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Abstract

Wefindequilibriumstockpricesandinterestratesinarepresentative-agentmodelwhere
dividendgrowthisuncertain,butgraduallyrevealedbydividendsthemselves,whileassetprices
reflectcurrentinformationandthepotentialimpactoffutureknowledge.Inadditiontothe
usualpremiumforrisk,stockreturnsincludealearningpremium,whichreflectstheexpected
changeinpricesfromnewinformation.Inthelongrun,thelearningpremiumvanishes,asprices
andinterestratesconvergetotheircounterpartsinthestandardsettingwithknowndividend
growth.Ifbothrelativeriskaversionandelasticityofintertemporalsubstitutionareaboveone,
themodelreproducestheincreaseinprice-dividendratiosobservedinthepastcentury,and
impliesthat–inthelongrun–price-dividendratiosmayincreaseafurtherfortypercentabove
currentlevels.
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Figure1: PricetoDividendratio(vertical,twenty-yearaverages)overtime(horizontal).Source:
CRSPmonthlydata1926-2015.

1 Introduction

Inthepastcentury,equitypriceshaveincreasedonaveragerelativetodividends(Figure1).Such
anincreaseisinconsistentwithboththestandardLucas’model,whichimpliesaconstantprice-
dividendratio,andwithmorerecentmodels,designedtoresolveassetpricingpuzzles,inwhich
price-dividendratiosaretime-varyingbutrandomlyfluctuatearoundalong-term mean.1 Al-
thoughsomeofthesemodelsweredesignedtoreproducetime-varyingdividend-priceratiosthat
mayreproducethein-samplepredictabilityofstockreturns,areexaminationofempiricalevidence
hasledsomeauthors(Goyaland Welch,2003;LettauandLudvigson,2005; WelchandGoyal,
2007)toquestionthepredictivepowerofthisvariableout-of-sample,whileothersremaincon-
vincedofitsrelevance(Cochrane,1992,2007;CampbellandThompson,2007).Inparticular,
LettauandVanNieuwerburgh(2007)proposetoreconciletheinconsistenciesbetweenin-sample
andout-of-sampleresultsbypositingshiftsinsteadystates,whichinturncallfornewtheoretical
developments.
Typicalassetpricingmodelsassumethatinvestorsknowexactlythemodel’sparametersandact

accordingly.Yet,ahundredyearsagoequityinvestorscouldnotrelyonthewealthofavailabledata
usedtodaytoestimate,oftenimperfectly,theparametersofeventhesimplestmodels.Thus,even
ifpastinvestorshadagreedwithtoday’svaluationmodels,theymayhaverequiredanadditional
expectedreturnforholdingstocksinviewoftheloominguncertaintyoftheirdynamics–alearning
premium–whichmightexplaininparttheirlowervaluationsatthetime.
Thispaperdevelopsamodelinwhichsuchapremiumcanindeedarise.Becausethelearning

premiumvanishesbyconstruction,asparametersaregraduallyrevealed,disentanglingitsvalue

1Forexample,seeCampbellandShiller(1988),Breenetal.(1989),FamaandFrench(1993),Glostenetal.(1993),
Lamont(1998),Bakerand Wurgler(2000),LettauandLudvigson(2001),CampbellandVuolteenaho(2004),Polk
etal.(2006),Angetal.(2007),Binsbergenetal.(2010),Chenetal.(2013),KellyandPruitt(2013),VanBinsbergen
etal.(2013),Lietal.(2013),Daetal.(2014),andMartin(2013).
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fromthestationaryequitypremiumiscrucialtounderstandtowhichextentstockscanreproduce
inthefuturereturnsthatarecomparabletotheirhistoricalaverages.
ThoughithadlongbeenpointedoutbyModigliani(1977)andLucasandSargent(1981)that

theassumptionofknownparameterswasasimplification,toberelaxedatsomeanalyticalcost,this
areaofresearchhasgainedmomentumonlyinthepastdecade,withHansen(2007)askingexplicitly
“(a)howcanweburdentheinvestorswithsomeofthespecificationproblemsthatchallengethe
econometrician,and(b)whenwoulddoingsohaveimportantquantitativeimplications”.
Inamodelwithmultiplemacroeconomicstates,Johannesetal.(2016)observethatparameter

learningimprovesthemodel’sabilitytoreproducestylizedfactssuchascounter-cyclicalvolatility
andexpectedreturns.Inaboundedrationalitymodelwithlong-runrisks,Croceetal.(2014)show
thatlimitedinformationgeneratesadownward-slopingequitytermstructureandalargeequity
premium.JagannathanandLiu(2015)developalatent-variablemodelfordividendgrowthwhich
reproducesout-of-samplepredictabilityinstockreturns. Collin-Dufresneetal.(2016)showhow
Bayesianlearningbecomesasourceoflong-runrisks,andfindprice-dividendratiosexplicitlyin
thecaseofunitelasticityofintertemporalsubstitution.
Learninghasadualimpactonassetprices:First,pricesexperiencelargershocksthaninmodels

withknownparameters.Forexample,apositivedividendshockgeneratesaproportionalshockto
pricesintheLucasmodel,butamorethanproportionalshockinamodelwithuncertaindividend
growth,asapositiveshockalsoupdatesthegrowthrateupwards.Second,investorsrecognizethat
eachfutureshockwillalsoaffectthevalueofsubsequentshocks,whileacknowledgingthatthey
willbelessinformativethanpresentonesofsimilarmagnitude,asparameteruncertaintydeclines
overtime.(Forexample,whileestimatingtheprobabilityofaheadinasequenceofcointosses,
theweightofeachnewoutcomeintherunningestimatedeclinesasthenumberoftossesincreases.)
WiththeexceptionofCollin-Dufresneetal.(2016),theliteraturefocusesonthefirsttypeof

impact,assumingthatinvestorsupdatetheirbeliefsaboutparametervalues,butdonotaccount
forfutureupdatesinevaluatingcurrentprices. PioneeredbyKreps(1998)andfurtherexplored
byPiazzesiandSchneider(2010)andCogleyandSargent(2009),suchanapproachisknownas
anticipatedutility,anditsmainappealistractability,asityieldspricesobtainedbysubstituting
currentestimatesintheformulasobtainedundertheassumptionofknownparameters.Thelimit
ofthisapproachisthatitdoesnotreflecttheimpactonpricesofthedemandforstocksthatstems
fromhedgingagainstfutureparameterupdates.Forexample,ifanegativedividendshockimplies
bothalowerdividendandlowerdividendgrowth,thenstocksaremoreriskythaninamodelwith
knownparameters,andinvestorsmaychangetheirdemand,hencevaluation,accordingly.
Exploringparameterlearninginafullyrationalmodelquicklyleadstosomestumblingblocks,

asappealingassumptionsyieldappallingresults.Thefirstcounterintuitiveobservation,notedby
Veronesi(2000)inaMarkovswitchingmodelfordividendgrowth,isthatthefamiliarassumptions
oftime-additiveutilitywithconstantriskaversiondonotleadtoalearningpremium,buta
learningdiscount–investorshavehighervaluationswhenparametersareuncertain.Intuitively,
sucharesultarisesbecauseafairlotteryonagrowthratetranslatesintoafavorablelotteryforits
correspondingpayoffatlonghorizon,inviewoftheconvexitythatresultsfromcompoundingthe
rateoverseveralperiods,andimplying–counterfactually–aseculardeclinefortheaggregateprice-
dividendratio. Brevikandd’Addona(2010)resolvethisparadoxinthesame Markovswitching
modelbyreproducingalearningpremiumthroughEpsteinandZin(1989)utilitywithapreference
forearlyresolutionofuncertainty.
Importantly,intypicalMarkovswitchingmodelsagentsstrivetoestimateanunobservableand

ever-fluctuatingstateoftheeconomy.Thus,learningistransitory,asinformationobtainedabout
thecurrentstatebecomeslessrelevantinthefuture,whenreversiontothesteady-statedistribution
unfolds.Bycontrast,inourmodellearningispermanent,becausetheunobservedstateisconstant,
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andtherelevanceofinformationincreasesovertime.Asnewinformationisrelevantatanyfuture
horizon,ithasalargerimpactonassetpricesthaniflearningweretransitory.Indeed,assuming
anunknownbutconstantgrowthratewithanormalprior,theaforementionedissueoflowerprice-
dividendratioswithlearningworsensdramatically–theprice-dividendratiobecomesinfinite.This
surprisingphenomenon,whichmotivatestheassumptionsmadeinthepaper,isdescribedindetail
inthenextsection,whiletheappendixdescribesamodeloftransitorylearning,inwhichprices
arefinite.
Wespecifyadiscrete-timemodelfordividendgrowthinwhichateachperiodthedividendcan

eitherincreaseordecreasebyfixedfactors,asinthebinomialmodelofCoxetal.(1979). The
investor’suncertaintyisontherelativeprobabilityofanupwardordownwardmove,andisresolved
overtimeasdividendgrowthunfolds.Therepresentativeinvestorisfullyrational,henceupdates
thestockpricetoreflectboththecurrentprobabilityestimateanditspotentialfuturechanges.
Toidentifytheposteriordistributionsateachtime,weobservethattheycoincidewiththose

arisingfromaPolya-urnscheme,andhenceyieldposteriorsintheBeta-Binomialclass.Formally,
onecanidentifyupsanddownsofthedividendasdrawsofballsoftwodifferentcolorsfroman
initialpairofdifferentballs. Aftereachdraw,theselectedballisreplaced,alonganotheroneof
thesamecolor,beforethenextdraw.
Thenwefindinclosedformthestockpriceanditsimpliedequilibriumratewhentherepre-

sentativeinvestorhastime-additiveutility.Inthiscase,westillobserveacounterfactuallearning
discount,whichleadsustoinvestigatetherecursivepreferencesofEpsteinandZin(1989),asto
explicitlyembedtheaversiontolaterresolutionofuncertaintyandseparateriskaversionfromthe
elasticityofintertemporalsubstitution.
AlthoughEpstein-Zinpreferencesdonotleadtoclosed-formsolutionsforstockpricesandinter-

estrates,wefindanasymptoticapproximationandverifyitsaccuracyfirstthoughaconvergence
result,andthenthroughadirectcomparisontothetime-additiveformulaandanumericalcom-
putation.Indeed,wefindthattheEpstein-Zinpreferencesareabletoreproducerealisticvalues
oftheprice-dividendratiosandtheirincreaseovertimetowardalong-termvaluethatreflectsa
modelwithknownparameters.
ThemessageofthecalibrationoftheEpstein-Zinmodelistwofold:First,whiletheincreasein

price-dividendratiosoverthepastninetyyearshasbeensignificant,themodelsuggeststhat,ifit
isduetothegradualresolutionofparameteruncertainty,furtherincreasesarelikelytocontinue.
Indeed,ourcalibrationimpliesthattheriseoftheprice-dividendratiofrom30to46overninety
yearsisconsistentwithalong-termvalueofsuchratioof64,i.e.,40%morethan46.Second,
themodelimpliesthattheresolutionofparameteruncertainty,anditsconsequentincreaseinthe
price-dividendratios,isgoingtobeveryslow:evenifparameterestimatesremainedatthecurrent
levelsfiftyyearsfromnow,theprice-dividendratiowouldincreasefrom46to50,wellbelowits
longtermvalue. Thus,themodelsuggeststhatparameteruncertaintystillloomslargeinasset
prices,andthatitseffectsarelikelytopersistfordecadesifnotcenturies.
Therestofthispaperisorganizedasfollows:Section2motivatestheproblemandillustrates

thepitfallsthatensnareostensiblynaturalapproaches.Section3describesthemodelandobtains
theposteriordistributionofparameters. Section4containsthemainresult,whichconsistsof
theexplicitformulasforequilibriumstockpricesandinterestratesinthetime-additivecase,and
theirasymptoticexpansionintheEpsten-Zincase.Itthenproceedstodiscusstheircalibration.
ConcludingremarksareinSection5.Allproofsareintheappendix.
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2 Prologue

ConsiderthefamiliarLucasJr(1978)model,assumingthatthedividendprocessDtis

dDt=µ
DDtdt+σ

DDtdWt,

whereµD andσD >0aretwoconstants. Theeconomyisgovernedbyarepresentativeagent,
whomaximizesexpectedpowerutilityfromfutureconsumptionE

∞
t e

−β(s−t)u(Cs)ds,where

u(c)=c
1−γ

1−γ forγ>0.(Thecaseγ=1correspondstologarithmicutility,omittedforbrevity,
whichleadstothesameforegoingpricingformulas.) Undertheoptimalityandmarket-clearing
conditions,inthismarkettheassetpriceStandthesaferatertarecharacterizedby

Dt
St
=rt−µ

D+γ(σD)2,

rt=β+γµ
D−γ(1+γ)

(σD)2

2
.

whichimplythatboththeprice-dividendratioandthesaferateareconstant.Ofcourse,alimitof
thismodelisthatitassumesthatparametersareknownwithinfiniteprecisionfromthebeginning.
Anaturalapproachtorelaxthisassumptionistoassumeinsteadthatthedividendgrowth

rateµD islearnedovertime,basedontherealizationsofthedividendprocessDt. Assumingfor
simplicitythatµD isanormalvariableandthatitspriorhasanindependentnormaldistribution
µD0∼N(µ0,σ

2
0),standardfilteringresults(LiptserandShiryaev,2013)yieldthattheconditional

expectationµDt=E[µ
D|(Ds)s≤t]is

µDt=

µ0
σ20
+ Rt
(σD)2

1
σ20
+ t
(σD)2

.

whereRt
t
0
dDs
Ds
,sothatdRt= µ

Ddt+σDdWt. Simplifyingfurther,letσ0→ ∞ (which

correspondstoavaguepriorforµD),whichyields

µDt=
Rt
t
, (1)

anintuitiveformulathatidentifiesthebestpredictorforthedividendgrowthrateµDastheaverage
ofrealizedgrowthtodate.
Inthiscontext,anticipativeutilityassumesthatattimettheagentconsidersthecurrent

estimateexact(therebycontradictinghimselfimmediatelyafterwardsbyre-estimatingthesame
parameterwithadditionalinformation). Astheestimateisconsideredfinal,thesamepricing
formulasastheLucas’modelapply,withµD replacedbyitsestimateµDt.
Toresolvethetime-inconsistencyofanticipativeutility,theagent mustremainawarethat

currentestimatesareimperfectandhencefuturedividendswillchangetheestimatesofsubsequent
dividends–evenfurtherinthefuture.Inthisspirit,denotebyFt=σ(Du:0≤u≤t)the

observablefiltration,equivalentlygeneratedbyDorR. AsµDtisamartingaleinthisfiltration
(bythetowerpropertyofconditionalexpectation),thepredictablerepresentationpropertyentails
that

dµDt=
σD

t
dWDt, (2)
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whereWDisaBrownianMotionunderFt,andthediffusioncoefficientσ/tisdeterminedby(1).
2

Thus,theobservationdynamicsofDis:

dDt=µDtDtdt+σ
DDtdWDt,

theoptimalityconditionprescribesthatthestate-pricedensityMtisproportionaltothemarginal
utilityofconsumptione−βtD−γt ,andthereforetheassetpriceis

St=
1

Mt
E

∞

t
MsDsds|Ft. (3)

Tocomputethisprice,write

DsMs=DtMte
−β(s−t)+(1−γ) s

tµ
D
udu−(1−γ

2)
(σD)2

2
(s−t)+(1−γ)σD WDs−WDt .

andnotethat,inviewof(2),

s

t
µDudu=

s

t
µDt+

u

t
dµDy du=µ

D
t(s−t)+

s

t

u

t
dµDy du

=µDt(s−t)+
s

t

s

y
du dµDy=µ

D
t(s−t)+σ

D
s

t

s−y

y
dWDy.

wherethelastequalityfollowsfrom(2).Therefore,

s

t
µDudu+σ

D WDs−WDt =µDt(s−t)+σ
D

s

t

s

y
dWDy

Thus
s
tµ
D
udu+σ

D WDs−WDt isnormallydistributedwithmeanµDt(s−t)andvariance

(σD)2 s2

t−s.Hence,

E[MsDs|Ft]=DtMte
−β+(1−γ)µDt−(1−γ

2)
(σD)2

2
(s−t)+(1−γ)2

(σD)2

2
s2

t
−s
.

Thisequalityinturnimpliesthat

St=
1

Mt
E

∞

t
MsDsds|Ft =

1

Mt

∞

t
E[MsDs|Ft]ds

=Dt
∞

t
e
−β+ρµDt−(1−γ

2)
(σD)2

2
(s−t)+(1−γ)2

(σD)2

2
s2

t
−s
ds.

Crucially,unlessγ=1thelastintegraldivergesforanycombinationofparameters(thefactor
e(1−γ)

2s2/toverwhelmsallothersforslargeenough)3,reflectingthatparameteruncertaintyvan-
ishessoslowlyovertimethataforward-lookinginvestor,keentohedgeagainstpotentiallylow
consumptiongrowth,wouldbewillingtopayanarbitrarilyhighpricefortheasset,whichisthe
onlysourceorconsumption. Thisfindingisreminiscentoftheworkonparameteruncertainty

2Indetail,dWD
t=

µD−µDt
σD

dt+dWt.
3Thetrivialexceptionisγ=1,whichleadstoSt=Dt/β,whencelearninghasnoeffectsonprices,bothwith

anticipativeutilityandwithrationalexpectations.
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ofṔastorandStambaugh(2012),whonotethatstocksaresubstantiallymorevolatileoverlong
horizonsfromaninvestorsperspective.
Themessageofthisnegativeobservationistwofold:first,itshowsthatanticipativeutilityis

notanaccurateapproximationofassetpricesinarational-expectationsmodel–thepricedifference
isinfinite.Second,itshowsthattheostensiblymosttractablesettingforfiltering–anormalprior
withnormalinnovations–impliesalevelofuncertaintythatisfundamentallyincompatiblewith
isoelasticpreferences.4

Thus,theostensiblynaturalassumptionsof,ononehand,anormalpriorwithnormalupdates,
and,ontheotherhand,isoelasticpreferences,leadstotheunnaturaloutcomeofinfiniteprices.
Themodelbelowpreservesisoleasticpreferences,andfacesthechallengeofatractablefiltering
settingoutsideofthefamiliarnormalityassumptions.

3 ModelDefinition

ThemodelisbasedonaLucas’treeeconomywithoneunitofariskyasset,whichyieldsattimet
aperishabledividendDtthatstartsatD0andfollowsthediscrete-timeprocess:

5

Dt=Dt−1e
η+sXt t∈N, (4)

whereη∈R,s>0and(Xt)t≥1denotesasequenceofi.i.d.randomvariableswithcommon
BernoullidistributionwithparameterP∈[0,1],thatisP(Xt=1|P)=1−P(Xt=0|P)=Pfor
allt≥1.However,Pisunknowntotheagent,whoinitiallyassumesthatP∼U[0,1],andthen
graduallylearns(i.e.filters)itfromtherealizationofXthroughBayesian6updatingwithrespect
tothenaturalfiltrationFt=σ(X1,..,Xt),t≥0.
ThenextlemmafindsexplicitlytheposteriordistributionofXtwithrespecttoitspasthistory.

Recallthatthebeta-binomialdistributionBetaBin(n,η,β)isdescribedbytheprobabilitymass

functionf(k)=N
k
B(k+η,n−k+β)

B(η,β) ,0≤k≤n,whereBistheBetafunction(cf. Georgii(2013)).
Moreover,recallthattheBetadistributionisconjugatetothebinomialdistribution,andthe
compounddistributionistheBeta-binomialdistribution. Putdifferently,theBeta-binomialis
equivalentlydescribedasthedistributionofX∼BetaBin(n,η,β)orasthedistributionofX∼
Bin(n,P),whereP∼Beta(η,β)(Robert,2007,Chapter3.3).

Lemma3.1.Xn|Fn−1∼BetaBin(1,1+
n−1
i=1Xi,n−

n−1
i=1Xi)forn≥1. Moreover,

p̂n−1=
1

0
P(Xn=1|p)fP(p|(Xi)1≤i≤n−1)dp=

1+ n−1
i=1Xi

n+1
.

Thus,intheinvestor’sfiltrationσ((Xi)1≤i≤n−1)thedistributionofXnisBernoulliwithprobability
p̂n−1,Xn|(Xi)1≤i≤n−1∼B(̂pn−1).

4Asimilarbut moretechnicalcalculationwithEpstein-Zinisoelasticpreferencesconfirmsthatthepricesstill
diverge,exceptinthecaseofunitEIS(elasticityofintertemporalsubstitution)thatnestslogarithmicutilityand
impliesthatSt=Dt/β.

5Formally,considerameasurablespace(Ω,F,P)supportingauniformrandomvariableP∼U[0,1]andanIID
sequence(Xt)t≥1,Xt∼B(P),whereB(P)denotestheBernoullidistributionwithparameterP.Additionally,define
thefiltrationgeneratedbytheobservationsofXt. LetFt=σ(X1,..,Xt),t≥0,whichisthefiltrationusedfor
Bayesianupdating.

6ThisassumptioncanberelaxedtoP∼Beta(η0,β0),withη0,β0>0.

7



Theinterpretationofthemodel(4)isasfollows. Theparametersηandsidentifythemean
andthestandarddeviationofthedividendgrowthrate.Specifically:

En−1 log
Dn
Dn−1

=η+ŝpn−1,Var log
Dn
Dn−1

(Xi)1≤i≤n−1 =s2p̂n−1(1−p̂n−1),

where,forbrevity,henceforthEt[·]denotesconditionalexpectationwithrespecttoFt.Inviewof
thepreviouslemma,thedistributionofDnfromtheinvestor’sviewpointis

Dn∼D0e
ηn+sYn,

whereYn∼BetaBin(n,1,1),n≥1,andingeneral

Dm∼Dne
η(m−n)+sY

(n)
m ,

wherethesuperscriptnstandsfortime,sothatattimen,Dn,andhencepnareallknown.Thus

Y
(n)
m ∼BetaBin(m−n,(n+2)̂pn,n−(n+2)pn+2),m≥n≥0,sothatYn=Y

(0)
n .

Definethe(ex-dividend)priceSt,asthepriceofasecuritythatentitlestheholdertothe
dividendDs,foralls>t.AsintheusualLucasmodel,arepresentativeagentmaximizesexpected
utilityfromcurrentandfutureconsumption.
DefinethesetofadmissibleconsumptionplansasLδ= C: ∞

t=0δ
tE[Ct]<∞ ,wherethe

0<δ<1isthetime-preferenceparameter.TheEpstein-Zinutilityofconsumptionattimetwith
horizonTisdefinedbythebackwardrecursion

UTt(C)= (1−δ)C
1−γ
θ
t +δEt[(U

T
t+1)

1−γ]
1
θ

θ
1−γ

, UTT+1=0, (5)

whereCistheconsumptionprocessandθ=1−γ
1−ρ.Inadditiontoδ,theotherpreferenceparameters

are0<γ =1forriskaversion,andψ= 1
ρforintertemporalelasticityofsubstitution,with

0<ρ=1.7Theinfinite-horizonEpstein-Zinutilityisdefinedasthelimit(whichexistsbyLemma
B.1below):

Ut(C)=lim
T→∞

UTt(C). (6)

TheagentchoosestheconsumptionCtandthenumberofsharesφttoholdintheriskyasset
attimet,sothatthebudgetequationgoverningtheagent’swealthXtis

Xt=φt−1(St−St−1)+(1+rt−1)(Xt−1−φt−1St−1−Ct−1)

whereStrepresentsthe(ex-dividend)priceoftheriskyassetandrtthesaferate,whichare
determinedinequilibrium:

Definition3.2. Anequilibriumisapair(St,rt)ofpriceandrateprocessessuchthat

(i)Optimalconsumptionequalsthedividendstream,i.e.,Ct=Dt,t≥0;

(ii)Wealthequalstheriskyasset,i.e. Xt=St,φt=1,t≥0.Thus,thesafepositioniszero.

7Recallthattime-additivepowerutilitywithriskaversionγrecoversfromtheEpstein-Zinsettingγ=ρand

θ=1,andusingthetransformationVt=
U
1−γ
t

(1−γ)(1−δ)
,δ=e−β,whence(5)becomesVt=

C
1−γ
t
1−γ

+e−βEt[Vt+1].
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4 MainResults

Themainresultidentifiestheprice-divideratioandsaferateinequilibriumovertime:

Theorem4.1.Forβ>0largeenough,andadditivepowerutility(γ=ρandθ=1)theprice-
dividendratioandinterestratearerespectively:

St
Dt
=

1

1−e((1−γ)η−β)
2F1 1,(t+1)̂pt;t+1;

1−e(1−γ)s

1−e−((1−γ)η−β)
−1, (7)

rt+1,t=
1

e−β−ηγEt[e−γsXt+1]
−1=

1

δe−β−ηγ(1−p̂t+̂pte−γs)
−1, (8)

where2F1(a,b,c;d)isthe(ordinary)hypergeometricfunction.

Epstein-Zinpreferencesdonotleadtoanalogousclosed-formsolutions,butitispossibletofind
expansionsaroundthelong-termsolution.Tothisend,define

St=̄c
1−1

ψ

t Dt.

Inotherwords,theprice-dividendratioisc̄
1−1

ψ

t .Then

Theorem4.2.Forβ>0largeenough,

(i)Theprice-dividendratioandtheinterestrateare

St
Dt
=(̄ct(̂pt))

1−1
ψ = c(t)∞ (̂pt)

1−1
ψ
−1+

∞

i=1

αi(̂pt)

ti
, (9)

rt+1,t=
1

δe
η−1

ψ Et c̄
1
ψ
−γ

t+1 e
−γsXt+1 Et c̄

1−γ
t+1e

(1−γ)sXt+1

γ−1
ψ

1−γ

−1, (10)

where

c(t)∞ (̂pt)
1−1

ψ
=

1

1−δe
η(1−1

ψ
)
Ete(1−γ)sXt+1

1−1
ψ

1−γ

=
1

1−δe
η(1−1

ψ
)
(1−p̂t)+̂pte(1−γ)s

1−1
ψ

1−γ

.

andthecoefficientsαiareboundedandadmitexplicitexpressions.

(ii)Inparticular,foranyk≥0theerroroftheexpansion(9)is:

(̄ct(̂pt))
1−1

ψ− c(t)∞ (̂pt)
1−1

ψ
−1+

k

i=1

αi(̂pt)

ti
=O

1

tk+1
. (11)

Whereastheinterestratesatisfies

Et c
(t+1)
∞ (̂pt+1)

1−γ
e(1−γ)sXt+1

1
ψ
−γ

1−γ

δe
η−1

ψ Et c
(t+1)
∞ (̂pt+1)

1
ψ
−γ
e−γsXt+1

−1−rt+1,t=O
1

t
. (12)

Similarly,anerrorofO 1
tk+1

,k≥1isachievedthroughahigher-orderapproximation(9).
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Quantity Additive Epstein-ZinA Epstein-ZinB Data

η -0.0124 -0.0124 -0.0283
β(δ) 0.04(0.96) 0.04(0.96) 0.0273(0.9731)
γ 1.37 1.37 9.53
p 0.0104 0.0104 0.4408
s 3.118 3.118 0.133
ψ 0.73 15 8.81
PriceDividendratio(1926) 26.1 24.6 29.9 22.5
PriceDividendratio(2016) 24.5 28.4 45.9 38.7
PriceDividendratio(longterm) 24.1 30.1 64.2
Averagedividendgrowth 2% 2% 3% 1.2%
St.dev.ofdividendgrowth 30% 30% 6% 11.1%

Table1: ParametercalibrationswithadditiveutilityandEpstein-Zinpreferences,with(A)recal-
ibrationoftheelasticityofintertemporalsubstitutionψ,and(B)recalibrationofallparameters.
EstimatesinthelastcolumnarefromCRSPandBeeleretal.(2012).

Table1bringstolifetheaboveresultthroughthecalibrationtorealisticparametervalues.In
Table1,theparametercombinationsAdditiveandEpstein-ZinBareobtainedbycalibratingthe
modelastominimizethesumofsquarederrorsoftheempiricalquantitiesinthelastcolumn,while
thecombinationEpstein-ZinAisobtainedbyminimizingthesumofsquarederrorsbyvaryingonly
theEISparameterψ,whilekeepingtheotheronesequaltotheAdditivecolumn.Theleftpanelin
Figure2isobtainedfromtheclosedformsolution(7),whereastherightpanelplotsanumerical
solutionoftheprice-dividendratioin(42),resultingfrom(5).Fortheleftpanel,parametersare
asintheadditiveutilitycolumnofTable1,whereastherightpanelusestheparametersinthe
columnEpstein-ZinA.Likewise,Figure3isobtainedfromtheapproximationsin(9),combined
withanumericalsolutionoftherecursiveequationfortheprice-dividendratio,usingtheparameters
incolumnEpstein-ZinB.
Thecentralquestioniswhetherthemodelisabletoreproducethesecularincreaseintheprice-

dividendratiowithrealisticpreferenceparameters,whilealsoremainingconsistentwiththetypical
momentsofaggregatedividendgrowth.
BothTable1andtheleftpanelinFigure2showthatadditiveutilitydoesnotleadtoanincrease,

buttoaslightdecreaseintheprice-dividendratio,astherepresentativeagentrespondstomore
uncertaintyinassets’returnsbybiddingtheirpricesuptohedgeagainstpotentiallylowgrowth.
Thus,additivepowerutilitygeneratesalearningdiscount(parameteruncertaintyincreasesprices)
thatrecedesovertime. Anadditionallimitofthecalibrationwithpowerutilityistheextreme
standarddeviationofdividendgrowth.
Aparsimoniousattemptatkeepingthesamecalibrationparametersasadditiveutility,while

optimizingthevalueoftheelasticityofintertemporalsubstitutionψ,improvestheresultsqualita-
tively,butnotquantitatively,leadingtoamodestincreaseintheprice-dividendratiofrom24.6to
28.4,asshownfromthecalibrationEpstein-ZinA.
Amarkedimprovementtakesplacebyreestimatingallmodelparameters,asinthecalibration

Epstein-ZinB,whichleadstohigherriskaversionandlowerelasticityofintertemporalsubstitution.
Suchcalibrationisbothabletoreproducearealisticincreaseintheprice-dividendratiofrom30
to46overaspanof90years,whilealsogeneratingastandarddeviationofdividendgrowthmore
alignedtothedata.
Thiscalibrationalsosuggeststhat,evenafter90yearsofobservations,thelearningpremium

10
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Figure2:Price-dividendratioovertime,withtime-additive,powerutility(left)andwithEpstein-
Zinutility(right).ParametersareasinTable1(BfortherightpanelwithEpstein-Zin).

hasnotvanished–parameteruncertaintystillloomslarge.Indeed,themodelimpliesthat,if
currentparameterestimateswereindeedperfectlyaccurate,bythetimethattheiraccuracywere
resolved,theprice-dividendratiowouldhaverisenfrom46to64,anincreaseofnearly40%.Put
differently,parameteruncertaintyimpliesthatcurrentstockpricesarenearly30%lowerthatthey
wouldbeifcurrentparameterestimatescouldbetrustedwithabsolutecertainty.
Furthermore,therightpanelinFigure2showsthatsuchuncertaintyislikelytoberesolved

veryslowly:evenifparameterestimatesremainedattheircurrentlevels,theprice-dividendratio
wouldincreasefrom46to50inthenextfiftyyears,i.e.,lessthanaquarterofitspotentialincrease
from46to64.
Finally,asEpstein-Zinutility,incontrasttopowerutility,doesnotleadtoclosed-formsolutions,

Figure3displaystheconvergenceoftheapproximationinTheorem4.2withtheparametervalues
intheEpstein-ZinArowofTable1.Theconvergenceoftheapproximationsinequation(9)tothe
numericalsolutionissignificantlyfasterthantheconvergenceoftheprice-dividendtoitsasymptotic
value:underthecurrentavailabilityofaccuratestockpricedata,whichislongerthan90years,the
first-orderapproximationiswithin10%ofitsnumericaltarget. Yet,intheinterestofprecision,
Table1reportsfiguresobtainednumerically.

5 Conclusion

Thispaperexplorestheextenttowhichtheresolutionofparameteruncertaintyexplainsthesecular
increaseinprice-dividendratios. Contrarytointuition,standardmodelsoftime-additiveutility
implythatstockpricesarehigherinthepresenceofuncertainty,andhencethatprice-dividend
ratioscounterfactuallydeclineovertime.
Epstein-Zinpreferencesareabletoexplaintheempiricalincreaseinprice-dividendratioswith

riskaversionnear10andelasticityofintertemporalsubstitutionnear9.Outofsample,themodel
impliesthatthecurrentprice-dividendratiostillreflectssignificantparameteruncertaintyandthat,
evenifcurrentparameterestimatesareclosetotheirtruevalue,inthefuturetheprice-dividend
ratiomaystillincreaseconsiderably.
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Figure3:Left:Price-dividendratioovertimeforEpstein-Zinutility:numericalsolution(solid),
zerothorderapproximation(dashed),firstorderapproximation(dashdotted),secondorderap-
proximation(dotted).

A Transitoryvs.Permanentlearning

Thissubsectiondemonstratesthedifferencebetweentransitoryandpermanentlearningbyexam-
iningindetailtheassetpricingimplicationsofamodeloftransitorylearning,andbycontrasting
themwiththeonesobtainedintheprologueforpermanentlearning.
ConsiderthecaseofanunobservabledividenddriftthatfollowsanOrnstein-Uhlenbeckprocess

withknowncoefficients.Asbefore,thedividendsthemselvesarestillobservableandcanbeused
toestimatethecurrentdrift.Letthedividendsagaingrowgeometrically,i.e.,

dDt=µtDtdt+σDDtdWt.

However,letnowthegrowthrateµtfollowahiddenOrnstein-Uhlenbeckprocess

dµt=κ(̄µ−µt)dt+σµdBt,

whichmeansthatµtfluctuatesarounditslong-termmeanµ̄.Denotingby

Rt=
t

0

dDs
Ds
−

t

0

u

0
µ̄κe−κ(u−s)dsdu=

t

0

dDs
Ds
+̄µt+

µ̄

κ
e−κt−1

θt=µt−µ̄κ
t

0
e−κ(t−s)ds,

itfollowsthat

dRt=θtdt+σDdWt,

dθt=−κθtdt+σµdBt.

Moreover, FDt =σ((Du)0≤u≤t)=σ((Ru)0≤u≤t)=F
R
t.TheKalman-Bucyfilterθ̂t=Eθt|F

R
t
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anditsvarianceγ(t)=E[(̂θt−θt)
2]satisfy

dγ(t)= −2κγ(t)−
(γ(t))2

σ2D
+σ2µ dt, (13)

d̂θt=−κ̂θtdt+
γ(t)

σ2D
dRt−θ̂tdt.

Letγ± =−κσ
2
D±σD κ2σ2D+σ

2
µ,bethetworootsofthequadraticoftherighthandsideof

(13).Assumingagainthatθ0∼N(µ0,σ
2
0),andsettinĝθ0=µ0,γ(0)=σ

2
0,thenthesolutiontothe

Kalman-Bucyfilteris

γ(t)=
γ−−γ+

γ20−γ−
γ20−γ+

e

γ+−γ−

σ2
D

t

1−
γ20−γ−
γ20−γ+

e

γ+−γ−

σ2
D

t
,

θ̂t=e
− t

0 κ+
1

σ2
D

γ(s)ds
θ̂0+

1

σ2D

t

0
e
− t

s κ+
1

σ2
D

γ(u)du
γ(s)dRs.

andtheBrownianMotionunderFRt isW
D,definedas

dWDt=
dRt−θ̂tdt

σD
=
θt−θ̂t
σD

dt+dWt,

sothat

d̂θt=−κ̂θtdt+
γ(t)

σD
dWDt.

Thus

dDt
Dt
=dRt+

t

0
µ̄κe−κ(t−s)dsdt=dRt+̄µ1−e

−κt dt (14)

= θ̂t+̄µ1−e
−κt dt+σDdWDt.

Recallthepriceprocessin(3),withthestate-pricedensityMtisproportionaltothemarginal
utilityofconsumptione−βtD−γt .Thus

DtMt=DsMse
−β(t−s)+(1−γ) t

sθ̂udu+̄µ(t−s)+
µ̄
κ(e

−κ(t−s)−1)−
σ2D
2
(t−s)+σD WDt−WDs

.

Notethat,fors≤t,itholdsthat

θt−θs=−κ
t

s
θ̂udu+

t

s

γ(u)

σD
dWDu,

which,combinedwithθ̂t=θ̂se
−κ(t−s)+

t
s
γ(u)
σD
e−κ(t−u)dWDu,yields

t

s
θ̂udu=−

θt−θs
κ

+
1

κσD

t

s
γ(u)dWDu

=
1−e−κ(t−s)

κ
θ̂s−

1

κσD

t

s
γ(u)(e−κ(t−u)−1)dWDu.
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Hence,

t

s
θ̂udu+σD WDt−WDs =

1−e−κ(t−s)

κ
θ̂s−

1

κσD

t

s
γ(u)(e−κ(t−u)−1)−κσ2D dWDu.

(15)

Therefore,

t

s
θ̂udu+σD WDt−WDs ∼N

1−e−κ(t−s)

κ
θ̂s,

1

(κσD)
2

t

s
γ(u)(1−e−κ(t−u))+κσ2D

2
du .

Asinthelongrunγ(u)convergestoγ+,itfollowsthatforlarges,t

t

s
θ̂udu+σD WDt−WDs ∼N

1−e−κ(t−s)

κ
θ̂s,H(t−s),

where

H(τ)=
γ2+

(κσD)
2

γ2+ 4e
−κτ−e−2κτ+2κτ−3−4γ+κσ

2(κτ−e−κτ+1)+2κ3σ4τ

2k
.

Hence,

E[MtDt|Fs]=DsMsexp − β−(1−γ) µ̄−
σ2D
2

(t−s)

×exp (1−γ)
µ̄

κ
e−κ(t−s)−1 +

1−e−κ(t−s)

κ
θ̂s +(1−γ)

2H(t−s)

2
.

Thisequalityinturnimpliesthat

St=
1

Mt
E

∞

t
MsDsds|Ft =

1

Mt

∞

t
E[MsDs|Ft]ds

=Dt
∞

t
e
− β−(1−γ)µ̄−

σ2D
2

(s−t)+(1−γ) µ̄
κ(e

−κ(s−t)−1)+1−e
−κ(s−t)

κ
θ̂t +(1−γ)2H(s−t)

ds<∞.

Asκ>0,theexpressionH(τ)growsatmostlinearlyinτ.Asaresult,forβ>0largeenough,the
aboveexpressionisfinite.(Thereisnoclosedformsolution,eveninthestationarycaseγ(u)=γ+
forallu>0.)Thus,incontrasttothesettingofpermanentlearning,describedinthemaintext,
thismodeloftransitorylearninggivesrisetofiniteprices,atleastforsufficientlylargediscount
rates.
ThesameargumentcarriesovertoEpstein-Zinpreferences.Denotingtheaggregatorby

f̄(c,v)=
β

ρ

cρ−(ηv)
ρ
η

(ηv)
ρ
η
−1
, (16)

sothattheindirectutilityVtsatisfies

dVt=−f̄(Ct,Vt)dt+̄σv(t)dWDt.
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Inordertofindσ̄v(t),recallthat

dVt= −f(Ct,Vt)−
1

2
A(v)σ2v(t)dt+σv(t)dW

D
t,

where

f(c,v)=
β

ρ

cρ−vρ

vρ−1
,A(v)=

η−1

v
.

Astheonlysourceofrandomnessoftheutilitycomesfromtheconsumption,andboththecon-
sumptionandtheutilityprocessesarelinearinconsumption,σv(t)=σ

DVt.Thetransformation
toanequivalentnormalizedutilityprocessisŪ=U◦φ,whereφ(v)= eA(x)dxdv,whichinthis
case,isφ(v)=v

η

η.FromIt̂o’sformula,itfollowsthat

f̄(c,φ(v))=f(c,v)φ(v),

σ̄φ(v)(t)=σv(t)φ(v),

Ā(φ(v))=A(v)φ(v)−φ(v).

Itthenfollowsthatf̄indeedequals(16),Ā=0,and

σ̄v(t)=ησ
DVt. (17)

Asdividendscoincidewithconsumption,i.e. Ct=Dt,thestate-pricedeflatorMtis(Duffieand
Epstein,1992)

Mt=exp
t

0
f̄v(Ds,Vs)ds f̄c(Dt,Vt)

=βexp
β

ρη
ρ
η
−1

1−
ρ

η

t

0

Dρs

V
ρ
η
s

ds−β
η

ρ
t

Dρ−1t

(ηVt)
ρ
η
−1
.

Usingthefactthat

d V
1−ρ

γ

t =− 1−
ρ

γ
V
1−ρ

γ

t

f̄(Dt,Vt)dt−σ̄v(t)dWDt
Vt

+
ρ

2γ

σ̄2v(t)

V2t
dt ,

itfollowsthat

d
Dρ−1t

(γVt)
ρ
γ
−1

=
Dρ−1t

(γVt)
ρ
γ
−1
(ρ−1) θ̂t−µ̄1−e

−κt dt+σDdWDt+
1

2
(ρ−2)σD

2
dt

−
Dρ−1t

(γVt)
ρ
γ
−1

1−
ρ

γ

f̄(Dt,Vt)dt−σ̄v(t)dWDt
Vt

+
ρ

2γ

σ̄2v(t)

V2t
dt

+(ρ−1)
Dρ−1t

(γVt)
ρ
γ
−1

1−
ρ

γ

σDσ̄v(t)

Vt
dt.
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Therefore,

dMt
Mt
=(ρ−1) θ̂t−µ̄1−e

−κt dt+σDdWDt+
1

2
(ρ−2)σD

2
dt

− 1−
ρ

γ

f̄(Dt,Vt)dt−σ̄v(t)dWDt
Vt

+
ρ

2γ

σ̄2v(t)

V2t
dt

+(ρ−1) 1−
ρ

γ

σDσ̄v(t)

Vt
dt+



 β

ργ
ρ
γ
−1

1−
ρ

γ

Dρt

V
ρ
γ

t

−β
γ

ρ



dt.

and,substituting(16)and(17),yields

dMt
Mt
=−rtdt+(ρ−1)σ

DdWDt+ 1−
ρ

γ

σ̄v(t)

Vt
dWDt

=−rtdt+(γ−1)σ
DdWDt,

where

rt=β+(1−ρ)θ̂t−µ̄1−e
−κt +(2−ρ)(γ−1)

(σD)2

2
.

Therefore

Mt=Msexp −
t

s
rudu−

(γ−1)2

2
(σD)2(t−s)+(γ−1)σD WDt−WDs . (18)

From(14),

Dt=Dsexp
t

s
θ̂udu+̄µ(t−s)+

µ̄

κ
e−κ(t−s)−1 −

(σD)
2

2
(t−s)+σD WDt−WDs .

Togetherwith(18)itnowfollowsthat

DtMt=DsMsexp −β(t−s)+ρ
t

s
θ̂udu+̄µ(t−s)+

µ̄

κ
e−κ(t−s)−1

×exp ρ(γ−1)−γ2
(σD)2

2
(t−s)+γσD WDt−WDs .

Thus,similarlyto(15),

t

s
θ̂udu+

γ

ρ
σD WDt−WDs ∼N

1−e−κ(t−s)

κ
θ̂s,H1(s,t) ,

where

H1(s,t)=
1

(κσD)
2

t

s
γ(u)(1−e−κ(t−u))+κ

γ

ρ
σ2D

2

du.
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Thus

E[MtDt|Fs]=DsMsexp −β(t−s)+ρ µ̄(t−s)+
µ̄

κ
e−κ(t−s)−1

×exp ρ
1−e−κ(t−s)

κ
θ̂s+ ρ(γ−1)−γ

2 (σ
D)2

2
(t−s)+ρ2

H1(s,t)

2
.

Wenowcalculate

St=
1

Mt
E

∞

t
MsDsds|Ft =

1

Mt

∞

t
E[MsDs|Ft]ds

=Dt
∞

t
e−β(s−t)+ρ(̄µ(s−t)+

µ̄
κ(e

−κ(s−t)−1))+ρ1−e
−κ(s−t)

κ
θ̂t+(ρ(γ−1)−γ2)(σ

D)2

2
(s−t)+ρ2

H1(t,s)
2 ds.

Again,forthesamereasonsasintheadditiveutilitycaseabove,thisexpressionisfinitefora
discountrateβlargeenough,whichconfirmstheclaimthatpricesremainfiniteevenforEpstein-
Zinpreferences.

B Proofs

ProofofLemma3.1.Forn=1,itfollowsfromthedefinitionofX1thatitsdistributionisX1∼
BetaBin(1,1,1).Forn>1,wecalculatetheposteriordistribution.Recallthat

fP(p|X1,...,Xn−1)∝L(p)fp0(p)∝p
n−1
i=1 Xi(1−p)n−1−

n−1
i=1 Xi, (19)

wherefP isthepdfofPandListhelog-likelihood. Hence,P|X1,...,Xn−1∼Beta(
n−1
i=1Xi+

1,n−1− n−1
i=1Xi+1),andthusXn|X1,..,Xn−1∼BetaBin(1,

n−1
i=1Xi+1,n−1−

n−1
i=1Xi+1).

Moreover,giventheobservationsX1,...,Xn−1andusing(19),forn≥1itholdsthat

p̂n−1=P(Xn=1|X1,...,Xn−1)=
1

0
P(Xn=1|p)fP(p|X1,...,Xn−1)dp

=
1

0
p

p
n−1
i=1 Xi(1−p)n−1−

n−1
i=1 Xi

Beta( n−1
i=1Xi+1,(n−1)−

n−1
i=1Xi+1)

dp=
n−1
i=1Xi+1

n+1
.

WeformulatethissectionforthegeneralcaseofEpstein-Zinutility.Thecaseofpowerutility
correspondstoθ=1.First,weshowtheEpstein-Zinutilityiswelldefined,i.e.,theinfinite-horizon
limitin(6)exists.Seealso(Pennesi,2018,Theorem1)forarelatedresult.

LemmaB.1.FixanadmissibleconsumptionC∈Lδ.Then

UNt(C)≤(1−δ)
1
1−ρ

N−1

n=t

δn−tEt[Cn]. (20)

Itfollowsthatthelimitin(6)iswelldefined(hencesoisUt(C)). Moreover,suchUt(C)isthe
uniquesolutiontotherecursiveequation

Ut(C)= (1−δ)C
1−γ
θ
t +δEt[(Ut+1)

1−γ]
1
θ

θ
1−γ

(21)
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withtheasymptoticcondition

lim
n→∞

UtC
0,n=Ut(C), (22)

whereforanyconsumptionstreamsC̃,Ĉ,themodifiedprocessĈC̃,nisdefinedas

ĈC̃,ns =
Ĉs :s≤n,

C̃s :s>n.
(23)

ProofofLemmaB.1.FixanyN ≥t.ThenUNN(C)=0.Similarly,ifN ≥1,thenU
N
N−1(C)=

(1−δ)
1
1−ρEN−1[CN−1].

By(backward)induction,assumethat(20)istruefort=k+1,andshowitfort=k. The
inductionassumptionandJensen’sinequalityimplythat

Ek UNk+1(C)
1−γ

1
1−γ
≤(1−δ)

1
1−ρ

N−1

n=k+1

δn−(k+1)Ek[Cn].

Then

UNk(C)= (1−δ)C
1−ρ
k +δEk[(U

N
k+1)

1−γ]
1−ρ
1−γ

1
1−ρ

≤



(1−δ)C1−ρk +δ(1−δ)
N−1

n=k+1

δn−(k+1)Ek[Cn]

1−ρ




1
1−ρ

≤(1−δ)
1
1−ρ

N−1

n=k

δn−kEk[Cn],

wherethefirstinequalityfollowsfromtheinductionstep,andthesecondfromJensen’sinequality,
provingtheinductionstep.Itfollowsthatthelimitin(6)iswelldefined,as{UNt}forfixedtisan
increasingsequenceinN≥t. Hence,UNt(C)iswelldefinedforeveryN,andthussoisitslimit
Ut(C)in(6).
Additionally,(21)nowfollowsbycontinuity,aftertakingthelimitN → ∞ inUNt(C) =

(1−δ)C
1−γ
θ
t +δEt[(U

N
t+1)

1−γ]
1
θ

θ
1−γ

. Whereastheuniquenessofthesolutionfollowsfromthe

uniquenessofUNt andthefactthatUt(C
0,N)=UNt(C).

Next,set

mt+1,t=δ
Dt+1
Dt

1−γ
θ
−1






Ut+1(D)

EtU
1−γ
t+1(D)

1
1−γ






−
(1−γ)(1−θ)

θ

, mt,s=
t

i=s+1

mi,i−1fort>s.(24)

Define

πt,t=
∂Ut
∂CtC=D

=
θ

1−γ
(1−δ)

1−γ

θ
Ut(D)

θ
1−γ
−1
D
1−γ
θ
−1

t =(1−δ)Ut(D)
ρD−ρt , (25)

πs,t=ms,tπt,tfors>t. (26)
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Inviewof(26),optimizingovertheconsumptionattimes≥twithoutanyconstraintoninitial
wealth,leadstotheproblem

max
C≥0,Cu=Du,u=s

{Ut(C)−Et[πs,tCs]}=Ut(D)−Et[πs,tDs]. (27)

Forconvenience,denotePtthecum-dividendprice,definedas

Pt=St+Dt=Et

∞

n=t

mn,tDn . (28)

Tocompletethedescriptionofthemarket,definethepriceattimetofabondmaturingatt+1as

B(t,t+1)=Et[mt+1,t], (29)

andtheinterestrateas

B(t,t+1)=
1

1+rt+1,t
. (30)

Next,todefineanequilibriuminthis marketitremainstodefineadmissibleconsumption
plans.LetXtbetotalthewealthoftherepresentativeagentattimet(beforeanyconsumption
takesplace).

DefinitionB.2. ThewealthprocessXstartingfromtimet0isadmissible,ifXt≥0foralltimes
t≥t0. ForagivenconsumptionstreamCt≥0,t=t0,t0+1,...setvalueoftheconsumption
streamstartingfromtimet≥t0as

Wt0(C)=

∞

s=t0

Et0[ms,t0Cs].

LemmaB.3.Lett0≥0,thenforanyadmissibleconsumptionCs,s≥t0,

Et0[mT+1,t0XT+1]=Xt0−

T

t=t0

Et0[mt,t0Ct], (31)

and Xt0≥

∞

t=t0

Et0[mt,t0Ct]. (32)

Moreover,ifXt0=Pt0anyadmissibleconsumptionCisdominatedbyD,inthatWt0(C)≤Wt0(D).

Proof.Atanytime,theagentcaninvestintwoassets,thebondandthestock. Assumethatat
timeattimettheportfolioisvaluedatXt.Thedividendispaidoutfirst.Thentheportfoliocan
berebalanced,toincludeφtsharesofstockandψtcash.ThusXt=φt(Pt−Dt)+ψt,sincethe
stockpricePtiscum-dividend,andwhenceψt=Xt−φt(Pt−Dt).AfterwhichtheconsumptionCt
happens.Thenatthenextperiodt+1,theportfolioisworthXt+1,whichiscomprisedofφtPt+1
wealthinvestedinstockand(ψt−Ct)(1+rt)cash,i.e.,

Xt+1=φtPt+1+(ψt−Ct)(1+rt)=φtPt+1+(Xt−φt(Pt−Dt)−Ct)(1+rt). (33)

BecausePt=Dt+Et[mt+1,tPt+1]foranyt,from(29)itfollowsthat

Et0[mt0+1,t0Xt0+1]=φt0Et0[mt0+1,t0Pt0+1]+(ψt0−Ct0)(1+rt0+1,t0)Et0[mt0+1,t0]

=φt0(Pt0−Dt0)+(ψt0−Ct0)=Xt0−Ct0.
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Repeatingthisargument,(31)follows.
ByadmissibilityofXT+1andthenon-negativityofmitfollowsthatXt0≥

T
t=t0
Et0[mt,t0Ct]

forallT≥t0.Thus,(32)followsbylettingT→∞:

Xt0=Pt0=

∞

t=t0

Et0[mt,t0Dt]≥

∞

t=t0

Et0[mt,t0Ct]. (34)

B.1 AdditivePowerUtility

ProofofTheorem4.1.TheclosedformformulaforthestockpricePnattimenisasfollows

D−γn Pn=
∞

j=n

E e−β(j−n)D1−γj =D1−γn

∞

j=0

e((1−γ)η−β)jE e(1−γ)sY
(n)
j+n ,

=D1−γn

∞

j=0

e((1−γ)η−β)j2F1 −j,(n+1)pn;n+1;1−e
(1−γ)s

=D1−γn

∞

j=0

e((1−γ)η−β)j
j

k=0

(−1)k
j

k

((n+1)pn)k
(n+1)k

1−e(1−γ)s
k
,

where

(q)k=
1 :k=0,
q(q+1)...(q+k−1) :k>0.

Now,changingtheorderofthesummation

Pn=Dn

∞

k=0

((n+1)pn)k
(n+1)k

(−1)k 1−e(1−γ)s
k
∞

j=k

e((1−γ)η−β)j
j

k

=Dn

∞

k=0

((n+1)pn)k
(n+1)k

(−1)k 1−e(1−γ)s
k
1−e((1−γ)η−β)

−k−1
e((1−γ)η−β)k

=
Dn

1−e((1−γ)η−β)

∞

k=0

((n+1)pn)k
(n+1)k

(−1)k
e((1−γ)η−β)1−e(1−γ)s

1−e((1−γ)η−β)

k

=
Dn

1−e((1−γ)η−β)

∞

k=0

k!((n+1)pn)k
(n+1)k

−
(1−e(1−γ)s)
e−((1−γ)η−β)−1

k

k!

=
Dn

1−e((1−γ)η−β)
2F1 1,(n+1)pn;n+1;

1−e(1−γ)s

1−e−((1−γ)η−β)
,

wherethesecondequalityusestheidentity ∞
j=kq

j j
k =(1−q)

−k−1qkwithq=e((1−γ)η−β),
showing(7).
Toshow(8),recallthedefinitionB(t,t+1)–thepriceattimetofazerocouponbound

maturingattimet+1in(29). Asforpowerutility,(24)becomesmt+1,t=e
−β Dt+1

Dt

−γ
,(8)

readilyfollowsbyrecallingthedefinitionoftheinterestratert+1,tin(30).
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Recallthewithpowerutilitythestochasticdiscountfactorπin(25),(26)isπt,t=D
−γ
t .Thus,

by(24),(26)itfollowsthatEs[πt,sCt]=Et0
1
1−γ

∂Vt0(D)
∂Ds

Ct,s≥t≥t0,foranyCt≥0admissible

consumption.RecallthatfromLemmaB.3foranyadmissibleconsumptionCwithinitialportfolio
wealthPt0,

∞
t=t0
Et0[πt,t0Dt]≥

∞
t=t0
Et0[πt,t0Ct].Forsuchconsumptionitfollowsthat

1

1−γ
Vt0(C)=

∞

t=t0

Et0 e
−β(t−t0)C

1−γ
t

1−γ

≤
∞

t=0

Et0 e
−β(t−t0)C

1−γ
t

1−γ
+πt,t0(Dt−Ct)≤

∞

t=0

Et0 e
−β(t−t0)D

1−γ
t

1−γ
=
Vt0(D)

1−γ
,

wherethefirstinequalityfollowsfrom

max
Ct≥0

Et0 e
−β(t−t0)C

1−γ
t

1−γ
−πt,t0Ct =Et0 e

−β(t−t0)D
1−γ
t

1−γ
−πt,t0Dt ,

whichinturnfollowsfrom(27).
Assumeforconveniencethatt0=0.Notethat,ifX0= P0,Ĉt= Dtandφt=1,then

(33)impliesbyinductionthatXt=Ptforallt≥0. Now,considerthealternativestrategy
inwhichattimetthenumberofshareschangesfrom1to1+εonsomeFt-measurableevent
A⊂{|Pt|<M,Dt>1/M},withM>0.Note,thatafterthedividendispaid,thesharepriceis
Pt−Dt.ThusconsumptioncorrespondinglychangesfromDttoDt−ε(Pt−Dt)andtoDs(1+ε)
fors≥t+1.Thatis,defineφεs=φs+ε1{s≥t}∩Aandc

ε
s=Ds−εPt1{s=t}∩A+εDs1{s≥t+1}∩A,and

notethatthisstrategycontinuestosatisfy(33).(Notethatεmaybeeitherpositiveornegative.)

Settingu(t,Ct)=e
−βtC

1−γ
t
1−γ,thechangeinexpectedutilityfrom(D,1)to(c

ε,φε)isthus

∆ε=E 1A u(t,Dt−ε(Pt−Dt))−u(t,Dt)+

∞

s=t+1

(u(s,Ds(1+ε))−u(s,Ds)) ≤0 (35)

wherethelastinequalityreflectstheassumedoptimalityoftheconsumptionstreamDtogether
withthetreadingstrategyφ≡1.Byconcavity,notethatforanyt,x,y>0:

uc(t,y)(y−x)≤u(t,y)−u(t,x)≤uc(t,x)(y−x).

Whence,ontheevent A,fors>t

uc(s,Ds(1+ε))εDs≤u(s,Ds(1+ε))−u(s,Ds)≤uc(s,Ds)εDs.

Therefore,againonA,

|u(s,Ds(1+ε))−u(s,Ds)|≤|ε|Dsmax(uc(s,Ds),uc(s,Ds(1+ε))) (36)

=|ε|Dsuc(s,Ds)≤|ε|Dsuc(s,Ds),

whereforthefirstequalitythefactthatuisincreasingandconcavewasused.Likewise,

−εPtuc(t,Dt−ε(Pt−Dt))≤u(t,Dt−ε(Pt−Dt))−u(t,Dt)≤−εPtuc(t,Dt) onA.

HenceonA,for >0smallenough

|u(t,Dt−ε(Pt−Dt))−u(t,Dt)|≤|ε|Ptuc(t,1/M−ε(M −1/M))≤|ε|Ptuc(t,1/(2M)). (37)
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Inviewof(36)and(37),itfollowsthattherespectiveincrementalratiosaredominatedbyan
integrablerandomvariable,uniformlyinε.Thus,dividing∆εin(35)byεandpassingtothelimit
asε↓0,Lebesgue’sdominatedconvergencetheoremyields

lim
ε↓0

∆ε

ε
=E 1A −uc(t,Dt)(Pt−Dt)+

∞

s=t+1

uc(s,Ds)Ds) ≤0

Analogously,asε↑0itfollowsthatlimε↓0
∆ε

ε ≥0,whencethelimitmustbezero.Bythetower
propertyofconditionalexpectation,

E 1A −uc(t,Dt)Pt+Et

∞

s=t

uc(s,Ds)Ds =0.

AsM ↑∞,theeventAspansanyelementofFt,whichimpliesthat

Pt=Et

∞

s=t

uc(s,Ds)

uc(t,Dt)
Ds a.s..

ThiscompletestheproofbyrecallingthedefinitionoftheSDFmin(24).

WenowadaptthisprooftotheEpstein-Zinrecursiveutilitycase.

B.2 RecursiveEpstein-ZinUtility

TheproofforthegeneralrecursiveEpstein-Zinutilityismorecomplicated,buttheproofthatthe
marketisinequilibriumusesthesameideasasintheequivalentpartofTheorem4.1.Themajor
differenceisthatthereisnoclosedformsolutiontothepriceprocess,asopposedtotheonefound
inTheorem4.1.Hence,weproceedbyfindingapowerexpansion.First,itismoreconvenientto
workwiththefollowingequilibriumpricecandidateP.

Pt=Dt+Et[mt+1,tPt+1]. (38)

ToestablishtheconnectionbetweenutilityUandpriceP,substitute(24)into(38)toget

EtU
1−γ
t+1(D)

θ−1
θ
D
1−γ
θ
−1

t Pt= EtU
1−γ
t+1(D)

θ−1
θ
D
1−γ
θ
t

+δEtD
1−γ
θ
−1

t+1 U
(1−γ)(θ−1)

θ
t+1 (D)Pt+1 .

Comparingthiswith(21)itfollowsthat

U
1−γ
θ
t =(1−δ)D

1−γ
θ
−1

t Pt. (39)

Theproofthatcondition(22)holdsisdeferredtoLemmaB.12.Next,letctdefinedby

Pt=c
1−γ
θ
t Dt. (40)

andattempttofindct.Inotherwordsc
1−γ
θ
t isthepricedividendratio.Then(39)becomes

Ut(D)=(1−δ)
θ
1−γctDt, (41)
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Substituting(41)into(21),itfollowsthat

c
1−γ
θ
t D

1−γ
θ
t =D

1−γ
θ
t +δEtc

1−γ
t+1D

1−γ
t+1

1
θ
.

and,using(4),

c
1−γ
θ
t =1+δeη

1−γ
θ Etc

1−γ
t+1e

(1−γ)sXt+1
1
θ
. (42)

Notethatthisisabackwardrecursion.Ifct+1 isknownandassumingp̂tisalsoknown,thenct
canbecomputed.Additionally,notethat(42)canbesolvedifitisassumedthatnomorelearning
takesplace,thatisifct=ct+1=c.Inthiscase,

c
1−γ
θ =1+δeη

1−γ
θ c

1−γ
θ Ete

(1−γ)sXt+1
1
θ
.

Itfollowsthat

c
1−γ
θ =

1

1−δeη
1−γ
θ Ete(1−γ)sXt+1

1
θ

=
1

1−δeη
1−γ
θ (1−p̂t)+̂pte(1−γ)s

1
θ

.

Thus,define

c(n)∞ (pn)=



 1

1−δeη
1−γ
θ (1−pn)+pne(1−γ)s

1
θ





θ
1−γ

.

Next,postulatethat

(cn(̂pn))
1−γ
θ = c(n)∞ (̂pn)

1−γ
θ
+

∞

i=1

αi(̂pn)

ni
, (43)

andseekthecoefficientsαibysubsistinginto(42).Henceforth,theargumentp̂nofcn,c
(n)
∞ ,αnis

droppedforconvenience.Thecoefficientsinthisexpansionaresolvedexplicitlybyinserting(43)
into(42).Forexample,thefirstoneequals

α1(p)=
(p(e(1−γ)s−1)+1)

1
θe2η

1−γ
θ δ2(p−1)p(e(1−γ)s−1)2(p(e(1−γ)s−1)+1)

1
θ
−2

θeη
1−γ
θ δ(p(e(1−γ)s−1)+1)

1
θ−1

3 .

andexplicitformulasforhigher-ordercoefficientsfollowsimilarly.Thenextauxiliarylemmashelps
toverifytheexpansion(43).

LemmaB.4.Thereexistsν0>0,suchthat

ν
−(n−m)
0 Dm≤Dn≤ν

n−m
0 Dm,foranyn≥m≥0. (44)

Moreover,fixthestartingpointn0≥0,andassumethat

0<δ<δ1 1∧max{e−(η+s)
1−γ
θ ,e−η

1−γ
θ }.

Thenforn≥n0,

cmin 1≤cn≤
1

1−δe(1−ρ)(η+(s)+)

1
1−ρ

cmax. (45)

Sothat

(1−δ)
1
1−ρcminDn0≤Un0(D)≤(1−δ)

1
1−ρcmaxDn0. (46)
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Proof.SetD∗n+n0 Dn0max{e
(n+n0)η,e(n+n0)(η+s)}=Dn0e

(n+n0)(η+(s)+).Then0< Dn+n0 ≤

D∗n+n0. Similarly,Dn0e
(n+n0)(η−(s)−)≤Dn+n0.Itthenfollowsthat(44)issatisfiedwithν0=

e|η|+|s|. Toshow(45),usingthefactthatUisincreasinginconsumption,itimmediatelyfollows
fromthedefinitionofcn0 in(41)thatcn0 ≥1,whenceU

∗
n0 =Un0(D

∗)≥Un0(D).Thus,(21)
becomes

U∗n0= (1−δ)(D∗n0)
1−γ
θ +δ(U∗n0+1)

1−γ
θ

θ
1−γ
,

whereweusedtheidentityEt[(U
∗
n0+1
)1−γ]=(U∗n0+1)

1−γbecausetheconsumptionD∗tisdetermin-

isticfort≥n0.Recallingthatθ=
1−γ
1−ρ,itfollowsthatforV

∗
n0=

(U∗n0)
1−ρ

(1−ρ)(1−δ)

V∗n0=(D
∗
n0)
1−ρ+δV∗n0+1,

whichisthepowerutilitycase,withriskaversionρ.Hence,

V∗n0=
∞

n=n0

δn−n0(D∗n)
1−ρ=

∞

n=0

(D∗n0)
1−ρδnen(1−ρ)(η+(s)

+)=
(D∗n0)

1−ρ

1−δe(1−ρ)(η+(s)+)
,

whichimplies(45)byrecallingthatcn0 =
Un0

(1−δ)
θ
1−γDn0

≤c∗n0 =
U∗n0

(1−δ)
θ
1−γDn0

=
((1−δ)V∗n0)

1
1−ρ

(1−δ)
1
1−ρDn0

=

1

1−δe(1−ρ)(η+(s)
+)

1
1−ρ
=cmax.Thisalsoshows(46),as(1−δ)

1
1−ρcminDn0≤Un0(D).

Similarly,anyadmissibleconsumptionstreamadmitsthefollowingbounds.

LemmaB.5.Letn0≥0betheinitialtime.ThenthereexistsaconstantK0>0,independentof
n0,suchthatUn(C)≤K0Xn,foranyn≥n0andforanyadmissibleconsumptionprocessC.

Proof.Usingν0fromLemmaB.4andrecalling(40),itfollowsthatK
−1
1 ν

−(n−n0)
0 Dn0 ≤c

1−ρ
max∧

c1−ρminDn≤Pn≤c
1−ρ
max∨c

1−ρ
minDn≤K1ν

n−n0
0 Dn0,forsomeconstantK1>0andn≥n0.Hence,italso

followsthatPn
Pn−1

≤K21ν0.UsingtheboundsonUfromLemmaB.4,foranotherconstantK2>0

itfollowsthatmn+1,n≥
1

K2ν
−ρ
0

,whichimpliesthatthesameboundholdsfor1+rn+1,n≤K2ν
−ρ
0 .

Thusforν1=K2ν
−ρ
0 ∨K

2
1ν0,itfollowsthatCn≤ν

n−n0
1 Xn0,n≥n0.Asimilarcalculationasin

LemmaB.4yieldstheupperboundUn0(C)≤K0Xn0,forsomeconstantK>0.

LemmaB.6.Set

Err max
p∈[0,1]

δ2(p−1)pe2η(1−γ)e(1−γ)s−1
2
pe(1−γ)s−1+1

2
θ
−2

θδeη(1−γ)pe(1−γ)s−1+1
1/θ
−1

2 +1,

B1 1+c
1−γ
θ
maxe(

1−γ
θ
(η+s))

+

+Err, (47)

B2 1+c1−γmaxe
(1−γθ s)

+

, (48)

andassumethat0<δ̄<1,where

δ̄=δmax |θ|(1∨|B1|
θ−1)e(η

1−γ
θ )

+

,(1∨|B1|
θ−1)(1∨|B2|

−1−1
θ)eη

1−γ
θ
(1−γ)(s)+ . (49)

Moreover,lettheassumptionsofLemmaB.4hold.Then c
(n)
∞ (pn)

1−γ
θ
−(cn(pn))

1−γ
θ =O 1

n .
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Proof.First,notethatc
(n)
∞ almostsatisfy(42),morespecifically,forn>0bigenough

(c(n)∞ (̂pn))
1−γ
θ −1−δeη

1−γ
θ Et(c

(n+1)
∞ (̂pn+1))

1−γe(1−γ)sXn+1
1
θ

=
1

n

δ2(̂pn−1)pne
2η(1−γ)e(1−γ)s−1

2
p̂n e

(1−γ)s−1+1
2
θ
−2

θδeη(1−γ) p̂n e(1−γ)s−1+1
1/θ
−1

2 +O
1

n2
≤
Err

n
.

FixnandN>n.Theideaistoexpressthedifferencebetween(cn(̂pn))
1−γand(c

(n)
∞ (̂pn))

1−γusing
thedifferenceattimen+1,andthenrecursivelyrepeattheprocessuntiltimeN.Observethat

(cn(̂pn))
1−γ−(c(n)∞ (̂pn))

1−γ

≤ 1+δeη
1−γ
θ En (cn+1(̂pn+1))

1−γe(1−γ)sXn+1
1
θ
θ

− 1+δeη
1−γ
θ En (c

(n+1)
∞ (̂pn+1))

1−γe(1−γ)sXn+1
1
θ
+
Err

n

θ

≤|θ||ζn|
θ−1δeη

1−γ
θ

× En (cn+1(̂pn+1))
1−γe(1−γ)sXn+1

1
θ
− En (c

(n+1)
∞ (̂pn+1))

1−γe(1−γ)sXn+1
1
θ
+
Err

n

≤|θ||ζn|
θ−1δeη

1−γ
θ

ζ̂n
−1−1

θ

|θ|
En (cn+1(̂pn+1))

1−γ−(c(n+1)∞ (̂pn+1))
1−γ e(1−γ)sXn+1 +

Err

n

≤|θ||ζn|
θ−1δeη

1−γ
θ
Err

n

+|ζn|
θ−1 ζ̂n

−1−1
θ
δeη

1−γ
θ
(1−γ)(s)+En (cn+1(̂pn+1))

1−γ−(c(n+1)∞ (̂pn+1))
1−γ ,

hereζn,andζ̂nareunknownpointsintheTaylorremainder. Notethatbothζnandζ̂nare
uniformlybounded,independentlyofn.Indeed,thepointζnislocatedsomewherebetween1+

δeη
1−γ
θ En (cn+1(̂pn+1))

1−γe(1−γ)sXn+1
1
θandδeη

1−γ
θ En (c

(n+1)
∞ (̂pn+1))

1−γe(1−γ)sXn+1
1
θ
+1+

Err
n . Bothofthesequantitiesareboundedbetween1andB1from(47).Similarly,thepoint̂ζn

islocatedbetweenEn (cn+1(̂pn+1))
1−γe(1−γ)sXn+1 andEn (c

(n+1)
∞ (̂pn+1))

1−γe(1−γ)sXn+1 ,which

areboundedbye(1−γ)s
−
andB2from(48).Recallingthedefinitionof̄δin(49),thepreviouschain

ofinequalitiescontinuesas

(cn(̂pn))
1−γ−(c(n)∞ (̂pn))

1−γ ≤δ̄
Err

n
+δ̄En (cn+1(̂pn+1))

1−γ−(c(n+1)∞ (̂pn+1))
1−γ

≤δ̄
Err

n
+δ̄2

Err

n+1
+δ̄2En (cn+2(̂pn+2))

1−γ−(c(n+2)∞ (̂pn+2))
1−γ

≤ δ̄+δ̄2
Err

n
+δ̄2En (cn+2(̂pn+2))

1−γ−(c(n+2)∞ (̂pn+2))
1−γ .
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Whichimpliesthat

(cn(̂pn))
1−γ−(c(n)∞ (̂pn))

1−γ ≤

∞

k=1

δ̄k
Err

n
+δ̄N−nEn (cN(̂pN))

1−γ−(c(N)∞ (̂pN))
1−γ

=
1

1−δ̄

Err

n
+δ̄N−nEn (cN(̂pN))

1−γ−(c(N)∞ (̂pN))
1−γ .

LettingN→∞ theclaimofthelemmanowfollowsasbothcN andc
(N)
∞ arebounded.

Thislemmacanbegeneralizedtohigherorders.(Thecorrespondingproofisomitted.)

LemmaB.7.Foranyk≥1,thereexistsδ>0smallenough,suchthat

c(n)∞ (̂pn)
1−γ
θ
+

k

i=1

αi(̂pn)

n
−(cn(̂pn))

1−γ
θ =O

1

nk+1
.

LemmaB.8.Theinterestratert,t+1withEpstein-Zinrecursiveutilityisasin(10).

Proof.Using(41),and(4)theSDFfrom(24)becomes

mt+1,t=δ
Dt+1
Dt

1−γ
θ
−1






ct+1Dt+1

Et(ct+1Dt+1)
1−γ

1
1−γ






(1−γ)(θ−1)
θ

=δ
Dte

η+sXt+1

Dt

1−γ
θ
−1






ct+1Dte
η+sXt+1

Et(ct+1Dteη+sXt+1)
1−γ

1
1−γ






(1−γ)(θ−1)
θ

=δeη(
1−γ
θ
−1)c

(1−γ)(θ−1)
θ

t+1 Etc
1−γ
t+1e

(1−γ)sXt+1
1−θ
θ
e−γsXt+1. (50)

RecallthedefinitionofbondpriceB(t,t+1)in(29).Itfollowsfrom(50)that

B(t,t+1)=δeη(
1−γ
θ
−1)Etc

(1−γ)(θ−1)
θ

t+1 e−γsXt+1 Etc
1−γ
t+1e

(1−γ)sXt+1
1−θ
θ
.

Thedesiredresult(10)followsreadilynowfromthedefinitionoftheinterestratert+1,tin(30).

CorollaryB.9.Forδ>0smallenough,(50)impliesthat

En c
(n+1)
∞ (̂pn+1)

1−γ
e(1−γ)sXn+1

ρ−γ
1−γ

δe−ηρEn c
(n+1)
∞ (̂pn+1)

ρ−γ
e−γsXn+1

−1−rn+1,n=O
1

n

AndanerrorofO 1
nk+1

,k≥1canbeachievedifhigherorderapproximationof c
(n)
∞ (̂pn)

1−γ
θ
+

k
i=1

αi(̂pn)
n isusedtoapproximate(cn(̂pn))

1−γ
θ .

Proof.TheprooffollowsfromthecombinationofLemmasB.4,B.6,B.7,B.8.
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CorollaryB.10.Forδ>0smallenough,notethatlim
t→∞
Et0[mt,t0Pt]=0.

Proof.Recallthatθ=1−γ
1−ρ.Then,undertheassumptionthatδ>0smallenough,

0<mt+1,t
Dt+1
Dt

≤δ2. (51)

forsomeδ2<1. Thiscanbeseenbyconsideringdifferentcases.Forexample,whenγ>1and
ρ<γ,sothat1−γ,1−θθ =

γ−ρ
1−γ<0,usingthedefinitionofmin(24)andLemmaB.4itfollows

that

0<mt+1,t
Dt+1
Dt

≤δe−ηρEt
cmax
cmin

1−γ

e(1−γ)sXt+1

1−θ
θ

e−γsXt+1

≤
cmax
cmin

γ−ρ

δe−ηρe−γs
−
e(γ−ρ)s

+
=δ

cmax
cmin

γ−ρ

e−ηρ+γs−ρs
+
.

Thus(51)holdsforδ>0smallenough.Thus,foranyt0≥0,

lim
t→∞
mt,t0Dt=Dt0limt→∞

t

n=t0+1

mn,n−1
Dn
Dn−1

≤Dt0limt→∞
δt−t02 =0,

whencelim
t→∞
Et0[mt,t0Pt]=0.

Thenextcorollaryispresentedforcompletenessonly.Itshowsthatthetwopricecandidates
(38)and(28)inthepowerutilityandEpstein-Zinutilitycoincide.

CorollaryB.11.ThepricePin(38)equals(28).

Proof.Recallthatmt0,t0=1.Theequalitybetween(38)and(28)followsfromCorollaryB.10.

Sofarwehavebeenusingtherecursion(21). Wearenowreadytoshowthattheasymptotic
condition(22)holds.

LemmaB.12.LetUt(D)beasin(41).Thenforδ>0smallenough,

lim
N→∞

Ut(D)−UtD
0,N =0.

Proof.Observe,thattheequivalentof(46)alsoholdsforUtD
0,N,forN≥t+1.Namely,

(1−δ)
1
1−ρcminDt≤UtD

0,N ≤(1−δ)
1
1−ρcmaxDt.

Thus,similarlyto(51)andusingthesameδ2wecanbound0<m
N
t+1,t

Dt+1
Dt
≤δ2,where

mNt+1,t=δ
Dt+1
Dt

1−γ
θ
−1






Ut+1 D
0,N

Et(Ut+1(D0,N))
1−γ

1
1−γ






−
(1−γ)(1−θ)

θ

.
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ThenfromLemmaB.4itfollowsthat

Ut(D)−UtD
0,N ≤Et πt,t

N

n=t

mNn+1,nUN(D)−(1−δ)
1
1−ρDN

≤Et πt,t

N

n=t

mNn+1,nUN(D)≤πt,t(1−δ)
1
1−ρcmaxδ

N−t+1
2 Dt,

whichinturnconvergestozeroasN→∞.

WearenowreadyfortheequilibriumproofforEpstein-Zinutility.

ProofofTheorem4.2.First,notethatwehavealreadyprovedpartsofTheorem4.2.Specifically,
LemmasB.6andB.7showthevalidityof(9)and(11),and(10)andof(12)followfromLemma
B.8andCorollaryB.9respectively.ThenexttwostepssimilartotheonesintheproofofTheorem
4.1istoshowthattheconsumptionDmaximizestheutilityUsubjecttothebudgetconstraint
andthenusethisresulttoshowthemarketisinequilibrium.
Let >0andlett≥0betheinitialtime. AssumetheinitialwealthisXt=Pt,sothatthe

consumptionstreamDisadmissible(otherwise,itsufficestoscaleit).Fixaconsumptionprocess
C,alsoadmissibleforthisinitialwealth.ThefirstgoalistoshowthatUt(C)≥Ut(D).Without
lossofgeneralityassumethat ∞

s=tEt[ms,tCs]=Xt.Indeed,
∞
s=tEt[ms,tCs]≤XtbyLemma

B.3. Thusiftheinequalityisstrictwemayincreasetheconsumption,andtherebyincreasethe
utility.
ThegoalnowistoshowthatUt(C)≤ Ut(D).From(34),thereexistsn≥ tsuchthat
∞
s=n+1Et[ms,tCs]≤ ,

∞
s=n+1Et[ms,tDs]≤ ,andhence

∞

s=n+1

Et[πs,t(Cs−Ds)]≤2πt,t.

Recallthedefinition(23),whichdefinesthemodifiedconsumptionprocessDC,n=
Ds :s≤n,
Cs :s>n.

ItthenfollowsfromLemmaB.3that

Etπn+1,tXn+1(D
C,n)=Et[πn+1,tXn+1(C)]=Xt−

n

s=t

Et[πs,tCs]=

∞

s=n+1

Et[πs,tCs]≤πt,t.

Wenextshowthat Ut(D
C,n)≤Ut(D)+K0,whereK0>0istheconstantfromLemmaB.5.

Clearly,weonlyneedtoconsiderthecase,whenUt(D
C,n)≥Ut(D).ThenfromtheconcavityofU

and

Ut(D
C,n)−Ut(D)≤Et

∂Ut(D)

∂Un+1
Un+1(D

C,n)−Un+1(D) ≤Et
∂Ut(D)

∂Un+1
Un+1(D

C,n)

=Etmn+1,tUn+1(D
C,n)≤Et[mn+1,tK0Xn+1]≤K0,

wherethethirdinequalityisfromLemmaB.5.Then

Ut(C)≤Ut(C)−

n

s=t

Et[πs,t(Cs−Ds)]−

∞

s=n+1

Et[πs,t(Cs−Ds)]

≤Ut(C)−
n

s=t

Et[πs,t(Cs−Ds)]+2πt,t

≤Ut(D
C,n)+2πt,t≤Ut(D)+(2πt,t+K0).
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wherethefirstinequalityholdsby(34),andthethirdfrom(27). Letting → 0itfollowsthat
Ut(C)≤Ut(D)andthusDmaximizestheutilityofconsumptionfromagiveninitialwealth.
WenowproceedinasimilarfashiontotheproofofTheorem4.1. Considerthealternative

strategyinwhichattimetthenumberofshareschangesfrom1to1+εonsomeFt-measurableevent
A⊂{|Pt|,<M,Dt>1/M},withM>0,whileatthenexttimestept+1theextrasharesnow
worthεPt+1areconsumedinadditiontoDt+1,andfortimess≥t+2theconsumptionremainsthe
sameasbeforeDs.Thatis,defineφ

ε
s=φs+ε1{s=t}∩AandC

ε
s=Ds−εPs1{s=t}∩A+εPs1{s=t+1}∩A,

andnotethatthisstrategycontinuestosatisfy(33).(Notethatεmaybeeitherpositiveor
negative.)Thechangeinexpectedutilityfrom(D,1)to(cε,φε)isthus

∆ε=E 1A (1−δ)(Dt−ε(Pt−Dt))
1−γ
θ (52)

+δ E (1−δ)(Dt+1+εPt+1)
1−γ
θ +δEt+1[Ut+2(D)

1−γ]
1
θ
θ

1
θ

θ
1−γ





−E




1A





(1−δ)D

1−γ
θ
t +δ Et (1−δ)D

1−γ
θ
t+1 +δEt+1[Ut+2(D)

1−γ]
1
θ

θ
1
θ






θ
1−γ




≤0

wherethelastinequalityreflectstheassumedoptimalityof(D,1). Foranyincreasing,concave
functionu(x,y),itholdsthat

ux(x2,y2)(x2−x1)+uy(x2,y2)(y2−y1)≤u(x2,y2)−u(x1,y1)≤ux(x1,y1)(x2−x1)+uy(x1,y1)(y2−y1)

whence,ontheeventA,

∂Ut
∂Ct
(D)ε(Pt−Dt)+εEt

∂Ut
∂Ct+1

(D)Pt+1 ≤Ut(D)−Ut(C
ε) (53)

≤
∂Ut
∂Ct
(Cε)ε(Pt−Dt)+εEt

∂Ut
∂Ct+1

(Cε)Pt+1 .

NotethatfromLemmaB.5onA,wealsohavethatPt+1≤M1
M
ν0
,andDt+1≥

1
M1
.Set

CMs =






1/(2M) :s=t,
1/(2M1) :s=t+1,
0 :s≥t+2

,fors≥t.

Assuming0<ε<1/(2M2),wehavethatDs,C
ε
s≥C

M
s foralls≥t.Thus,from(53)

|Ut(D)−Ut(C
ε)|≤

∂Ut
∂Ct
(CM)ε(Pt−Dt)+ ε

∂Ut
∂Ct+1

(CM)Et[Pt+1]

≤
∂Ut
∂Ct
(CM)εM+M1ε

∂Ut
∂Ct+1

(CM). (54)

Inviewof(54),itfollowsthattherespectiveincrementalratiosaredominatedbyanintegrable
randomvariable,uniformlyinε.Thus,dividing∆εin(52)byεandpassingtothelimitasε↓0,
Lebesgue’sdominatedconvergencetheoremyields

lim
ε↓0

∆ε

ε
=E 1A −

∂Ut(D)

∂Ct
(Pt−Dt)+

∂Ut(D)

∂Ct+1
Pt+1 ≤0
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Analogously,asε↑0itfollowsthatlimε↓0
∆ε

ε ≥0,whencethelimitmustbezero.Bythetower
propertyofconditionalexpectation,

E 1A −
∂Ut(D)

∂Ct
(Pt−Dt)+

∂Ut(D)

∂Ct+1
Pt+1 =0.

AsM ↑∞,theeventAspansanyelementofFt,andrecallingthedefinitionmt+1,tin(24),weget
thatthat

Pt=Dt+Et[mt+1,tPt+1] a.s..
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