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Recently, a variable stiffness robotic link based on the rotating beam concept has been de-
veloped for applications in physical human robot interaction. A substantial challenge for
design of such links is the modeling of stiffness behavior to permit stiffness control. In
this paper we present a general 3D model of the link stiffness using screw theory and
compliance matrices as well as a planar model for the lateral and torsional stiffness. Since
axial buckling is a major failure mode, we also derive an analytical model for predicting
axial buckling behavior. The analytical models are compared to the finite element method
and experimental results. One of the challenges involved in design and analysis of vari-
able stiffness links is the parasitic compliance of the mechanical elements that support
and drive the active portion of the mechanism. For the design analyzed in this paper, we
use the models we derive to identify the major sources of parasitic compliance and sug-

gest optimizations to minimize their effects. These results can be used as guidelines for
designing variable stiffness links.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Variable stiffness links (VSLs) such as [1-3,5-7] have been proposed for use in collaborative robots or corobots for safer
human-robot-interaction [8-11], and have many other potential uses such as in prosthetics and medical devices [12]. Just
as models of gear loads or pipe flow allow engineers to design those components more easily, the design of a VSL can be
significantly aided by the development of a simple yet descriptive model of its stiffness-changing behavior. Furthermore,
a model of how the device stiffness changes as a function of the control variable is a prerequisite for general impedance
control of a robot constructed from VSLs. Accordingly, it is valuable to be able to obtain an analytical model of VSL stiffness
as a function of the control variable.

Some VSLs can be modeled using techniques from compliant mechanisms, for which researchers have proposed a number
of methods. The psuedo-rigid-body model (PRBM) effectively lumps the distributed compliance of the mechanism into a
series of discrete compliant elements [13,14]. The parameters of this model are determined by optimization offline and
depend on loading and boundary conditions. An interesting extension of this method involves lumping the mass distribution
of the mechanism as well as the compliance to allow for efficient modeling of compliant mechanism dynamics [15]. This
is particularly useful for modeling impacts. The beam constraint model (BCM) alleviates the need for offline optimization
and improves modeling of the elastokinematic effect at the cost of increased mathematical complexity [16]. The chained
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Fig. 1. The planar model for lateral stiffness. a) Top down view of the cross-section. b) The cross-section shown with the relevant reference coordinate
frames. ¢) The coordinate frame of one beam. d) The orthogonal stiffness model used for each beam in the rotating reference frame.
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BCM (CBCM) extends the BCM formulation for use with larger deformations by breaking the beam flexure up into a small
number of shorter beams and applying the BCM to each of them [17,18]. These methods provide a basis for the analysis of
flexures subjected to large deflections but are usually limited to the planar case, however, there has been some effort to
extend the CBCM to spatial mechanisms [19], and the PRBM to 3D deformations [20].

The stiffness of spatial mechanisms can be efficiently analyzed through the use of screw-theory based compliance and
stiffness matrices [21,22]. Such an approach has been used in the past for compliant serial robots such as [23]. This method
only requires matrix algebra to compute and can be expressed analytically for most mechanisms, but is usually limited to
linearly approximating the stiffness associated with small deflections. However, in [24], the authors demonstrate the use of
screw-theory combined with non-linear modeling in their constraint-force-based (CBM) method for analysis of a complex
compliant mechanism constructed from wire elements.

In practice, the stiffness of VSLs has been modeled by a variety of ad-hoc methods. In [1], the stiffness model is con-
structed by modeling the cross-section geometry shape-morphing behavior and using the area moment of inertia to con-
struct a PRBM. In [5], the stiffness model is constructed by solving the beam equations and adding corrections to approxi-
mate the parasitic compliance of the rest of the structure. In both these works, correction terms were required to accurately
account for the compliance of ancillary parts of the structure apart from the beam flexure. The common result from these
studies is that when the VSL is in its higher stiffness mode, the compliance of the other passive components in series with
the active component begin to have substantial influence on the design stiffness. We refer to this as the “parasitic com-
pliance” effect. Comparison of these prior works suggests that a model of variable stiffness behavior for a VSL cannot be
accurate over a wide range of stiffness without accounting for parasitic compliance.

In this paper we analyze the mechanics of the novel rotating beam link (RBL) VSL introduced in our recent work [7]. The
link, shown in Fig. 1a), is designed to vary its stiffness as a function of a single input parameter - in this case, the angle
of rotation of each of the four individual beams about their central axes. Both hubs of the link include a small servomotor
connected to a series of gears that synchronize the rotations of the beams. The two servomotors are calibrated and synchro-
nized to ensure that the beams are held at the same angle at both ends. More information on the design of the link can be
found in our previous work [7].

1.1. Motivation

One of the main motivations for the design of VSLs is that they may be implemented in serial robotic manipulators
to improve the safety of physical human-robot-interaction (pHRI). Consider that the impedance of a serial link robot with
variable stiffness actuators (VSAs) can be planned along its kinematic trajectory [25,26]. Extending this concept to VSLs, and
defining the impedance trajectory based on a method for estimating and minimizing the risk of injury to a human during a
hypothetical impact [4,27], may allow for the planning of combined kinematic and impedance trajectories that minimize the
severity of a collision for the robot and its surroundings [28,29]. Detecting [30] or predicting [31] collisions and changing
stiffness reactively may also be possible for a sufficiently fast-acting VSL. Of course, informative models of a VSL design’s
behavior are a prerequisite for these applications.

Effectively exploiting the additional functionality of a VSL compared to a conventional fixed-stiffness link requires both
a high stiffness when positional accuracy or high-bandwidth actuation is required, and low stiffness when impact safety is
more critical or during contact with the environment. It follows that a useful VSL should have a sufficiently large stiffness
ratio. In addition, the time it takes to change stiffness, the mass of the device, and its complexity should be minimized. For
an overview and comparison of techniques for changing structural stiffness, the authors recommend [32] and [12]. Here we
will briefly review some existing VSL designs.
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A VSL based on morphing the link cross-section was introduced in [33]. The lateral stiffness of this design achieves a
stiffness ratio of 3.6. In [2], the authors vary the stiffness of a link by pneumatically pressurizing its structure. Their results
show a lateral stiffness ratio somewhere in the range of 1.5 to 2. Authors in [3] and [5] developed VSL solutions based on
varying the effective length of parallel guided beams, which achieved relatively high stiffness ratios of approximately 20 and
10 respectively. The electrostatic layer-jamming concept in [6] achieves a maximum stiffness ratio of approximately 7, albeit
the authors measure it differently than others. In a direct comparison, it is likely nearer to 3. While these top-line numbers
can give a rough comparison of the designs, each of these designs has a different length, cross-section, mass, and stiffness
range (rather than the ratio). Accordingly, a more in-depth comparison between them would be required to make a decision
on which design to use for a particular application. To that end, they may each be optimal for different applications.

1.2. Qverview

In the following sections, first, we will investigate analytical modeling of the design that accounts for the parasitic com-
pliance effect. We will outline one approach for stiffness derivation by using assumptions about constraints and then deriv-
ing the stiffness of the beams from first principles. Additionally, because buckling is a concern for most uses of the device,
we develop a model of axial buckling. Next, we present a finite element model for comprehensive simulation of the proto-
type which bridges gaps in our analytical approach. Finally, we will present results from extensive experimental testing on
the design regarding lateral stiffness, torsional stiffness and axial buckling.

2. Planar model of stiffness

The rotating beam link (RBL) concept studied in this article consists of four long slender beams as illustrated in Fig. 1a).
Each beam is actuated to rotate about its own central axis. Their rotation is synchronized to maintain reflective symmetry
across each of the principal axes of the cross-section. As a result, at its core, the RBL is a spatial compliant mechanism.

However, the three degrees of freedom of Hub 2 relative to Hub 1 in the X —Y plane (two translation, one rotation)
are of primary interest. The two translation degrees of freedom correspond to lateral loads on the link such as impacts or
payloads. The rotation degree of freedom corresponds to torsional loads around the central Z axis of the link such as impacts
or payloads on links farther down the chain of the serial robot. Because these degrees of freedom can be modeled using a
planar derivation, we refer to these as “planar models.”

2.1. Planar lateral stiffness derivation

Our first goal is to derive an analytical model of lateral stiffness as a function of the changing beam angles. Lateral
stiffness is of primary interest because of the role it plays in determining impact dynamics [8,11] and deflection under load.
For the link in this study, the lateral direction will usually lie in the X —Y plane. However, for simplicity, we assume that the
X axis is the lateral direction of interest. Fig. 1(b-d) illustrates the reference frames used for this derivation, and indicates
the two stiffness components that describe our assumed lateral-stiffness model of each beam: k,; and k,, ;.

First, assume that each beam indexed by i has a diagonal stiffness matrix in its rotating x — y frame

kx.i 0 .
[ny.i]: 0 k. wherei=1,...,4. )

The individual components k, ; and k, ; represent the lateral stiffness associated with a transverse tip-deflection of the beam
in the direction of the short and long sides of its cross-section respectively.

Next, assume that the transformation between the frame x’ —y’ and x —y is given by the rotation angle #; and the 2D
rotation matrix

(RO = [c?sgi ) Sing‘}. @)
sinf;  cos#;
Then, defining
Foyi= |:Fx"i] and 8y = [5”}, (3)
Fi Sy
it follows that
Fyy.i = [R(6)][Kiy.i | [R(E)]T 8y (4)

Here, F ; and F, ; are the force components applied to the ith beam, 0; is the beam rotation angle, and d,, and J, are the
deflection components, which are equivalent for all beams given they are fixed to the same rigid body.
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Therefore, the stiffness matrix of the link for planar lateral forces can be written:

kx.i + ky.i kx‘i — ky,i
2 T 2

cos (26;) (ky i — ky.;) sin (26;)

[Key.i] = RED1[Key i ]IRE)T = (5)

kx.l' + ky.i + ky_,' — kx.f

(kx_f — ky‘,') sin (29,) 5 3

cos (26;)

Our first observation about this result is that all components are periodic on the interval . This is due to the fact
that the beams themselves have rotational symmetry with period 7. The second observation about this matrix is that the
components have the same structure as the equations for rotating the reference coordinate system of a second moment of
inertia [34]. This follows from the fact that the stiffness for a deflection that does not lie along its principal axes can still be
computed from 1D classical beam theory, however, the second moment of inertia must be computed by rotating its axis to
align with the axis of bending.

So far, we have determined the stiffness matrix of one of the four individual beams that makes up the main structure
of the link. To determine the stiffness of the entire link we have to sum the stiffness matrices for each of the four beams.
This follows from the fact that the beams are assembled in parallel which one another. However, because the rotations of
the beams in this design are synchronized to ensure mirror symmetry across both the X and Y axes, two of the beams have
a rotation angle —6; - in the opposite direction. Numbering according to the quadrant the beam is in, in the X —Y frame,
we let 8y =0, 8, = -0, 83 =0, and 64 = —6. As a result, the stiffness of the entire link can be written:

4

[Kxy] = Z [Kx’y’.i(ei)]- (6)

i=1
The result of computing this sum is the following matrix:

ka_ierZkyj n 2 ki ; 2 kyi cos (26)

(kx_ 13 + Ky 24 — Ky 13 — Ky 24) sin (26)

K —
] St Tk Yk Tk
2 + 2

(kx 13 + Ky, 24 — ky 13 — Ky 24) 5in (260) cos (26)
where for clarity we have denoted k, j; = Ky ; + K, j and ky ;; =k, ; + &, ;.

We can make a few more observations of the behavior of the link based on the structure of this matrix. First, its sinu-
soidal components retain the same period as its constituent matrices. Second, in the case that ky 13 + Ky 24 — Ky 13 — Ky 24 =
0, the matrix loses its off-diagonal coupling terms and becomes a 2D diagonal stiffness matrix. This condition occurs if k, ;
are equal and all k;; are equal. This fact arises because the sin(26) terms of the i =1 and i = 3 matrices cancel out the
sin (—26) terms from the i = 2 and i = 4 matrices. In other words, one insight that we can gain from this model is that the
choice of reflection-symmetric cross-section results in a simplified, diagonal, stiffness matrix.

However, one limitation discovered during testing is that application of a pure lateral load results in buckling of some of
the beams. The buckling that occurs in this load configuration is due to a combination of the elastic instability resulting from
a transverse force across a beam with a high aspect ratio, a moment applied across a beam with a high aspect ratio, and
the high internal axial compressive force resulting from bending across the original (pre-buckling) neutral axis. Fig. 2 gives
an illustration of the buckling behavior during lateral displacement in the direction of the X axis. In Fig. 2b) the unloaded
link has relatively straight beams. After the load is applied in the +X direction, the two beams on the +X side of the link
bow outward indicating a buckling mode with a wavelength approximately equal to the length of the beam. Fig. 2¢) shows
how this behavior results in a rotation of Hub 2 and a departure from fixed-guided end conditions.

As a result of this buckling behavior, k, ; and k,; need to be determined on a case by case basis. This process requires
special considerations that will be described later in Section 2.3 and Section 2.4.

2.2. Planar torsional stiffness derivation

The torsional stiffness of the link may be relevant to forces during impacts or the load-carrying capacity of a multi-link
robot in some situations. Therefore, modeling the RBL's torsional stiffness is of significant interest as well. The torsional
stiffness is defined to be the rate of change of the moment My applied to the distal hub (Hub 2) relative to the angular
displacement ¢z of Hub 2 relative to Hub 1.

The hubs are orders of magnitude stiffer than the beam components as a result of their geometry; consequently, we
assume that the hubs are effectively rigid bodies. Therefore, the four beams carry the load in parallel and the deflections at
the tip of each beam are equivalent. Accordingly, for a small twist of Hub 2 relative to Hub 1 about the Z axis denoted ¢z
in Fig. 3, each beam has an equivalent twist angle ¢ = ¢z (the lower case z indicates that the rotation occurs around the
beam-centered frame) in addition to a small linear deflection d resulting from the twist. The central z axes of the beams
have a displacement r from the central Z axis of the link. The small deflection at the beam d is perpendicular to r on
account of the fact that it is the tangent to the arc traced out when the center of the beam rotates about Z.
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a) Experiment: Top View Schematic c) Model Schematic
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' 1 #=0° 6 = 90°
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Fixed Translation constrained in Y

All rotation constrained

Experiment: Side View

M Rigid Body ® Effective Torsion Spring
[[] Classical Beam : Neglected Buckled Beam

Loaded

Fig. 2. When subjected to a lateral load in the +X direction, the beams on the +X side of the link buckle outward while the beams on the —X side do not.
a) The top-view schematic of the link during a lateral load experiment using a depiction of the beam as it is modeled throughout the paper: consisting of
shafts and blocks at either end of a central beam sheet, and with equivalent torsion springs on each end that rotate along with the beams and account for
the incidental rotational compliance where the shafts are mounted into their bearings in the hub. b) Experimental observations of the buckling effect in
photos before and during lateral loading. c) We illustrate that this process occurs only as the beam rotation angle causes the link to stiffen and the lateral
load is aligned with the longer side of the beam sheets. The lateral buckling results in a rotation of the hub tip, «, and approximately cantilever boundary
conditions for the remaining unbuckled beams,

a)

Fig. 3. Coordinate frames and vectors for the planar torsional stiffness model. a) The link cross-section. b) An individual beam.

We can express both the moment-arm r and the small displacement d for each beam as:

and
cos (£i+ z)
2 4
(9)

. T, I
sin (5[4— Z)

where the scalar r is the diagonal distance from the center of the link to the center of the beams.

d;=r¢;
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Fig. 4. Illustration of the model used to derive the stiffness of each beam. The beam can be divided into five sections with three sets of material and
cross-section properties for n =1, 2, 3. In addition, effective torsion springs on either end represent the slight bearing compliance.

Now, we can express the total reaction moment as the sum across all beams:

4
Mz =" (ks iz + €] (ri x [R(0)][ Kqyi | [R(6)]7d)) (10)

i=1
where k' is the torsional stiffness of each beam and e5 is the +Z unit vector [0,0, 1]7. In this case, [R(¢;)] is the 3D rotation
matrix about z:

cost; —sinf; 0
[R(6;)] = | sin6; cos6; 0. (11)
0 0 1
The result is the equation for the reaction torque:
4
by i+l i kyi—lkei .
M; = ; (fczﬁrz( 3 e 5 sm(29)))¢z (12)
and the overall link torsional stiffness:
dM; o keithyi  kyi—kei
Ky = _dqu = ; (Kz,i+r2( X! 5 SR (L 5 *!sin (29))) (13)

Just as in Eq. (7) in the previous section, ky j, ky ;, and & ; remain unknown and will be defined next in Section 2.3.
2.3. Determining the beam stiffness components ky, ky, «;

Up to this point, we have been using ky, ky, and «. as stand-ins for the lateral-x, lateral-y, and torsional stiffness of a
beam. In this section, we will derive their values by applying classical beam theory to the piecewise model of the beam
shown in Fig. 4.

Specifically, for kx and ky, we assume that the flexural rigidity, EI is a piecewise function of z, the axis along the length
of the beam. The torsion springs «g are included by assuming they define a linear relationship between the local bending
moment and the local beam slope w/(z).

Consider a lateral load in the +X direction of the link as shown in Fig. 2. In order to match observed behavior of the
prototype to the theory, we need to consider two sets of boundary conditions. In the first case, all four beams share the
applied load equally and have equal deflection. The distal hub (Hub 2) does not rotate around the Y axis. As a result, the
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beam tips translate in the +X direction with fixed-guided boundary conditions (FG). In the second case, the two beams on
the +X half of the beam experience compressive forces with high leverage relative to the lateral force. As a result, they
buckle and their stiffness decreases dramatically, so much so that it can be considered negligible compared to the stiffness
of the remaining unbuckled beams. In this case, the distal hub (Hub 2) does undergo rotation around the Y axis. We consider
the boundary conditions for the remaining two unbuckled beams to be cantilever (CL).

Considering the case of a beam with a force at the tip under fixed-guided boundary conditions, and applying classical
Euler-Bernoulli beam theory yields:

k*lg—( 2k )*’+_ 12E31 ]+_( 12E,h, )*1__ 12,1 1+_( 12E )*’__( 1261y )*’
O\ + Ly +15)2 L3 (Ly +L5)? L (Ly + Ly +L3)? (Ly +15)3
(14)

Considering the case of a beam a force at the tip under cantilever boundary conditions, and applying classical Euler-
Bernoulli beam theory yields:

) K -1 12E, I, -
W:(—————J n
(L1 + Ly +13)? Ly (4L5 + 9Ly (Ly + L3) + 6(Ly + L3)?)

. 12E,1 ‘147 12E505 -! sy
L (312 + 413 + 9L,L5 + 612 + 6L, (L, + L5)) L3(412 + 3(Ly + L) (Ly + Ly + 2L3))

Here, ky is the equivalent torsion spring stiffness, Ej, is the elastic modulus I, is the second moment of area, L, is the length,
and n is the index corresponding to sections of the beam as indicated in Fig. 4.

Notably, Eq. (14) has a simple sum of components structure as a result of the symmetry of cantilever boundary condi-
tions. Eq. (15), on the other hand, cannot be simplified and broken down similarly.

The torsional stiffness of a beam, «; can be determined with less effort. Consider each component of the beam as a
torsion spring. The five components (the equivalent torsion springs do not have any compliance for torsion around the z
axis) are in series and therefore their equivalent stiffness can be determined by the inverse of the sum of inverses - or
more appropriately, their compliance is simply the sum of components:

' = i(cﬂ")q. (16)

n=1

Where G, is the shear modulus, J, is the torsional stiffness constant, L, is the length, and n is the index indicating the beam
segment. For the circular cross-section of the shafts, the torsional stiffness constant is equivalent to the polar moment of
inertia for circular cross-sections:

T
= —di. 17
f1 32 1 ( )
For the rectangular cross-section of the beams (n = 3) and blocks (n = 2):

16 b b2
Jn = anb? (? - 3.36a—"(1 — ]224)) fora, = by, n = 2or3; where 2a; = ws, 2bs = (3; 2a; = wy, 2by = wy,
n n

(18)

based on the relation in [35].
2.4. Analytical equations for lateral and torsional stiffness

Finally, let us combine the results from the previous three sections to develop analytical models of the lateral and tor-
sional stiffness of the RBL in question as functions of the rotating link beam angle, 6.

First, we reference Eqs. (7), (14), and (15) to define the lateral stiffness for the link while subjected to a load in the +X
direction applied to the tip of the RBL. Let I, , be the second moment of area of the nth section of the beam taken about
the y axis of the beam. Let Iy, be the same for the x axis.

Now, let
ky g = kpc with I, =1, , for n=1,2,3, (19)
ky rg = kpg with Iy =1L for n=1,2,3, (20)
kycr =k with In=ILn for n=1,2,3, (21)

define the stiffness of a beam in each direction under either fixed guided (FG) or cantilever (CL) boundary conditions.
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When the beams are in their compliant direction relative to the X axis, that is, when # = 0, no buckling occurs under
lateral loading. That is, we consider

kx_]' = kx FG Yi. (22]

When the beams are in their stiffest direction relative to the X axis, that is, when 6 = /2, the two beams on the +X
side of the link buckle and can be assumed to contribute no support. As a result, we assume the two beams on the —X side
of the link support the entire load themselves but under cantilever boundary conditions. That is we consider,

l'{y=1 =0, ky_4 =0, (23)
and
ky_z = ky, CL» ky‘4 = kyy CL- (24)

Substituting these values into Eq. (7) gives the model for lateral stiffness of the RBL first reported in [7] as:

d
kx (8) = % = (2kx.rc + kycr) + (2ky rc — kycr) cos (20). (25)

Second, we define a model of the torsional stiffness of the link while subjected to a moment about the central Z axis of
the link. The buckling effect that it is necessary to account for in the lateral stiffness model is not present during torsion.
As a result, for torsional stiffness, we set

kx_]' = kx FG» k_V,i = kyipg, kz_f =K VI (26)
Substituting Eq. (26) into Eq. (13) gives the model for torsional stiffness of the RBL as:
dM .
Kz(e) = F¢ZZ =4k, + 2]‘2(({(,(‘1:5 + ky.FG) — (kx.FG — ky,FG) Sin (26)) (27)

3. Screw-theory for spatial stiffness matrices
3.1. Review of screw theory and compliance matrices

In the previous section, we derived two main results: Eq. (25) for the lateral stiffness of the link for a deflection in the
positive X direction and Eq. (27) for the torsional stiffness of the link for a rotational displacement in the Z axis (positive or
negative). However, in order to obtain theses results, we had to solve a series of five loosely coupled fourth order differential
equations with a total of six sets of boundary conditions between them.

The screw-theory derivation method can help us avoid this step and provide a stiffness matrix that is 6 x 6, i.e.: one
that includes all six degrees of freedom [21,22].

A twist, a vector quantity expressing a generalized deflection in a specific frame, can be written:

T = [¢x. Py. ¢z Ox. Oy, 67]7 (28)

where ¢x, ¢y, and ¢; are the angular deflections in the reference frame, and dx, 8y, and §; are the linear deflections in the
reference frame.
A wrench, a vector quantity expressing generalized force in a specific frame, can also be written:

W = [F, F, E, My, My, M,]" (29)
where Fy, Fy, and F; are forces in the reference frame and My, My, and M, are moments in the reference frame.
Accordingly, a stiffness matrix [K] transforms an input twist into the reaction wrench, and a compliance matrix [C] trans-
forms an input wrench into the corresponding deflection such that [K] and [C] are inverses. In summary:
W=[K|]T, T=[C]W, [C]= [K]’l. (30)

Note that under this definition, compliance and stiffness matrices are not diagonally symmetric due to the definitions of
deformation twists and load wrenches.

The coordinate transformation of a compliance or stiffness matrix from one reference frame to the other is conducted
via the so-called adjoint matrix [Ad]| written as

R O

DR R (31)

[Ad] =

The matrix [R] € SO(3) is the 3 x 3 rotation matrix and [D] is the skew-symmetric matrix for the translation vector d =
(dy,dy. ds)T,

0 —dy dy
[D] = | ds 0 —di], (32)
—dy d 0
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Effective torsional springs of bearing compliance
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Fig. 5. A schematic of the rotating beam link indicating the topology of the design as assumed in the derivation of the compliance matrices for a wrench
W and resulting twist T in the frame of Hub 2. The compliance matrices of each individual component can be combined to get the compliance matrix for
a beam: [Cg].
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For convenience, let us define the coordinate transformation operator, Tr, on a stiffness or compliance matrix [X] as
[X]=TrX.R.d)= [Ad][X][Ad]". (33)

For serially connected mechanisms - in which each element has the same applied load when written in the same refer-
ence frame - the compliance matrix of the whole is the sum of the compliance matrices of the parts. Predictably, for parallel
mechanisms - in which each element has the same deflection when expressed in the same reference frame - the stiffness
matrix of the whole is the sum of the stiffness matrices of the parts. See [22] for more details on algebra and operations of
compliance and stiffness matrices.

In the following sections, we will apply these operations and algebra to derive the equivalent compliance/stiffness of a
general RBL.

3.2. Compliance matrix derivation

To derive the compliance matrix of the rotating beam link, we assume that the RBL has the topology shown in Fig. 5. In
this topology, the four identical rotating beams are connected in parallel between the two hubs. Each beam is a serial chain
consisting of two effective torsion springs, two shafts, two beam clamp blocks and a beam sheet that all rotate together
about their central axis by 6. To develop an accurate model, we must consider the contribution of compliance of all these
components to the final compliance matrix of the entire RBL.

In order to obtain the compliance matrix for the entire RBL, first we derive the compliance matrix of a single beam
according to a local reference frame placed at its tip. Then we express the stiffness matrix of each beam in a reference
frame at the center of the tip of the RBL, and sum them to obtain the total stiffness matrix which is inverted to obtain the
compliance matrix.

For a reference frame at the tip of an extruded solid with a constant cross-section and indexed by n=1, 2, 3, the
compliance matrix is written:

]2 L
0 n 0 — 0 0
2Enlx‘n En"}(,n
12 L,
0 0 0 _ 0
2Enlyn Enlyn
L
0 0 0 0 0 —_—
Culh
Gl=| L p (34)
n 0 0 0 n 0
T 2Enlyn
12 2
° L % EL,  ° 0
L
0 0 0 0 0
AnEn
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Table 1
Compliance matrices of individual components and their
corresponding coordinate transformation for each serial

chain.
i Compliance  Translation Rotation
Matrix [(] ¢ R
1[Gl (L1 + Lz + Ls)k 1
2 (G —(Li/2+ L +L3)k 1]
3 1G] —(Li2+ L2+ 1)k (1]
4 |G] —(L1/2 + L2/2)k 1]
5 1G] —(Li/2)k N
6 [G] 0 1]
7 (Gl 0 N

where Ly is the length, A, is the cross-sectional area, Iy and Iy, are the second moments of area, J, is the torsional stiffness
constant, Ep is the elastic modulus, and G, is the modulus of rigidity. Therefore, the shafts, blocks and sheets shown in
Fig. 4 can each be approximated with their own compliance matrices [C;], [C2], and [G3].

The beams are fixed to each hub with a certain amount of compliance due to give in the mounting components such
as the ball bearings. The flexibility in the root of each beam can be approximately modeled as two orthogonal equivalent
torsion springs and the compliance matrix:

— ‘l -—

0O 0 0 — 0 0
KR

1
0 0 O 0 — 0

KR

[GRl=10 0 O 0 0 0 (35)

0 0 O 0 0 0
0 0 O 0 0 0
0 0 0 0 0 0

Here we neglected the compliance in all directions (i.e. making them ideally rigid) except for rotation due to moments
about the X and Y axes. Essentially, we model the joint as a universal joint with torsion springs on each hinge, each with
the torsional spring rate x . The value of xz was determined by experimentally measuring the rotational stiffness of each
bearing in several directions and computing the mean.

We combine the seven components that make up a beam modeled as shown in Figs. 4 and 5 to obtain the total compli-
ance of each individual beam:

7
[Co] = S Tr(C.[R]. ) (36)
i=1

where the compliance matrix |(] |, translation vector t; and rotation matrix [R;] are listed in Table 1.

Next, we rotate the beams about each of their respective centers by the angle 6 and translate their reference frames
by d; to the common reference frame at the center of Hub 2 of the RBL. Following these coordinate transformations, the
compliance matrix for each of the four beams can be written as:

[Coi ()] = Tr(TrCs. [R(6)].0).1,—-d;), j=1.3 (37)
[Co;(6)] = Tr(Tr(Co. [R:(~6)],0).1.—d;). j=2. 4 (38)
where
w T, T L [T . T T
dj:ﬁ[cos(fJ_Z)’ sm(jj—z), O] . (39)

Since the four beams are connected in parallel, the stiffness of the entire RBL link can be calculated as the sum of the
stiffness matrices of all four beams:

4

[Krar (0)] =Y [Ca.i ()]

i=1

- (40)

And the compliance matrix of the entire RBL can be obtained by simply inverting the stiffness matrix, i.e.

[Crar(9)] = [Krer(6)] . (41)
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Table 2
Properties of the physical prototype .

Total Mass 1.27 kg Dimensions 4087 mm x 100 mm x 100 mm
Shaft Diameter (d;) 4.5 mm Block Width (w3) 20 mm

Beam Width (ws) 25 mm Beam Thickness (t3) 0.8 mm

Beam Spacing (h) 65 mm Beam Length (L3) 282 mm

Table 3
Numerical values of key parameters used in theoretical modeling.
n  E, (MPa) Gp (MPa) ], (mm%) Iyn (mm*) Iy, (mm*) Ly (mm)
1 2.00E5 7.6923E4  4.02578E1 2.013E1 2.013E1 8.700
2 6.90E4 2.5040E4  2.2533E4 1.333E4 1.333E4 4.000E1
3 6.90E4 2.5040E4  4.181 1.042E3 1.067 2.820E2
KR 1.783E5 N-mm/rad Kxre 3.880e-2E-2 N/mm
kyct 1.156 N/mm kyrc 2.557 N/mm
Kz 3.841E2 N-mm/rad

If we define the external load applied to Hub 2 by wrench W and deformation of Hub 2 by twist T as shown in Fig. 5,
we have

W = [Kiar(6)]T, or T = [Crar(9)]W, (42)

where all matrices and screws are defined in the coordinate frame placed at the center of Hub 2.
4. Discussion of compliance matrices

Now let us discuss the structure of the compliance matrix of the entire RBL [Crg(€)] and its response to the beam
rotation angle 6.

When 6 = 0°, the compliance matrix has the form:

0 1.2 0 C1a 0 0
Cy.1 0 0 0 Cas 0
Gaoyy=| 00000 as (43)
C41 0 0 0 C45 0
0 C5.2 0 Cs5.4 0 0
0 0 3 0O 0 0|

Numerical values for all elements can be calculated by substituting all geometric dimensions and material properties from
Tables 2 to 3. An exhaustive list of the non-zero matrix components is included in Appendix A. The most important ele-
ment is perhaps the lateral compliance in the X-axis, ¢4 ; = 6.4408 mm/N, or the corresponding stiffness ky (0°) = 1/c4; =
0.15526 N/mm, which matches exactly with Eq. (25) derived in our previous work [7].

An important behavior of this structure is the buckling it undergoes in lateral loading at beam angles near 90°. A different
form of buckling — axial compressive buckling - will be discussed in detail in the next subsection. To consider buckling in
our compliance matrices, we simply neglect the stiffness of the buckled beams. For instance, when & = 90°, the resulting
compliance matrix is written as:

0 12 0 C14 0 0
€21 0 Co3 0 Cas5 0
(Crar (90°)] = :,1 o :3 g st o (44)
0 2 0 4 0 56
| C6.1 0 C6.3 0 C6.5 0 |

Again, numerical values for all elements in [Cgg(90°)] can be calculated by substituting all model parameters as they are
listed in Appendix A. Notably, the lateral stiffness for this case is kx(90°) = 1/c41 = 2.3084 N/mm, which closely matches
our previously derived model, Eq. (25). Note this result predicts that the maximum ratio for lateral stiffness is

kx(90%) _

YVoor = ———— ~ 14.9.

45
kx (0°) (45)
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This is the “theoretical maximum stiffness ratio” of the prototype RBL predicted by our analytical model. Later, we will verify
the model by comparing this ratio with the experimental test results.

Use of compliance matrices eliminates the need for solving the elementary beam theory equations and makes predictions
for multi-axis loading. However, with this technique, it is more difficult to incorporate models of buckling, and it is still a
theoretical challenge to merge the matrices produced for each buckled configuration for each type of load. For this reason,
when we compare analytical and experimental stiffness as a function of beam angle, we refer back to the simpler analytical
models Eqgs. (25) and (27). Nevertheless, for designs without significant buckling effects, this compliance matrix modeling
approach can be a powerful tool for analyzing variable stiffness links.

5. Axial compressive buckling

The RBL consists of four slender beams that, in the presence of a compressive load in the —Z direction, are susceptible
to axial buckling. Accordingly, it would be useful to have a model of the critical force at which this form of buckling occurs
in the link. The axial compressive buckling considered in this section is distinct from the buckling resulting from laterally
applied loads described in Section 2.1.

The mechanics of the buckling of a beam in compression are described by a fourth-order ordinary differential equation
[36]. We assume no external lateral load is present. This ODE is solved by specifying four boundary conditions: two at each
end. The critical buckling force of the beam corresponds to the lowest value for the compressive force which gives a non-
trivial solution of this ODE. As a result, the critical buckling force is a function of the geometry of the beam, the beam
material’s elastic modulus, and the type of boundary conditions.

As a link in a serial manipulator arm, the deflection of Hub 2 is unconstrained in either rotation or translation. However,
for pure axial loading, the symmetry of the link prevents any rotation of Hub 2 relative to Hub 1. Under these conditions,
a simple approximation of the critical buckling force of the link can be constructed by considering just one of the four
individual rotating beams and examining the following three cases:

Case 1: Hub 2 of the link translates along the X axis while buckling. This behavior is equivalent to fixed-free (fixed
rotation, free translation) buckling boundary conditions in the X or x” axis direction for each of the individual beams
within the link. Here, the effective second moment of inertia is a function of the angle of rotation of the beams. For
an example of this case, consider 8 = 0.

JTZE Iy (9)
PT(0) = — 57— (48)
3
Case 2: Instead of translating along the X or Y axes, Hub 2 can instead stay fixed. In this case, the boundary conditions for
the individual beams are fixed-fixed, and the beams will always buckle along their local beam-fixed x axis because

I3 « Iy3. For this reason, the angle of the beams does not affect the critical buckling force of this case. For an

example of this case, consider # = 45° or ) = —45°,
7T2E3] 3
Pfr —4 Lg Y . (47]

Case 3: The last case is identical to the first except that Hub 2 translates in the Y or ¥ axis instead, and the effective
second moment of area is adjusted accordingly. For an example of this case, consider £ = 90°,

T2E3ly 3(6)

Psr(@) = i (48)
3
According to Geere [34],
I I Ly —1
Ly 5(0) = "'342_ ¥3 23703 o5(26). (49)
and, similarly,
lea(8) = 22003 b o5 (06, (50)

These results allow for a simple analytical model of buckling that predicts the occurrence of buckling in the beam sheet
by setting the critical buckling force for the link to be the sum of the minimum buckling force of all four beams:

PY(0) = 4min ({P{"(0), P". P () }). (51)

Here, the coefficient “4” means that we assume the buckling conditions for all four beams are identical due to the structural
symmetry and associated mechanical constraints.

Numerical values for the critical buckling force can be calculated by substituting geometric dimensions and material
properties from Tables 2 to 3. The results for the two major angles of interest are: P“(0°) ~ 36.5 N, P(45°) ~ 146.2 N.
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Fig. 6. Visualization of the relative change in lateral stiffness when modifying certain modeling assumptions for both 6 =0° and # = 90°. A value of 1
indicates no change. A value of 1.1 indicates a 10% increase in stiffness.

6. Discussion of parasitic compliance

The change in stiffness of the RBL design is intended to come solely from the rotating beam sheets. Their rotating cross-
section causes the change in lateral stiffness of the entire link. As a result, it might be tempting to only model their con-
tribution to the compliance of the link. In certain designs, this may be adequate. However, as the beam sheets are rotated
into their stiffer configuration, the compliance of the other components of the link - those that are in series with the beam
sheets - begin to contribute significantly to the overall compliance. This is a natural consequence of series compliance.

Without taking these other sources of compliance into account, a stiffness model for a VSL can drastically overestimate
its stiffness — especially for the stiffer configurations of the mechanism. We call this extra compliance “parasitic compliance”
because it reduces the magnitude of the change in stiffness by disproportionately reducing the stiffness of the stiffer con-
figurations of the link, and because the sources of the extra compliance are inherent to the design. This same effect is the
reason that additional compliance terms had to be introduced in [1] and [5] to match the analytical models to experimental
results.

The three main sources of parasitic compliance in the lateral stiffness model for the RBL are

1. The rotational compliance in the bearings that anchor each end of the shafts to the hubs.
2. The flexibility of the shafts.
3. The flexibility of the blocks that join the sheets to the shafts.

Fig. 6 shows how different assumptions about the rigidity and presence of components of the model change the analytical
lateral stiffness. The lateral stiffness in the soft and stiff modes can be calculated by evaluating 1/cy; in Egs. (43) and
(44) based on the properties in Tables 2 and 3. However, in order to demonstrate the effects of certain assumptions on the
model, we make certain substitutions. For example, assuming that the bearing stiffness kg tends to oo, barely has any effect
on the stiffness in the softer mode (8 = 0°), but increases the stiffness of the stiffer mode (¢ =90°) by a factor of ~ 3.4.
As a result, it is clear that modeling the bearing stiffness is essential to an accurate model of lateral stiffness in this design.

The only beam component that does not have a substantial effect on either the soft mode lateral stiffness or the stiffer
mode lateral stiffness is the block. At most, assuming the blocks are inflexible increases the stiffness of the model by a
factor of 1.0025. However, the length of the blocks is not as negligible. Taking the limit as L, tends to O gives the result in
Fig. 6 labeled “Deleted Blocks” which shows a corresponding increase in stiffness by a factor of 1.29. As a result, it is clear
that even if the rigidity of the block segments is negligible, their geometry is not.

There is one other source that could arguably be considered parasitic compliance: the buckling effect. Because the buck-
ling of the back beams under lateral loads changes the boundary conditions of the front, unbuckled beams from fixed-guided
to cantilever, it has a drastic effect on their stiffness. According to Fig. 6, assuming the “No Buckling” condition increases
stiffness by a factor of 4.36.

Therefore, based on Fig. 6, one could conclude that the most important components to model are, in order:

1. the beam sheets.
2. the buckling effect.
3. the bearing stiffness.
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Fig. 7. The linearized change in stiffness ratio by change in parameter.

4. the blocks.
5. the shafts.

One final conclusion we can draw from this figure is that modeling stiffness of the VSL is simpler in its softer configura-
tion. Under these conditions, the strain is more concentrated in the compliant sheets, and so only their compliance needs to
be considered. However, modeling is significantly more complex for the stiffer mode. In this mode the strain is distributed
throughout a variety of components with similar compliance contributions - failing to adequately consider any one of them
could significantly invalidate a model. Thus, future designers of VSLs should give strong consideration to minimizing their
design’s sources of parasitic compliance when designing a VSL to meet a certain stiffness goal and to accurately modeling
their design’s sources of parasitic compliance when modeling the result.

7. Parameter sensitivity analysis

In Fig. 7, we compute the gradient of the stiffness ratio with respect to the parameters in the model that define the
design, and normalize them with respect to their current values to get the gradient components in terms of percent change,
we can compare them to get a sense of the best way to alter the design to optimize the stiffness ratio. Decreasing the beam
sheet thickness is predicted to give the largest effect on stiffness ratio. By comparison, changing the beam spacing h, or the
block width w, are predicted to have very little effect. Another good candidate for increasing the stiffness ratio is increasing
the beam sheet length L.

However, the stiffness ratio should not be increased blindly. If both the maximum and minimum stiffness decrease pro-
portionally, as the minimum stiffness tends toward zero, the ratio will of course tend toward infinity. We have increased
the stiffness ratio, but only by decreasing the average stiffness of the structure. In most cases, this is undesirable.

More commonly, we want to specify a maximum stiffness for the soft mode or a minimum stiffness for the stiff mode,
and optimize the stiffness ratio thereafter. In this case, we can divide the parameters in Fig. 7 into two groups. First, there
are the parameters associated with parasitic compliance (kg,L1,d1, Ly, wy). The goal for these parameters should always be
to minimize their associated compliance. This means reducing their length, maximizing their rigidity, and so on. Second,
there are the parameters associated with the beam sheets - the components that are intended to be used to achieve the
variable stiffness effect.

In general, we can be sure that increasing the stiffness of the parasitic compliant components will increase the stiffness
ratio without decreasing the soft mode stiffness. In this regard, decreasing the shaft diameter has a large effect on the ratio
as does increasing the bearing stiffness «p.

Fig. 8 indicates the effect that the beam sheet parameters have on the soft mode stiffness, the stiff mode stiffness,
and the overall stiffness ratio assuming the parasitic compliance is unchanged. The contours indicate that increasing L3 or
decreasing t3 increase the stiffness ratio, but only by decreasing both the soft mode stiffness and the stiff mode stiffness.
The aspect ratio of the beams ws/t3 is actually near optimal for the thickness, length, and parasitic compliance of the design
given that it is near the point where both increasing and decreasing it result in a decrease in the stiffness ratio.
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Fig. 8. Contour maps of the effect of changing the beam sheet thickness t3, the beam sheet aspect ratio ws/ts, and the beam sheet length on the lateral
stiffness. The filled contours show the lateral stiffness ratio. The solid and dashed contour lines show the stiff mode stiffness (# = 90°) and the soft mode
stiffness (6 = 0°). The red lines indicate the properties of the prototype design. (For interpretation of the references to colour in this figure, the reader is
referred to the web version of this article.)

Table 4
FEA Model Fit Parameters - Tor-
sional Stiffness and Axial Buckling

Parameter  Value Unit
k1 0.2071 N/mm
ky 2.498 N/mm
A 106.09 N

B 9.008 -

C 12843 °

D 15888 N

F 14879 N

8. Finite element analysis

A finite element model of the RBL was constructed in ABAQUS to collect simulation data for comparison with both
analytical and experimental results. The components were simplified into representative geometry. The beam sheets were
modeled with 2D shell elements, while the rest of the beam components were modeled with solid elements. Because the
RBL design involves long slender beams, buckling must be considered in the simulation. To take buckling into account,
simulation of the link was accomplished in three steps:

Step 1: An eigenvalue buckling analysis was conducted for the load in question to identify buckling modes and their
associated mode shapes.

Step 2: The nodal deflections associated with those buckling mode shapes were scaled such that the maximum deflection
matched a certain imperfection size and then seeded into the model.

Step 3: A non-linear Riks-method static analysis was run with the desired load.

Stiffness was extracted by measuring the slope of the first few points of the load vs. deflection curve. Critical buckling
forces were extracted directly from the eigenvalue buckling analysis.
The torsional stiffness of the FEA model of the link is best fit (R? = 0.9990) by the following expression:

kz(8) = h2((ky + k) — (ki — k2) sin (20)) (52)

The critical axial buckling force of the FEA model of the link is best fit (R?2 = 0.9987) by the following expression on the
interval & < [0°,45°] and is otherwise a periodic even function with a period of 90°.

P () = min (Aarctan (B8 +C) + D.F), 6 € [0°,45] (53)

The numerical values of parameters for both of these functions are listed in Table 4.
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Fig. 9. The experimental setup used to test the lateral stiffness of the link. Deflection is measured via a linear encoder. The force is measured with a force
gauge. Hub 1 is fully clamped with a bench vise and Hub 2 is supported in the vertical direction by bearings which allow movement in the horizontal
plane so as not to restrict lateral movement or shortening of the link.

9. Experimental results

In this section, we detail experiments conducted to verify our models of stiffness and buckling determined in previous
sections and discuss the results. In addition, we provide data on the power required to actuate the rotating beams of the
link while subjected to a lateral displacement load.

9.1. Experimental apparatus

Force and deflection data were collected while the link was loaded in several different ways. Fig. 9 illustrates, for exam-
ple, the setup used to test the lateral stiffness of the link. In each experiment, deflection data was collected with a linear
encoder/DRO,! and the reaction force was collected with a force gauge.? Both sensors were mounted on a manually-driven
test stand® which was actuated quasi-statically. In each experiment, the link lay horizontally with Hub 1 fixed to ground.
When measuring lateral force or axial buckling force, Hub 2 was supported by ball roller bearings which allowed it to move
freely in the horizontal plane. When measuring torsion, the force gauge was instead connected to a cable that was fixed to
a pulley so as to produce a torque. The pulley was fixed to a shaft that was mated to Hub 2. Care was taken to arrange
the bearings supporting the shaft such that the transverse load from the cable was isolated from the link and only a torque
around the central axis of the link was transmitted.

9.2. Measured stiffness

The stiffness ratio of the prototype is the ratio between its maximum and minimum lateral stiffness. As experimentally
determined, the lateral stiffness in the X direction for the beam angle & = 90° was k3 (90°) = 2.245 N/mm and the minimum
stiffness at a beam angle of 0° was ki (0°) = 0.1613 N/mm. The ratio of the maximum experimental lateral stiffness over
the minimum experimental lateral stiffness gives the prototype stiffness ratio:

L _ k(o0
Voo = W ~13.9. (54)

Fig. 10a) depicts a comparison of all of the experimental results and analytical models presented in this paper, with
Fig. 10b) included for reference. Lateral stiffness and torsional stiffness are both described with sinusoids of the same pe-
riod. Notably, however, they are offset by 45°. The lateral stiffness model is a close match to the experimental results. The
experimental torsional stiffness results are not as well matched by the analytical model. In this case, the torsional stiffness
under-performs the expectations of the analytical Eq. (27) and FEA models Eq. (52). This discrepancy is most likely due to
compliance induced by imperfections and clearances at the interfaces between different sections of the beam combined with
complex buckling of the beam sheet and compliance introduced by the measurement apparatus itself. The stiffer regimes

1 Mitutoyo ABSOLUTE Digimatic SD-/6”D. Resolution; 0.01 mm.
2 MARK-10 M5-100. Resolution: 1 N.
3 MARK-10 ES30.
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Fig. 10. An overview of the results of experiments on the prototype. a) Comparison of experimental results, FEA models, and analytical models of the
lateral stiffness, ky, which relates Fy to §y; torsional stiffness, «z, which relates My to ¢z, and critical axial buckling force, P, b) A schematic of the design
for reference. ¢) Depiction of load vs displacement results for axially compressive loads related to buckling. References are provided to loads predicted by
the FEA model. 148.8 N corresponds to the peak critical buckling force. 36.79 N corresponds to the buckling forces predicted by the FEA model at 0°. d)
Comparison of power requirements when actuating between the stiffest and softest lateral stiffness modes while under a constant lateral deflection load.
The prototype was loaded to a target load (e.g. 20 N) in its stiff mode (6 = 90°) and then actuated to the soft mode (¢ = 0°) and back while measuring
Servo power draw.

of torsional stiffness are at the limits of what we can accurately measure with the available apparatus. As a result, it is not
surprising that the stiffer torsional results are lower than the analytical and FEA modeling predictions. Modeling the causes
of this behavior may be challenging, but for the purposes of control, a model can always be determined empirically from
this data.

9.3. Buckling

The FEA results described in Eq. (53) also under-perform the analytical model of buckling in Eq. (51). The FEA indicates
the beams buckling in the fixed-free condition at angles up to 15° compared to the approximately 3° predicted by the ana-
lytical model. However, the most important states to consider for buckling are the cases at the critical angles of maximum or
minimum lateral or torsional stiffness: 0°, 45°, and 90° which are approximately 37 N, 149 N, and 37 N which is confirmed
by an approximate consensus of the analytical model, FEA model, and experimental results. Fig. 10c) shows experimental
force vs. deflection results for axial compressive buckling of the RBL with the critical buckling forces compared to the load
curves at two critical angles. The case for 0° clearly shows the link in a buckled state - unable to support load beyond the
critical force. The case for 45° shows the load asymptotically approaching a value near the critical buckling force predicted
by the models.

In theory, one can obtain an analytical model of buckling that is more accurate to the FEA results by using a piecewise
domain that incorporates the torsion springs, shafts etc. combined with a compound buckling model that allows for bending
in two dimensions. However, the complexity of such a model precludes the existence of a tractable closed-form solution
and the gains in accuracy provided by such a model are marginal. In general, deriving an analytical model that accurately
matches FEA and experimental behavior for small beam rotation angles remains an unsolved problem in elastic stability
theory.

10. Conclusions

The rotating beam link (RBL) variable stiffness link (VSL) design can be modeled via both planar and spatial methods.
The planar method presented here has the advantage of a clear closed form solution as a function of the beam angle 8 but
requires solving the piecewise classical Euler-Bernoulli beam in order to include all the sources of compliance. The spatial
method avoids this step but cannot be expressed as a closed-form function of 8 if buckling has to be modeled by simulating
removing beams. For other mechanisms where buckling effects do not need to be accounted for, the spatial derivation is
more straightforward and makes predictions about multiple modes of stiffness (torsional, lateral, axial, etc.) simultaneously.
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An additional challenge of modeling this link design is accurately modeling axial buckling. As the beams rotate by &, the
mode of buckling changes. For values of 6 near 0, the link tends to buckle in a fixed-free mode. Otherwise, the symmetric
design enforces an intrinsic fixed-fixed constraint form of buckling and the critical buckling force is not a function of 6. By
calculating the critical buckling force associated with both of these conditions and using the minimum, a simple piecewise
function provides a good approximation of the actual behaviour for critical angles of interest. For a more accurate model of
buckling for small beam angles, additional novel theoretical work may be required.

Developing analytical models of the RBL design provides useful insight into design improvement recommendations. For
example, it illuminates the problem of the parasitic compliance effect: the increase in compliance associated with the com-
ponents required to actuate the variable stiffness device. For the RBL design, these sources include the length and elasticity
of the shafts and blocks that mount the beams. Additionally, the slight rotational compliance of the bearing that fixes the
shafts makes a significant contribution to the parasitic compliance effect. The parasitic compliance effect is also observed
in other desings of other VSL concepts. Subsequent VSL designs should focus on minimizing this parasitic compliance effect
by designing ancillary components to be sufficiently rigid. For the RBL design, this would involve increasing shaft diameter,
decreasing the length of the shafts and blocks, and minimizing the bearing compliance.
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Appendix A. Compliance matrix components

The following tables contain the numerical values of components of the compliance matrix as derived in the text
(Tables A.1 and A.2).

Table A.1
Components of the compliance matrix [Cgp(0°)] in
Eq. (43).
Component ¢;; ~ Value Unit
C12, C54 —8.0693 x 106 1/N
C14 4.8801 x 108 1/(N-mm)
Ca,1, €45 8.1607 x 105 1/N
25 49354 x 108 1/(N-mm)
C36 8.0181 x 10-> 1/(N-mm)
Ca1 6.4408 mm/N
(52 9.9400 % 102 mm/N
63 5.2133 x 102 mm/N
Table A.2
Components of the compliance matrix [Cgpr(90°)] in
Eq. (44).
Component ¢;;  Value Unit
Ci2, C54 -1.6321x 105 1N
C14 9.8708 x 108 1/(N-mm)
€21, €45 1.4338 x 1073 1/N
(2,3, Cg5 —2.8182x 10* 1/N
C25 8.6713 x 10°° 1/(N-mm)
€32, 56 —5.2812x 103 1/N
(36 1.6250 x 10~4 1/(N-mm)
Ca,1 0.4332 mm/N
C43. Cg1 —46598 x 102 mm/N
Cs5a 13.0532 mm/N

C63 9.2633 x 103 mm/N
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