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ABSTRACT
Topology optimization formulates the material distribution

problem as a non-convex optimization problem. Therefore, there
are many local minima exist in topology optimization problem
and gradient-based optimizers are employed to find one of them.
However, the optimization is prone to converging to a suboptimal
design when structural responses are very non-linear or multiple
design constraints are presented. This issue is more severe for
the topology optimization of geometric primitives. In this paper,
we investigate the use of tunneling in topology optimization to
alleviate this issue. The tunneling method used in this work is
a gradient-based deterministic method finds a better minimum
than the previous one in a sequential manner. The couple of tun-
neling method and topology optimization enables the discovery
of better designs. Numerical examples are provided to demon-
strate the effectiveness of proposed method.

INTRODUCTION
Topology optimization is an efficient tool to find the ma-

terial distribution within a design space for the best structural
performance. Since the pioneering development in [1], numer-
ous methods have been proposed to solve topology optimization
problems. We refer readers to [2, 3] for detailed reviews.

The density-based topology optimization method proposed
in [4, 5] is widespread in both industrial and academic appli-
cations. In this approach, the design space is discretized in a
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voxel-like manner using the elements of a finite element mesh.
A continuous density variable is allocated to each element, and
the mesh remains fixed throughout the optimization. The ele-
mental densities are the design variables in the optimization, and
they are used to weight the material stiffness within each element
via

C(ρi) = ρ
p
i Co (1)

where ρi is the density for element i and p is a penalization
power. This power law approach is the so-called solid isotropic
material with penalization (SIMP), and its goal is to penalize
intermediate values of the elemental densities so as to obtain a
mostly 0-1 (solid-void) design. This is necessary because, in
most cases, it is not possible to interpret and physically realize
intermediate densities.

If p = 1, the problem of minimum compliance subject to a
volume constraint is convex and has a unique solution [6]. How-
ever, extensive regions with intermediate densities will appear in
the final design and, as aforementioned, the resulting design will
not be in general manufacturable. If, on the other hand, p> 1, in-
termediate density values will render lower stiffness per amount
of material and therefore be structurally inefficient, and thus the
optimizer will favor a 0-1 design. However, the optimization
problem becomes non-convex. In the absence of some control
mechanism, it also lacks a global minimum, since the optimal
design would have an infinite number of holes. In the following
discussion, however, we assume that a length control mechanism
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such as, for example, filtering [7, 8], slope control [9] or perime-
ter control [10] is employed and thus a solution to the optimiza-
tion problem exists and is mesh-independent.

Gradient-based optimizers are employed to find a local op-
timum for this non-convex problem. Different optimizers may
render different local optima as shown in [11, 12]. Moreover, a
small change in the initial parameters of the problem may lead to
a different optimum (cf. [13]). In [14], a continuation method is
proposed to improve the convergence of the optimizer towards
the global optimum for compliance problems. The optimiza-
tion starts from an unpenalized (p = 1) convex problem, then
increases p by a small amount at every optimization iteration un-
til reaching the desired SIMP penalization value (e.g., p = 3).
Other continuation methods can be found in [13]. Although con-
tinuation methods may also work for non-compliance objective
problems, the effectiveness cannot be guaranteed [2]. Therefore,
a robust algorithm to locate the global optimum of topology op-
timization problems is desired.

Another important family of topology optimization tech-
niques, which we do not study in this work, is that of level set
methods (cf., [15]). In these techniques, the boundary of the de-
sign is represented by a level set of a function. The analysis
can be done by mapping this level set to a density as in density-
based methods, or by immersed-boundary techniques that are
able to represent a sharp boundary. Level set techniques provide
a sharper definition of the boundaries than density-based meth-
ods throughout the entire optimization. The way in which the
design is updated is by advancing the level set of the initial de-
sign, i.e., by modifying the boundaries of the initial design [15].
In some techniques, holes are introduced at certain locations as
dictated by an indicator function, such as the topological deriva-
tive. Although we do not cover these methods in this work, the
fact that they produce design changes by modifying the bound-
aries of the initial design presumably also makes them prone to
converging to suboptimal local minima. As such, we believe the
techniques we advance in this paper may also be extended to this
family of methods.

Convergence to undesirable or suboptimal local minima has
also been observed in geometry projection methods for topology
optimization with discrete geometric primitives [16–20]. In these
methods, structural shapes with a a high-level geometric descrip-
tion such as bars and plates are smoothly mapped onto a continu-
ous density field using the geometry projection technique formu-
lated in [21]. These techniques render designs that are distinctly
made of the prescribed geometric primitives, and they have been
successfully applied to compliance-based [16–18,20] and stress-
based topology optimization problems [19] with various design
constraints. However, as reported in these works, different ini-
tial designs (made of arbitrary layouts of primitives) or different
optimization parameters may lead to different local optima and
possibly a highly suboptimal design. This behavior is more se-
vere in stress-based optimization, as demonstrated in [19]. More-

over, the optimization can get more easily stuck in a poor lo-
cal minimum in the presence of multiple design constraints. A
related family of techniques belong to the moving morphable
components (MMC) method [22–25], whereby primitives such
as bars and plates are represented via implicit functions (which
the authors call the topological description functions), and then
mapped onto the analysis via a smoothed Heaviside approxima-
tion.

In this work, we investigate the use of a gradient-based
global optimization technique, the tunneling method, with topol-
ogy optimization problems in order to obtain better local minima.
Tunneling is a deterministic method to locate the global opti-
mum of an optimization problem [26–29]. This method was first
demonstrated for unconstrained optimization [26] and later ex-
tended to constrained optimization problems [27]. The tunneling
process finds a better local minimum than the previous one in a
sequential manner. Because an expensive finite element analysis
is required for every function evaluation, it is infeasible to ap-
ply non-gradient methods based on random processes for topol-
ogy optimization [30]. This includes random tunneling, which
follows a similar idea to the deterministic tunneling method, but
can only be applied to problems with inexpensive function evalu-
ations. Random tunneling has been used for topology optimiza-
tion of trusses with a few members [31]. On the contrary, the
deterministic tunneling method utilizes gradient information at
every stage, and thus requires less function evaluations. This
property makes it a good candidate for finding better local min-
ima using the aforementioned topology optimization techniques.
The tunneling method will be briefly introduced and summarized
in the next section.

THE TUNNELING METHOD
The tunneling method is a deterministic technique to find the

global optimum (if it exists) by cycles. In each cycle, there are
two phases. The first phase is an optimization phase to find a lo-
cal optimum. The second phase is a tunneling phase to find a new
starting point for the next optimization phase. Fig. 1 illustrates
these cycles for an unconstrained optimization problem. In this
example, the optimization phase renders the first local minimum
x?1 from the starting point xo

1. The subsequent tunneling phase
finds a starting point xo

2 6= x?1 for the next cycle with a function
value f (xo

2) = f (x?1) by solving the tunneling function

T (x, f (x?1)) = f (x)− f (x?1) = 0 (2)

This phase of the cycle ‘tunnels’ under irrelevant minima until it
finds the starting point xo

2 for the next optimization phase, which
leads to a new local minimum x?2 with a function value

f (x?2)≤ f (xo
2) (3)
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FIGURE 1: Schematic plot of the tunneling method applied to an
unconstrained optimization problem.

and consequently

f (x?2)≤ f (x?1) (4)

This property can be used to demonstrate the global descent
property of the tunneling method [26, 27]:

f (x?i )≤ f (x?i−1), i = 1,2, . . . ,k (5)

If the tunneling phase fails to find a solution of Eqn. (2) for
x?i after a certain number of attempts, one can assume that x?i
is the global optimum. An advantage of the tunneling method
is that during the tunneling phase, it always tries to find a local
optimum with a lower function value than the current one, and
it ignores all irrelevant local minima that have higher function
values regardless of how many there are. Thus, without knowing
every local minima, the global optimum can be approached by
finding local minima in a orderly fashion.

When solving the tunneling function (2) for xo 6= x?, it is
convenient to introduce a pole with strength λ to deflate the zero
at x? as this facilitates moving away from the current minimum.
The tunneling function is then redefined as:

T (x,x?,λ , f (x?)) :=
f (x)− f (x?)
‖ x−x? ‖2λ

(6)

Both tunneling functions in Eqns. (2) and (6) are plotted in Fig. 2
for comparison.

An adequate pole strength λ in Eqn. (6) can be found by
starting with λ = 1 and from the offset point x = x?+ εe, where
ε is a small number and e is an uniformly distributed random

x

x?1

f (x)− f (x?1)
T (x,x?1,λ , f (x?1))

xo
2

FIGURE 2: The effect of adding a pole at x?1 to the tunneling
function.

unitary vector; the offset avoids division by zero in Eqn. (6).
If T (x,x?,λ , f (x?)) > 0, λ has an adequate value; otherwise if
T (x,x?,λ , f (x?)) = 0, λ is increased by a small increment.

Tunneling Method for Constrained Optimization Prob-
lems

When applying the tunneling method to constrained opti-
mization problems, cf. Eqn. (7), the constraints also need to be
taken into account in the tunneling phase.

min
x

f (x)

subject to g(x)≤ 0
h(x) = 0

(7)

In [27], the active constraints are added to the tunneling function
and Newton’s method is used to find a root that is feasible. In
this work, we use the same non-linear programming optimizer
utilized in the optimization phase to solve the tunneling problem
in Eqn. (6). Therefore, the constraints are taken care of by the
optimizer. Moreover, to effectively get a starting point xo

i+1 for
the next optimization phase that is away from the current local
minimum x?i , we have to consider three different possibilities:

1. x?i is located inside the feasible region, and it is a solution to
the unconstrained optimization problem

min
x

f (x) (8)

2. x?i is located on the boundary the feasible region, and it is a
solution of Eqn. (8).
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3. x?i is located on the boundary the feasible region, but it is not
a solution of Eqn. (8), i.e., ∇ f (x?i ) 6= 000.

For cases 1 and 2, there is no x in a neighborhood of x?i
that satisfies f (x) = f (x?i ), therefore we can construct a pole on
x?i . For case 3, where x?i is a constrained minimum,there ex-
ist designs x in a neighborhood of x?i that satisfy f (x) ≤ f (x?i );
however they are located in the infeasible region. In this case, at-
tempts to make T ≤ 0 while reducing the infeasibility will drive
the iterates back to the constrained minimum x?i . In order to
avoid such behavior, a pole xc is added between x and x?i , and
the pole strength is computed accordingly for each x in every it-
eration. Therefore, the tunneling function for case 3 is defined
as

T (x,x?,λ , f (x?)) :=
f (x)− f (x?)
‖ x−xc ‖2λ

(9)

In the above equation,

xc := βx?i +(1−β )x (10)

where β ∈ [0,1]. The the pole strength λ is computed explicitly
as in [27] to avoid going back to x?i :

λ =
(x−xc)

2 | f (x)− f (x?i ) |
(11)

Movable Pole
In the tunneling phase, it is possible that iterates x get stuck

in a local optimum of the tunneling function where T > 0. This
behavior can be detected if only a small change of T occurs be-
tween successive iterates during the tunneling phase. When this
happens, a movable pole can be added to the tunneling func-
tion [26, 27]. The tunneling function is now modified as

T (x,x?,λ , f (x?)) :=
f (x)− f (x?)

‖ x−x? ‖2λ‖ x−xm ‖2η
(12)

where xm is the movable pole and xm is set to the last iterate
xk when slow convergence was detected. Whenever iterates get
stuck in another local minimum of the tunneling function, xm and
η are updated, hence the name movable. We refer readers to [26]
for the calculation of η .

For the tunneling function of case 3 in Eqn. (9), xm will be
also used to enforce the poles at xc. In the first iteration of tun-
neling, xm = x?i . In the subsequent iterations, we compute the
projection of ∇ f onto the line x−xc as follow:

‖ fxpro j ‖=‖ fx(x)−
| f T

x (x)(x−xc) |
‖ x−xc ‖2 · (x−xc) ‖ (13)

If ‖ fxpro j ‖≥ εc, then xm = x+ τc
fxpro j

‖ fxpro j‖ . εc is a small number
and τc ∈ [0,1]. If, on the other hand, ‖ fxpro j ‖< εc, we use bi-
section starting from βc = 1 to find xm = βcxc +(1−βc)x until
‖ x−xm ‖≤ τc.

Multiple Local Minima
When finding a new starting point xo

i+1 during the tunneling
phase, it is possible that xo

i+1 is a local optimum at the same level
of x?i (i.e. f (xo

i+1) = f (x?i )). To prevent x from going back to
previously found minima, the tunneling function is modified as

T (x) :=
f (x)− f (x?)

‖ x−xm ‖2η ∏
`
i=1 ‖ x−x?i ‖2λi

(14)

where there are ` local minima found at the same level. The
arguments of tunneling function T are omitted for clarity.

Stopping Criteria
If we cannot find a feasible x that satisfies T (x)≤ 0, this im-

plies the current local minimum x?i is the global optimum. How-
ever, there is no rigorous test for the existence of a solution to
the tunneling function. In [27], the following stopping criteria
are suggested: 1) failure to find a solution after a specified max-
imum number of initial points is reached, where the initial point
can be computed as x = x?i + εe, with e a random unitary vector;
and 2) failure to find a solution of the tunneling function after a
specified maximum number of function evaluations is reached.

The tunneling method is summarized by the flow chart in
Fig. 3.

PROBLEM SETUP
The general topology optimization problem is formulated as

min
x

f (u(x),x)
subject to
gi(u(x),x)≤ 0, i = 1, . . . ,m

x ≤ x ≤ x̄

(15)

where f is the objective function and gi is the ith constraint,
i = 1, . . . ,m .u is the displacement and x is the vector of de-
sign variables. xand x̄ are the lower and upper bounds of the de-
sign variables respectively. For density-based optimization with
SIMP method, the design variables x are the elemental densities.
For topology optimization with discrete geometric primitives, the
design variables x are the geometric parameters of the primitives
plus one size variable for each primitive. This size variable is
penalized in the same spirit of SIMP, and it is an indicator of
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FIGURE 3: Summary of the tunneling method.

whether a primitive is void or solid. This penalized size variable
greatly facilitates removing primitives from the design, and it is
a hallmark of the geometry projection method.

Unlike the work in [27], here we convert the root-finding
problem corresponding to the solution of the nonlinear tunneling
function with the following minimization problem:

argmin
x

T (u(x),x,x?)
subject to
gi(u(x),x)≤ 0, i = 1, . . . ,m

x ≤ x ≤ x̄

(16)

where T is the tunneling function and x? is the design obtained
from the previous optimization phase. By doing this, we can
apply the same optimizer for both the optimization and tunneling
phases. When the the minimum found by Eqn. (16) is larger than
zero, the tunneling fails and we restart the tunneling from a new
initial point.

In the numerical examples provided in the next section,
we limit the tunneling method to only perform two tunneling
steps due to the high computational expense to perform a com-
plete search for the global optimum. The optimization phase in
Eqn. (15) terminates when: 1) the absolute change in the ob-
jective function value between iterations k + 1 and k satisfies
| fk+1 − fk |≤ ε f (1+ | fk+1 |), where ε f is a specified tolerance;
or 2) a specified maximum number of iterations IO

max is reached.

The termination criteria for the tunneling phase in Eqn. (16) iare:
1) the tunneling function T ≤ 0 and | fk− f (x?) |> 0.01∗ | f (x?) |
while all constraints are satisfied; or 2) a specified maximum
number of iterations IT

max is reached.

EXAMPLES
We present several numerical examples to demonstrate the

proposed approach. For all examples, ε f = 0.00001 and IO
max =

200. In Eqn. (10), β=0.2. εc and τc are set to 0.1. To perform
the optimization in both phases, we employ the Method of Mov-
ing Asymptotes (MMA) in [32, 33]. However, other non-linear
programming algorithms such as sequential quadratic program-
ming could also be used. A move limit of 0.1 is enforced to each
MMA design update. We note that a different selection of the
foregoing parameters could have an effect on the efficiency of
the tunneling approach, however this effect is not investigated in
the current work and we defer such study to future work.

Michell Bridge with Density-Based Topology Optimiza-
tion

The first example corresponds to compliance minimization
subject to a volume constraint using density-based topology opti-
mization. The design domain, boundary conditions, loading and
initial density field are shown in Fig. 4. A point load F = 1 is
applied to the midpoint of the bottom edge of the design domain.
The design domain is meshed with 150×50 bilinear quadrilateral
elements of uniform size h = 1. Instead of using an uniform den-
sity field as initial design, which will generally lead to a good op-
timum for the compliance problem, we employ a uniformly dis-
tributed random density field, generated with MATLAB’s rng
function and a seed of 1. This will allow us to better demonstrate
effectiveness of the tunneling method. For this example, we em-

50

150

F

FIGURE 4: Configurations of Michell’s bridge problem and the
intial density field.

ploy the 88 lines Matlab code of [34] and replaced the optimizer
with MMA. The penalization power p in Eqn. (1) is set to 3 and
the volume fraction constraint limit is set to 0.3. We use a density
filter with size set to 2h.

We first let the optimization run without any stopping crite-
ria or tunneling. The design and compliance C for iterations 200
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(a) C = 23.234 (b) C = 23.039

FIGURE 5: Density-based designs for Michell bridge at itera-
tions 200 and 2000.

and 2000 are shown in Fig. 5. Comparing the results in Fig. 5,
we only see a 0.8% improvement in the compliance after an addi-
tional 1800 iterations, and no appreciable change in the topology
of the design. We observe that the optimization slowly decreases
the compliance by moving the boundary of the design once a
solid-void design has been found. This behavior is also reported
in [2,12]. The slow convergence indicates that the optimization is
attracted to a local optimum, which lies in a neighborhood where
the objective function becomes nearly flat.

Next, we apply tunneling to this problem and set the max-
imum number of iterations IT

max to 200 to allow for a careful
search during the tunneling phase. The iteration histories of the
objective and constraint during the optimization phases are plot-
ted in Fig. 6 along with the designs at the end of each optimiza-
tion phase. The magnitude of the objective function values and
the number of iterations for all phases are summarized in Tab. 1.
By comparing the designs at the end of the first and third opti-
mization phases, we observe that the tunneling technique allows
the optimization to move away from one local optimum to an-
other with smaller compliance. Moreover, the tunneling renders
a topological change of the suboptimal design from the first op-
timization phase, thus circumventing the issue of slow moving
boundaries. With a total of 479 iterations including the tunneling
phase, we found a design with a compliance of C = 22.938 that
is lower than the design in Fig. 5b with C = 23.039 obtained after
2000 iterations without tunneling.

Tunneling with Geometric Primitives
For the following examples, we apply the tunneling method

to topology optimization with discrete geometric primitives.
For simplicity, all examples emply the offset-surface 2-d bars
described in [16]. The vector of design variables is x =
{zT

1 ,z
T
2 , . . . ,z

T
Nq
}, where zi = [xio,xi f ,αi] is the vector of design

variables for bar i, xio, xi f are the endpoints of its medial axis,
and αi is its size variable. The width of all bars is fixed. We refer
the reader to [16, 19] for a detailed formulation of the geometry
projection for these primitives and the corresponding sensitiv-
ity analysis. Although we only provide examples with 2-d bar
problems, the tunneling method can be readily extended to the
topology optimization of other primitives such as the 3-d flat and
curved plates employed in [17, 18, 20].

For all of the following examples, the design domains are
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FIGURE 6: Convergence history for optimization phases. Opt. i
correponds to the design at the end of ith optimization phase.

discretized with uniform bilinear quadrilateral elements. The 2-
d bars we consider are made of a material that is homogeneous,
isotropic and linear elastic with Young’s modulus E = 100000
and Poisson’s ratio ν = 0.3. In the void region where bars are
not present, we impose a lower bound ρmin = 0.0001 on the pro-
jected density to circumvent an ill-posed analysis. The maximum
number of iterations IT

max is set to 100. For all examples with
geometric primitives, we implement our method in a C++ code
that uses the deal.II library [35–37] to perform the finite element
analysis.

Cantilever Beam. The first example consists of a can-
tilever beam with a downward tip load F = 10 applied on the
bottom right corner of the design domain as shown in Fig. 7.
Our past experience indicates that the optimization is prone to
converging to a suboptimal design when starting with an initial
design made of many bars. Therefore, in this example, the initial
design is seeded with 100 bars of fixed width w = 0.5. We use a
fixed 160×40 elements grid for the analysis. The objective func-
tion for this example is the structural compliance and we impose
a volume fraction constraint of 0.3.

The iteration histories of the objective and constraint during
the optimization phases are shown in Fig. 8. We observe that,
unlike the design obtained at the end of the first optimization
phase, the design obtained in the last optimization phase has di-
agonal members that fully connect the top and bottom portions
of the beam, which is expected in optimal 2-d frames [38]. In
terms of magnitude, the final design is 3.4% less compliant than
the design obtained at the end of the first optimization phase, as
shown in Tab. 1.

When the tunneling phase is performed, we always obtain a
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new starting point whose compliance is the same or lower than
that of the previous minimum. However, in Fig. 8 we note that
when we start a new optimization phase after a tunneling phase,
the compliance jumps to a large value before it starts decreasing
again. We suspect this is due to the particular optimization al-
gorithm we are employing (that is, the specific version of MMA
we are currently using), however more extensive numerical ex-
periments beyond the ones presented in this paper are required
to ascertain, and if needed alleviate, the origin of these jumps.
Nevertheless, we note that the optimization phase consistently
converges to a better local minimum than the previous one in a
few iterations.

F

20

5

0.0 0.5 1.0
FIGURE 7: Initial design, geometry, loads and boundary condi-
tions for the compliance-based topology optimization with dis-
crete bars of a cantilever beam. Bar color denotes the size vari-
able α .

2-d L-bracket. The second example consists of the stress
minimization subject to a volume fraction constraint of a 2-d L-
bracket. This is a widely used benchmark for stress-based topol-
ogy optimization. The design envelope, loading, boundary con-
ditions and initial design are shown in Fig. 9. The objective func-
tion for this example is the p-norm global stress measure given
by

σPN :=
(∫

Ω

(σV M(x)P dv
)1/P

(17)

where σV M is the von Mises stress, P is the p-norm power and Ω

is the design domain. We refer the reader to [19] for details on the
formulation and the design sensitivities. As discussed in [19], the
stress-based topology optimization with discrete bars converges
to a poor, suboptimal design if it starts from a disconnected ini-
tial design. The tunneling method proposed in this work can
alleviate this behavior by helping the optimization move away
from these poor minima. In this example, we use the same ini-
tial design made of disconnected bars used in [19] and shown in

Fig. 9. All bars have a fixed width of 5. For this example, a vol-
ume fraction constraint with constraint value of 0.35 is imposed.
To avoid an artificial stress concentration near the region where
the load is applied, the force F = 3 is distributed over six nodes
along the vertical edge. The design domain is meshed with uni-
form quadrilateral elements of size h = 1, which results in 6400
elements.

The result of the optimization is shown in Fig. 10. The first
optimization phase terminates at an undesired design. The subse-
quent tunneling and optimization phases improve the design and
we end up with a design that has almost half the p-norm stress
value in the structure than the first design with the same amount
of material.

However, it is worth noting that unlike the stress minimiza-
tion problem, the tunneling technique will not be of help for
the problem of minimizing volume subject to a stress constraint
when starting from an initial design with disconnected bars. The
later problem is too non-linear and far away from the feasible
region due to the lack of an uninterrupted load path between the
portion of the boundary where traction loads are applied and the
portion where Dirichlet boundary conditions are imposed. Thus,
it is very difficult for the optimizer to reach the feasible region in
the first place so that it can find a local minimum. In other words,
tunneling cannot do much if a feasible design cannot be found in
the first optimization phase.

2-d L-bracket with multiple design constraints.
The final example we present corresponds to minimization of
stress subject to multiple geometric constraints. As discussed
in [18], the optimization can get easily stuck in a poor local min-
imum in the presence of many geometric constraints. In this ex-
ample, we introduce two geometric constraints in addition to the
volume fraction constraint: 1) a placement constraint that en-
sures bars lie entirely within the design domain [20], which pre-
vents cuts to the primitives that may be difficult to manufacture;
2) a length constraint that limits the maximum length of the bars
and that can reflect, for example, commercial availability of stock
material. The initial design, mesh, boundary condition and load-
ing are the same as those of the previous example. The length
constraint is set to 40 so that the maximum length any bar can
have is 40. In a similar manner to the aggregation of stresses of
Eqn. (17), we use an aggregate function to impose a maximum
length on all bars via a single constraint in the optimization.

The iteration history of the optimization phases is plotted in
Fig. 11. The magnitude of the global stress measure and the num-
ber of iterations for all of the optimization and tunneling phases
are summarized in Tab. 1. Similar to the last example, a poor
suboptimal is attained after the initial optimization phase. After
the tunneling technique has taken effect, a much better design
is obtained at the end of the third optimization phase. The op-
timization is able to move bars away from the reentrant corner
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FIGURE 8: Iteration history during optimization phases of cantilever beam design. Opt. i corresponds to the design at the end of the i-th
optimization phase. Bar color denotes the size variable.
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0.0 0.5 1.0
FIGURE 9: Initial design, geometry, loads and boundary con-
ditions for the stress-based topology optimization with discrete
bars of a 2-d L-shape bracket. Color denotes the size variable α .

to avoid stress concentration. In the presence of the multiple de-
sign constraints, it takes more iterations to find a lower level in
the tunneling phases. Nonetheless, subsequent local minima are
found that successively improve the design while satisfying all
geometric constraints.

CONCLUSIONS
In this work, we propose a framework to couple tunneling

to topology optimization to find better minima. Through numer-

ical examples, we demonstrate that the proposed method allows
the optimization to move from a suboptimal design to a better
one in topology optimization problems, both with the density-
based method and the geometry projection method. For prob-
lems that are highly non-convex, such as the stress minimization
problem in geometry projection problems, the tunneling method
can significantly improve the design. We believe the tunneling
framework can be readily extended to other responses, design
parameterizations (e.g., the level set method), and nonlinear op-
timization methods.
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