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ABSTRACT
Designing a scalable real-time monitoring and profiling tool with
low overhead for network analysis and introspection capable of
capturing all relevant network events is a challenging task. Newer
set of challenges come out as HPC systems are becoming larger
and users are expecting to have better capabilities like real-time
profiling at fine granularity. We take up this challenge by redesign-
ing OSU INAM and making it capable to gather, store, retrieve,
visualize, and analyze network metrics for large and complex HPC
clusters. The enhanced OSU INAM tool provides scalability, low
overhead and fined-granularity InfiniBand port counter inquiry and
fabric discovery for HPC users, system administrators, and HPC
developers. Our experiments show that, for a cluster of 1,428 nodes
and 114 switches, the proposed design can gather fabric metrics
at very fine (sub-second) granularity and discovers the complete
network topology in approximately 5 minutes. The proposed de-
sign has been released publicly as a part of OSU INAM Tool and is
available for free download and use from the project website.
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• Networks→ Network measurement.
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1 INTRODUCTION
Recent advances in High Performance Computing (HPC) have pro-
vided the fast processing and data movement needs for HPC appli-
cations. HPC systems must be highly optimized to keep up to the
new needs of modern HPC applications. As a solution to deliver the
required computing power for the applications, large-scale HPC
cluster with multiple high-speed interconnects technology such
as Peripheral Component Interconnect express (PCIe), NVIDIA
NVLink, AMD Infinity Fabric, Mellanox InfiniBand, High Speed
Ethernet and so on are being deployed and used by various HPC
users like domain scientists, HPC software developers, and HPC
administrators.

Considering these advances in interconnect technology, provid-
ing efficient data movement between compute nodes over such
varied communication fabric is essential to have end-to-end high-
performance solutions. In such an ecosystem, understanding the
interaction between applications, MPI libraries, and the communi-
cation fabric has become evenmore challenging. Therefore, detailed
and real-time insight of network level and the communication is
needed for all types of HPC users to identify and alleviate perfor-
mance bottlenecks.

Most HPC users are scientists and domain specialists who may
not be experts on the lower level details of the runtime system or
on how to use or gather such profiling information. Providing a
tool for them to easily understand the communication patterns on
the network and visualize the live and historical communication
for their jobs in a scalable and real-time fashion will be of great use.
However, this is a challenging task which consists multiple phases
listed here — 1) gathering the fabric information, 2) storing the in-
formation, and 3) visualizing various metrics in real time. Moreover,
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such tool benefits various HPC users from HPC administrators to
domain scientists with new user-level novelty that was not easily
accessible before or required knowledge about the profiling tools.

Currently, administrators of HPC systems and developers of HPC
applications/middleware rely on a plethora of tools to aid them in
this interplay. There are various profiling and tracing tools for HPC
systems available at system level. There exists a variety of MPI
level profiling tools (TAU [15], HPCToolkit [11], Intel VTune [12],
IPM [2], mpiP [4]) that give insights into the MPI communication
behavior of applications. However, they are unable to profile what
happens in the communication fabric. On the other hand, several
network level profiling and analysis tools exist that allow system ad-
ministrators to analyze and inspect the network fabric Ganglia [1],
Mellanox Fabric IT [16], BoxFish [14], Lightweight Distributed Met-
ric Service (LDMS) [7]). However, they are unable to relate network
activity to their triggering events in the MPI library.

Recently, by designing the OSU InfiniBand Network Analysis and
Monitoring with MPI (INAM) [17, 18, 22], we have made attempts
to bridge this gap by developing a tool that is capable of allowing
users to correlateMPI events and network activity. Figure 1 presents
an overview of OSU INAM. OSU INAM gives holistic and unified
view of various HPC layers like job scheduler, MPI library, and
communication fabric. OSU INAM users have the capabilities to
analyze and profile node-level, job-level and process-level activities
for MPI communication. OSU INAM provides new visualizations
and in-depth insights from the extent of tracking active MPI ranks
communication on a given InfiniBand link to the job topology
visualization across the cluster and reporting the link bandwidth
utilization for modern HPC clusters.

While OSU INAM takes up this challenge, a newer set of chal-
lenges are coming out as systems are becoming larger and HPC
users are expecting to have better capabilities while maintaining
real-time and low overhead profiling and monitoring. Therefore,
while OSU INAM visualizes and profiles clusters of smaller sizes,
several challenges must be addressed to enable scaling it to larger
supercomputing systems to provide real-time profiling.
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Figure 1: High-level overview of OSU INAM

1.1 Motivation and Analysis
Based on the experience gained from designing, developing, and
deploying the previous version of INAM on several HPC clusters
and feedback from the community, we identified the bottlenecks
for scaling and maintaining real-time network monitoring of OSU
INAM for large-scale (>1,000 nodes) clusters. As new HPC systems
are becoming larger, like the Frontera cluster at the Texas Advanced

Computing Center that contains 8008 compute nodes, a newer set
of challenges are raised to maintain real-time and scalability while
providing better capabilities.

Due to increase in number of nodes in a cluster and due to
High bandwidth interconnects, we noticed through OSU INAM
that, it is difficult to capture communication patterns by reading
port counters at larger timer intervals (in seconds). Port counters
have to be recorded at finer intervals (in sub-seconds) to capture
communication patters in detail. Fabric discovery which takes more
than 1 hour has to be reduced. Finally, purging the old data has
considerable impact on the performance of database for produc-
tion deployment. Further performance assessment of OSU INAM
showed that the workload between modules of OSU INAMDaemon
is not well-balanced. Therefore, we asked ourselves how can we
further improve OSU INAMDaemonmodules to boost performance
of the tool compared to the simulations from previous versions and
improve scalability to address the needs for large scale HPC cluster.

Section 5 mentions related work and compares tools to OSU
INAM. OSU INAM provides end-to-end and holistic view of HPC
system. To address scalability challenges and supporting real-time
features of OSU INAM, we conducted detailed assessments of the
behaviour and interplay of the components of the tool. Our studies
showed that some components inside the daemon are sequentially
dependent on each other while logically they can be independent
(e.g. the fabric discovery and InfiniBand port inquiry can be done
independently). Connections to gather and read performance coun-
ters can be reused thereby saving on connection establishment time.
Further, the granularity of profiling can be improved by taking ad-
vantage of all available resources on modern multi-/many-core
systems through multi-threading and improving the load balancing
between OSU INAM modules and preserve load balancing between
the new multi-thread design of fabric discovery and port counter
inquiry.

1.2 Contributions
In the paper, we take up this newer set of challenges and come up
with a new set of designs to handle scalability of InfiniBandNetwork
Monitoring and improve OSU INAM performance to profile and
visualize large InfiniBand networks in real time and fine granularity.
To summarize, this paper makes the following contributions:

• Scaling and redesigning a fine-grained low-overhead profil-
ing tool for InfiniBand fabric discovery for large HPC clusters

• Improve granularity of reading port counters and errors to
sub-second for large scale HPC clusters

• Enhance gathering, storing, retrieving, and visualization of
the metrics for large and complex HPC networks with low
latency

Table 1 outlines the enhancements made through this paper to
OSU INAM.

2 DESIGN
Figure 2 depicts the high level design and components of our pro-
posed design for the INAM daemon. Please note that the methodol-
ogy used in this paper is applicable to any tool used for profiling
InfiniBand networks. We chose OSU INAM since the framework
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Table 1: Comparison of features between proposed and older
versions of OSU INAM

Features V0.9.3 Proposed
Multi-threaded POSIX Modules ✓ ✓

for OSU INAM Daemon
Multi-threaded Fabric Discovery ✗ ✓

Multi-threaded Port Inquiry ✗ ✓

Load Balancing between ✗ ✓

OSU INAM Threads
Storage Management Module ✗ ✓

Parallel Insertions into Storage ✗ ✓

Bulk Storage Insertions ✓ ✓

Bulk and Chunked Storage Deletion ✗ ✓

Caching & Reusing MAD Connections ✗ ✓

Caching & Reusing Storage Connections ✗ ✓

provides an environment to gather, correlate and visualize job level,
MPI level, and Fabric/Network level metrics.

Our evaluations showed that some components inside the dae-
mon are sequentially dependent on each other while logically they
can be independent (e.g. the fabric discovery and InfiniBand port
inquiry can happen in parallel). Further, connections to gather and
read performance counters can be reused thereby saving on connec-
tion establishment time. Additionally, the granularity of profiling
can be improved by taking advantage of all available resources on
modern multi-/many-core systems through multi-threading. Previ-
ous versions of OSU INAM used a simulator for discovering fabric
and reading port counters. On the production, we noticed that its
low level APIs will cause additional delay.

In this section, first we discuss the storage management section,
then the design of fabric discovery and port inquiry modules to
address the performance issues in Section 1.1. All the modules
have an exit phase that only happens if a failure occurs in other
components and safely cause termination of the module.
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Figure 2: Detailed overview of new OSU INAMwith the new
multi-threading modules. The green components inside the
OSU INAM daemon are new or enhanced.

We launch #n POSIX threads for each module represented by the
boxes inside the green cloud in Figure 2. This is an user configurable
parameter and can be tuned based on the size of the cluster and
the storage needs of the users. The threads get bound to different

compute cores to prevent over subscription and thus can run si-
multaneously. OSU INAM is designed in such a way as to make the
operation of each thread independent from the operations of the
others. This modular design provides improved lock-free progress
and better error handling. A state machine handles creation, execu-
tion, and destruction of each thread.

2.1 Storage Management Module
OSU INAM uses MySQL, due to its ubiquitous nature, to store data.
The collected data size is proportional to the granularity of data
collection and the time since the last database purge. Therefore,
it is important to discuss how we purge the old data since it has
an impact on performance of the database. OSU INAM will keep
the history for several days for InfiniBand port counters and errors.
The routes, nodes and links are updated each time fabric discovery
module (described in Section 2.2) executes. A separate thread (called
the purger thread) is used to purge the old port data in order to
maintain the minimum overhead for the other components. The
interval of checking for old data and the history of keeping data are
user-defined variables. Section 4.3 describes the factors impacting
the size of the database and gives guidance on how to set these vari-
ables properly depending on the size of the cluster. Our proposed
storage handler has three phases: startup, purge, and exit.

• Startup Phase: In this phase, the INAM daemon will setup
the database connection and then the create the tables. All
other threads wait for creation of the tables. After completion
of table creation, the main thread is signalled to indicate the
database setup is complete so that other components can
proceed.

• Purge Phase: After the startup phase, the purger thread
will periodically purge the port counters, port errors, pro-
cess information, and process communication tables. Figure 3
shows that deletion time increases with increase in the num-
ber of rows deleted. To avoid the high cost for deleting, we
chunk the deletes. Performing deletion in chunks allowed
faster insertion of new fetched data by port inquiry module
(described in Section 2.3). Therefore, the purge happens as
a MySQL procedure to delete “X” number of rows. “X” is
an user configurable parameter and guidance is provided in
the OSU INAM userguide on how to select this parameter
for different configurations and cluster sizes. In between
each call to the delete procedure, there is an interval to wait
which enables the port inquiry module to insert new data. By
having the described procedure, we significantly reduce the
total purging latency and time fluctuation of data insertion
for the database.

2.2 FB_thread: Fabric Discovery Module
The fabric discovery module in OSU INAM is built on the top of
OpenSM [5]. The module uses the “ibnd_discover_fabric” API to
discover the fabric object connected to the node on which INAM is
running. It then uses “ibnd_iter_nodes_type” to classify the discov-
ered objects as Host Channel Adapter (HCA), switches, and routers.
During this step, we construct a data structure of routers, switches
and HCAs and populate it with the detailed fabric information
such as Local Identifier (LID), Global Unique Identifier(GUID), node
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Figure 3: Effect of number of rows being deleted on the la-
tency of MySQL database operations. During the delete, the
table is locked for other updates.

name, number of ports, etc. Once this operation is complete, we
begin the route discovery to identify the routes between all the
nodes in the fabric as a pair of GUID and port number.

The “fabric object” is the only sequential dependency that fabric
discovery and port inquiry module have at the initialization of OSU
INAM. The port inquiry module will get the fabric object from
the fabric module. The rationale behind this modular designs is as
follows — the API for fabric discovery is costly, therefore by reusing
the fabric object in port inquiry and decoupling fabric discovery
and reading port counters, we can read the port counters faster.
The successive port inquiry calls will use the fabric object obtained
from fabric discovery module. Once fabric inquiry updates the
fabric object, it will reflect to port inquiry as well. It is expected
that HPC networks are stable, but in the worst case of failures in
the fabric, we capture port errors before detecting a change in the
fabric object.

The fabric module uses multiple OpenMP threads to exploit
parallelism to discover routes. The number of threads assigned to
the fabric discovery module is a user-defined variable. A detailed
discussion on how to choose the best number of threads is presented
in Section 3.

Our proposed fabric discovery component has three phases:
startup, query and write, and exit.

• Startup Phase: FB_thread will wait for the signal of stor-
age thread in section 2.1. Then, a database connection is
established for each thread to store its data after discovering
the routes. The database connections will be reused. Then,
it signals port inquiry module to proceed after passing the
fabric object to it.

• Query and Write Phase: For each thread, we use Manage-
ment Datagram (MAD) Remote Procedure Call (RPC) port
to perform the route discovery for the fabric component to
discover the routes among assigned nodes. The MAD ports
will be reused thereby avoiding costly new MAD connection
creation. After each thread discovers its portion of the rout-
ing in the fabric, it will write the gathered metrics into the
database independently using bulk insertions. Since, for n
nodes, the total number of routes are O(n2), parallel inser-
tion of routes provides significant benefits. The first set of
threads that finish the route insertion will proceed to the
next phase of updating the “nodes” and “links” tables. Then
the threads will go to sleep until the next periodic invocation.

The time between invocation of the fabric discovery threads
is an user configurable value and guidance is provided in the
OSU INAM userguide on how to select this parameter for
different configurations and cluster sizes.

2.3 Port Metrics Inquiry Module
The port metrics inquiry module is responsible for reading the
InfiniBand port counters and port errors and writing them into the
database. Since querying port counters depends on the size of the
cluster and the architecture of the cluster like number of switches
and the number of ports per switch, there are three modes that
user can activate: serial, switch-level multi-threading, port-level
multi-threading.

The serial read has one thread reading all the port counters and
errors for the underling network. The switch-level threading uses
OpenMP threads to read the switches port counters in parallel by
getting the number of threads as a user-defined variable. The port-
level threading uses OpenMP threads to read the metrics of a switch
in parallel and is useful when the switch has dense number of port
like [3] that has 648 ports.

Our proposed port metric inquiry component has four phases:
startup, query, write and exit.

• Startup Phase: Based on the number of threads that user
assigned to PC component, the PC_thread establishes the
database connections. Then, the PC_thread will wait for the
signal from the purge thread in section 2.1. Next, PC_thread
will open the MAD port connections based on the number of
threads and sets up the shared data structure among threads.
Then, it will wait for the Fabric to load the fabric object.
Please note that we only wait for the fabric object at this
phase.

• Query Phase: The user selects one of the design based on
their cluster specifications. PC_thread will perform an it-
eration over the network to get the nodes types and infor-
mation. Then, it will use OpenMP threading with dynamic
scheduling to read port data counters and errors by using
“pma_query_via" API to get the port metrics. The metrics
are stored as a data structure for each thread to be stored
into database.

• Write Phase: After each thread will gather the port metrics,
each thread will write the data into database without wait-
ing for each other. By using bulk insertions, we reduce the
storage time as discussed in [22]. After the write phase the
PC_thread will go to sleep. The time between subsequent
queries of port metrics is an user configurable value and
guidance is provided in the OSU INAM userguide on how to
select this parameter for different configurations and cluster
sizes.

3 RESULTS AND EVALUATION
In this section, we evaluate our extended design for two clusters. A
large-scale cluster with more than 1400 nodes and small-scale HPC
cluster. All measure timings are collected using monotonic clock.
Port inquiry sweep means that the total time taken to remotely
gather all InfiniBand port counters and errors from all the nodes in
the cluster.
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3.1 Experimental Setup
We conducted our experiments on two clusters, RI, a medium scale
cluster at The Ohio State University (OSU) and Ohio Supercomputer
Center(OSC)[10], 3 clusters connected with a single fabric. Table 2
summarizes the specification of each the clusters.

Table 2: The hardware specification of clusters used for ex-
periments

RI OSC

Overview

Equipped with
MT26428 QDR
ConnectX-2 HCAs
with PCI-Express
interfaces

3 heterogeneous
clusters connected
to the same
InfiniBand
fabric

#Nodes 146 1,428
#Links 542 3,402
#Switches 20 (36 ports/switch) 114 (36 ports/

switch)

CPU Intel Xeon 2.53Ghz
Intel(R) Xeon(R)
CPU E5-2680 v3
@ 2.50GHz

Cores/node
for INAM 8 24

L3 cache 12MB 30MB
Memory/node 12GB 128GB

Switch
Technology Mellanox MTS3610QDR

Two clusters have
Mellanox EDR
Infiniband
(100Gbps)
and one with
FDR/EN (56Gbps)

Job Scheduler SLURM PBS

3.2 Comparison with Older OSU INAM Version
To clarify and compare the improvements of the new design, OSU
INAM v0.9.5, we compared the fabric discovery time and port in-
quiry sweep for RI cluster. As mentioned in the new design, each
thread for port inquiry and fabric discovery writes its portion of
data into the database. However, in the previous OSU INAM ver-
sion, another POSIX thread used to perform database insertions. For
quantifying timings for OSU INAM v0.9.3, timings of querying and
database storing are measured separately and added in table 3. The
experiment used an interval of 30 seconds for fabric discovery and
port inquiry modules while using only one thread for port inquiry
and one thread for fabric discovery. Although using single thread
for both network modules, by using cached MAD connections and
overlapping storing and querying data, the new design achieved
29% and 64% improvement for fabric discovery and port inquiry
sweep, respectively.

3.3 Fabric Discovery Evaluation
In this section, we measure the performance and scalability of fabric
discovery component for small and large scale supercomputers.

Table 3: Comparison of fabric discovery and port inquiry
sweep modules for RI cluster between improved version of
OSU INAM(v0.9.5) and previous version. Both networkmod-
ules only use a single thread. Numbers are in seconds.

OSU INAM module v0.9.3 v0.9.5 %Improvement
Fabric discovery 85.59s 66.13s 29%
Port Inquiry Sweep 0.23s 0.14s 64%

3.3.1 Impact of Multi-threading on Fabric Discovery. We ran the im-
proved OSU INAM daemon to measure the effect of multi-threading
for the fabric discovery module. To be fair and mimic the behavior
of real deployment, we set some threads for port inquiry while mea-
suring performance of fabric inquiry. In this experiment we set 20
threads for port inquiry with interval of 5 seconds for OSC cluster
and 1 thread with an interval of 1 second for RI cluster. The timings
measured include discovery of fabric and insertion of data into the
database. Figure 4(b) shows the result for RI cluster and a speed-up
of 6x by using 8 threads. Figure 4(a) shows the same experiment
with 8, 16, 20, and full subscription mode for OSC clusters.

3.3.2 Evaluating Performance Variability in Fabric Discovery. We
conducted a test to measure the performance variation of Fabric
Discovery module at RI cluster over 200 samples. In this test, 8
threads were used for fabric discovery with 30 seconds querying
interval and 1 thread for port inquiry with 1 second querying in-
terval. We found that the median is 14.26 seconds with standard
deviation of 1.39 seconds. The anomaly is due to over subscription
of threads when all the modules (Port Inquiry, Fabric Discovery,
MPI_T Handler, Job Handler, Purge Thread) inside the Daemon
were active. We are investigating methods to address this issue.

3.4 Port Inquiry Evaluation
In this section, we performed tests to measure the scalability and
performance variation of Port Inquiry module inside OSU INAM
Daemon.

3.4.1 Impact of Multi-threading on Port Inquiry. We ran OSU INAM
daemon with the improved design to measure the effect multi-
threading for the port inquiry module. To be fair and mimic the
behavior of real deployment, we set some threads for fabric discov-
ery while measuring performance of port inquiry module. We set
20 threads and 6 threads for OSC and RI, respectively with one-hour
querying interval. The timings reported in this section is the sum
of gathering port metrics and insertion into the database.

Figure 5(a) and 5(b) depicts the scalability of our design and
the effect of the number of threads for port inquiry component. In
Figure 5(a) and and 5(b) the interval of querying ports is set to 1
seconds. The test population for RI experiment is 2,000 samples and
for OSC it is 1,000 samples. Since there are only 20 switches on RI
cluster, the overhead of threading is out weighting multi-threading
benefits. Our experiments shows that whenwe over subscribe to the
hardware cores, the variation between samples increases since both
fabric threads and port inquiry threads are overlapping for some
CPU cores. For example for OSC cluster, the standard deviation
doubles when using more than 16 threads since there are 20 threads
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for fabric inquiry and 3 threads for other components of OSU INAM
depicted in Figure 2.

3.4.2 Port Inquiry Performance Variability. We conducted exper-
iments on OSC cluster to capture the variability of port inquiry
module with the interval of 250ms. The node that OSU INAM was
running on has 24 cores and for the test, we allocated 16 threads for
port inquiry and 8 threads for fabric discovery. Figure 5(c) shows
the variation of port inquiry sweep for more than 35,000 samples.
The latency is mostly consistent and has a median of 0.26 second
with standard deviation of 0.13 second. The abnormally is due to
over subscription of threads as discussed in Section 3.4 when all the
OSU INAM modules inside the OSU INAM Daemon were active.
Moreover, all of the CPU cores were allocated to OSU INAM, while
MySQL needs some hardware resources to handle the concurrency
of insertions.

3.5 Overhead of Visualization and Rendering
In this section, we evaluated the time of visualizing the graph in
Figure 6(b) and showing the live jobs pages, the two pages that
are the most time consuming. By using PhantomJS, rendering the
graph in Figure 6(b) takes around 1.4 second on average and it
happens once when user reloads the page. Table 4 shows the timing
of updating and showing the changes in the network graph in
Figure 6(b) and live jobs tab.

Table 4: Network and live jobs view retrieval timing for OSC
for 1K jobs

View Average Min Max Standard
deviation

Network View 196.15 ms 187 ms 206.09 ms 5.75 ms
Live Jobs View 18.17 ms 16 ms 20 ms 1 ms

3.6 Comparison of Simulator with the
Deployed Version

In this section, we illustrate how close OSU INAM simulator per-
formance is to real tool deployment. The simulator allows the user
to specify attributes of the system to mimic. The simulator helps
users to play around with the tool without allocating resources
and deploying it. Another benefit is for user to see how different
hardware resources allocations for each modules of the tool will
impact the module and overall performance.

From our experiments, we noticed that the performance of the
simulator is a close approximation of how INAM v0.9.5 would
perform in a live environment. We compared most active network
module of OSU INAM, port metric inquiry in RI cluster across OSU
INAM v0.9.3 (the old design), the improved design (v0.9.5) and
the simulator in a single-threaded mode. The old design takes 0.23
seconds while Similator and the improved design takes 0.14 seconds
to perform port metric inquiry sweep of the cluster.
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(a) RI cluster - 146 nodes, 542 links, and 20 switches (b) OSC cluster - 1,428 nodes, 3,402 links, and 114 switches

Figure 6: Network topology as rendered by OSU INAM. The links are colored based on the live network traffic

The simulator is very close to how the improved version (v0.9.5)
of INAM would perform on the actual cluster. When we performed
the same experiment on the OSC cluster, we noticed that the single-
threaded simulator was able to perform port inquiry in 0.95 seconds,
while the deployed instance with 8-threads completed port inquiry
in 0.40 seconds.

4 DISCUSSION
4.1 Best Practices with OSU INAM
In this section, we provide some guidance on the proper resource
management for all three components of OSU INAM depicted in
Figure 2. OSU INAM consist of Daemon, storage (MySQL), and web-
based front end. The node resources like hardware cores should be
divided in a fair way to all the components to avoid bottlenecks on
one.

There is a trade-off between increasing the availability for the
web front and increasing the performance of profiling. The more
users use the tool, the more read traffic goes through the stor-
age component and it can impact its availability. Considering that
MySQL locks the tables for insertions and concurrent insertions are
sequential, having a very low interval of querying by increasing
the number of threads can cause starvation for the read queries. We
proposed the purge thread design to prevent starvation of inserts
and reads in Section 2.1. However, as experiments show in the ex-
periments of Section 3, when all OSU INAM Daemon components
are active there is variation in performance of OSU INAM Daemon.
The issue can be reduced by choosing a proportional core allocation
for the OSU INAM daemon.

A challenging question for the OSU INAM deployment is the
proper allocation of number of thread based on number of CPU
cores for each module inside OSU INAM Daemon. Port counters
and errors are the biggest tables inside storage. Two threads need
to go over port counters and errors for purging old data. As a result,

it is recommended to have 2 of the CPU cores for the purge thread
to avoid performance fluctuation. The two cores can handle job
scheduler modules and MPI_T handler module as well. Since HPC
fabrics are mostly stable, the interval of fabric discovery can be set
to a large value. In that case, the user can depend on finding the
errors on the links for fast failure discovery.

Such consideration will allow allocating more resources to the
port inquiry module to maintain sub-second granularity. Based
on the short interval of port inquiry and the importance of fine-
granularity, the CPU cores allocated for the port inquiry should not
overlap with the cores used for threads for other components. In
other words, the hardware cores allocated for port inquiry should
not be oversubscribed. The remaining cores can be divided between
fabric discovery and the OSU INAM web front. Table 5 summarizes
our suggestion deployment.

4.2 Load Balancing of Threads in Port Inquiry
Without losing generality, we show the result of the query and
write phase for each thread for RI cluster. The experiment used
4 threads for fabric discovery with interval of 30 seconds and 4
thread for port inquiry with interval of 1 second. Figures 7(a) and
7(c) show the latency of write and query phase for each of the
thread in port inquiry module. We noted that although there are
variations between the performance of each thread, they all follow
almost the same pattern. Both figures shows the samples/time for
each port inquiry thread.

Figures 7(b) and 7(d) depict the latency of write and query phase
for each of the thread in fabric discovery module for the same ex-
periment samples. Please note that capturing the thread activity has
increased the overall timing of both components due to expensive
API calls and barriers. Therefore, the detailed timing decreases the
overlap between fetching the data and storing into the database.
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Table 5: Suggested number of cores per functional component when deploying OSU INAM for best performance

Cluster Size Fabric
Discovery

Port
Inquiry

MPI_T and Job
Handler

Storage
Purge

<500 2 2+ 1 2
500 <size <1000 4 8+ 1 2

>1000 8 16+ 2 2

(a) Timing of write phase for each thread
for fabric discovery

(b) Timing of write phase for each thread
for port inquiry

(c) Timing of query phase for each thread
for port inquiry

(d) Timing of query phase for each thread
for fabric discovery

Figure 7: Timing of write and query phase for each thread of port inquiry and fabric inquiry for RI cluster - T# represents the
time taken by that thread

4.3 Modeling of the Aggregated Data on the
Network

In this section, we identify the amount of traffic added to the net-
work from our tool. The port inquiry for each node adds 116 bytes
to collect port errors and 84 bytes for port data counters. The traffic
goes through virtual lane 15 with the highest priority compared to
others and uses Unreliable Datagram (UD) transport service. [21]
discuss the overhead of profiling from end to end perspective. In-
terval of querying impacts the amount of traffic added to network.
Therefore, the maximum traffic for an entire sweep is

Traf f ic(tool ) = Traf f ic(PC_total ) +Traf f ic(FB_total ) (1)
Traf f ic(PC_total ) = 200Bytes ×QueryFrequency

× Numbero f Switches × Numbero f SwitchPorts (2)

For fabric discovery, it depends on the topology of the network
and the diameter of the network. For each switch connected to the
node that OSU INAM is running on, fabric discovery sends back
the GUID and port number of switch. The maximum size of route
discovery traffic is

Traf f ic(FB_total ) = NetworkDiameter × 20Bytes×
Numbero f SwitchPorts ×QueryFrequency × Numbero f Switches

(3)

For port inquiry of OSC cluster, OSU INAM traffic will be maxi-
mum 1,603 KB/sec with interval of half second. We indicate max-
imum since not all the ports on the switches are active. For the
fabric discovery, the traffic will be a maximum of 801 KB/sec when
using interval of 1 second for updating fabric. Given that the OSC
clusters are capable of 56 Gbps to 100 Gbps, this is an insignificant
amount of data.

5 RELATEDWORK
In the world of supercomputing, as it stands today, there is a need
and lack of full-stack monitoring tools. Monitoring MPI jobs down

to the port counters are essential for debugging job failures and
finding network bottlenecks. In this section, we give details of
existing tools (in literature and those available as products) other
than those that we have already mentioned in Section 1. The Texas
Advanced Computing Center has developed a tool called TACC
STATS [8]. This tool correlates job and system level statistics to
create reports. The reports are used to identify issues in the jobs
or systems infrastructure, but, not in real time. In [23], the authors
proposed a suite built on MPI and allows for different metrics for
each job and thusmay not provide a full system view of how the jobs
are interacting with the fabric. The authors in [13] describe a library
that goes beyond the PMPI interface to gather MPI states and lower-
level network statistics. Paraver [9] is used to provide visualization
of the data. However, the tool could not visualize / model network
activities. NVIDIA released [20] to support fine grained analysis tool
for GPUs but it has portability issues. Further, it is complicated for
typical application developers. Authors of [19] proposed a profiler
on the top of LLVM to instrument CUDA code, however, it does
not provide insight into MPI level. As described in Section 1, there
are several tools that allow systems administrators to analyze and
inspect high-performance networks such as Mellanox, FabricIT,
BoxFish, Nagios, or Ganglia. With all of these tools, there is no
integration with the MPI Library, so correlating network traffic to
MPI jobs is a manual endeavor. On the other hand, there are several
tools such as TAU, HPCToolkit, Intel VTune, IPM, and mpiP that
focus on the MPI applications but do not show the network traffic
of the MPI job.

6 SOFTWARE AVAILABILITY AND
DEPLOYMENT

The proposed design has been released publicly as a part of OSU
INAM Tool v0.9.5 and is available for free download and use from
the project website [6]. So far this version had over 700 downloads
from the project site. OSU INAM is currently deployed at the Ohio
Supercomputer Center to monitor multiple HPC clusters. We are
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working with other institutions to deploy OSU INAM on their
clusters.

7 CONCLUSION AND FUTUREWORK
In this paper, we proposed several enhancements to OSU INAM
which enabled gathering, storing, retrieving, and visualization of
the metrics for large and complex HPC networks with low latency.
We enabled scalable and high performance real-time fabric pro-
filing and discovery by using different levels of parallelism, bulk
storage interactions, and independent parallel components. The
enhanced OSU INAM tool provides low overhead, scalable, and
fined-granularity InfiniBand port counter inquiry and fabric dis-
covery for HPC users, system administrators and HPC developers.
Our experiments show that, for a cluster size of 1,428 nodes and
114 switches the proposed design can gather fabric metrics at sub-
second granularity.

The paper designs have been publicly released as a part of
0.9.5 release and are being used by many users. As part of future
work, we aim to address the storage bottleneck by exploring high-
performance database engines capable of handling concurrent reads
and writes while ensuring high availability. Moreover, we plan to
support more intra-node metrics and correlation between high-
level metrics and low-level metrics to capture the interaction of
applications, MPI and the network level metrics.
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