
Designing a Profiling and Visualization Tool for
Scalable and In-Depth Analysis of
High-Performance GPU Clusters

Pouya Kousha, Bharath Ramesh, Kaushik Kandadi Suresh, Ching-Hsiang Chu, Arpan Jain
Nick Sarkauskas, Hari Subramoni and Dhabaleswar K. Panda

Department of Computer Science and Engineering
The Ohio State University

{kousha.2, ramesh.113, kandadisuresh.1, chu.368, jain.575, sarkauskas.1}@osu.edu, {subramon, panda}@cse.ohio-state.edu

Abstract—The recent advent of advanced fabrics like NVIDIA
NVLink is enabling the deployment of dense Graphics Processing
Unit (GPU) systems, e.g., DGX-2 and Summit. The Message Pass-
ing Interface (MPI) has been the dominant programming model
to design distributed applications on such clusters. The MPI Tools
Interface (MPI T) provides an opportunity for performance
tools and external software to introspect and understand MPI
runtime behavior at a deeper level to detect performance and
scalability issues. However, the lack of low-overhead and scalable
monitoring tools have thus far prevented a comprehensive study
of efficiency and utilization of high-performance interconnects
such as NVLinks on high-performance GPU-enabled clusters.

In this paper, we address this deficiency by proposing and
designing an in-depth, real-time analysis, profiling, and visu-
alization tool for high-performance GPU-enabled clusters with
NVLinks. The proposed tool builds on the top of the OSU
InfiniBand Network Analysis and Monitoring Tool (INAM). It
provides insights into the efficiency of different communication
patterns by examining the utilization of underlying GPU inter-
connects. The contributions of the proposed tool are two-fold:
1) domain scientists and system administrators can understand
how applications and runtime libraries interact with underlying
high-performance interconnects, and 2)Proposed tool enables
designers of high-performance communication libraries to gain
low-level knowledge to optimize existing designs and develop new
algorithms to optimally utilize cutting-edge interconnects on GPU
clusters. To the best of our knowledge, this is the first such tool
which is capable of presenting a unified and holistic view of MPI-
level and fabric level information for emerging NVLink-enabled
high-performance GPU clusters.

Index Terms—MPI, MPI T, NVLink, GPU, Profiling

I. INTRODUCTION AND MOTIVATION

Emerging high-performance computing (HPC) and cloud
computing systems are widely adopting Graphics Processing
Units (GPUs) to support the computational power required by
modern scientific and machine learning applications. Offer-
ing high-bandwidth memory, tensor processing, and massive
parallelism, GPUs enable running complex applications such
as weather forecasting [1], brain data visualization [2], and
molecular dynamics [3].

To further enhance and complement the high compute
power of current hardware for applications, researchers are
building large-scale GPU clusters with high-speed interconnect
technology such as peripheral component interconnect express
(PCIe), NVIDIA NVLink, AMD Infinity Fabric, Mellanox

InfiniBand, and so on. The typical solution of scaling out and
scaling up [4] has been proposed to meet the growing demand
for more processing power by applications. Primarily, these
systems are designed for applications that require dense com-
putation. Recent studies show that such dense GPU systems
like DGX-2 accelerate Deep Neural Network (DNN) training
process [5]. Inevitably, such solutions will require more
communication among GPUs through various interconnects.
Therefore, high-speed interconnects that deal with complex
intra-node and inter-node topology become vital components
in the HPC ecosystem. In spite of the fact that computing
components have evolved dramatically, the interconnect and
network components do not keep up the same pace. To gain
high-performance implementations, efficient data movement
schemes between GPUs within a node, and across multiple
GPU nodes is critical. Therefore, detailed insight into what
is happening inside a node and between the nodes during
communication is required to assist application users and
developers in identifying and improving performance bottle-
necks.

MPI is the de facto communication standard widely used
in developing parallel scientific applications on HPC systems.
Considering the recent advances in interconnect technology
(NVLinks, X-Bus etc.), understanding the interaction between
applications, MPI libraries, and the communication fabric
becomes ever more challenging for system administrators,
application and MPI designers. Although it is possible to
observe the performance degradation of applications from an
end-to-end perspective, finding out the root cause is not trivial.

As more features are getting introduced into MPI com-
munication libraries, it is getting more complex to track the
performance of various components inside the MPI library as
well as to select the best communication pattern to use based
on the message size and cluster specifications. Extracting
maximal performance from a communication library such
as MPI requires tuning it extensively to choose a specific
algorithm for a given situation. Typically, such tuning is done
by system administrators or the MPI library provider using
microbenchmark suites [6], which need not be representative
of communication patterns in real applications. In this context,
the “tuned” algorithms selected based on microbenchmark

93

2019 IEEE 26th International Conference on High Performance Computing, Data, and Analytics (HiPC)

2640-0316/19/$31.00 ©2019 IEEE
DOI 10.1109/HiPC.2019.00022

Authorized licensed use limited to: The Ohio State University. Downloaded on October 10,2020 at 22:29:07 UTC from IEEE Xplore. Restrictions apply.

level evaluations may not provide the best performance at the
application level. Moreover, it is time-consuming and tedious
to conduct tuning for all different applications on various
systems. Broadly, this leads to the following challenges for de-
signers of high-performance applications and communication
middleware: 1) how should they identify what the root causes
are for performance degradation? 2) how should they know if
the performance issue (if any) is due to problematic designs in
the communication library or the application or even a hard-
ware issue? Moreover, for an MPI designer, understanding the
internal interaction and inter-dependencies between different
components of the MPI library and the correlation of MPI
level and with network/hardware level can play a key role
in easily identifying bottlenecks, which leads to significantly
optimized designs.

Currently, users and administrators of HPC systems and
designers of HPC applications/middle-ware rely on a plethora
of tools to aid them in this interplay. There exists a variety
of MPI level profiling tools (TAU [7], HPCToolkit [8], Intel
VTune [9], IPM [10], mpiP [11]) that give insights into the
MPI communication behavior of applications. However, they
are unable to profile emerging communication fabrics like
NVLink. On the other hand, several network level profiling
and analysis tools exist that allow system administrators to
analyze and inspect the network fabric (Nagios [12], Gan-
glia [13], Mellanox Fabric IT [14], BoxFish [15], Lightweight
Distributed Metric Service (LDMS) [16]). However, they are
unable to relate activity in the communication fabric to their
triggering events in the MPI library. Thus, a fundamental gap
exists in the current class of monitoring tools, making the
correlation of MPI events to network activity cumbersome at
best.

The MPI forum [17] has been actively working on bridging
this gap with the MPI T [18] interface. The MPI T interface
allows tools to interact with the MPI library through control
and performance variables. Researchers have already begun
to take advantage of this interface to provide optimization
and tuning hints to the users [19]. However, these tools have
no knowledge about the underlying network fabrics and thus
suffer from the same drawbacks as other existing MPI tools.

These issues in the capabilities of existing profiling tools
lead us to the following broad challenge: How can we design
a tool that enables in-depth understanding of the commu-
nication traffic on the interconnect and GPU through tight
integration with the MPI runtime?

A. Contributions

This paper presents a real-time and scalable profiling tool,
built on top of CUDA Profiling Tools Interface (CUPTI) [20]
and OSU INAM [21], that bridges the gap between MPI
software counters and GPU-related hardware counters. Figure
1 depicts the high-level overview of our design. The green
boxes represent layers of the stack in which the tool is
implemented. The gathered metrics from various levels are
inserted into the storage component. Inside the web-based UI,

the metrics from each level are correlated to each other and are
shown. In this paper, we make the following key contributions:

• Design a profile-enabled communication library for GPU
communication to gather GPU and MPI performance
counters through CUPTI and MPI T interfaces, respec-
tively

• Present a real-time and low-overhead profiler tool to
correlate MPI-level with network-level metrics

• Introduce MPI T event-based metrics for MPI library for
point-to-point and collective communication patterns

• Add performance variables (PVARS) to accurately quan-
tify MPI communication operations

• Evaluate the performance and efficacy of the proposed
tool on a modern multi-GPU system with NVLink inter-
connect

• Demonstrate the capability to analyze and classify the
traffic and link utilization for MPI communication pat-
terns for each GPU interconnect like NVLink

To the best of our knowledge, this is the first such tool
which is capable of presenting a unified and holistic view of
MPI-level and fabric-level information for emerging NVLink-
enabled high-performance GPU clusters.

Applications

CPU

GPU

PCIe

NVLink

InfiniBand

Omni-Path

HPC Platforms

MPI Communication Libraries

Web Based UI

Storage
MPI_T MPI

ranks

GPU
profiler

Proposed

P
ro

p
o

sed

Fig. 1. High level overview of the proposed tool - Green boxes

II. BACKGROUND

A. Interconnect Technology

NVLink and/or PCIe interconnects are used to connect
CPU/GPU to GPU and InfiniBand or Ethernet to connect
nodes in modern GPU systems.

PCIe is a high-speed standard bus interconnect for high-
speed components like CPU, GPU and IB Host Channel
Adapters (HCAs). With the introduction of each generation
of PCIe, the bandwidth got doubled as generation-1 starting
at 2GB/s and generation-4 featuring 16 GB/s unidirectional
bandwidth. As the community is moving toward scaling up,
NVIDIA introduced NVLink interconnect, primarily focusing
on improving the connectivity of GPUs and CPU to GPU.
DGX-2 systems offer NVLink2 connectivity which gives
25GB/s unidirectional bandwidth and multi-link NVLink2
inter-GPU connections inside a single node. InfiniBand is
a high bandwidth, and low latency interconnect for HPC
systems. The latest InfiniBand Enhanced Data Rate (EDR) and
upcoming High Data Rate (HDR) adapters offer bidirectional

94

Authorized licensed use limited to: The Ohio State University. Downloaded on October 10,2020 at 22:29:07 UTC from IEEE Xplore. Restrictions apply.

bandwidth of 100Gbps and 200Gbps, respectively. As new in-
terconnect technology are introduced, the next generation HPC
systems, including the #1 on Top500 (top500.org) Summit are
deploying NVLink-enabled dense GPU nodes with InfiniBand
interconnects.

B. Low-level Profiling Tools Interface for GPU

The CUDA Profiling Tools Interface (CUPTI) developed by
NVIDIA provides the API for tracing and profiling that target
CUDA applications. CUPTI provides the following five APIs
categories: the activity API, the callback API, the event API,
the metric API, and the Profiler API. Activity APIs enable
asynchronous gathering of GPU or application’s CPU activity.
They are used to discover NVLink and PCIe topology. The
callback APIs enable registering callbacks in the code. The
event APIs enable to query, configure, start, stop, and read the
event counters on a CUDA device. The metric APIs collect
information calculated from the events. The Profiler APIs help
to find out the average, maximum and minimum of some
metrics. As of now, the Profiler API does not support NVLink
metrics. Using these APIs, one can develop profiling tools
that give insight into the CPU and GPU behavior of CUDA
applications.

C. MPI Tools Information Interface (MPI T)

The MPI Tools Information Interface (MPI T) provides a
standard mechanism for MPI tool developers to both inspect
and tweak the various internal settings and performance char-
acteristics of MPI libraries. The MPI T interfaces define two
types of objects. The first type of object is the performance
variable (PVAR). Accessing the values of performance vari-
ables allows the software to peak under the hood of the MPI
library to determine the state and how it is being affected by
the MPI application. The second type of object is the control
variable (CVAR). This type of object is tied to a modifiable
parameter of the MPI library. Accessing and modifying these
variables will allow the software to change the behavior of the
MPI library.

III. DESIGNING A HIGH-PERFORMANCE, LOW
OVERHEAD, AND SCALABLE GPU PROFILING LIBRARY

In this section, we elaborate on and discuss the proposed
design of our tool. It has three major components a) design-
ing a library to collect NVLink metrics and gather MPI T
information, b) the storage component, and c) the visualization
interface. Figure 2 depicts the detailed design and the interplay
between the different modules of the proposed tool. Note that
the same designs used in this paper to discover and gather
metrics for NVLink are applicable for PCIe interconnects as
well 1.

1There are issues with the current release of CUPTI accessing
PCIe metrics. It has been confirmed by NVIDIA developers at
https://devtalk.nvidia.com/default/topic/1051538/cuda-profiler-tools-interface-
cupti-/empty-uuid-for-pcie-records/.

Swich

Web
Based UI

Storage
DB

CUPTI Info

MPI_T
Counters

Job Info

Fabric Info

HPC Applications

MPI Library

Job Scheduler

OSU
INAM

DAEMON
GPU Profiling

Rank KRank 1Rank 0

MPI_T Event Callback

Communication
Fabric

Fig. 2. Detailed overview of proposed design

A. Profiler Interface for MPI+CUDA Communication

We propose two primary profiler modules on top of the
CUPTI and MPI T interfaces to enable profiling the GPU
and MPI activities over high-performance interconnects. We
implement the profiling interfaces in a CUDA-Aware MPI
library, MVAPICH2 [22]. The design can be applied to any
MPI library.

1) Low-overhead GPU Profiler Module: The proposed
GPU profiler has two primary components, a) intra-node
topology discovery and b) metrics inquiry.

GPU Topology Discovery: The topology of GPU con-
figuration is vital for profiler tools to report and correlate
the hardware metrics with corresponding MPI processes.
To discover intra-node topology with lower overhead, we
query the GPU and NVLink connectivity by using appro-
priate CUPTI activity APIs and callback arguments (e.g.,
CUPTI_ACTIVITY_KIND_NVLINK) during the initializa-
tion phase of the communication runtime (e.g., MPI Init in
the context of MPI). NVLink Activity APIs in CUPTI reports
the connectivity in terms of logical NVLinks. Each logical
NVLink can contain up to six physical NVLinks on the latest
NVIDIA GPU architecture [23]. First, we query information
such as endpoints, device types, ports, bandwidth, and uni-
versally unique identifiers (UUID). Next, we use the UUID
of endpoints of each physical NVLink and iterate through
the device activities that have been discovered to identify the
corresponding device name and other required information and
save this information into a data structure which will help
us to correlate metrics and physical NVLinks in the profiler
module. To minimize the query overhead, only one process in
each node queries and caches the topology information. For a
node with 4 GPUs, the topology discovery takes 0.25 second
on average. The discovered intra-node topology are stored in
a shared memory region that is accessible by all other MPI
processes within the node.

GPU Metrics Inquiry: Once the intra-node GPU topology
has been discovered, the proposed module continually queries
the GPU metrics through CUPTI APIs. We provide the flex-
ibility to set the query interval through configuration files to
the user. To ensure that the profiling done by our proposed
tool does not affect the performance of the application and
to minimize the resource consumption of the profiler tool, we

95

Authorized licensed use limited to: The Ohio State University. Downloaded on October 10,2020 at 22:29:07 UTC from IEEE Xplore. Restrictions apply.

propose to offload the task to a separate profiler thread. The
profiler thread will be responsible for querying metrics for all
the GPUs within the node. The goal is to offload reading the
metrics to the profiler thread on the host to keep the overhead
as low as possible on CPU and GPUs. The abundance of
CPU cores on modern platforms and the fact that most (if not
all) applications only use one process per GPU, will ensure
that the profiler thread will have enough compute resources
without affecting application performance. Figure 3 depicts
the structure and flow of this design.

CPU

GPU1 GPU2

GPU0 GPU3

Profiler
Thread

Local Rank 0

Local Rank 1

Local Rank 3

Local Rank 2

NVLink PairGPU
Query Op

Rank 0

Rank 2

Rank 1

Rank 3

Fig. 3. Collection of intra-node GPU metrics

Our proposed design has three phases to gather metrics:
startup, query, and exit.

• Startup Phase: Once the MPI runtime detects of the use
of GPU, a shared region of system memory across MPI
ranks is used to hold the data structures for exchanging
data between the profiler thread and MPI ranks. Each
MPI rank updates the shared memory region with the
assigned device ID, local and global MPI rank infor-
mation. Then, one MPI rank on each node acts as the
leader rank (e.g., rank 0), launches the profiler thread
and updates the number of devices that are participating
in the communication. CUPTI requires a unique CUDA
context to be used for the thread that activates the CUPTI
event groups and reads the CUPTI events, and the CUDA
context cannot be shared between the MPI ranks. Thus,
the profiler thread creates and saves a CUDA context for
each GPU to be used by the profiler thread. Note that
this is a blocking collective operation within a node to
prevent inconsistent and incorrect correlations later.

• Query Phase: The profiler thread loads the context of
each participating GPU associated with an MPI rank
and reads the CUPTI metrics in the background for all
physical NVLink instances. For each GPU, the profiler
thread will gather and map the metrics of each instance
to physical NVLink instances by using the properties
of the corresponding GPU that are discovered at the
initialization phase. Next, the profiler thread sends the
queried data along with a timestamp to the storage
component. Once the queried metric data being stored,
the profiler thread checks if the leader process (described
above) has requested to stop profiling. If not, the profiler
thread is put to sleep mode for the interval that the user
has defined. Figure 2 shows the overall design and the
interaction between components.

• Exit Phase: when the MPI ranks finish their tasks, i.e.,
the application calls MPI Finalize in the MPI context,
the local leader rank signals the profiler thread to stop
profiling, and the thread will query and output the metrics
for the last time and exit. This is to ensure that in case
that one rank will finish faster, we capture the metrics for
other ranks. Finally, MPI ranks disable and destroy the
CUPTI event groups.

Since CUPTI gives us the metrics for all NVLinks, we
depend on the information provided by the MPI processes
to get the necessary information for the GPUs that are being
used. The remaining information can be reported by the user’s
choice or discarded. Although we only used NVLink metrics
for our paper, such structure can be used to get any CUPTI
events or metrics. The user needs to pass the list of metrics
to be monitored as a run-time parameter.

2) Extending MPI T Performance Variables: The proposed
GPU profiler described in Section III-A1 gathers various
metrics that will allow users to understand the utilization of
interconnects like NVLink. In this section, we discuss the
necessary MPI counters and their implementation in MPI
runtime using MPI T interface to enable correlation between
GPU metrics and MPI communication.

In this work, we focus on tracking performance character-
istics for MPI point-to-point and collective communications
inside the MPI library using MPI T performance variables
(PVARs). For each collective and point-to-point operation,
every rank stores the total bytes sent to and received from
every other rank, an array of start and end time-stamps,
selected algorithm for the communication, and the number of
times a particular algorithm/function was called. If there are
K MPI ranks, each rank tracks performance variables using
a N ∗ K matrix, where N is the pre-defined value to keep
the maximum number of PVARs to be stored before it is
flushed. In the case of time-stamps, we record a fixed set of
start and end times for each of the K ranks in the matrix.
Time-stamps are measured in micro-seconds. The time-stamps
wrap around the call to the communication operations inside
the MPI library. This information can be used to find the time
periods when an MPI operation utilizes the network.

To gain insights into the interconnect utilization of different
communication schemes in the MPI runtime, we use MVA-
PICH2 as an example and add new PVARs for different point-
to-point primitives and collective algorithms. To minimize the
overhead in gathering data, PVAR information is only sent
if the aggregated bytes sent for a particular MPI operation
exceeds a user-specified threshold. The user can define a
granularity (ranging from byte to gigabyte) to filter data
collection. This is useful for the users that are interested in
significant changes in the communication. By allowing the
user to define such a threshold, we reduce the amount of
data that is being collected and stored. Therefore, our tool
can provide more historical data as well as reduce the time
to query the database and get the results, as discussed in the
result section.

96

Authorized licensed use limited to: The Ohio State University. Downloaded on October 10,2020 at 22:29:07 UTC from IEEE Xplore. Restrictions apply.

B. Storage and Correlation of MPI T and GPU Metrics

In this section, we describe storage interface and how we
correlate the metrics from MPI T and the GPU.

1) Database Schema and Storage Interface: Figure 4 de-
picts the database schema used to store the GPU metrics
and PVAR information into MySQL. The pvar name and
pvar algorithm columns are used to represent a particular
MPI T PVAR variable associated with MPI operations like
allreduce.

The GPU related information are stored into two dif-
ferent tables, intra node topology and nvlink metrics. The
nvlink metrics table stores the metrics for each physical
NVLink. For GPU metrics, we distinguish between NVLinks
using source id, source port, destination id and destina-
tion port where destination/source id refer to the device ID.
The intranode topology table stores the link-level information
such as source, destination, the total number of physical links
between the source and destination and link capacity. Such
a database scheme design allows the visualization module to
quickly render the intra-node topology while fetching the GPU
metrics.

Intra_node_topo
Id (primary key)

Node_name

Physical_link_count

Link_capacity

Source

Source_id

Destination

Destination_id

NVLink_metrics
Id (primary key) Source_local_ran k

Link_id Source_global_rank

Node_name Dest_local_rank

Source_name Dest_global_rank

Source_port Data_unit

Source_id Data_recv

Dest_name Data_sent

Dest_port Data_recv_rate

Dest_id Data_sent_rate

Added_on

PVAR_table
Id (primary key)

jobid

Node_name

Start_time

End_time

Bytes_recv

Bytes_sent

PVAR_name

Algorithm

Source_rank

Dest_rank

Added_on

Fig. 4. Database schema used for storing the metrics gathered by the tools

2) Correlating MPI T and GPU Metrics: The correlation
of MPI and GPU metrics happens in the web based UI of OSU
INAM. After storing the data, we use the fields colored green
are used in Figure 4 to read and map the NVLink metrics
and PVAR metrics for a specific node. A combination of
Node name, source rank, and destination rank correlates the
PVARs from MPI level to the NVLink metrics from network
level. Please note that the PVAR information are mapped to a
logical NVLink since we cannot distinguish between physical
NVLinks at the MPI level. Then, the charts in Section IV
will use an user-defined intervals to filter the data based on
added on timestamps. At this level of development of the tool,
the user can correlate them using timeline in X-axis.

IV. NEW VISUALIZATION COMPONENTS AND FEATURES
INTRODUCED

In this section, we list the features and visualization com-
ponents of OSU INAM to incorporate the changes brought in
by our proposed design described in Section III

The proposed tool is able to present information in a
unified and holistic fashion to the user. This allows end users
like application scientists and developers of high-performance

communication libraries to identify the impact the algorithms
have on the communication links and the extent to which they
are able to saturate the link bandwidth. In the absence of such
a tool, the end users would have had to rely on multiple tools
as indicated in Section I and do a lot of manual calculations
to arrive at the same conclusion. Since the tool is tightly
integrated with the MPI library with a focus on low overheard,
it is less demanding on the end application when compared to
external tools. Thus, the proposed solutions are able to deliver
benefits greater than just sum of both MPI T and CUPTI
interfaces.

A. New Tool Capabilities Introduced

The OSU INAM web application provides the capability
to see job level information including historical jobs and
live jobs. For the jobs, we have the number of calls to a
MPI operation for different message sizes, the number of
occurrence, and the latency of each call as PVAR table in
Figure 4. Bytes sent and Bytes recv show the amount of data
transferred between two MPI ranks at the given timestamps.
The latency can be calculated using start time and end time.
Using the tool, the user can observe the network level link
utilization and the amount of data transmitted for a MPI
operation.

There are two ways to navigate through the intra-node page
for a specific node. 1) search for the node in network view
that shows the live inter-node view of the network or 2) choose
the job from live jobs page where it shows the list of nodes
involved.

The intra-node page has the following features that are listed
as items on the front-end interface :

(a) Logical view (b) Physical view of one NVLink

Fig. 5. Intra-node topology visualization for one node

• Node Topology : This feature depicts the Intra-node
topology information on the front-end. Figures 5(a)
and 5(b) show the connectivity of GPUs and CPUs
in two forms: logical and physical NVLinks. User can
expand the logical NVLinks to view the link utilization
of each physical link. Figure 5(b) shows the physical
NVLinks between GPU0 and GPU1. Each link changes
color based on its link utilization level. The coloring for
topology sketches are as follows: Grey represents 0%,
light green up to 25%, dark green from 25% to 50%,
orange from 50% to 75%, and red from 75% to 100%
of the total available bandwidth. This information is

97

Authorized licensed use limited to: The Ohio State University. Downloaded on October 10,2020 at 22:29:07 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. Rank level communication grid, each element in the grid represents amount data transferred from rank i to rank j where i,j is the element’s position
in the grid. This figure is showing a Allreduce operation happening between MPI ranks

0 – 3%

3 – 6%

6 – 9%

9 – 11%

Link utilization
color mapping

(a) Intra-Node link usage with NCCL (b) NVLink utilization GPU0 to GPU1 (c) NVLink utilization GPU1 to GPU0

Fig. 7. Graphs for NCCL Allreduce test. For the charts, the X-axis represents time and Y-axis represents the bandwidth utilization for the NVLink

obtained from intra-node topology table. Since NVLink
does not provide CPU level information, currently all
CPUs are shown as a single block. The percentages and
colors are user configurable.

• NVLink charts : This feature shows the metrics ob-
tained from CUPTI. The metrics include data sent,
data received, send rate, recv rate. Figure 7(b) shows the
plot of the CUPTI metric: ‘Send BW’obtained on the link
from GPU0 to GPU1. The plot can be live or historical.
The metric can be changed using a drop-down menu. The
data is obtained from the nvlink metrics table.

• PVAR counters chart : This chart provides the plot of
the PVAR countesr as shown in Figure 9(a) for each rank.
The legend in the chart Allreduce − rd shows the type
of PVAR.

• Rank level communication grid : This shows the data
transferred between each pair of rank in the current node,
as shown in Figure 6.

V. USAGE SCENARIOS

In this section, we aim to highlight how different classes of
users can take advantage of our tool to gain in-depth insights
into the communication performance of applications using
different communication middleware. In particular, we focus
on two popular high-performance GPU-aware communication
middleware a) the NCCL2 library from NVIDIA and b) the
TensorFlow Deep Learning framework running over MPI.

A. Understanding the Communication in NCCL Ring-based
Allreduce

We ran the NCCL library with MPI library for Ring-based
Allreduce. Figure 7(a) shows the topology on one of the
nodes with links being colored based on their link utilization.
As expected the link utilization is not to the full capacity

since there is computation happening with communication. In
Figure 7(a), we see that the links in the clockwise direction
(From CPU:1 to GPU:3) are either colored yellow or red
indicating that the usage is relatively low whereas the links
in the counter clockwise direction are either blue or green
indicating that the usage of these links is relatively high.
From this, we can infer that the links in one direction have a
higher utilization than links in the other direction showing
an ineffective use of bi-directional bandwidth in the given
ring communication pattern. This gives developers valuable
feedback into how the algorithm has been designed. Further,
by comparing Figures 7(b) and 7(c) provided by our tool
and OSU INAM GUI for NVLink utilization, we can clearly
see a difference in how the NVLinks are being utilized. For
example, the link from GPU1 to GPU0 has, on average, higher
bandwidth compared to the link from GPU0 to GPU1. The
same observation for GPU1 to GPU2 and so on. Thus, it
can be concluded that for the case where communication’s
direction is clockwise as in the case when GPU 3 wants to send
data to GPU 2, the data is probably moved counterclockwise
from more chain hops (CPU and GPU). This is because the
algorithm only utilized one direction of the ring while it
could have utilized the opposite direction. This case shows
that even without having the MPI T-based PVAR information
available, the user can use our tool to understand the trends
and interactions between network level components for other
applications that are not using MVAPICH as communication
library.

B. Understanding the Communication of MPI-based Tensor-
Flow

We ran Tensorflow version 1.12 with MVAPICH2 to gather
both PVARs and GPU metrics for distributed training using
Horovod. Horovod is a distributed DNN training framework

98

Authorized licensed use limited to: The Ohio State University. Downloaded on October 10,2020 at 22:29:07 UTC from IEEE Xplore. Restrictions apply.

(a) NVLink Metrics chart for TensorFlow with a batch size of 2 (b) NVLink Metrics chart for TensorFlow with a batch size of 32

Fig. 8. NVlink charts for GPU0 to CPU for TensorFlow test with Resnet50 model with different batch sizes. The X-axis represents time and Y-axis represents
the bandwidth utilization for a link

(a) PVAR Metrics chart for TensorFlow with a batch size of 2 (b) PVAR Metrics chart for TensorFlow with a batch size of 32

Fig. 9. PVAR charts for rank0 to rank2 for TensorFlow test with Resnet50 model with different batch sizes. The X-axis represents time and Y-axis represents
the size of the message sent over the network

for TensorFlow, Keras, PyTorch, and MXNet. The experiment
is executed across two nodes with four GPUs per node
with different batch sizes for the same number of itera-
tions(batches).

Figures 8(a) and 8(b) show the experiment with Resnet50
model for NVLink metrics. We ran the experiments using
batch sizes 2 and 32 for 5 batches. The users are usually
interested in number of images per seconds. The goal of the
test is to measure the performance of communication for the
same model using different batch sizes. The smaller batch
size will result in lower link utilization and therefore is less
communication efficient.

Figures 9(a) and 9(b) show the MPI level PVAR information
for the GPU0(rank0) to GPU2(rank2). From the figures we
note that the peak data (message size) transferred between
ranks are the same, but showing different patterns between
ranks. From both figures, we can infer that Horovod uses cer-
tain message sizes in the allreduce operations and it depends
on the Deep Learning model, batch size, GPU architecture,
and other Deep learning parameters.

VI. PERFORMANCE EVALUATION

In this section, we present the evaluation of the overhead
of GPU profiling and MPI T and show how it scales. All the
timings in this section are measured using monotonic clocks.

A. Experimental Setup

In this paper, we conducted the evaluation on an NVLink-
enabled GPU system, where each node has two IBM POWER9
CPUs on 2 sockets connected via X-Bus, and each socket is
connected to two NVIDIA Tesla V100 GPUs using NVLink2.
Every socket has 22 CPU cores with four hardware threads per
core. Red Hat Enterprise Linux Server release 7.5 with a kernel
version of 4.14.0-49.18.1 is installed. Mellanox InfiniBand
dual port EDR socket-direct adapters are connected through
two 8-lane PCIe Gen4 interfaces. Mellanox OFED 4.3 was
used on all nodes.

B. Overhead Analysis

The overheads of profiling for GPU profiler thread and
MPI T component are evaluated step by step. We describe the
overheads from intra-node level to across nodes. In the end,
we discuss the overall overhead and scalability of our design
running Allreduce benchmark. We conducted the experiments
on 8 nodes with 4 GPUs per node running an Allreduce
micro-benchmark [6] between 8KB to 256MB message size
range unless otherwise stated and used MVAPICH2 as the
communication library. All the timings are gathered using high
resolution(nsec) monotonic clock.

1) Quantifying the Overhead of GPU Profiling: In this
section, we run our tool to see the detailed overhead inside/of
each step of the GPU profiler. Table I describes the timing
of each component at microsecond granularity for the startup

99

Authorized licensed use limited to: The Ohio State University. Downloaded on October 10,2020 at 22:29:07 UTC from IEEE Xplore. Restrictions apply.

phase. These steps need to be done for each GPU on the node
once. On average, the startup overhead for each GPU in a
node is around 4 millisecond(ms) excluding context creation.
Table II shows the timing of CUPTI profiler thread per
node for each phase. As we can see, the CUDA context
creation in the profiler start-up makes the start-up expensive.
The median of profiling query for each node with 4 GPUs
is 1.299 millisecond. Figure 10 shows the dispersion of the
querying data for profiler thread for 15,000 samples. As can
be observed, the query timing does not have much variation.

TABLE I
TIMING IN STARTUP PHASE FOR EACH GPU IN MICROSECOND

EXCLUDING CONTEXT CREATION

Metrics Average Min Max STDEV.p
context switch 9.81 4.16 32.41 8.14
metric properties and info 1464.56 147.68 31641.51 5454.41
event group creation 287.05 45.91 1349.08 417.01
event activation 2480.56 395.53 30454.41 6582.02
collection mode 1.38 0.66 4.23 1.05

TABLE II
TIMING OF THE GPU PROFILER THREAD PHASES FOR EACH NODE. EACH

NODE HAS FOUR GPUS

Metrics Average Min Max STDEV.p
Startup phase 1.632 s 1.561 s 1.672 s 0.035 s
CUDA context creation 1.624 s 1.548 s 1.663 s 0.035 s
Query phase 1.37 ms 1.25 ms 35.18 ms 0.67 ms
Exit phase 88 us 85 us 93 us 28 us

0

5

10

15

20

25

30

35

40

0 5 10 15

La
te

nc
y

(m
s)

THOUSANDS

Fig. 10. Histogram of querying samples - each sample is the query time
taken for all GPUs metrics in node using monotonic clock. There are some
abnormalities but the overall timing is the around 2ms

2) Measuring the Scalability of the GPU Profiler: As our
second test we varied the number of participating GPUs from
one to four per node in Allreduce test to understand the impact
of the number of GPUs in a node on the performance of the
GPU profiler of our tool. Figure 11 shows that as the GPU
count per node increases, the overall profiling time for all the
GPUs in the node is increasing linearly (Number of GPUs
per Node * time to profile one GPU) + a constant related to
context switching on the profiler thread between GPUs on the
node.

3) Overhead of PVAR Collection: We measure the over-
head of collecting introduced PVAR metrics for each MPI
communication operation. The PVARs collections are local
for each MPI rank and collected in parallel for each MPI
rank independently. Table III shows the stats for PVAR data

Fig. 11. Time to query varying number of GPUs inside a node

collection measured on MPI rank 0 for 9,800 samples for
an MPI operation. Our experiments showed that the timing
overhead is approximately the same for the other ranks and
are independent of the MPI operation. Therefore, we do not
differentiate between them in the experiment. The variation in
the timing can be explained by the use of a system call function
to collect UTC timestamps, which is relatively expensive. The
system call overhead can be reduced by using CPU cycle
counters as done in libraries such as perftest from linux-rdma.
We will implement this in the future.

TABLE III
OVERHEAD OF COLLECTING PVAR DATA AT NANOSECOND GRANULARITY

Metrics Average Min Max STDDEV.p
Collecting PVARs 517.63 ns 140 ns 16,204 ns 305.91 ns

4) End-To-End Profiling Overhead: To measure the over-
all overhead caused by profiling at the application, we run
the osu allreduce device to device CUDA collective test
from the OSU micro-benchmarks software suite. We chose
osu allreduce benchmark since the benchmark is commu-
nication and computation intensive. Allreduce is the main
and mostly communication operation used on Deep Learning
applications. We compare it against the default version of
MVAPICH2 and our proposed design. The test was run on
4 GPU nodes with 4 processes per node for at least 100
iterations. From Figure 12(a), we observe a 5-10% degradation
for message sizes between 4 - 4,096 bytes. However, as seen
in Figure 12(b), the gap closes for large message sizes due
to the fact that the overhead of profiling is dominated by the
variation in collective performance.

C. Impact on Database Performance

Figure 13 displays the trade-off between the user-defined
data insertion granularity and the insert time to the database.
The data was inserted with a bulk insertion into MySQL using
mysql query().

As the granularity decreases, less rows are to be inserted
which decreases the time required. In the figure, there is
negligible difference between a 1 byte granularity and a 1
KB granularity due to the data sample not having any points
that are below 1 KB. A granularity setting of 10 MB inserts
about two and a half times faster than a granularity setting of
1 KB. Note that there are no MySQL reads in this benchmark.

100

Authorized licensed use limited to: The Ohio State University. Downloaded on October 10,2020 at 22:29:07 UTC from IEEE Xplore. Restrictions apply.

32

64

128

256

4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K

Ti
m

e
(u

s)

Message size (Bytes)

MVAPICH2 Proposed

(a) Small and eedium message range

256
1256
2256
3256
4256
5256

64K 128K 256K 512K 1M

Ti
m

e(
us

)

Message size (Bytes)

MVAPICH2 Proposed

(b) Large message range

Fig. 12. Comparison between MVAPICH2 and proposed design on OMB allreduce - The X-axis represents message size and Y-axis represents the time taken
in micro-seconds

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

0

20

40

60

80

100

120

140

1 10 100 1K 10K 100K 1M 10M

Ro
w

s I
ns

er
te

d

In
se

rt
 T

im
e

(m
s)

Granularity (Bytes)

Insert Time Rows Inserted

Fig. 13. Impact of data insertion granularity and database insert time

VII. PROPOSED ENHANCEMENTS FOR MPI T STANDARD

In this section, we discuss some issues we faced in design-
ing an MPI library agnostic profiling tool that relies on the
MPI T interface and some suggestions to the MPI Forum on
how these can be addressed in the standard to enable easier
development of similar tools in the future.

Ideally, the goal is to design a profiling interface that
is agnostic to MPI libraries and the application stacks so
that the users can do a pre-load and use the tools with
the minimum overhead. Currently, MPI T events interface
is under discussion and is likely to be included in the next
MPI standard. While the current standard draft explains the
functionality that should exist for the event interface, there
are no standards for the implementer on naming the PVARs.
As a result, different profiling tools and libraries will come up
with their own naming and description for events and PVARs.
Therefore, profiling tools that develop for library “X” may not
be portable to library “Y” even though that the semantics of
profiling metrics is the same.

We propose the need for MPI community to come up with
a standard PVAR and event description so that, different tools
implementations would be portable to each other. For example,
most MPI libraries have different algorithms/implementations
for a given collective communication operation, say, broadcast.
The total number of algorithm available for broadcast and the
selected algorithm can be reported through some PVARs (e.g.
“MPI T BCAST NUM ALG” and “MPI T BCAST ALG”
respectively). In this way, a user knows what metrics they

require to profile and can get the ID and specifications required
for it from the profiler using the standard functions. Such
standardization would allow other vendors to develop their
profiling tools accordingly and enhance portability.

VIII. RELATED WORK

In the world of supercomputing, as it stands today, there is a
need and lack of full-stack monitoring tools. Monitoring MPI
jobs down to the port counters are essential for debugging job
failures and finding network bottlenecks. In this section, we
give details of existing tools (in literature and those available
as products) other than those that we have already mentioned
in Section I. The Texas Advanced Computing Center has
developed a tool called TACC STATS [24]. This tool correlates
job and system level statistics to create reports. The reports are
used to identify issues in the jobs or systems infrastructure,
but, not in real time. In [25], the authors proposed a suite
built on MPI and allows for different metrics for each job
and thus may not provide a full system view of how the jobs
are interacting with the fabric. The authors in [26] describe
a library that goes beyond the PMPI interface to gather MPI
states and lower-level network statistics. Paraver [27] is used to
provide visualization of the data. However, the tool could not
visualize / model network activities. NVIDIA released SASSI
[28] to support fine grained analysis tool for GPUs but it is
closed source and has issues like portability, complexity and
the instrumentation level is low for the developers. Authors
of [29] proposed a profiler on the top of LLVM to instrument
CUDA code, however, it does not provide insight into MPI
level. As described in Section I, there are several tools that
allow systems administrators to analyze and inspect high-
performance networks such as Mellanox, FabricIT, BoxFish,
Nagios, or Ganglia. With all of these tools, there is no
integration with the MPI Library, so correlating network traffic
to MPI jobs is a manual endeavor. On the other hand, there
are several tools such as TAU, HPCToolkit, Intel VTune, IPM,
and mpiP that focus on the MPI applications but do not show
the network traffic of the MPI job.

101

Authorized licensed use limited to: The Ohio State University. Downloaded on October 10,2020 at 22:29:07 UTC from IEEE Xplore. Restrictions apply.

IX. SOFTWARE AVAILABILITY AND DEPLOYMENT

OSU INAM Tool v0.9.4 is available for free download
and use from the project website [30]. So far this version
had over 550 downloads from the project site. OSU INAM
is currently deployed at the Ohio Supercomputer Center to
monitor multiple HPC clusters. We are working with other
institutions to deploy OSU INAM on their clusters. The
designs implemented in this paper will be available in a future
release of INAM.

X. CONCLUSION

In this paper, we proposed a real-time scalable analysis,
profiling, and visualization tool for GPU-enabled clusters with
NVLinks. Built on top of INAM, CUPTI and MPI T inter-
faces, our tool provides insights into the efficiency of different
communication patterns by examining the utilization of un-
derlying GPU interconnects while having negligible overhead.
It can also correlate correlate MPI-level with network-level
metrics by taking advantage of MPI T event-based metrics
obtained from the MPI library for point-to-point and collective
communication patterns and the fabric information gathered
through CUPTI. To the best of our knowledge, this is the
first such tool which is capable of presenting an unified and
holistic view of MPI-level and fabric level information for
emerging NVLink-enabled high-performance GPU clusters.
The proposed solutions will be available in future releases
of OSU INAM. As part of future work, we would like to
include application level metrics, enhance the proposed design
to collect data from emerging AMD Radeon GPUs, and work
with the CUPTI community to resolve the issues with respect
to PCI-level data collection.

XI. ACKNOWLEDGEMENTS

This research is supported in part by NSF grants
#CNS-1513120, #ACI-1450440, #CCF-1565414, and #ACI
1664137.

REFERENCES

[1] Oliver Peckham, “IBMs New Global Weather Forecasting
System Runs on GPUs,” 2019, Accessed: October 15,
2019. [Online]. Available: https://www.hpcwire.com/2019/01/09/
ibm-global-weather-forecasting-system-gpus/

[2] E. Combrisson, R. Vallat, C. O’Reilly, M. Jas, A. Pascarella, A.-l. Saive,
T. Thiery, D. Meunier, D. Altukhov, T. Lajnef et al., “Visbrain: A multi-
purpose gpu-accelerated open-source suite for multimodal brain data
visualization,” Frontiers in Neuroinformatics, vol. 13, p. 14, 2019.

[3] W. Liu, B. Schmidt, G. Voss, and W. Müller-Wittig, “Molecular dynam-
ics simulations on commodity gpus with cuda,” in High Performance
Computing – HiPC 2007, S. Aluru, M. Parashar, R. Badrinath, and V. K.
Prasanna, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007,
pp. 185–196.

[4] NVIDIA, “DGX-2,” https://www.nvidia.com/en-us/data-center/dgx-2/,
2016, Accessed: October 15, 2019.

[5] J. Schmidhuber, “Deep Learning in Neural Networks: An Overview,”
Neural networks, vol. 61, pp. 85–117, 2015.

[6] OSU Micro-benchmarks, http://mvapich.cse.ohio-state.edu/benchmarks/.
[7] A. D. Malony and S. Shende, “Performance Technology for Complex

Parallel and Distributed Systems,” in Proc. DAPSYS 2000, G. Kotsis and
P. Kacsuk (Eds), 2000, pp. 37–46.

[8] HPCToolkit, 2019, Accessed: October 15, 2019. [Online]. Available:
http://hpctoolkit.org/

[9] Intel Corporation, “Intel VTune Amplifier,” https://software.intel.com/
en-us/intel-vtune-amplifier-xe.

[10] “Integrated Performance Monitoring (IPM),” http://ipm-
hpc.sourceforge.net/.

[11] “mpiP: Lightweight, Scalable MPI Profiling,” http://www.llnl.gov/
CASC/mpip/.

[12] “Nagios,” http://www.nagios.org/.
[13] M. L. Massie, B. N. Chun, and D. E. Culler, “The Ganglia Distributed

Monitoring System: Design, Implementation And Experience,” Parallel
Computing, vol. 30, p. 2004, 2003.

[14] Mellanox Integrated Switch Management Solution, http://www.
mellanox.com/page/ib fabricit efm management.

[15] Lawrence Livermore National Laboratory, “PAVE: Performance Analy-
sis and Visualization at Exascale,” https://computation.llnl.gov/project/
performance-analysis-through-visualization/software.php.

[16] A. Agelastos, B. Allan, J. Brandt, P. Cassella, J. Enos, J. Fullop,
A. Gentile, S. Monk, N. Naksinehaboon, J. Ogden, M. Rajan,
M. Showerman, J. Stevenson, N. Taerat, and T. Tucker, “The
Lightweight Distributed Metric Service: A Scalable Infrastructure
for Continuous Monitoring of Large Scale Computing Systems and
Applications,” ser. SC ’14. Piscataway, NJ, USA: IEEE Press, 2014,
pp. 154–165. [Online]. Available: http://dx.doi.org/10.1109/SC.2014.18

[17] MPI Working Group, “Message Passing Interface Forum,” http://www.
mpi-forum.org/.

[18] Martin Schulz, “MPIT: A New Interface for Performance Tools
in MPI 3,” http://cscads.rice.edu/workshops/
summer-2010/slides/performance-tools/
2010-08-cscads-mpit.pdf.

[19] E. Gallardo, J. Vienne, L. Fialho, P. Teller and J. Browne, “MPI Advisor:
A Minimal Overhead MPI Performance Tuning Tool,” in EuroMPI 2015,
2015.

[20] NVIDIA, “CUDA Profiling Tools Interface (CUPTI) ,” 2019, Accessed:
October 15, 2019. [Online]. Available: https://docs.nvidia.com/cupti/
Cupti/r overview.html

[21] H. Subramoni, A. M. Augustine, M. Arnold, J. Perkins, X. Lu,
K. Hamidouche, and D. K. Panda, “INAM 2: InfiniBand Network
Analysis and Monitoring with MPI,” in International Conference on
High Performance Computing. Springer, 2016, pp. 300–320.

[22] “MVAPICH: MPI over InfiniBand, Omni-Path, Ethernet/iWARP,
and RoCE,” Accessed: October 15, 2019. [Online]. Available:
http://mvapich.cse.ohio-state.edu/features/

[23] NVIDIA, “Whitepaper: NVIDIA Tesla P100, section ’NVLink
High Speed Interconnect’,” 2019, Accessed: October 15,
2019. [Online]. Available: https://images.nvidia.com/content/pdf/tesla/
whitepaper/pascal-architecture-whitepaper.pdf

[24] B. Barth, T. Evans and J. McCalpin, “Tacc stats,” https://www.tacc.
utexas.edu/research-development/tacc-projects/tacc-stats.

[25] Virtual Institute - High Productivity Supercomputing, “HOPSA: A
Holistic Performance System Analysis,” http://www.vi-hps.org/projects/
hopsa/overview.

[26] R. Keller, G. Bosilca, G. Fagg, M. Resch, and J. J. Dongarra, “Im-
plementation and Usage of the PERUSE-Interface in Open MPI,” in
Proceedings, 13th European PVM/MPI Users’ Group Meeting, ser.
Lecture Notes in Computer Science. Bonn, Germany: Springer-Verlag,
September 2006.

[27] Barcelona Supercomputing Center, “Paraver,” http://www.bsc.es/
computer-sciences/performance-tools/paraver.

[28] M. Stephenson, S. K. Sastry Hari, Y. Lee, E. Ebrahimi, D. R.
Johnson, D. Nellans, M. O’Connor, and S. W. Keckler, “Flexible
software profiling of gpu architectures,” SIGARCH Comput. Archit.
News, vol. 43, no. 3, pp. 185–197, Jun. 2015. [Online]. Available:
http://doi.acm.org/10.1145/2872887.2750375

[29] D. Shen, S. L. Song, A. Li, and X. Liu, “Cudaadvisor: Llvm-based
runtime profiling for modern gpus,” in Proceedings of the 2018
International Symposium on Code Generation and Optimization, ser.
CGO 2018. New York, NY, USA: ACM, 2018, pp. 214–227. [Online].
Available: http://doi.acm.org/10.1145/3168831

[30] “OSU INAM,” 2019, Accessed: October 15, 2019. [Online]. Available:
http://mvapich.cse.ohio-state.edu/tools/osu-inam/

102

Authorized licensed use limited to: The Ohio State University. Downloaded on October 10,2020 at 22:29:07 UTC from IEEE Xplore. Restrictions apply.

