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Abstract. N -Metaplectic categories, unitary modular categories with the same fusion
rules as SO(N )2, are prototypical examples of weakly integral modular categories generalizing
the model for the Ising anyons, i.e. metaplectic anyons. A conjecture of the second author would
imply that images of the braid group representations associated with metaplectic categories
are finite groups, i.e. have property F . While it was recently shown that SO(N )2 itself has
property F , proving property F for the more general class of metaplectic modular categories
is an open problem. We verify this conjecture for N -metaplectic modular categories when N

is odd, exploiting their recent enumeration together with a characterization in terms of Galois
conjugation and twisting. In another direction, we prove that when N is divisible by 8 the N -
metaplectic categories have 3 non-trivial bosons, and the boson condensation procedure applied
to 2 of these bosons yields N

4 -metaplectic categories. Otherwise stated: any 8k-metaplectic
category is aZ2 -gauging of a 2k-metaplectic category, so that the N even metaplectic categories
lie towers of Z2-gaugings commencing with 2k- or 4k-metaplectic categories with k odd.

1. Introduction. N-Metaplectic categories are a major source of examples of weakly
integral modular categories. As natural generalizations of the Ising anyons [21] they are
important examples in the study of topological phases of matter and their applications [22] to
quantum computation. They are defined as unitary modular categories with the same fusion
rules as those obtained from the semisimple quotients SO(N)2 (This notation is borrowed
from conformal field theory. A more suitable notation might be Spin(N)2 since the objects
analogous to the spinor representations are included.) of Rep(UqsoN ) where q = eπi/N for
N even and q = eπi/(2N) for N odd (see [26] for details of that construction). In general an
N-metaplectic category has dimension 4N and has simple objects of dimension 1,2 and

√
N

(N odd) or
√

N
2 (N even). When N is odd, N-metaplectic categories are relative centers of

Tambara-Yamagami categories [20]. Recently, a complete classification and enumeration of
N-metaplectic categories has been completed [1, 6, 7]. In addition, the N-metaplectic modular
categories coming from quantum groups, i.e. SO(N)2, have been shown to have finite braid
group image [30], verifying the property F conjecture for this subset of metaplectic categories
(see [26]).

In this article we advance our understanding of N-metaplectic modular categories in
two ways. First we extend the proof of property F from SO(N)2 with N odd to all odd N-
metaplectic categories. This is achieved as follows. In [1] it is shown that for N odd there are
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precisely 2s+1 inequivalent N-metaplectic categories where s is the number of prime factors
of N . We show that each of these may be obtained from SO(N)2 by Galois conjugation and
twisting, which then allows us to describe the images of all N-metaplectic Bn-representations
in terms of those obtained from SO(N)2. Although we believe this technique should apply to
the even N cases as well, there are some further technicalities that have not been worked out
yet. On the other hand our second result shows that even N-metaplectic categories appear in
towers of gaugings. More precisely we show that if 8 | N then any N-metaplectic modular
category is a Z2-gauging of an N

4 -metaplectic modular category. Thus for each odd k there are
towers of even N-metaplectic categories starting with the 2k- and 4k-metaplectic categories.

2. Preliminaries. We assume the reader is familiar with the basic notions in the
theory of fusion categories such as spherical and braiding structures and their properties.
Good references for these details are: [14, 15, 2, 32].

2.1. Galois conjugation and twisting. It is well known that a fusion (or modular or
ribbon) category C can be defined over a number field F = Q(α). That is, the data needed to
constructC (6 j-symbols, braiding isomorphisms, twists, mapping class group representations)
all lie in a finite Galois extension of Q. Moreover, if σ is a Galois automorphism of F then
twisting all data by σ produces another category Cσ . Now if C is a unitary category or
(possibly more generally) has dimension function taking values in R+, then Cσ may not
have this property. Indeed, a Galois conjugate of a pseudo-unitary category is not generally
pseudo-unitary.

On the other hand, any Galois conjugate of a weakly integral fusion category is pseudo-
unitary [15, Proposition 8.24]. Thus, by [15, Propositions 8.23] any weakly integral fusion
category admits a unique spherical structure j+ with respect to which each object has positive
dimension. Moreover, ifB is the braided fusion category underlying a weakly integral modular
category C (i.e. forgetting the spherical structure) then B equipped with any other choice of
spherical structure is again modular (see [8, Lemma 2.4]). In particular, with respect to the
unique spherical structure j+ giving Bσ positive dimensions,Bσ

+ = (Bσ, j+) is modular. Note
that while Cσ and Bσ

+ have the same underlying braided fusion category Bσ , their spherical
structures (and therefore S and T -matrices) may differ.

These arguments prove the following useful proposition:

PROPOSITION 1. Let C be any weakly integral modular category, B its underlying
braided fusion category, and σ ∈ Gal(Q/Q) a Galois automorphism. Then there is a unique
choice of a spherical structure j+ with respect to which Bσ

+ = (Bσ, j+) is a modular category
with positive dimensions.

It is worth pointing out that distinct spherical structures on the braided fusion category B

underlying any modular category C are in 1-1 correspondence with invertible self-dual objects
of C (see e.g. [14]).

A motivation for this paper is the following:
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CONJECTURE 1. The braid group representations associated with anyobject in a weakly
integral braided fusion category have finite image.

An object X ∈ B for whcih the corresponding braid group representations all have finite
image is called a property F object, and B has property F if all objects are property F objects.
It is conjectured (see [26]) that dim(X)2 ∈ Z if and only if X has property F , so that B has
property F if and only if B is weakly integral.

Suppose that every object in a modular category C has property F . Then the same is true
of Cσ, since the relations defining a finite group are polynomials. Moreover, the braid group
image only depends on the underlying braided fusion category B, i.e. is independent of the
spherical structure. Thus if a weakly integral modular category C has property F then for any
Galois conjugation σ the underlying braided fusion category, Bσ equipped with the positive
spherical structure Bσ

+ also has property F .
Recently it was shown [30] that the integral modular categories SO(N)2 obtained from

quantum groups UqsoN at q = eπi/N (N even) and q = eπi/(2N) (N odd) have property
F . The proof involves a detailed analysis of representations of these quantum groups, rather
than categorical-level arguments. In particular the proof does not immediately imply that
unitary modular categories with the same fusion rules as SO(N)2, i.e. metaplectic modular
categories, also have property F . On the other hand, metaplectic modular categories have
now been classified and enumerated. This suggests that we can infer property F for those
metaplectic modular categories with underlying braided fusion categories Galois conjugate to
SO(N)2. It turns out we need slightly more–we must also use a twisting procedure [5].

2.2. Boson Condensation and Gauging. Two processes that we employ in our anal-
ysis are gauging and de-gauging (sometimes called anyon condensation), which may be inter-
preted physically as phase transitions for anyon systems [9]. First let us introduce the basic
construction we call de-gauging (which was first described in [29] and subsequently rediscov-
ered and developed in [25, 4, 12] under various conditions and under different names). Let
C be modular and Rep(G) � D ⊂ C a Tannakian subcategory (here a Tannakian category
is a symmetric braided fusion category equivalent to Rep(G) for some finite group G). The
G-de-equivariantizationCG of C is a faithfully G-graded category (in fact, a braided G-crossed
category) with modular trivial component [CG]e of dimension dim(C)/|G |2 and [CG]e is the
G-de-gauging of C [12]. One does not need to understand the full G-de-equivariantization of
C to obtain [CG]e: in fact [CG]e = (D′)G , where

D′ = {Y ∈ C : cX,YcY ,X = idY⊗X for all X ∈ D}

is the Müger centralizer of D ⊂ C [12].
The simplest case of de-gauging is boson condensation. Whenever a modular category

C contains a boson b, i.e. a self-dual invertible object with twist θb = 1, then the fusion
subcategory 〈b〉 is equivalent to Rep(Z2). In this case, the de-equivariantization functor
F : C → CG is easier to understand. In particular, if X ∈ C is a simple object and b ⊗ X � X ,
then F(X) � X (1) ⊕ X (2) for simple objects X (1), X (2). On the other hand, if b ⊗ X � X ,
then F(X) is a simple object. There is a trichotomy among self-dual invertible objects in a
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ribbon category: they are either bosons as above, semions s with θs = ±i in which case the
subcategory 〈s〉 is modular or fermions f with θ f = −1 and 〈 f 〉 � sVec.

The reverse process, G-gauging, is more complicated [3, 10]. Here one starts with a
modular category B and an action of a finite group G by braided tensor autoequivalences:
ρ : G → Autbr⊗ (B). A G-gauging of B, when it exists, is a new modular category obtained
by first constructing a G-graded fusion category D with trivial component De = B and then
equivariantizing to obtain a new modular categoryDG . There are obstructions to the existence
of a gauging, and when the obstructions vanish there can be many G-gaugings (see [10]). A
recent result of Natale [27] implies that any weakly group-theoretical modular category is a
G-gauging of either a pointed modular category or a Deligne product of a pointed modular
category and an Ising category. In [16, Question 2] they ask if every weakly integral modular
category is weakly group-theoretical (the converse is known to be true). If the answer is “yes”
(as many suspect) then to prove one direction of the property F conjecture it would be enough
to prove that G-gauging preserves property F .

3. Metaplectic Categories. We begin with the following definition:

DEFINITION 1. A metaplectic modular category is a unitary modular category with
the same fusion rules as SO(N)2 for some N > 1.

The structure and properties of SO(N)2 were studied in some detail in [26], from which
much of the results we outline are taken. The fusion rules for SO(N)2 (and hence N-metaplectic
modular categories) naturally split into three cases, depending on the value of N mod 4.

3.1. Fusion rules for odd N . The N-metaplectic modular categories for odd N > 1
have 2 simple objects X1, X2 of dimension

√
N , two simple objects 1, Z of dimension 1, and

N−1
2 objects Yi, 1 ≤ i ≤ N−1

2 of dimension 2. The fusion rules are [1]:

(1) Z ⊗ Yi � Yi , Z ⊗ Xi � Xi+1 (modulo 2), Z ⊗2 � 1 ,
(2) X⊗2

i � 1 ⊕
⊕

i Yi ,
(3) X1 ⊗ X2 � Z ⊕

⊕
i Yi ,

(4) Yi ⊗ Yj � Ymin{i+j ,N−i−j } ⊕ Y|i−j | , for i � j and Y ⊗2
i = 1 ⊕ Z ⊕ Ymin{2i,N−2i} .

It is shown in [1] that Z is always a boson, and N-metaplectic modular categories with N
odd were classified and enumerated by condensing Z: there are precisely 2s+1 inequivalent
such categories, where s is the number of distinct primes dividing N . The fusion rules for the
(adjoint) subcategory generated by Y1 with simple objects 1, Z and all Yi are precisely those of
the dihedral group DN of order 2N , and, moreover this subcategory coincides the centralizer
of the Tannakian 〈Z〉 � Rep(Z2).

3.2. Fusion rules for N ≡ 2 (mod 4). The N metaplectic modular categories for
N ≡ 2 (mod 4) have rank k + 7, where k = N/2 (an odd number). We will denote by
SO(2)2 the pointed modular category C(Z8,Q) with twists e j

2πi/16 for uniformity of notation
so that there are 4 inequivalent 2-metaplectic modular categories (since there are 4 inequivalent
non-degenerate symmetric quadratic forms on Z8, see [33]). Generally, there are exactly 2s+1

inequivalent N-metaplectic modular categories in this case [6], where s is the number of prime
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divisors of N . The group of isomorphism classes of invertible objects for N ≥ 6 is isomorphic
to Z4. Let g be a generator of this group, so the (isomorphism classes of) invertible objects
are g j for 0 ≤ j ≤ 3. There are k − 1 self-dual simple objects, Xi and Yi for 1 ≤ i ≤ k−1

2 , of
dimension 2. The remaining four simple objects, Vi for 1 ≤ i ≤ 4, have dimension

√
k. The

following fusion rules hold [6]:

• g ⊗ Xa � Yk+1
2 −a, and g2 ⊗ Xa � Xa, and g2 ⊗ Ya � Ya for 1 ≤ a ≤ (k − 1)/2 .

• Xa ⊗ Xa � 1 ⊕ g2 ⊕ Xmin{2a,k−2a}; Xa ⊗ Xb � Xmin{a+b,k−a−b} ⊕ X |a−b | (a � b) .

• V1 ⊗ V1 � g ⊕
k−1

2⊕
a=1

Ya.

• gV1 = V3, gV3 � V4, gV2 � V1, gV4 � V2 and g3Va � V∗
a , V2 � V∗

1 , V4 � V∗
3 .

Again adopting the same notion for simple objects in a general N-metaplectic category C with
N ≡ 2 (mod 4) one finds that g2 is always a boson. In fact, the classification of N-metaplectic
modular categories with N ≡ 2 (mod 4) was obtained in [6] by condensing 〈g2〉 to obtain a
pointed cyclic modular category. Indeed, the centralizer of 〈g2〉 � Rep(Z2) has simple objects
Xi,Yi and the g j i.e. all simple objects of dimension 1 or 2. The simple object Y1 generates
this subcategory, which has the same fusion rules as Rep(Z4 � Zk) (with the generator of Z4
acting by inversion on Zk) [26, Remark 4.4 and Theorem 4.8]. In this notation the Z4-grading
on C has trivial component C0 with simple objects 1, g2, X1, . . . , X k−1

2
, component C2 with

simple objects g, g3,Y1, . . . ,Yk−1
2

and the other two components with simple objects {V1,V3}

and {V2,V4} respectively. Obviously there are labeling ambiguities associated with g ↔ g3

and {V1,V3} ↔ {V2,V4}.
3.3. Fusion rules for N ≡ 0 (mod 4). The N-metaplectic modular categories with

N ≡ 0 (mod 4) with 2k = N have rank k +7 and dimension 4N [26]. The simple objects have
dimension 1,2 and

√
k and are all self-dual. Setting r = k

2 − 1, the (2r + 1 = k − 1) simple
objects Xi for 0 ≤ i ≤ r − 1 and Yj for 0 ≤ j ≤ r have dimension 2 and the simple objects
Vi,Wi have dimension

√
k. For k > 2 the key fusion rules are as follows [7]:

• h⊗2 � g⊗2 � 1, h ⊗ Xi � g ⊗ Xi � Xr−i−1 and h ⊗ Yi � g ⊗ Yi � Yr−i
• g ⊗ V1 � V2, h ⊗ V1 � V1 and h ⊗ W1 � W2, g ⊗ W1 � W1
• V ⊗2

1 � 1 ⊕ h ⊕
⊕r−1

i=0 Xi

• W ⊗2
1 � 1 ⊕ g ⊕

⊕r−1
i=0 Xi

• W1 ⊗ V1 �
⊕r

i=0 Yi

• Xi ⊗ Xj �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Xi+j+1 ⊕ Xj−i−1 i < j ≤ r−1
2

1 ⊕ hg ⊕ X2i+1 i = j < r−1
2

1 ⊕ h ⊕ g ⊕ hg i = j = r−1
2 < r − 1

• Yi ⊗ Yj �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Xi+j ⊕ Xj−i−1 i < j ≤ r
2

1 ⊕ hg ⊕ X2i i = j ≤ r−1
2

1 ⊕ h ⊕ g ⊕ hg i = j = r
2 .
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Notice that all other fusion rules may be derived from the above by tensoring with h or
g as needed. For example V1 ⊗ V2 � g ⊗ V ⊗2

1 � h ⊕ hg ⊕
⊕r−1

i=0 Xi . The Z2 × Z2 grading
is clear from these rules, we denote the trivial component by C(0,0) and the component with
simple objects Yj by C(1,1). The classification of N-metaplectic modular categories with 4 | N
was obtained in [7] by condensing hg, which is always a boson. It is shown in [7] that, for
N ≥ 8 there are 3 · 2s+1 inequivalent N-metaplectic modular categories where s is the number
of distinct primes dividing N . The degenerate case N = 4 is special: its fusion rules coincide
with Isingν � Isingμ for which there are 20 inequivalent metaplectic modular categories, rather
than 12.

The centralizer of the pointed subcategory 〈h, g〉 is always the trivial component C(0,0)
with simple objects 1, h, g, hg, and all Xi , whereas 〈hg〉′ also includes the component C(1,1)
with simple objects Yj and the component with simple objects Vi by C(1,0) for concreteness.
There is a slight further subtlety related to the value of N ≡ 0,4 (mod 8). The objects h, g
are bosons precisely when 8 | N , and are fermions otherwise. Moreover, when 8 | N one
sees that h centralizes the trivial component as well as the component C(1,0) containing V1 and
V2, while g centralizes the Wi . When 8 � N the opposite is true: g centralizes the Vi and h
centralizes the Wi [7]. In [26] it is shown that the fusion subcategory generated by Y0 (i.e.
〈hg〉′ = C(0,0) ⊕ C(1,1)) has the same fusion rules as the representation category Rep(DN ) of
the dihedral group of order N .

4. Property F for N-Metaplectic Categories with N odd. In [23] fusion categories
with the same fusion rules as SU(N)k were characterized in terms of Galois conjugation and
associativity twisting (see also [24] for the SU(2)k case). We use a similar characterization of
N-metaplectic categories to obtain the following:

THEOREM 1. If C is an N-metaplectic modular category with N := 2r + 1 odd, then C

has property F .

PROOF. Let N = pa1
1 · · · pas

s be the prime factorization of N . From [1], we know
that there are precisely 2s+1 N-metaplectic modular categories. We will show that Galois
conjugation and twisting [5] produce all of these categories.

A Galois conjugate C of the quantum group category SO(N)2 is not necessarily unitary.
However, it is pseudounitary, so there exists a unique choice of spherical structure on its
underlying braided fusion category so that the objects have positive dimension and this new
category C+ remains modular (see Proposition 1). This choice does not affect the braiding
eigenvalues of the category. To ensure that C+ is metaplectic we must verify unitarity, which
is a slightly delicate argument: By [1] SO(N)2 is weakly group theoretical [11]. It follows
that [SO(N)2]

σ = C is also weakly group theoretical (one proof is to observe that C is the Z2-
gauging of a pointed modular category). By [19, Theorem 5.20] any weakly group theoretical
fusion category is monoidally equivalent to a unique unitary fusion category. By the main
result of [18] any braiding on such a category is unitary, and, moreover, it admits a unique
structure of a unitary ribbon (i.e. spherical braided) fusion category. By the uniqueness of
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the unitary and spherical structures and the freedom to keep the braiding we seek, C+ is
metaplectic.

Let ζ = e
2πi

16r+8 . There exists a simple object W ∈ SO(N)2 of dimension
√

N such that the
eigenvalues of the braiding RW ,W are ζnj for nj = (4r+2)((r− j)(r− j+1)− j)+(2r+1)r+2 j2,

and 0 ≤ j ≤ r [22]. The non-isomorphic simple object W ′ of dimesion
√

N has braiding
eigenvalues −ζnj for 0 ≤ j ≤ r.

The Galois group Gal(Q(ζ)/Q) � (Z/8NZ)× acts on the set of eigenvalue exponents
{nj : 0 ≤ j ≤ r} ⊂ Z/8NZ by multiplication. By the Chinese Remainder theorem, the Galois
group acts on each factor of Z/8NZ � Z/pa1

1 Z × · · · × Z/pas
s Z × Z/8Z independently.

We first observe that nj = 2 j2 (mod N). Since 2(− j)2 = 2 j2, we have {nj (mod N) :
0 ≤ j ≤ r} = {2 j2 : j ∈ Z/NZ} as sets. Hence, for any i, we have X := {nj (mod pai

i ) : 0 ≤

j ≤ r} = {2 j2 : j ∈ Z/pai
i Z}. The factor of the Galois group acting on Z/pai

i Z is (Z/pai
i )×.

Since (Z/pai
i Z)

× is cyclic, the stabilizer subgroup Stab(Z/pai
i Z)

× (X) = {x2 : x ∈ (Z/pai
i Z)

×}

has index 2. Thus, we get two distinct sets of eigenvalues mod pai
i for each i.

Moreover, we have nj = r (mod 8) for all j. If r is relatively prime to 8, this gives 4
choices of Galois conjugates for [nj]8. If r = 2 or r = 6 mod 8, we have 2 choices. If r = 0 or
r = 4 mod 8, there is only one choice. In all but the last (r = 0 or r = 4) case, we must divide
by 2 to account for labelling ambiguity on the nonintegral objects. Thus, when r is relatively
prime to 8, we get (2s)(4)/2 = 2s+1 distinct categories from Galois conjugation. When r = 2
or r = 6 mod 8, we get (2s)(2)/2 = 2s distinct categories. When r = 0 or r = 4 mod 8, we get
(2s)(1) = 2s modular categories.

To construct the remaining metaplectic modular categories, we will use twisting in the
sense of [5]. Let D be a modular category. Let B ⊂ G(D) be a subgroup of the group of
the invertibles of D, and let w ∈ Z3(B̂,U(1)) be a 3-cocycle. The twisted category D(1,w) is
a B̂-graded category with the same objects and tensor product as D, but with an associator
twisted by w. More explicitly, if σ, τ, ρ ∈ B̂, then we have

α̂Xσ ,Xτ ,Xρ = wσ,τ,ραXσ ,Xτ ,Xρ ,

where α̂ and α are the associators of D(1,w) and D, respectively.
Let B ⊂ G(B) be a subgroup such that the induced map U(G) → 	G(B) → B̂ � Z2

corresponds to the GN-grading. Let w ∈ Z3(Z2,U(1)) be the normalized 3-cocycle given by
w(1,1,1) = −1. Let α and c denote the associator and braiding for some metaplectic modular
category D, and let α̂ and ĉ denote the associator and braiding of the twisted category D(1,w),
respectively.

We claim that a solution to the hexagon equations is given by

ĉXσ ,Xτ = εσ,τcXσ ,Xτ ,

where εσ,τ = i if σ = τ = 1, and εσ,τ = 1 otherwise. Indeed, in diagrammatic composition
order, we have

α̂Xσ ,Xτ ,Xρ ◦ ĉXσ ,Xτ ⊗Xρ ◦ α̂Xτ ,Xρ ,Xσ

= (wσ,τ,ραXσ ,Xτ ,Xρ ) ◦ εσ,τρcXσ ,Xτ ⊗Xρ ◦ (wτ,ρ,σαXτ ,Xρ ,Xσ )
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= εσ,τραXσ ,Xτ ,Xρ ◦ cXσ ,Xτ ⊗Xρ ◦ αXτ ,Xρ ,Xσ

= εσ,τρ · (cXσ ,Xτ ⊗ idXρ ) ◦ αXτ ,Xσ ,Xρ ◦ (idXτ ⊗cXσ ,Xρ )

= εσ,τρε
−1
σ,τε

−1
σ,ρwτ,σ,ρ · (ĉXσ ,Xτ ⊗ idXρ ) ◦ (α̂Xτ ,Xσ ,Xρ ) ◦ (idXτ ⊗ĉXσ ,Xρ )

= (ĉXσ ,Xτ ⊗ idXρ ) ◦ (α̂Xτ ,Xσ ,Xρ ) ◦ (idXτ ⊗ĉXσ ,Xρ ) ,

where the last equality follows from case analysis. The verification for the other hexagon
equation is analogous.

The spherical structure on the twisted categoryD(1,w) is the same as the spherical structure
on D. Since ε and w are U(1)-valued, the modular category D(1,w) is also unitary.

Since any matrix in the twisted braid group representation differs from a matrix in the
untwisted representation by a factor of the form in, this twisting preserves Property F . By
examining the exponents of the braiding eigenvalues mod 8, we find that twisting accounts for
another factor of 2 in our count when r is even, covering the remaining modular categories.�

REMARK 4.1. These results suggest that one can generalize this characterization to
modular categories with the same fusion rules as SO(N)k , akin to the results of [23]. As this
is beyond our current scope we will leave this for a future publication.

We illustrate the classification used to prove Theorem 1 with the following tables of
braiding eigenvalues for 3- and 5-metaplectic categories.

3-metaplectic categories. The following table gives the exponents of the rele-
vant braiding eigenvalues of the Galois conjugates of SO(3)2. More explicitly, given
σ ∈ (Z/24Z)× � Gal(Q(ζ)/Q) and n ∈ Z/24Z, we have the group action σ(n) = σ · n.
Letting ζ = e

πi
12 , the braiding eigenvalues of the σ-Galois conjugate of the first nonintegral

object are σ(Ri
V1,V1

) = ζσ(ni ). The braiding values of the other nonintegral object are given
by σ(Ri

V2,V2
) = −σ(Ri

V1,V1
) = ζσ(12+ni ). Since n0 = 9 and n1 = 1, we have the following table

of exponents of braiding eigenvalues of Galois conjugates.

σ σ(n0) σ(n1) σ(12 + n0) σ(12 + n1)

1 9 1 21 13
5 21 5 9 17
7 15 7 3 19
11 3 11 15 23

Since we know there are precisely four 3-metaplectic categories, this table illustrates the
fact that all four 3-metaplectic categories lie in the same orbit under the Galois conjugation
action, since they are distinguished by these eigenvalues.

5-Metaplectic categories. Here ζ = e
πi
20 . Similarly, we have the following table of

exponents of braiding eigenvalues.
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σ σ(n0) σ(n1) σ(n2) σ(20 + n0) σ(20 + n1) σ(20 + n2)

1 10 18 2 30 38 22
3 30 14 6 10 34 26
7 30 6 14 10 26 34
9 10 2 18 30 22 38
11 30 38 22 10 18 2
13 10 34 26 30 14 6
17 10 26 34 30 6 14
19 30 22 38 10 2 18

Since r = 2, we only have two distinct sets of braiding eigenvalues in the table, so that
Galois conjugation only provides two of the four 5-metaplectic categories. The other two
categories are obtained by twisting: at the level of eigenvalues this is manifested by twisting
by i, i.e. adding 10 to each exponent in a row of the table.

5. A Sequence of Gaugings. N-metaplectic modular categories with 4 | N have 4
self-dual invertible objects, are are therefore Z2 × Z2-graded. The (0,0)-graded component
is the adjoint subcategory, and without loss of generality we may assume that the (1,1)-
graded component contains all of the remaining 2-dimensional simple objects. The (1,0)- and
(0,1)-graded components each contain two isomorphism classes of

√
N/2-dimensional simple

objects.
When 8 | N the N-metaplectic modular categories of have 3 bosons hg, h, g, i.e. invertible,

self-centralizing objects with trivial twists. The centralizer of each of these bosons consists of
the (0,0)-graded (adjoint) component and one of the three other components. It was shown in
[7] that condensing the boson hg that centralizes the (integral) (1,1)-graded component yields
a cyclic modular category of the form C(ZN ,q), for some non-degenerate symmetric quadratic
form q on ZN . Except for the degenerate case N = 8, the bosons h, g are uniquely determined
(up to the labeling ambiguity h ↔ g) by the condition that they centralize a simple object of
dimension

√
N
2 . For N = 8 all non-invertible simple objects have dimension 2, and the labels

of all 3 bosons are ambiguous, i.e. one cannot distinguish them by any of their properties. The
follow shows that condensing either of the two bosons h, g yields another metaplectic modular
category.

THEOREM 2. Let C be an N-metaplectic modular category with 8 | N , and let D be
the unitary modular category given by condensing the boson h ∈ C (or g) in the notation of
Subsection 3.3. Then D is an N

4 -metaplectic modular category.

PROOF. For the moment, assume that N ≥ 16. It is relatively straightforward to verify
that D has the right rank and dimensions of simple objects. Set N = 2k and r = k

2 − 1. C

has rank k + 7, with k − 1 = 2r + 1 objects of dimension 2: X0, . . . , Xr−1 and Y0, . . . ,Yr . By
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definition D = (〈h〉′)Z2 where Rep(Z2) = 〈h〉. From the discussion in Section 2 we see that
〈h〉′ = C(0,0) ⊕ C(1,0) with simple objects

{1, h, hg, g, X0, X1, . . . , Xr−1,V1,V2}.

Let F : 〈h〉′ → (〈h〉′)Z2 be the de-equivariantization functor. As h ⊗ Vi � Vi and h ⊗ Xi �
Xr−i−1 we have the following, where we set t = r−1

2 =
N
8 − 1:

(1) F(Vi) = V (0)
i ⊕ V (1)

i , where V (j)
i are

√
N
8 -dimensional objects.

(2) Ỹi := F(X2i) � F(Xr−2i−1) are simple objects of dimension 2, for 0 ≤ i < t/2
(provided N ≥ 16, otherwise there are no Ỹi) .

(3) X̃j := F(X2j+1) � F(Xr−2j−2) are simple objects of dimension 2, for 0 ≤ j < t/2
(provided N ≥ 24, otherwise there are no X̃j ).

(4) F(Xt ) = g1 ⊕ g2 with g1, g2 invertible.
(5) F(h) = F(1) = 1D.
(6) F(hg) = F(g) = Z an invertible object.

In particular, the modular category D = F(〈h〉′) has the same dimensions (1 with
multiplicity 4, 2 with multiplicity t = N

8 − 1 and
√

N
8 with multiplicity 4), global dimension

(N) and rank ( N8 + 7) as an N
4 -metaplectic modular category. It is important to point out that

when 16 | N we have N
4 ≡ 0 (mod 4) so that t is odd, while N

4 ≡ 2 (mod 4) so that t is even
otherwise, so these cases correspond to either the self-dual fusion rules of Subsection 3.3 or
the non-self-dual fusion rules of Subsection 3.2. Here are a few useful observations that can
be deduced from the fusion rules of C:

• D is graded by a group of order 4, with each component of dimension N
4 .

• If 16 | N (so that t is odd) the trivial componentD0 contains all 1-dimensional simple
objects and t−1

2 simple objects of dimension 2, otherwise (i.e. t is even) the trivial
component contains 1D and Z but not g1 or g2.

• The object Ỹ0 generates the subcategory with simple objects 1D, Z, g1, g2 and all X̃j, Ỹi.
• The objects Z, Ỹi, X̃j are self-dual.
• The subcategory generated by X̃0 is the adjoint subcategory D0. In particular no Ỹi

lie in the adjoint subcategory.
• The 4 objects V (j)

i appear in two distinct graded components, in pairs.
One may directly show that D has the same fusion rules as SO( N4 )2 using standard techniques,
however this is a somewhat tedious task. We will instead make use of [26, Theorem 4.2 and
Remark 4.4] and the descriptions in Section 3 to derive the result. The first step is to verify that
the fusion rules for the N

2 -dimensional subcategory 〈Ỹ0〉 with simple objects of dimensions 1
and 2 has the fusion rules of either Rep(D N

4
) for t odd or Rep(Z4 � Z k

4
) for t even. Then we

must verify the fusion rules involving the V (j)
i are also as expected. We will do these tasks

simultaneously.
For t odd, the observations above reduce the verification of the hypotheses of Theorem

4.2 of [26] to showing that the gi are self-dual, from which we can conclude that 〈Ỹ0〉 has the
same fusion rules as Rep(D N

4
). For t even, we must show that g1 � g∗2 to verify the hypotheses
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of Remark 4.4 of [26] to conclude that 〈Ỹ0〉 has the same fusion rules as Rep(Z4 � Z k
4
). We

calculate:

(1) F(V⊗2
1 ) =

(
V (0)

1 ⊕ V (1)
1

)⊗2
� g1 ⊕ g2 ⊕ 2 
�

�
1D

t−1
2⊕

i=0
Ỹi ⊕

t−3
2⊕

j=0
X̃j
��
�
.

Since (
V (0)

1 ⊕ V (1)
1

)⊗2
�

(
V (1)

1

)⊗2
⊕
(
V (2)

1

)⊗2
⊕ 2(V (1)

1 ⊗ V (2)
1 )

it is clear that the g1, g2 cannot be subobjects of (V (1)
1 ⊗ V (2)

1 ) and V (j)
1 for j = 0,1 are either

self-dual or dual to each other. As we have a labeling choice we may assume gj ⊂
(
V (j)

1
) ⊗2

for j = 0,1.
Now observe that

(
V (j)

1
) ⊗2

is odd-dimensional when t is even so that in this case 1D is

not a subobject of
(
V (j)

1
)⊗2

and hence the V (j)
1 are non-self-dual, i.e. are dual to each other

for j = 0,1. Moreover, the gi are not in the trivially graded component for t even so that we
can conclude that the grading is by Z4 in this case, so that the group of (isomorphism classes
of) invertible objects is isomorphic to Z4 and hence g1 � g∗2. Thus we can conclude that the
fusion rules are the same as those of Rep(Z4 �Zk). Since the adjoint subcategoryD0 contains
only simple objects 1D, Z and all X̃j , the fusion rules involving V (j)

1 (and similarly V (j)
2 ) are

completely determined.
When t is odd

(
V (j)

1
) ⊗2

is even-dimensional so we must have both 1D and gj as subojects.
In particular, the grading is by Z2 × Z2 so that the gi are self-dual. Now we can conclude
that the fusion rules of the subcategory 〈Ỹ0〉 are the same as Rep(D N

2
) and the fusion rules

involving V (j)
1 (and similarly V (j)

2 ) are determined from equation (1).
Condensing the boson h in an 8-metaplectic modular category produces a pointed cate-

gory of dimension 8, with the same fusion rules as Z8, which we have conveniently identified
with a 2-metaplectic modular category. �

6. Conclusions and Speculations. We have obtained two results on metaplectic mod-
ular categories. For odd N , we extend the results of [30] proving property F for SO(N)2 to all
N-metaplectic modular categories. This provides some insight into the relationships among
(certain) braided fusion categories with the same fusion rules. A recent paper of Nikshych
[28] explores the different braidings that a fixed fusion category may have. One consequence
(see [28, Remark 4.2]) is that if a modular category has property F then any braiding on the
underlying fusion category has property F as well (whether the braiding in non-degenerate
or not). This is not useful for metaplectic categories since the underlying fusion categories
usually differ. On the other hand, it seems to be often the case that all (finitely many, by
Ocneanu rigidity [15]) fusion categories with a fixed set of fusion rules are related to each
other by some type of twisting of associativity constraints (see [23, 31], for example). One
conceptual step towards proving property F would be to extend the results of [28] to prove
that braided fusion categories with a fixed set of fusion rules either all have property F or all
do not.
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In a related direction, we have shown that the N-metaplectic modular categories for
8 | N are obtained from 2k- and 4k-metaplectic modular categories (with k ≥ 1 odd) by
iteratively gauging by a non-trivial Z2-action. Physically, this can be interpreted to mean
that the systems modeled by 2t k-metaplectic modular categories for all t ≥ 1 of the same
parity are just different phases of the same topological order [9]. It is interesting to note that
the number of 2t k-metaplectic modular categories stabilizes for t ≥ 2, so that the choices
in the Z2-gauging process are eventually unique. Of course it is already known that any
N-metaplectic modular category is a Z2-gauging of a pointed category ([1, 6, 7]), but this
result provides an infinite sequence of categories with non-trivial Picard group (see [17]), i.e.
non-trivial braided tensor autoequivalences. Notice this is in contrast to the odd N-metaplectic
modular categories: for example N = 3 we see that 3-metaplectic modular categories admit no
non-trivial braided tensor autoequivalences. This can be deduced from [13]: the Brauer-Picard
group of SO(3)2 = SU(2)4 is Z2, with the non-trivial element corresponding to interchanging
the two

√
3-dimensional objects. Since the twists of these two objects are distinct, this action

does not give a braided tensor autoequivalence. Of course, failing to have a non-trivial
Picard group does not preclude a category from having non-trivial (i.e.not a Deligne product)
gaugings: the pointed category Sem has trivial Picard group and yet prime modular categories
of the form C(Z8,Q) can be obtained as Z2-gaugings of Sem [3].

In the special case when N = 2k we encounter degenerate (in the sense of Lie algebras)
categories: an 8-metaplectic modular category with the fusion rules of SO(8)2 has 3 non-trivial
bosons, but they cannot be distinguished. Condensing any of them yields a category with the
fusion rules of Z8, i.e. a 2-metaplectic category. If we condense the boson in any of the four
C(Z8,Q) theories we obtain either Sem or Sem, which we could call 1

2 -metaplectic. It is worth
pointing out that SO(8)2 should have an S3 action by braided tensor autoequivalences.

For N = 16 if we condense either of the two bosons that centralize a simple object of
dimension

√
8 we obtain a 4-metaplectic modular category of the form Isingν � Isingμ , e.g.

SO(4)2. It is known ([7]) that there are 12 inequivalent 16-metaplectic modular categories,
whereas there are 20 with the same fusion rules as Ising� Ising. Which of the 20 can appear
in this way? In this case we find that only the 12 that are Z2-gaugings of the 4 pointed
categories C(Z4,Qs) have the correct central charge e(2s+1)πi/4. We could call these C(Z4,Qs)

theories 1-metaplectic categories as they are obtained by condensing a boson in SO(4)2. More
generally, let k ≥ 3 be an odd number with precisely s distinct prime factors. Then there
are 2s+2 inequivalent 2k-metaplectic categories [6] and 3 · 2s+2 inequivalent 2ak-metaplectic
categories for a ≥ 2 [7]. In particular we find that the cohomological choices in the gauging
process from a 2ak-metaplectic category to a 2a+2k-metaplectic category does not increase
the number of such categories, rather their cardinality stabilizes.
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