,
1

A 1 P A
So that
1 1
(1 - 5) 1-p ijnDnG S URU (D) S (]_ — 5) 1-p CmaanG . (46)
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Proof. Set Djiyp, 2 Dpymax{e™0) e(ntno)(1+)} — D e(n+m0)(1+)%) | Then 0 < Dpyn, <
Dj - Similarly, Dy, e®m0)@=($)7) < D, ., . It then follows that (44) is satisfied with vy =
el sl To show (45), using the fact that U is increasing in consumption, it immediately follows

from the definition of ¢y, in (41) that ¢y, > 1, whence Uy, = Upo(D*) > Uny(D). Thus, (21)
becomes

= {0 =005 T + 86U T}

where we used the identity E¢[(Uy% 1)' 7] = (U, 41)' ™" because the consumption D is determin-

1—
istic for ¢ > ng. Recalling that § = iT; , it follows that for Vj = (Try)

(1—p)(1-0)
= D:m)l_p + 5V7:U+1=
which is the power utility case, with risk aversion p. Hence,
[o00] (o] * yl—p
_ —ngy*\1—p _ * \1—pen _n(1—p)(n+(s)T) _ (D'RD)
—RE; "m0 (Dy) —;)(Dno) 0%e RE PP e AL
—no =
* * '1__
which implies (45) by recalling that c,, = Ui’? <ch, = U’;‘J = = J)V -
(1-6)T=7 Dy (1-6)T=7 Dy (1- 5)1__"13“0
1
i’ 1
(m) P — ¢ax. This also shows (46), as (1 — 8) TP eminDny < Uny(D).

Similarly, any admissible consumption stream admits the following bounds.

Lemma B.5. Let ng > 0 be the initial time. Then there erists a constant Kqg > 0, independent of
ng, such that Up(C) < Ko Xy, for any n > ng and for any admissible consumption process C.

Proof. Using vg from Lemma B.4 and recalling (40), it follows that K, lvﬂ_ (n_m)Dm < b A
:ngn < P, < cmd \/c;u,ﬂDn <K 1u "ODHO, for some constant K7 > 0 and n > ng. Hence, it also

follows that PJ: n- < K2v. USlng the bounds on U from Lemma B.4, for another constant Ko > 0
which implies that the same bound holds for 1 + 75,41, < Kguo .

it follows that my, 1, > F’

Thus for v1 = Koy, Py K? Vo, it follows that Cp < v? T]"]Xm], n > ng. A similar calculation as in
Lemma B.4 yields the upper bound Uy, (C) < KoXp,, for some constant K > 0.

]
Lemma B.6. Set
2

52(p — 1)pe21-7) ((1—71)s _ 1)? (1-ms _ 1) 4+ 1)8 2

pa (P —1)pe (e ) (p(e );r ) i
relo1] 0 (9en=n (p (s 1) +1)" — 1)

1— - +
Bi 21+ el T 9) L By, (47)
By 214 c=7e(55)" (48)

and assume that 0 < § < 1, where
- —y\t
5 = omax {|6](1V B[ T, (v [BIP) AV By T er T A@TL L (49)

Moreover, let the assumptions of Lemma B.4 hold. Then ( )(pn ) — (cn(pn)) _EI =0 (%) .
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Proof. First, note that c( ) almost satisfy (42), more specifically, for n > 0 big enough

1
(e (ﬁn)}l—;"‘ 1o e (]Ez [(cg‘“)(ﬁnﬂ})l_”' e(l—'r)anﬂ] ) 0

1682 — Dpae?N (15 — 1) (, (015 — 1) 4 1)%‘2 N O( 1 ) Err
" 0 (570 (pn (-5 — 1) + 1)/ )2 ‘

Fix n and N > n. The idea is to express the difference between (c,(p,))! ™" and (c(n)(pn))l_"' using
the difference at time n + 1, and then recursively repeat the process until time N. Observe that

| (P~ = ()|

N
< (1 +4 enl_e'[ (]En [(0:1+1 (ﬁn-i—l))l_? e(l_T)SXM—l} ) 9)

o=

]
— (1 +aer T (En {(cgﬂ)(ﬁnﬂ}}l_"'e(l_"')SX““]) + E)
T
< 10] |Gl ST

(Eﬂ [(erl (Pn1))' 7 e(l_ﬂsx““] )% — (]En [(cgg“) (Bng1))t ™7 e(l—'r)anﬂ} )% i

1
-1-3

X

B 7 |Cﬂ 5 - - - — Err
< 10116al" 817 [ | ((ensa (1)) = (5™ ()17 ) 0wt | 4 =2
< J0]|Gal"t T 2

_1|= -1-3 1—

Hll ™ | 8T OO By [|(enga Brea)) T = (8 ) 7]

here (,, and én are unknown points in the Taylor remainder. Note that both {, and én are
uniformly bounded, independently of n. Indeed, the point (, is located somewhere between 1 +

_ 1 _ 1
G T (En [(enea ()7 o0 X001]) P and 8675 (B [(666™ ()7 o000t | ) 14
E?H. Both of these quantities are bounded between 1 and B; from (47). Similarly, the point 6n
is located between E,, [(cnﬂ(ﬁnﬂ)}l_"' e(l_"')SX"H] and E,, {(C(TH— ) na1)) Y e(l_"')SXﬂﬂ], which

are bounded by e(!1=)5" and Bj from (48). Recalling the definition of ¢ in (49), the previous chain
of inequalities continues as

E
(n(Ba))' ™" = (2 (Bn))' 7| < 5— + 3En |

(enrrBrn))' 7 = (€5 o) ||

-Err Err R _ ) _
<o+ ¥ nyl 6°En, [ (cn+2(Bn+2)' 7 = (€™ (Bn+2))’ ?H
Err - _ R _
< (5+8%) ==+ 0B, | — (22 (pn42) |
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Which implies that

o0
. — Err
(cnBn))' ™ = (B (Bn))' | < (Z 5’“) + By [|en (w7 - (@ (5w) 7]
__ 1 Er <N S NI=Y () (5 1—'}'|
—m?+5 En [ (en(Bn)) " — (e’ (BN)) } :
Letting N — oo the claim of the lemma now follows as both ¢y and cg) are bounded. ]

This lemma can be generalized to higher orders. (The corresponding proof is omitted.)

Lemma B.7. For any k > 1, there exists § > 0 small enough, such that

(06n) 7 +Z“‘(‘”") entin)'%| =0 ()

Lemma B.8. The interest rate r¢ 41 with Epstein-Zin recursive utility is as in (10).

Proof. Using (41), and (4) the SDF from (24) becomes

(1—y)(e=1)
[Z]

1=y
my, o [ 2eL) ° ' ct+1 D41
t4+1,t ) > =
(Et [(Ct+lDt+1} D
1— a—1
a
5 (Dt e"]+SX:+1 ) 7 —1 C3+1D1; e'rH—SXH_l
"\ b, T
b (]Et [(CH—I.Dt eltsXit1 }1_”'] ) =
_ (1—7y)(6—-1) 1-8
= 58 (L'f_ 1} Ct—f—] g (]Et |: (1 7)3Xt+1:|) 4 e—’}’BX:.H[ . (50)
Recall the definition of bond price B(t,t+ 1) in (29). It follows from (50) that
1—y (1 "l’)(‘5l 1) i-8
B(t,t+1) = 55— g, [CtJrl —’rth+1J (]Ez [Cg;f e(l_’}')SXt+1:|) s

The desired result (10) follows readily now from the definition of the interest rate r¢y; ; in (30). [

Corollary B.9. For § > 0 small enough, (50) implies that

1—y %}
(]En [(Cg+l)(ﬁn+l)) e(l_’T)SXﬂH] ) )
—-1- Tn+in| = 0] (E)

de P E, |:('5502—’—1)(lﬁ*.rl,-i—l))llt)_A!r 8_73Xn+1]

lj‘_
And an error of O (nkl-l—l) k > 1 can be achieved if higher order approrimation of ( (pn})
Zk @i(Pn)

i1~ is used to approzimate (cn(ﬁn)) 7.

Proof. The proof follows from the combination of Lemmas B.4, B.6, B.7, B.8. O
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Corollary B.10. For § > 0 small enough, note that tlim Et, [mio Pe] = 0.
—00

Proof. Recall that § = i_T;‘ Then, under the assumption that § > 0 small enough,

Dy
0<m
1t

< ds. (51)
t

for some d5 < 1. This can be seen by considering different cases. For example, when v > 1 and
p < 7, so that 1 — ~, lfzg = T%,? < 0, using the definition of m in (24) and Lemma B.4 it follows
that

1-8

D 1—y o
0 < mt-l—l,t t+1 S 5 e—?}'P Et (cmax) e(]—’}‘)SX:_'.] e_'}"gXt—f—l

T—p T=pP
c —np _—~s— (y—p)st c — —pst
< ( max) Se P JOP)sT _ 5 (ﬂ) e MPtys—pst

Cmin

Thus (51) holds for § > 0 small enough. Thus, for any t, > 0,

t
. . D'n. . t—t
Jim meeoDe = Dip Jim, ] man-1gy < Dy Jim 6570 =0,

n=to+1 n—1

whence tl_l}lg} Ey, [my 40 Pi] = 0. -

The next corollary is presented for completeness only. It shows that the two price candidates
(38) and (28) in the power utility and Epstein-Zin utility coincide.

Corollary B.11. The price P in (38) equals (28).
Proof. Recall that my,;, = 1. The equality between (38) and (28) follows from Corollary B.10. [

So far we have been using the recursion (21). We are now ready to show that the asymptotic
condition (22) holds.

Lemma B.12. Let Uy(D) be as in (41). Then for § > 0 small enough,
: B ONY| _
Proof. Observe, that the equivalent of (46) also holds for U (DD’N ), for N > ¢t 4+ 1. Namely,

(1 - 5}?1‘°CminDt < Ut (DD’N) < (1 - 5}?1‘°Cma.th-

Thus, similarly to (51) and using the same d2 we can bound 0 < mé\il,t‘%—:l < 62, where
_ (1—"1’1"(1—5‘)
1 4
N s Prr) ? U1 (DY)
Myt = D 1
t

(B: [Wesa (Do) ]) 7
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Then from Lemma B.4 it follows that

N
|U(D) — Uy (D*N)| < E, !?Tz,t H M 1m

n=t

Uy(D) — (1 —5)ﬁDN|]

N
1
<E [Wt’t H mijﬂ,nUN (D}] < mee(1 — 8) TP cmaxdy 1Dy,

n=t

which in turn converges to zero as N — oc. ]
We are now ready for the equilibrium proof for Epstein-Zin utility.

Proof of Theorem 4.2. First, note that we have already proved parts of Theorem 4.2. Specifically,
Lemmas B.6 and B.7 show the validity of (9) and (11), and (10) and of (12) follow from Lemma
B.8 and Corollary B.9 respectively . The next two steps similar to the ones in the proof of Theorem
4.1 is to show that the consumption DD maximizes the utility U subject to the budget constraint
and then use this result to show the market is in equilibrium.

Let € > 0 and let ¢ > O be the initial time. Assume the initial wealth is X; = P, so that the
consumption stream D is admissible (otherwise, it suffices to scale it). Fix a consumption process
C, also admissible for this initial wealth. The first goal is to show that U(C) > U;(D). Without
loss of generality assume that ) o0, E; [ms;Cs] = X;. Indeed, ) 2, E; [msCs] < X; by Lemma
B.3. Thus if the inequality is strict we may increase the consumption, and thereby increase the
utility.

The goal now is to show that Ui(C) < Uy(D). From (34), there exists n > ¢ such that
Yooni1 Bt [ms1Cs] <€, 32 By [mgDg] <€, and hence

00
Z Et [1'T3,3 (C_g — DS)] S 2?1'1;,36.

s=n+1

D, :s5<mn,

Recall the definition (23), which defines the modified consumption process D" = { C. :s>n
8 . .

It then follows from Lemma B.3 that

mn o0
E; [?Tn+1,tXn+1(DC’n)] =E; [7771+1,£Xn+1(c}] =Xi— Z]Et [Ws,tcs] = Z E; [Ws,zcs] < T €.

s=t s=n+1

We next show that U;(D%™) < Uy(D) + Koe, where K > 0 is the constant from Lemma B.5.
Clearly, we only need to consider the case, when Ut(DC’“') > Uy(D). Then from the concavity of U
and

U,(DS™) — Uy(D) < E, [6“(9 )| oUy(D)
1

Un,i1(D™ —U,.1(D)|| <E U,.1(DE"
D) 10140 ~ Vs D) | < B2 | D00
=E; [mn+1,£Un+1(DC’n)] < E¢ [mns1,:KoXnt1] < Koe,

where the third inequality is from Lemma B.5. Then

Ui(C) S U(C) =Y Et[mes(Ca—Ds)]l — Y Ei[mss (Cs — Ds)]
s=t s=n+1

S Ut(C} - ZEt [773,1: (Cs - DS}] + 2E?T£,t

8=1

< Ut(DC’n} + 2em s < Up(D) + (27t + Ko) €.
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where the first inequality holds by (34), and the third from (27). Letting € — 0 it follows that
Ui(C) < Ug(D) and thus D maximizes the utility of consumption from a given initial wealth.

We now proceed in a similar fashion to the proof of Theorem 4.1. Consider the alternative
strategy in which at time ¢ the number of shares changes from 1 to 1+4¢ on some JF;-measurable event
A cC{|P|,< M,Dy > 1/M}, with M > 0, while at the next time step ¢ + 1 the extra shares now
worth £ P,y are consumed in addition to D;41, and for times s > t+42 the consumption remains the
same as before D,. That is, define ¢f = ¢s+ely,_yyNAand C = Ds—ePslye_yna+ePslei11}n4;
and note that this strategy continues to satisfy (33). (Note that € may be either positive or
negative.) The change in expected utility from (D, 1) to (c%, ¢°) is thus

A°=E[14{(1 - &)~ (P~ D)7 (52)

o (E [{(1 —0)(Der + €Pt+1)1_51 +6 (Beta [Ut+2(D}1_T])%}9:| ) %} )

1y o1\ 5|
—E [14{ (1-0)D,° +5(Et !{(1—5}}3 \ + 6 (Be1[Ues2(D) ) ° } ) <0

where the last inequality reflects the assumed optimality of (D,1). For any increasing, concave
function u(z,y), it holds that

ug(z2, y2) (Ta—w1)+uy(z2, y2) (v2—1y1) < u(z2, y2)—u(z1,y1) < ue(z1,y1)(T2—z1)+tuy(z1,y1)(v2—11)

whence, on the event A,

6U3 oU;

9C:+

O Dyetri- Dt)+smt[ (D)Ptﬂ] < U(D) - U(C) (53)

6‘U oU;
act (C%)e(P; — Dy) + €E; [ac (CE)P;H]
Note that from Lemma B.5 on A, we also have that P, < M, 2 , and Dy > 5. Set
1/(2M) :s=t,
cM—{ 1/2My) :s=t+1, ,fors>t
0 1s>t+2

Assuming 0 < £ < 1/(2M?), we have that D, CS > CM for all s > ¢. Thus, from (53)

U(D) — U4(C¥)| < @(GM)E(H _D)

+ € [Pr41]

‘ OU: (54)

(cM)‘ eM + Mie

60

In view of (54), it follows that the respective incremental ratios are dominated by an integrable
random variable, uniformly in €. Thus, dividing A® in (52) by € and passing to the limit as € | 0,
Lebesgue’s dominated convergence theorem yields

_Af oU(D) oU(D)
lim —=E |1 P, —D P, <0
;{3 - [ A ( ac, (P — Dy) + 9Cimt t+1 ]| <
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Analogously, as € 1 0 it follows that lim. g % > 0, whence the limit must be zero. By the tower
property of conditional expectation,

aU,(D) oU(D)
E [1A (—TQ(PT, —Dy) + WHJPT,—H)] =0.

As M 1 oo, the event A spans any element of F;, and recalling the definition m¢41, in (24), we get
that that
P; = Di + E¢ [mi41,tPry] a.s..
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