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Variable stiffness robots may provide an effective way of trading-off
between safety and speed during physical human–robot interaction.
In such a compromise, the impact force reduction capability and
maximum safe speed are two key performance measures. To quan-
titatively study how dynamic parameters such as mass, inertia, and
stiffness affect these two performance measures, performance
indices for impact force reduction capability and maximum speed
of variable stiffness robots are proposed based on the impact ellip-
soid in this paper. The proposed performance indices consider dif-
ferent impact directions and kinematic configurations in the large.
Combining the two performance indices, the global performance of
variable stiffness robots is defined. A two-step optimization method
is designed to achieve this global performance. A two-link variable
stiffness link robot example is provided to show the efficacy of the
proposed method. [DOI: 10.1115/1.4046839]
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1 Introduction
With the development of collaborative robots, the physical

human–robot interaction (pHRI) draws increasingly intensive
attraction in recent years. Safety is always the primary concern in

pHRI. To ensure safety, industrial standards such as Ref. [1]
restricted the tool-center-point speed to 0.25 m/s, which limited
the dynamic power and static space. However, these requirements
sacrifice robot speed and efficiency. To have a better tradeoff
between the safety and speed, there have been several interesting
concepts toward these two goals, ranging from mechanical
designs [2–4], controls [5–9], to motion planning [10–12].
Among those approaches, the variable stiffness (VS) concept is
promising because it may address both safety and efficiency simul-
taneously. Designs such as the VS actuator (VSA) and VS link
(VSL) have been proposed to improve the safety and speed of
pHRI. The basic idea of using a VS robot for pHRI is proposed
in Ref. [2]. By varying the stiffness of the robot, two different oper-
ating modes are introduced: the stiff-and-slow mode and the
fast-and-soft mode. VS robots have a higher natural frequency
and less vibration in the stiff-and-slow operation and can achieve
a faster speed in the fast-and-soft operation. While an impact
between a human and a robot happens in the fast-and-soft operation,
part of the robot mass/inertia can be decoupled during the impact
[2,13]. Therefore, for the same impact velocity, the VS robots gen-
erate smaller impact force compared with traditional rigid robots.
This impact reduction effect determines how much benefit we can
obtain by using the VS because a larger impact force reduction
may allow faster motion in the fast-and-soft operating mode.
Based on this two-mode concept, many design approaches are pro-
posed by researchers for both VSA and VSL. In Refs. [2] and [14],
the authors discussed a novel VSA design and its application to effi-
cient pHRI. In Ref. [15], an upgraded VSA is developed based on
the results in Ref. [14]. The impact test results in Ref. [14] show that
a VSA robot can decouple the effective mass/inertia during the
impact and generates less acceleration. In Ref. [9], by employing
the proposed control and planning methods, a VSL arm can be
safer and faster than the traditional robot. In Ref. [16], a novel
VSL design is proposed, and Ref. [17] discussed its collision detec-
tion and reaction strategies. In Ref. [18], the authors proposed a
novel VSL design and discussed the stiffness control. A VSL is
designed in Ref. [19] and its stiffness can change up to 17 times,
which is promising for pHRI applications. These efforts have
shown the benefits of VS robots for pHRI applications from differ-
ent aspects, such as impact reduction [15,17] and faster work speed
[2,9]. However, an important question that has not been answered in
these studies is: how do we design the mass and flexibility proper-
ties of a VS robot to have significant benefits?
We already know that large impact reduction can let VS robots

move faster in the fast-and-soft mode. A heavyweight design may
have a significant impact reduction because more mass/inertia can
be decoupled during the impact. However, the maximum safe
speed is possibly limited by the heavyweight. Thus, there is
always a design tradeoff between the impact reduction and the
maximum safe speed. A problem at hand is how to optimize the
VS robot dynamics (mass/inertia and flexibility) to compromise
the two goals (e.g., large impact reduction and maximum safe
speed) to maximize the benefits of VS robots. For VS robots, dis-
cussions on this problem are still not clear. In Ref. [20], design
guidelines for a single-link VSL robot are presented, and it pre-
sents how the robot dynamics affect the impact reduction. The
single-link case in Ref. [20] is a good start, but several problems
are not discussed, such as how kinematic configurations and
impact direction affect the impact reduction. For the multi-link
case, the dynamic parameter optimization problem for the VS
robot is still open.
In this paper, a VS robot dynamic parameter optimization is pro-

posed with measures of the impact force reduction and maximum
safe speed. To quantify the impact force reduction of a VS robot,
an impact ellipsoid method for the VS robot is introduced in this
paper. For a traditional robot with constant stiffness (CS, can be
rigid/flexible), the impact ellipsoid is introduced in Ref. [21] to
describe how mass/inertial properties, kinematic configurations,
and impact direction affect the impact. The concept of impact ellip-
soid and its variants have been used in design optimization [3] and
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planning [22] for traditional CS robots. For VS robots, flexibility
plays an important role in the impact ellipsoid. Using an impact
model, we propose an efficient way to calculate the impact ellipsoid
for a VS robot with different levels of flexibility. Using the impact
ellipsoid, the performance (impact force reduction and maximum
safe speed) of a VS robot can be evaluated over the entire work-
space. Furthermore, the performance is optimized by tuning the
dynamics of the VS robot (mass/inertia and flexibility). The kine-
matic design optimization is not discussed in this paper because
the design goals for kinematic such as dexterity and workspace
are not the foci of this work. Readers can refer to Refs. [23,24]
about the kinematic optimization.
In Sec. 2, preliminaries including the impact ellipsoid and the

impact model are introduced. Measures of impact force reduction
and maximum safe speed are introduced based on the impact ellip-
soid. In Sec. 3, the design optimization is introduced. In Sec. 4, a
two-link VSL example is presented to validate the proposed
design optimization method. Conclusions are given in Sec. 5.

2 Preliminaries
2.1 Measure of the Impact Force. Researchers have used

quite a few criteria for evaluating the impact between a human
and a robot. Some popular criteria include the Head Injury Criterion
(HIC) [25], the maximum power index (MPI) [26], the Gadd Sever-
ity Index (GSI) [27], and the maximum impact force (MIF) [13].
HIC, MPI, and GSI were firstly proposed for the automotive indus-
try and then introduced to pHRI research. These three criteria are
defined based on acceleration. However, for many possible injuries
in pHRI, such as fracturing of skins and bones, the impact force is a
better measure [3,13]. In this paper, we will use MIF as the safety
criterion to derive the impact ellipsoid and visualize the
maximum safe speed. Based on a mass–spring–mass model, the
analytical solution of the MIF is as follows [28]:

Fmax = vc

�������������
kc

mHmR

mH + mR

√
(1)

where mH is the human effective mass, mR is the robot effective
mass, kc is the contact stiffness (covering material), and vc is the
impact velocity. The effective mass mR is related to the kinematic
configurations and the impact direction. For traditional rigid
robots, the dynamics of the robot can be described by the following
Euler–Lagrange equation [29]

Mrig(qrig)q̈rig + Crig(qrig, q̇rig)q̇rig +Grig(qrig) = τ (2)

where qrig is the vector of joint displacements. Mrig, Crig, and Grig

are the inertia matrix, centrifugal and Coriolis matrix, and gravity
vector, respectively. τ is the motor torque vector. In Ref. [30], the
effective mass mR is given by the following equation

1
mR(qrig, u)

= uJrig(qrig)M
−1
rig (qrig)J

T
rig(qrig)u

T (3)

where u is the unit row vector along with the impact direction and
Jrig(qrig) is the Jacobian matrix. To investigate the effective mass in
different impact directions, the effective mass ellipsoid [30] can be
defined by

zJrig(qrig)M
−1
rig (qrig)J

T
rig(qrig)z

T = 1 (4)

the direction of the row vector z is the impact direction and the mag-
nitude of z is

�����������������
mR(qrig, z/‖z‖)

√
.

To visualize the maximum impact force (1), rewrite Eq. (1) by
substituting Eq. (3) into it

Fmax = vc

�������������
kc

mHmR

mH + mR

√
= vc

���������������
kc

mH

mH/mR + 1

√

= vc

��������������������������������������������
kcmH

mHuJrig(qrig)M
−1
rig (qrig)J

T
rig(qrig)uT + uuT

√

= vc

���������������������������������������������
kcmH

u[mHJrig(qrig)M
−1
rig (qrig)J

T
rig(qrig) + I3×3]uT

√
(5)

where I3 × 3 is a 3-by-3 identity matrix. Note that in Eqs. (1) and (5),
we have a velocity-independent term. Define the local impact
strength by this velocity-independent term

σ(qrig, u) =

���������������������������������������������
kcmH

u[mHJrig(qrig)M
−1
rig (qrig)J

T
rig(qrig) + I3×3]uT

√
(6)

It can be visualized by the impact ellipsoid as follows:

zΛzT = kcmH

Λ = mHJrig(qrig)M
−1
rig (qrig)J

T
rig(qrig) + I3×3

(7)

where the magnitude of z is σ(qrig, z/‖z‖). The directions of the
three principal semi-axes of the impact ellipsoid correspond to the
three eigenvectors of Λ. Lengths of the three principal semi-axes
are

�����������
kcmH/λΛ,i

√
, and λΛ,i, i = 1, 2, 3 are three eigenvalues of Λ.

The overall impact strength for certain kinematic configuration
can be defined by the volume of the ellipsoid, which is

μ(qrig) =
4
3
π
∏3
i=1

�����������
kcmH/λΛ,i

√
(8)

It should be noted that the volume is just one of the possible mea-
sures to represent the overall impact strength.

2.2 Measure of the Impact Force Reduction. For VS robots,
the dynamics are different from Eq. (2). Typically, the dynamics of
the flexible robots, including the flexible joint (FJ) robots [31] and
flexible link robots [32,33], can be denoted by the following Euler–
Lagrange equation:

MVS(q)q̈ + CVS(q, q̇)q̇ + KVSq +GVS(q) = τVS

τVS =
τm
0n×1

( ) (9)

where q = (θT , ηT )T is a column vector. Here, θ is the m-dimen-
sional column vector of the joint displacements and η is the
n-dimensional column vector of the generalized coordinates of flex-
ibility. η can be the FJ displacements for VSA robots or the modal
coordinates for VSL robots (using the assumed mode method).
MVS(q) is the k× k inertia matrix where k=m+ n. CVS(q, q̇) is a
k × k matrix, and it includes the Coriolis and centrifugal terms.
GVS(q) is the k-dimensional gravity column vector. KVS is the k×
k stiffness matrix. τVS is the k-dimensional input vector. τm is the
m-dimensional vector of motor torque, and 0n×1 is the
n-dimensional zero vector.
Different from the dynamics of the traditional rigid robots in

Eq. (2), the stiffness term KVSq affects the impact force. To inves-
tigate the impact reduction capability, let us consider two extreme
setups for the stiffness matrix KVS. When the stiffness of the
robot is infinitely large (i.e., the robot is rigid), the dynamics of
the VS robot will degenerate to an equation similar to Eq. (2)

Mrig(θ)θ̈ + Crig(θ, θ̇)θ̇ +Grig(θ) = τ (10)

In the dynamic equation (10), the flexibility η and stiffness matrix
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KVS are absent from the equation and only θ is left. Then, the impact
ellipsoid can be derived as follows:

zΛrigzT = kcmH

Λrig = mHJrig(θ)M−1
rig (θ)J

T
rig(θ) + I3×3

(11)

When the stiffness of the robot goes to zero, the dynamics (9) will
degenerate to the following equation:

MVS(q)q̈ + CVS(q, q̇)q̇ +GVS(q) = τVS (12)

Compared with Eq. (2), Eq. (12) is also a rigid robot but with
redundancies brought by flexibility. Based on Eq. (12), another
impact ellipsoid can be derived in a similar way

zΛsoftzT = kcmH

Λsoft = mHJVS(�q)M−1
VS (�q)J

T
VS(�q) + I3×3

�q = (θT , 01×n)T
(13)

Note that the flexible deformation coordinates η are set to be zero
in �q. The kinematic configuration only considers the motor dis-
placements. JVS is the Jacobian matrix of the VS robot. These two
ellipsoids, zΛrigzT = kcmH and zΛsoftzT = kcmH , have the same
center but different volumes. Figure 1 illustrates the two impact
ellipsoids.
The impact force reduction of the two extreme setups (stiffness

being zero and infinity) can be intuitively defined by the difference
between the volumes of the two ellipsoids

Δμ(θ) = μrig(θ) − μsoft(θ) (14)

In Fig. 1, Δμmax represents the area between the two solid ellip-
ses. In practice, instead of changing from zero to infinity, many VS
designs only change the flexibility within a range of [Kmin, Kmax],
and impact force reduction actually is the area between the two
dash-line ellipsoids in Fig. 1.
For impact ellipsoids with a stiffness matrix, derivations from

Eq. (2) to Eq. (7) are invalid because the dynamics now involve
the stiffness matrix. From Eqs. (1) and (5), we know

Fmax(θ, u, KVS) = vcσ(θ, u, KVS) (15)

and the impact strength can be calculated by

σ(θ, u, KVS) =
Fmax(θ, u, KVS)

vc
(16)

The vc can be obtained by vc = uJVS(�q)�̇q. To estimate
Fmax(θ, u, KVS), we propose a new impact model. Based on Eq. (9),

the impact model can be described by the following equations:

MVS(q)q̈ + CVS(q, q̇)q̇ + KVSq +GVS(q) = τVS + τimpact
−JVS(q)τimpact = kcu(xR − xH)uT

mH ẍH = kcu(xR − xH)uT

⎧⎨
⎩ (17)

where xR and xH are position vectors of the robot and the human in
Cartesian space, respectively. Fimpact and τimpact are the impact force
and impact torque acted on the robot, respectively. By assuming the
changes of joint positions are small during the impact, MVS(q),
GVS(q), and JVS(q) are constant during the impact. Furthermore,
we have xR = xR,0 + J(q)(q − q0), where xR,0 and q0 are the
initial position of the impact point on the robot and the initial
joint position, respectively. Also, because the inertia and stiffness
matrices dominate the impact, we assume that the motor torque,
centrifugal, and Coriolis terms are constant. By these assumptions
we made, the nonlinear terms are considered as constants and the
impact dynamics is linearized as follows:

MVS(q0)q̈ + KVSq + CVS(q0, q̇0)q̇0 +GVS(q0) = τVS + τimpact
−JVS(q0)τimpact = kcu(xR,0 + JVS(q0)(q − q0) − xH)uT

mH ẍH = kcu(xR,0 + JVS(q0)(q − q0) − xH)uT

⎧⎨
⎩

(18)

Using Eq. (18), we can predict Fmax with different q, u, and KVS.
To estimate the impact ellipsoid, only Fmax in the directions of the
three principal semi-axes need to be estimated. Similar to Eq. (8),
the impact strength can be estimated and defined by

μ(θ, KVS) =
4
3
π
∏3
i=1

Fmax,i(θ, KVS)
vc,i

(19)

where the subscript irepresents the ith eigendirection.

2.3 Measure of Maximum Safe Speed. With a given safety
criterion, Fmax≤Fcrit, the maximum permissible velocity can be
obtained by

vcrit = Fcrit/σ (20)

Recall the impact ellipsoid (7), the vcrit can be visualized by

zΛ−1zT =
F2
crit

kcmH

Λ = mHJVS(�q)M−1
VS (�q)J

T
VS(�q) + I3×3

(21)

The lengths of the three principal semi-axes correspond to the
maximum permissible velocities in three eigen directions, and
they are

vcrit,i =
Fcrit�����������

kcmH/λΛ,i
√ , i = 1, 2, 3 (22)

Similar to Eq. (8), the overall maximum safe speed can be defined
by the volume of the ellipsoid

ξ(θ) =
4
3
π
∏3
i=1

vcrit,i (23)

In this section, we introduced how to evaluate the impact force
reduction and maximum safe speed by using impact ellipsoid. In
Secs. 3–5, design optimization and an example are introduced.

3 Design Optimization
The design optimization problem is how to optimize the dynam-

ics (mass/inertia and flexibility) to maximize the impact force reduc-
tion and maximum safe speed over the whole workspace. In this
section, we propose a two-step design optimization method to
address this problem.

Fig. 1 Impact ellipsoid of the end effector (2D case of a two-link
VSA robot)
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The maximum impact force reduction capability Δμ in Eq. (14) is
derived by two dynamic equations (2) and (12). In Eqs. (2) and (12),
the stiffness matrix KVS is absent from the equation because the
stiffness is either zero or infinity. Therefore, by changing the
inertia matrix, the maximum impact force reduction can be
designed. In the first step, the inertia matrix is optimized to deter-
mine the maximum impact force reduction and the overall
maximum safe speed. In this step, the inner bound and outer
bound of the impact ellipsoids are designed. In the next step, the
stiffness is optimized again to have the maximal impact force reduc-
tion within the boundary determined by the first step. In Fig. 1, the
two solid ellipsoids are designed in the first step. In the second step,
the two dashed ellipses are designed by adjusting the stiffness
matrix. Next, we will introduce how to formulate the two-step opti-
mization process.

3.1 Optimization of Mass/Inertial Properties. To consider
the impact force reduction and maximum safe speed simulta-
neously, we combine the impact force reduction Δμ in Eq. (14)
and the maximum safe speed ξ in Eq. (23) and propose a compound
performance index, which is defined as follows:

P(θ, Θmass) =
Δμ(θ, Θmass)
μrig(θ, Θmass)

+ R · ξrig(θ, Θmass), R > 0 (24)

in which, R is a weighting factor. The subscript rig represents that
the corresponding ellipsoid is derived by dynamics (10). Θmass are
the mass parameters to be designed. The Θmass can include any
to-be-designed mass/inertial parameters not limited to the mass of
the link/joint. The first term is the relative impact force reduction,
and the second term is related to the maximum safe speed. By
adjusting the factor R, the optimization can emphasize the prefer-
ence of the design (either impact force reduction or maximum
safe speed). The performance index (24) is a local performance. It
is important to remember that the weighted summation (24) is not
the only way to define the compound performance of impact
force reduction and maximum safe speed. To consider the global
performance over the whole workspace, the global performance
index is defined based on Eq. (24)

GPmass(Θmass) =

�
WP(θ, Θmass)dW�

WdW
, θ ∈ W (25)

where W is the workspace. In practice, the index can be calculated
by a numerical integration. By maximizing the GPmass, the optimal
design parameters Θ∗

mass can be found. With Θ∗
mass, the inner bound

and the outer bound of the impact ellipsoids can be determined. The
flexibility can be optimized within the boundary to maximize the
impact force reduction further.

3.2 Optimization of Flexibility. In the first step, the mass
parameters Θ∗

mass are designed to maximize GPmass. For those
designs with an infinite stiffness range (zero to infinity), such as
Ref. [34], the optimization of flexibility is unnecessary and the
mass optimization can finalize the design. However, many other
designs have limited capability of changing flexibility. Regardless
of different design concepts for a single VSA joint or VSL link,
this capability is usually specified by the stiffness ratio of
maximum stiffness to minimum stiffness. Even with the same stiff-
ness ratio, different stiffness ranges may have different impact force
reduction effects. Therefore, in the second step, the absolute flexi-
bility range with a certain stiffness ratio is optimized to maximize
the impact force reduction.
We assume the ratio αi = kmax,i/kmin,i, i = 1, . . . , n is given. Here,

kmax,i and kmin,i are the maximal stiffness and the minimal stiffness
for ith VSA/VSL. Because kmax,i= αikmin,i, the stiffness parameters
to be determined are related to kmin,i only. For notation convenience,
the stiffness parameters to be optimized are denoted by Θstiff. The
stiffness matrix of the softest configuration and the most rigid

configuration can be denoted by Kmin(Θstiff) and Kmax(Θstiff). In
Kmin, the stiffness of each VSA/VSL is the minimal value kmax,i.
Similarly, for Kmax, the stiffness of each VSA/VSL is its maximal
value kmax,i= α · kmin,i.
As we discussed in Secs. 1 and 2, the mass/inertial properties play

an important role in the tradeoff between the impact force reduction
and the maximum safe speed. For this reason, the mass properties
have been optimized. But the impact force reduction can still be
small if the range of the flexibility is not proper. In this step, the
optimization only considers the impact force reduction. The
maximum safe speed is not considered in the flexibility optimiza-
tion because no matter how we choose the flexibility, the
maximum safe speed will not exceed the bound determined by
the optimal mass/inertial properties, which is ξrig(θ, Θ∗

mass). The rel-
ative impact force reduction is defined by

Δγ(Θstiff , θ) =
μmax(Kmax(Θstiff ), θ) − μmin(Kmin(Θstiff ), θ)

μmax(Kmax(Θstiff ), θ)
(26)

where μmax and μmin are estimated by the impact model (18) and
(19). The global reduction is defined as

GPstiff (Θstiff ) =

�
WΔγ(Θstiff , θ)dW�

WdW
, θ ∈ W (27)

By maximizing GPstiff, the optimal stiffness range [kmin,i, kmax,i]
for each VSA/VSL can be found. Once again, Eqs. (26) and (27)
are not the only way to define the flexibility optimization
problem. By changing the performance index, the design can
emphasize different aspects.

4 Example
As we discussed in Sec. 2.2, the dynamics of the VSA robot and

VSL robot both can be denoted by the Euler–Lagrange equation (9).
However, the modeling of the VSL robot is more complicated than
the VSA. Because the general coordinates for the flexibility of the
VSL robot are derived from a modal analysis, we present a
two-link VSL robot example to illustrate the design optimization.
The design procedure also works for the VSA robot except for
the modeling part.

4.1 Two-Link Variable Stiffness Link Robot. Figure 2 illus-
trates the coordinates of the two-link VSL robot.
In this example, the lengths of the links, the mass of the payload,

and the mass/inertia of the two joints are given. The design problem
is to optimize the mass values of the two links and the stiffness
range to achieve the optimal impact force reduction and
maximum safe speed.
The dynamics of the VSL robots can be modeled by the assumed

mode method. The modeling of the VSL robots can be referred to

Fig. 2 Two-link flexible link robot
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Refs. [33] and [35]. Assuming a relatively small deflection of the
link, then the deflection of the ith link at li along the coordinateXi-

Yi can be described by the following equation

wi(li, t) =
∑∞
j=1

ϕij(li)ηij(t), i = 1, 2 (28)

where the subscript i is the index of the link, ϕij(x) is the modal
shape function of the jth mode, and ηij(t) is the modal coordinate
of thejth mode. The modal shape function ϕij(x) can be determined
by the clamp-free boundary conditions [36]. In this example, we
only consider the first and second modes. ϕ1, ϕ2 and η1, η2 are
the modal shape functions and coordinates for the first and the
second modes of link 1. ϕ3, ϕ4 and η3, η4 are the modal shape func-
tions and coordinates for the first and the second modes of link 2. If
we select the modal coordinates as the deflection of each mode at
the tip and considering the first two modes of each link, then
Eq. (28) can be rewritten as

w1(l1, t) =
∑2
j=1

ϕj(l1)

ϕj(L1)
ηj(t)

w2(l2, t) =
∑4
j=3

ϕj(l2)

ϕj(L2)
ηj(t)

(29)

where L1 and L2 are the lengths of link 1 and link 2, respectively.
Using Eq. (29) and kinematic in Fig. 2, the kinetic energy and
potential energy can be derived. Furthermore, the Lagrange equa-
tion can be applied, and the dynamics of the VSL robot can be
described by the Euler–Lagrange equation in Eq. (9). The modeling
of the VSL is not the focus of this paper. Thus, detailed derivations
are omitted in this paper, and the reader can refer to Refs. [33] and
[35]. The robot has six DOF in total (two vibration modes for each
link and two joints).
In the modeling of the VSL robot, only finite numbers of modes

are considered to describe the infinite-dimensional vibration. It is
important to mention that a softer link involves more vibration
modes compared with a stiffer link. It is tricky to select the
number of modes used in the modeling because more modes can
improve the accuracy of the model especially when the link is
soft while requiring a higher calculation effort. For a VSA robot,
the vibration is finite-dimensional and the mode problem will not
be a concern.

4.2 Design Optimization Setup. Based on the dynamics of
Eq. (9), the two-step design optimization can be performed. For
this design, the known parameters are shown in Table 1.
With the given parameters, we will optimize the mass of each link

in the first step, those are m1 and m2. In the second step, the flexural

rigidity range of two links, [EI1, αEI1] and [EI2, αEI2], are opti-
mized. Note that only the minimum flexural rigidities are optimized,
the maximum flexural rigidities are determined by the stiffness ratio
and the minimum flexural rigidities.

4.3 The First Step: Mass Optimization. For mass optimiza-
tion, the design is limited within the range m1, m2 ∈ [0.2, 10] kg.
For this example, the mass optimization problem is

argmaxGPmass(m1, m2)

subject to: m1, m2 ∈ [0.2, 10], θ1, θ2 ∈ [0, π]
(30)

To optimize the GPmass(m1, m2), we use the fmincon function in
MATLAB. The fmincon function can implement solvers such as the
interior-point method and the trust-region method for nonlinear
constraint optimization problems. The mass optimization (30) has
a tradeoff between the maximum impact force reduction and
maximum safe speed which is shown in Fig. 3. In Fig. 3, R is
increasing from 0 to 0.1 with 40 different values (three of which
are marked). While R= 0.1, the design is dominated by the
maximum safe speed and mass is minimized (m1=m2= 0.2).
In Fig. 3, the maximum impact force reduction and maximum

safe speed indices are defined as follows:

Maximum impact force reduction index =

�
W

Δμ(θ,m1,m2)
μrig(θ,m1,m2)

dW�
WdW

Maximum safe speed index =
�
Wξrig(θ,m1,m2)dW�

WdW

(31)

The impact force reduction and maximum safe speed indices are
derived from the first term and the second term of Eq. (24), respec-
tively. The maximum impact reduction index is unitless and can be
expressed in percentage. The unit of the maximum safe speed index
is m3/s3. For the three marked R values in Fig. 3, the mass param-
eters are shown in Table 2.
From the results shown in Fig. 3 and Table 2, it is clear that the

weighting factor R compromises the impact force reduction and
maximum safe speed indices. Typically, a heavier design has a
larger impact force reduction because more mass can be decoupled
during the impact. However, the maximum safe speed index of the
heavy design is low for safety reasons. By tuning R, we can empha-
size different aspects of the design. A large R means the design

Table 1 Parameters of the two-link VSL robot design

Parts Properties Values

Link 1 and 2 Length (m) 0.2
Joint 1 and 2 Inertia (kg m2) 0.00025

Mass (kg) 0.2
Payload Mass (kg) 0.1
mH

a Mass (kg) 2
kc

b Stiffness (N/m) 5000
Fcrit

c Force (N) 100
Stiffness ratio α 100

aThe weight of fragile body parts such as head, hand, and forearm are
ranging from 0.4 kg to 5 kg according to Ref. [37].
bThe contact stiffness is assumed to be the smallest contact stiffness as we
found in the literature [2].
cThe maximum permissible forces for human body parts are ranging from
65 N to 220 N according to Ref. [38].

Fig. 3 Tradeoff between maximum impact force reduction and
maximum safe speed
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focuses more on the maximum safe speed, while a small Rmeans
impact force reduction is important. R is usually a small value
because the impact force reduction index is significantly smaller
than the maximum safe speed index. In this example, we choose
the weighting factor R= 0.0107 for the final design. The optimiza-
tion result is illustrated in Fig. 4.

4.4 The Second Step: Flexibility Optimization. Next, the
flexural rigidity range is optimized to finalize the design. With the
mass parameters being optimized in Sec. 4.3, the reduction index
(27) is optimized by tuning the ranges of flexural rigidity of the
two links. In this example, the flexibility parameters to be designed
are EI1 and EI2, which are the smallest flexural rigidities of link 1
and link 2, respectively. For this example, the reduction index
(27) now is

GPstiff (EI1,EI2)=

�
WΔγ(EI1,EI2, θ)dW�

WdW
, θ∈W

Δγ(EI1,EI2, θ)=
μmax(Kmax(αEI1, αEI2), θ)−μmin(Kmin(EI1,EI2), θ)

μmax(Kmax(αEI1, αEI2), θ)
(32)

where Δγ is the relative impact force reduction for a certain kine-
matic configuration θ. The design optimization is constrained
within EI1,EI2 ∈ [0.1, 50]Pa ·m4. For this example, the optimiza-
tion problem is

argmaxGPstiff (EI1,EI2)

subject to: EI1,EI2 ∈ [0.1, 50]Pa ·m4, q1, q2 ∈ [0, π]
(33)

The result of flexibility optimization is shown in Fig. 5. We use a
logarithmic coordinate to show more details when the flexural rigid-
ity is small. In Fig. 5, only the lower bound of the flexural rigidity is
shown. The range of the flexural rigidity can be inferred by the stiff-
ness ratio and the lower bound, which is [EImin, αEImin].
Compared with the maximum impact force reduction in the first

step, which is 24.8%, the impact force reduction after the flexibility

optimization is smaller (22.4%) but still significant. If the flexibility
is not optimized, the impact force reduction can be insignificant,
even with the well-designed mass parameters. For instance, in
Fig. 5, when the minimal flexural rigidity of link 2 is greater than
10 Pa ·m4, the design only has a reduction less than 10%.

4.5 Validations. To validate the design, a VSL simulation
model is developed in MATLAB Simscape Multibody. The flexible
link is modeled by the finite segment model (FSM) [39]. The
impact force is modeled with the Simscape Contact Force
Library. The parameters of the model are given in Table 3.
For comparison purposes, a non-optimized (mass and flexibility

are not optimized) design and a mass-optimized (only mass is opti-
mized) design are tested. The non-optimized design has the same
total mass as the optimal design, while they have different mass dis-
tributions. The selection of the unoptimized flexibility refers to
several published VSL prototypes [9,19,40]. The minimal flexural
rigidity of these prototypes range from 0.5 to 1.2 Pa ·m4, and we
select 0.5 for this simulation because it is the closest value to the
optimal design. The three designs are modeled in Simscape by
the FSM.
To validate the design, impact simulations with different config-

urations are conducted. Each design is tested with four different
kinematic configurations. For each configuration, the impact ellip-
soids for the minimum flexural rigidity and the maximum flexural
rigidity are derived from the simulation. To derive the impact ellip-
soid, the maximum impact force is simulated and then the ellipsoid
is calculated by σ=Fmax/vc. Four kinematic configurations used in
the simulations are shown in Table 4. The simulation results are dis-
played in Figs. 6 and 7 and Table 4. Figure 6 shows the impact ellip-
soids of different configurations. Figure 7 shows more details about
the impact ellipsoids in Fig. 6. The ellipsoids are drawn in the 2D
plane. Because for the planar two-link VSL robot, the out-of-plane

Table 2 Mass optimization results

R [m1, m2] (kg)
Max. impact force
reduction (%)

Max. safe
speed (m3/s3)

0.0090 [5.46, 1.01] 27.4 11.35
0.0107 [3.45, 0.62] 24.8 13.89
0.0115 [1.50, 0.20] 17.5 20.74

Fig. 4 Mass optimization result (R=0.0107)

Fig. 5 Flexibility optimization result

Table 3 Design parameters used in the simulation

Mass of the link (kg) EI range (Pa ·m4)

Optimal design Link 1: 3.45 Link 1: [0.167, 16.7]
Link 2: 0.62 Link 2: [0.176, 17.6]

Non-optimized Link 1: 2.04 Link 1: [0.5, 50]
Link 2: 2.04 Link 2: [0.5, 50]

Mass-optimized Link 1: 3.45 Link 1: [0.5, 50]
Link 2: 0.62 Link 2: [0.5, 50]
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direction is always a singular impact direction, so the impact
strength is

������
kcmh

√
. The results for the non-optimized design and

mass-optimized design are shown in Tables 5 and 6.
The impact force reductions for the four tests are close to the

global impact force reduction of 22.4% in Sec. 4.4. Using the ellip-
soid with the maximum flexural rigidity, the maximum safe speed
can also be calculated by Eq. (31). From the four results, the
impact force reduction and maximum safe speed depend on the
kinematic configuration and impact direction. Even though the

mass properties and flexibility are optimized by the proposed
method, the impact force reduction is small in some configurations,
such as the impact along the x-axis, while the angle of joint 2 is zero
(see Fig. 7(a)). Another interesting point can be found from the
results is that the impact ellipsoid always has a principal semi-axis
which is nearly or completely collinear with link 2. For impact
along that direction, link 2 is nearly/completely singular and it
will have limited/no effect on the impact force reduction. Note
that link 1 is not singular in configuration 2, 3, and 4. But link 1
is far from the end effector, and it has a smaller effect than link
2. Therefore, there is always a principal semi-axis, which is
nearly/completely collinear with link 2. With this information, VS
robots should avoid any impacts along the local singular direction
(along link 2 for this example).
From Table 5, compared with the optimal design, the non-

optimized design has more impact force reduction but a poor perfor-
mance on the maximum safe speed due to the heavyweight of link
2. Calculating the local performance by Eq. (24), the four configura-
tions of the non-optimized design have an average local performance
0.3901 (no unit). As can be seen from Table 6, after the mass optimi-
zation, the impact force reduction decreases, while the performance
on the maximum safe speed is improved. The average local perfor-
mance (Δγ+R · ξmaxwith R= 0.0107) of the mass-optimized
design is 0.3983, which is also improved compared with the non-
optimized design. With the full-optimization process, the impact
force reduction is optimized compared with the mass-optimized
design. The optimal design also has an average local performance
0.4248, which is the best among the three designs.

5 Conclusions
In this paper, we discussed a method for evaluating the impact

force reduction and maximum safe speed for VS robots. Further,
design optimization was proposed to optimize the global impact
force reduction and maximum safe speed. In the two-link VSL
example, we presented how to adjust the weighting factor Rto com-
promise between the impact force reduction and maximum safe
speed. It is worth mentioning that even after the optimization, the
impact force reduction can still be very insignificant in some
cases (with singularity). Also, the local measures of the impact
force reduction and maximum safe speed are not limited to the
volume of the ellipsoid, and different local measures can be used
in the optimization.
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Fig. 6 Impact ellipsoids of different configurations (circle
dashed lines are the reach of the robot with different configura-
tions of joint 1)

Fig. 7 Impact ellipsoids in Fig. 6 (solid: EI Max.; dashed: EI
Min.). Note: (a) joint 2: 0 deg, (b) joint 2: 45 deg, (c) joint 2:
90 deg, and (d ) joint 2: 135 deg.

Table 4 Impact force reduction and maximum safe speed
indices (optimal design)

Joints 2: deg Impact force reduction Δγ (%) Max. safe speed (m3/s3)

#1: 0 17.34 11.54
#2: 45 23.33 22.75
#3: 90 27.12 19.24
#4: 135 27.13 16.56

Table 5 Impact force reduction and maximum safe speed
indices (non-optimized design)

Joints 2: deg Impact force reduction Δγ (%) Max. safe speed (m3/s3)

#1: 0 23.39 8.18
#2: 45 26.12 15.53
#3: 90 27.44 12.28
#4: 135 28.42 11.39

Table 6 Impact force reduction and maximum safe speed
indices (mass-optimized design)

Joints 2: deg Impact force reduction Δγ (%) Max. safe speed (m3/s3)

#1: 0 15.70 11.46
#2: 45 21.28 22.44
#3: 90 24.23 19.13
#4: 135 23.79 16.45
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