
Understanding Container Network Interface Plugins:
Design Considerations and Performance

Shixiong Qi†, Sameer G Kulkarni∗†, K. K. Ramakrishnan†

†University of California, Riverside, ∗IIT Gandhinagar, India.

Abstract—Kubernetes, an open-source container orchestration
platform, has been widely adopted by cloud service providers
(CSPs) for its advantages in simplifying container deployment,
scalability and scheduling. Networking is one of the central
components of Kubernetes, providing connectivity between dif-
ferent pods (group of containers) both within the same host and
across hosts. To bootstrap Kubernetes networking, the Container
Network Interface (CNI) provides a unified interface for the
interaction between container runtimes. There are several CNI
implementations, available as open-source ‘CNI plugins’. While
they differ in functionality and performance, it is a challenge
for a cloud provider to differentiate and choose the appropriate
plugin for their environment. In this paper, we compare the
various open source CNI plugins available from the community,
qualitatively and through detailed quantitative measurements.
With our experimental evaluation, we analyze the overheads
and bottlenecks for each CNI plugin, as a result of the network
model it implements, interaction with the host network protocol
stack and the network policies implemented in iptables rules.
The choice of the CNI plugin may also be based on whether
intra-host or inter-host communication dominates.

Index Terms—Kubernetes, Container network interface, Per-
formance

I. INTRODUCTION
Kubernetes is the leading container orchestration platform

used by cloud service providers (CSPs) to improve the uti-
lization of their cloud resources [1]. Kubernetes provides the
flexibility to run a variety of containerized cloud applica-
tions, with the ability to deploy on both physical and virtual
cloud resources. In Kubernetes, a “Pod” is the atomic unit
of deployment, for scaling and management. A pod may
comprise of one or more containers that share the same
resources including the networking context. Pods can be scaled
to multiple instances to meet the workload characteristics and
also to provide failure resiliency.

The proliferation of microservices [2] and function-as-a-
service [3] architectures for deploying cloud-based services
make it necessary to support large numbers of containers,
and to provide efficient communication between them. Thus,
networking is a core foundation of a good Pod orchestration
framework. Kubernetes adopts the Container Network Inter-
face (CNI) specification [4]. Each Pod in a Kubernetes cluster
is given a unique IP address for communication. There are
a number of different CNI implementations, and these CNI
‘plugins’ perform the tasks for Pod networking in a Kuber-
netes cluster. The CNI plugin is responsible for maintaining
and orchestrating the Pod network. With thousands of Pods
running in a cluster, the network status can change rapidly,

with frequent creation and/or termination of pods. When a new
Pod is added, the CNI plugin coordinates with the container
runtime and connects the container network namespace with
the host network namespace (e.g., , veth pair), assigns a unique
IP address to the new Pod, applies the desired network policies
and distributes routing information to the rest of the cluster.

Several open-source CNI plugins are available for use in a
Kubernetes environment. Amongst them, Flannel [5], Weave
[6], Cilium [7], Calico [8], and Kube-router [9] are popu-
lar [10]. While each find their application in different contexts
due to their unique and distinct networking characteristics,
we believe there is inadequate understanding and a lack of
a comprehensive characterization on both the qualitative and
performance aspects of these different CNI plugins. While
existing works [11]–[14] study the overall performance of
different CNI plugins at a preliminary level, there is still
lack of in-depth understanding on how the various design
considerations affect performance.

In this paper, we provide an insight on the overall per-
formance of Pod networking with different CNI plugins, by
examining throughput limits, latency and fine-grained CPU
measurements of the various components of the networking
stack. First, we present our qualitative analysis on the pop-
ular CNI plugins, namely: Flannel, Weave, Cilium, Calico
and Kube-router to provide a high-level operational view
and feature support of different CNIs. We also consider the
different variants of the Calico plugin. We omit the other
less frequently used (and some outdated) CNIs such as Ro-
mana [15], Canal [16] and Contiv-vpp [17] from our study.
Then, we provide a measurement-driven quantitative analysis
of their performance, accounting for the overheads due to the
involvement of different aspects of the networking stack, user
space and kernel space operations and their impact on CPU
utilization. To summarize, our contributions include:

• We provide a qualitative analysis for different CNI plugins
in terms of the subset of network or datalink layer features
they support (e.g., IPv6, Encryption support).

• We analyze the interactions with the host networking stack
including the network filter configurations (iptables rules)
across different dimensions (e.g., iptables chains, packet
forwarding, overlay tunnelling, BPF, etc.) to determine the
critical function calls that contribute to overhead.

• Based on this qualitative analysis, we examine the root cause
for the performance differences across the CNI plugins for
packet transmission through the entire network protocol
stack with a measurement-based quantitative evaluation.978-1-7281-8154-7/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 11,2020 at 15:58:04 UTC from IEEE Xplore. Restrictions apply.

• We also study the time to set up the pod network and the
component latency, which impact the Pod "cold-start" time.

II. QUALITATIVE COMPARISON ON CNI PLUGINS

CNI plugins can be classified based on the network model,
i.e., networking layer they operate at (Layer 2/3), encapsula-
tion and routing model they use to support intra-host (pods
on same host node) and inter-host (pods on different nodes)
communication. We also study the use of underlying kernel
network configurations, the associated overheads with the user-
space/kernel-space context switch and iptable chains.

A CNI plugin consists of i) CNI daemon and ii) CNI binary.
The CNI daemon, which runs in user space, is responsible for
setting up the host network devices (e.g., bridge, overlay tunnel
endpoint), the tunneling options (e.g., VXLAN, UDP, etc.)
and iptables (e.g., network policies). In addition, some CNIs
such as Flannel and Weave incorporate the packet encapsu-
lation/decapsulation function within the daemon, rather than
using kernel driver functionality, which results in additional
context switches during packet processing. The CNI binary
configures the network of a Pod, i.e., setting up virtual ethernet
(veth) and Pod IP address. It is called by the container runtime
only when setting the network for a newly created Pod.
A. An Overview of CNI Design Paradigms

(d) Hybrid + Underlay(a) L3 + Overlay (b) L3 + Underlay (c) Hybrid + Overlay

ɡ

eth0

user space

Inter-host Data Flow Intra-host Data Flow

kernel space

ɡ

eth0

ɡ

eth0

ɡ

eth0

OTEP

Container

veth-pod

Pod0

veth-host

Container

veth-pod

Pod1

veth-host

Container

veth-pod

Pod0

veth-host

Container

veth-pod

Pod1

veth-host

Container

veth-pod

Pod0

veth-host

Container

veth-pod

Pod1

veth-host

bridge

OTEP

Container

veth-pod

Pod0

veth-host

Container

veth-pod

Pod1

veth-host

bridge

Fig. 1: An Overview of CNI Network Models
1) Network Models: The network model of the different

CNI plugin designs can be classified into the following
broad classes: i) Layer3(L3)+Overlay, ii) L3+Underlay, iii)
Hybrid+Overlay and iv) Hybrid+Underlay. A hybrid approach
is a combination of L2 and L3 operation. It typically utilizes
a Linux bridge (L2) for intra-host packet forwarding, while
using L3 inter-host packet forwarding.
L3+Overlay uses an overlay tunnel endpoint (OTEP) and
multiple veth-pairs (Fig. 1(a)). The veth-pair enables data
exchange between the Pod network namespace and the host
network namespace. The OTEP is used to encapsulate/decap-
sulate the packets. An intra-host data exchange is handled by
the host protocol stack in L3. For inter-host communication,
the outgoing data packet is delivered to the OTEP via IP for-
warding, where it get encapsulated and sent to its destination
via the host’s physical interface (eth0).
L3+Underlay comprises of veth-pairs (Fig. 1(b)). The intra-
host data exchange using IP routing works the same as in the
overlay-based design. The inter-host communication is also
processed in the host at Layer 3.
Hybrid+Overlay combines a L2 and L3 design with overlays.
It consists of a Linux bridge, an OTEP and multiple veth-pairs

(Fig. 1(c)). A Linux bridge in the host network namespace
connects with the Pods through veth-pairs facilitating intra-
node data exchange using Layer 2 bridging. For inter-hosts
data exchanges, the outgoing data packet first arrives at the
bridge, and is then handed over to the host protocol stack
operating at Layer 3. The host protocol stack forwards the
packet to OTEP via IP forwarding. At the OTEP, the packet
is encapsulated (based on the overlay encapsulation type) and
sent to the destination via host eth0.
Hybrid+Underlay comprises multiple veth-pairs and a Linux
bridge (Fig. 1(d)). The intra-host data exchange in the hybrid
approach works the same as in the Hybrid+Overlay approach.
For inter-host communication, the outgoing data packet first
arrives at the bridge, which is then handed over to the host
protocol stack operating as a Layer 3 forwarder. With the
host’s IP forwarding turned on, the data packets will be sent
through the host’s physical interface (eth0) to the other node.

2) Iptables: This is a user space interface that interacts
with CNI plugins and modifies the Netfilter rules based on
the specified network policies. Netfilter inserts five hook
points (callback function points) into the network stack to
implement packet filtering and security related policies. The
five hook points, namely: PREROUTING, INPUT, OUTPUT,
FORWARD and POSTROUTING, are referred to as a ‘chain’
in iptables. Fig. 2 shows the iptables function chain processing.
Generally, a packet will go through one of the following three
paths when the conditions are satisfied:
• Path 1 :Incoming packet’s destination IP matches host’s IP;
• Path 2 :Incoming packet’s dest. IP doesn’t match host’s IP;
• Path 3 :Outgoing packet from the host.

POSTROUTING

ForwardRouting
Decision

INPUT OUTPUT

PREROUTING

Routing
Decision

ɠ

ɡ
ɢ

Fig. 2: Iptables chain processing and hook points
TABLE I: Qualitative Comparison on Features of CNI Plugins

CNI Network Tunneling Network Additional
Solutions Models options Policy Features
Flannel Hybrid+Underlay/Overlay VXLAN/UDP No –
Weave Hybrid+Overlay VXLAN/UDP Yes Multicast, Encryption
Cilium L3+Underlay/Overlay VXLAN/Geneve Yes IPv6, Encryption
Calico L3+Underlay/Overlay IP-in-IP/VXLAN Yes IPv6

Kube-router Hybrid+Underlay/Overlay IP-in-IP/GRE Yes IPVS/LVS

B. Comparison of Different CNI Plugins
Table. I summaries the features of different CNI plugins.

We describe the design for each of the CNI plugins based on
the classification above.
Flannel uses the Hybrid+Overlay as its default network
model. Flannel provides VXLAN (default) and UDP overlay
choices. Flannel also has an optional underlay mode, which
transfers packets using IP routing (Layer 3), but this mode
needs direct Layer 2 connectivity between the hosts running
Flannel. When operating in VXLAN mode, packets cross the
boundary only once from veth at pod’s side to veth at host’s
side (Fig. 1). But, in UDP mode, packets cross the boundary

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 11,2020 at 15:58:04 UTC from IEEE Xplore. Restrictions apply.

three times as the UDP encapsulation needs to be done by
the CNI daemon running in the user space. Packets to be
transmitted will be sent back from the kernel to the CNI
daemon in user space by the Linux bridge. After CNI daemon
performs UDP encapsulation, the packets are again forwarded
back to the kernel network stack with the encapsulation.
Weave uses Hybrid+Overlay approach with VXLAN tunnel
as the default. In particular, Weave uses the Open vSwitch
datapath module in the Linux kernel to implement its
datapath. It adds an extra veth-pair between the OTEP and
the Linux bridge. Thus, unlike the inter-hosts data exchange
in a typical Hybrid+Overlay approach, Weave forwards the
outgoing data packets directly to the OTEP via the bridge,
without relying on host protocol stack. In Weave, packet
processing incurs one context switch when operating in
VXLAN mode. It has three context switches when operating
in UDP mode, the same as Flannel.
Cilium applies L3+Overlay approach with VXLAN/GENEVE
tunnelling. Cilium can also be changed to use underlay mode
across hosts when the underlying infrastructure is able to
route across hosts using the IP addresses of the Pods. The
intra-host routing is implemented based on the extended
Berkeley Packet Filter (eBPF) instead of the Linux IP
forwarding function. For different network models and
tunneling options, Cilium incurs just one context switch.
Calico provides support for both L3+Overlay and
L3+Underlay. IP-in-IP overlay tunnel is the default choice,
and offers a VXLAN overlay tunnel as a alternative. With the
Border Gateway Protocol (BGP) enabled, Calico can fully
operate at Layer 3 using IP routing. Calico also incurs just
one context switch for all the working modes.
Kube-router can work in either a Hybrid+Overlay mode or
use the Hybrid+Underlay approach. In the Hybrid+Overlay
mode, Kube-router provides IP-in-IP or Generic Routing
Encapsulation (GRE) as encapsulation options. When the
underlying infrastructure can support BGP routing, Kube-
router operates in the Hybrid+Underlay mode. Kube-router
also has one context switch for all the working modes.

III. QUANTITATIVE EVALUATION AND ANALYSIS
A. Experimental Setup

All the CNI plugins are evaluated on Cloudlab testbed [18].
We build the Kubernetes cluster on two nodes. Each node has
a Ten-core Intel E5-2640v4 at 2.4 GHz, 64GB memory and
2 Dual-port Mellanox ConnectX-4 25 GB NIC. The nodes
are connected via a 10Gbps Dell switches. We use Ubuntu
18.04 with kernel version 4.15.0-88-generic. Kubernetes is
directly running on the physical machine, so there is no extra
virtualization overhead introduced. All the Kubernetes related
packages are installed with the current, latest version. We use
Netperf for throughput and round-trip latency measurement.
We use Netperf’s TCP stream mode with default settings to
perform the throughput measurements. For round-trip latency
measurement, we use Netperf’s request-response (RR) mode.
For UDP, we use a message payload size of 1 byte. For all
the experiments, we run each test for 10 seconds, and repeat
the test 50 times.

B. Intra-Host Performance

We study intra-host performance (communication within a
single server node) when communicating among number of
containers deployed within the node. This enables us to better
understand and distinguish the communication overheads that
arise due to the usage of bridge, iptables rules, eBPF and the
interaction with the host network stack.

(a) TCP intra-host throughput (b) TCP intra-host RTT

(c) UDP intra-host RTT (d) TCP inter-host throughput

(e) TCP inter-host RTT (f) UDP inter-host RTT

Fig. 3: Intra-Host & Inter-host Performance - (50 repetitions).
We evaluate Flannel, Weave, Cilium, Kube-router, Calico-

np and Calico-wp CNIs. In order to isolate the overheads
of network policies (Netfilter rules), we try Calico without
the network policies, named as ‘Calico-np’. We name the
default Calico with network policies (e.g., ordering/priority,
allow/deny rules, etc.) fully installed as ‘calico-wp’. In the
intra-host scenario, Calico-np and Calico-wp forward packets
using host IP protocol stack. Cilium builds a direct connection
between the endpoints in the same host and directly forwards
the packets by the eBPF programs attached to the veth. Kube-
router, Weave and Flannel use Linux bridge to forward packets
between different endpoints in the same host.

1) Overall performance: The overall throughput perfor-
mance comparison is shown in Fig. 3 (a)-(c). For the TCP
throughput (Fig. 3 (a)), Cilium with the native solution based
on eBPF outperforms the other alternatives. Layer 3 routing
based solutions (Calico-wp and Calico-np) are worse than
the Layer 2 based solutions. Fig. 3 (b) and (c) show the
TCP/UDP round-trip latency for intra-host packet forwarding.
The relative ordering of TCP and UDP round-trip latency
between different CNIs is only slightly different. Further, the
TCP round-trip latency of each CNI is slightly higher than for
UDP, primarily due to the protocol differences. Accordingly,
we also observe that Cilium achieves the lowest round-trip
latency and Calico-wp has the worst round-trip latency. This
is primarily due to the overheads involved in processing the

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 11,2020 at 15:58:04 UTC from IEEE Xplore. Restrictions apply.

Netfilter rules and Layer 3 routing, which is avoided with the
eBPF based CNIs.

In order to understand how the network models and iptables
affect overall performance, we further break down the packet
processing time into different components of the network
stack and measure the CPU cycles that a packet needs to go
through each component. We identify the following distinct
components of the network stack: Forwarding Information
Base (FIB), eBPF, Netfilter, Veth and IP forwarding. By
analyzing CPU cycles spent per packet in each component
of the network stack, we establish the relationship between
the achieved performance and the specific network activity
involved in routing a packet with a specific CNI.

flannel weave cilium kube-rtrcali-wp cali-np
0

700
1400
2100
2800
3500

CP
P

FIB

Bridge

Netfilter

BPF

IP

Veth

Fig. 4: Overhead Breakdown under Intra-host scenario.
Methodology: In order to measure the CPU cycles per packets
(CPP) spent in each network stack component, we first use the
Linux perf tool [19] to count the total CPU cycles consumed
in a 10-second packet transmission (Cycletotal). We also use
perf to trace the function calls and measure the percentage of
the overall CPU cycles spent in the corresponding function
(Cyclepercentage). With the total number of packets sent in a
10-second packet transmission (Npacket), we can calculate the
CPP of a specific function call as follows:

CPP =
Cycletotal

Npacket
×Cyclepercentage (III.1)

2) Overhead breakdown: The total CPP with the corre-
sponding break down for intra-host communication is shown
in Fig. 4. For the overall overhead of the complete network
stack, Calico-wp (with Netfilter being the major contributor)
has the highest CPP and Cilium the lowest.
Bridge: Flannel, Weave and Kube-router adopt bridge-based
solutions to forward packets in the intra-host scenario. When
packets pass through the Linux bridge, the bridge-related
function calls (e.g., br_forward()) are executed. Fig. 4 shows
the bridge overhead of Flannel, Weave and Kube-router to be
similar ∼ 250 CPP.
FIB & IP forwarding: We put FIB overhead and IP forward-
ing overhead together as ‘IP forwarding’ related function calls
(e.g., ip_forward()) are coupled with FIB function calls (e.g.
fib_table_lookup()). When using the host IP protocol stack to
forward packets, first the FIB table look up determines the
next hop. Then, the packet forwarding operation is performed.
As Calico relies on the host IP protocol stack to forward
packets, it incurs both FIB and IP forwarding overheads. The
FIB overhead of Calico is around 200 CPP, which is slightly
lower than the overhead using the Linux bridge (∼ 250 CPP).
But, the IP forwarding processing in Calico consumes an extra
240 CPP. This overhead of both FIB and IP forwarding is

nearly 1.7× higher than the overhead of bridging approaches.
eBPF: Cilium relies heavily on eBPF. Instead of bridge/IP
forwarding and Linux Netfilter [20], it utilizes a set of eBPF
hooks in the network stack to run eBPF programs to support
intra-host packet forwarding and filtering functions. Cilium at-
taches the eBPF programs at each veth resulting in each packet
forwarding operation to incur a eBPF processing overhead.
Fig. 4 shows Cilium has a somewhat high eBPF overhead of
∼ 1200 CPP.
Veth: All the CNI plugins spend almost the same ∼ 80 CPP
(for send and receive) on veth, a small percentage of the overall
overhead, with little impact on the performance differences.
Netfilter: Calico-wp, with calico policy fully installed, con-
sumes 2200 CPP on Netfilter, which is 1.5× higher than the
others. Although Calico-wp suffers significant performance
penalty due to the overhead from Netfilter, it allows better
network policy customization and packet filtering due to fine-
grained iptables chains. Calico-wp builds its FORWARD chain
based on a tree-based structure with multiple levels, which
incurs more ipt_do_table() calls. Note: Cilium does not have
any Netfilter overhead as it uses eBPF instead of iptables
chain.
Summary: For intra-host communication, a native routing
datapath based on eBPF is much cheaper than a bridge-based
datapath or native routing datapath based on IP forward-
ing. eBPF combines packet forwarding and filtering together,
which reduces the packet forwarding overhead. Thus, Cilium
achieves the highest throughput and lowest latency. Besides,
a fine-grained iptables chain (per veth) as in Calico-wp un-
fortunately hurts packet transmission performance. As shown
in Fig. 3 (a)-(c), Calico-wp has lower throughput and higher
latency than the others for both TCP and UDP traffics because
of the penalty from the iptables chain processing.
C. Inter-Host Performance

We use the same set of CNI plugins to communicate be-
tween two pods on different nodes. Flannel, Weave and Cilium
use the VXLAN overlay to forward packets between different
hosts. Kube-router uses native IP routing, while Calico (wp
or np options) can support either native IP routing or IP-in-IP
overlay. Accordingly for Calico, we choose the Cali-np-ipip,
Cali-wp-ipip, Cali-np-xsub and Cali-wp-xsub modes.

1) Overall performance: The results for inter-host packet
forwarding is shown in Fig. 3 (d)-(f). We see the native rout-
ing solutions (Kube-router, Cali-wp-xsub and Cali-np-xsub)
perform better than the overlay solutions (Flannel, Weave,
Cilium, Cali-wp-ipip and Cali-np-ipip) in TCP throughput and
TCP/UDP round-trip latency. The comparison between the
TCP and UDP round-trip latency (Fig. 3 (e) and (f)) keeps
the same pattern as we discussed in the intra-host scenario.
Moreover, the CNIs with simple (system default) iptables
perform much better than the complex (with a number of user-
defined iptables chains and rules) ones. For overhead analysis,
we additionally include the VXLAN tunnel, IP-in-IP tunnel,
OVS-datapath components.

2) Overhead breakdown for Inter-host: Again, we use the
same methodology to calculate the CPP of each function call

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 11,2020 at 15:58:04 UTC from IEEE Xplore. Restrictions apply.

flannel
weavecilium

kube-rtr
cali-wp-ipip

cali-np-ipip
cali-wp-xsub

cali-np-xsub
0

1600
3200
4800
6400
8000

CP
P

FIB
Bridge
Netfilter
BPF
IP
Veth
VXLAN
OVS
IPIP

Fig. 5: Overhead Breakdown for Inter-host scenario.

on the receiver node. The total CPP, along with the breakdown
is shown in Fig. 5. The native routing solutions (Kube-router,
Cali-wp-xsub and Cali-np-xsub) have lower CPP compared to
the overlay solutions (Flannel, Weave, Cilium, Cali-wp-ipip
and Cali-np-ipip). Also, the solutions with simple iptables have
lower CPP than the complex iptables chains.
Bridge: When transmitting a packet, Flannel and Kube-router
use the host IP protocol stack to forward packets from the
veth to the OTEP, bypassing the bridge forwarding overhead
(Fig. 1 (c)). But with Weave, it uses an extra veth-pair to
connect the Linux-bridge with the OTEP, and therefore incurs
2× more CPP when transmitting a packet from the container.
Weave does not use the host IP protocol stack and instead
relies on the bridge-related function calls (i.e., br_forward()).
But, when receiving packets from the wire, all three (Flannel,
Kube-router and Weave) CNIs use Layer 2 bridge forwarding
to send packets from the overlay tunnel to the container.
FIB & IP forwarding: Weave, Cilium, Kube-router and Cali-
*-xsub traverse the host IP stack once per packet transmission
and have similar (700 ∼ 880 CPP) overhead. For Weave
and Cilium, the IP protocol stack operations are performed
between the VXLAN tunnel and host Ethernet interface; For
Kube-router, between the Linux bridge and host Ethernet in-
terface; For Calico-*-xsub, between the veth and host Ethernet
interface. However, with Flannel and Cali-*-ipip, the host
IP stack operations are performed twice per packet trans-
mission and correspondingly incur about 1300 ∼ 1500 CPP.
For Flannel, the IP protocol stack operation occurs between
Linux bridge and VXLAN tunnel and then again between the
VXLAN tunnel and host Ethernet interface; For the Cali-*-
ipip, it first occurs between veth and IP-in-IP tunnel and then
again between the IP-in-IP tunnel and host Ethernet interface.

All the CNI plugins include FIB processing to forward the
packets. We count the number of FIB events after transferring
100,000 packets, as shown in Fig. 6. Kube-router has the most
FIB events. We attribute this additional overhead in Kube-
router to the additional FIB lookup operation involved to
support the Direct Server Return (DSR) which is implemented
using a custom routing table.

flannel
weave cilium

kube-router
cali-wp-ipip

cali-np-ipip
cali-wp-xsub

cali-np-xsub
0

500000
1000000
1500000
2000000
2500000
3000000

of

 F
IB

 e
ve

nt
s

fib_table_lookup
fib_table_lookup_nh
fib_validate_source

Fig. 6: Comparison on the # of FIB events.

Netfilter: Similar to intra-host routing, the Netfilter component
is dominant, requiring much larger CPP than the others.
Large and complex iptables chains incur higher processing
overheads. Fig. 5 shows that Cali-wp-ipip has the highest
Netfilter overhead, due to its large iptables size. Kube-router
and Cali-np-xsub have the the lowest.
eBPF: Cilium uses eBPF to forward packets from veth to the
overlay tunnel and vice versa. Due to the two additional eBPF
hook points to attach with the overlay [20], the eBPF overhead
for the inter-host routing is higher (1550 CPP) compared to the
intra-host routing (1200 CPP), reducing Cilium’s performance.
Veth: As with the intra-host case, the veth processing overhead
is the least compared to the other components and is similar
for most of the CNIs (∼ 45 CPP). As Weave has 4 veth-pairs
on its inter-hosts datapath as opposed to 2 for others, it incurs
double the overhead (∼ 90 CPP).
Overlay: Packet encapsulation and decapsulation are overlay
overheads. Flannel, Weave and Cilium use VXLAN overlay
and Cali-*-ipip use an IP-in-IP overlay. Overhead from the
VXLAN overlay is ∼ 900 CPP, while IP-in-IP incurs much
lower overhead (∼ 250 CPP). Weave uses the OVS-datapath to
implement the overlay processing and incurs an extra overhead
(∼ 250 CPP) on OVS-related function calls (Fig. 5).
Summary: Connecting the overlay tunnel and bridge via
an extra veth-pair (as in Weave) can reduce the FIB and
IP forwarding overhead, but increases the bridge and veth
overhead. Although Weave has the least overhead for packet
forwarding (including FIB, IP forwarding, Bridge and veth)
it has a significant overhead for the Netfilter component, thus
resulting in its somewhat lower overall performance for inter-
host communication. A powerful network policy mechanism
can provide fine-grained packet filtering, which allows for
improved security for packet transmission. However, more
Netfilter calls results in lower packet forwarding performance.
Users should carefully consider their needs for the packet
filtering and seek to manage the size of iptables as much
as possible while meeting security requirements. Generally,
a native routing datapath is cheaper than an overlay-based
datapath. Removing unnecessary iptables chains and rules can
help reduce Netfilter overhead.
D. Pod Launch Time Analysis

flannel
weave calico cilium

kube-router1.4

1.5

1.6

1.7

1.8

Ti
m

e
(s

)

(a) Pod Launch Time in secs.

30 us

73 us

147 ms

1.2 s

 1.9 s

Start Pod creation

IP allocation

Attach veth-pair and
link up to host

network namespace

Update host
routing table

Finish Pod creation

(b) Breakdown of Pod launch time
Fig. 7: Pod Launch Time with different CNIs.

Starting a pod from scratch can take considerable time, and
significantly impacts cloud-based microservices and Function
as a Service offerings. The creation of a Pod is composed of
multiple steps [21]. Once the "Kube-scheduler" schedules a

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 11,2020 at 15:58:04 UTC from IEEE Xplore. Restrictions apply.

new Pod on a worker node, the Kubelet on the worker node
invokes container runtime to create the namespace and the
network interface for the Pod. The container runtime calls the
CNI plugin to create network for the Pod. It will check the
network configuration and allocate an IP address to the Pod.
After the Pod gets its IP address, the CNI plugin attaches
the veth-pair to the Pod and links it to the host network
namespace. After the network initialization, the Pod network
information will be persisted into etcd. Then the etcd will send
an acknowledgement to the API server and the API server
in turn generates an acknowledgment to the kubelet, which
indicates the successful creation of a new Pod.

Fig. 7(a) compares the Pod startup time for different CNIs.
We launch a new Pod, repeating the measurement 30 times.
On average, Flannel and Kube-router are better. Weave has the
highest launch latency. To see how much the network startup
time influences the total Pod startup time, we breakdown the
time spent on Pod network initialization for Weave. Fig. 7(b)
shows that the time for Pod network initialization accounts
for only 4.5% of total Pod startup time. Most of the network
initialization time is spent on attaching the veth-pair to the Pod
and linking it to the host network namespace. The major Pod
startup time overhead is from the interaction between different
Kubernetes components, such as those between API server and
kubelet, etcd, and the scheduler. The CNI plugins themselves
contribute little to the overall Pod startup time.

IV. RELATED WORK

Several works [10]–[14] have compared and evaluated the
performance of different CNI plugins. Suo et. al. [11] study
different container network models and evaluate them across
different aspects, such as the TCP/UDP throughput, latency,
scalability, virtualization overhead, CPU utilization and launch
time of container networks. While they attribute performance
differences to the chosen CNI, they do not identify root causes,
as we have done here. The primary source of overhead is from
how the CNI plugins interact with the network stack.

Kapocius [12] evaluates the performance of Kubernetes
CNI plugins on both the virtual machines and bare metal.
However, the work lacks adequate analysis on the performance
differences observed for different CNIs. Bankston et. al. [13]
compares the performance of CNI on different public cloud
environments (e.g., AWS, Azure and GCP) with different
instances. They also evaluate the impact of encryption and
MTU on performance. Their work provides limited insight into
the popular open-source CNIs. Park et. al. [14] specifically
compare the performance of Flannel network, OVS-based
network and native-VLAN network, but only at a high level.
Ducastel [10] evaluates the most popular CNI plugins using
several benchmarks. They also provides a qualitative compar-
ison on security and resource consumption, but are limited
to the inter-host case, providing a high-level, throughput-only
comparison. In general, the existing works fail to provide a
kernel-level analysis and comparison of CNI plugins as we do
in this work. Besides, we provide key insights on performance

impact and working of different network models, iptables
configuration and interaction with the host network stack.

V. CONCLUSION
Through qualitative analysis and a careful measurement-

driven evaluation, we provide an in-depth understanding of
the different CNI plugins and identify their key design con-
siderations and performance. The evaluation results show the
interactions between the different network models/iptables
organizations and the host network stack and their contribution
to the overall performance. While there is no single universally
‘best’ CNI plugin, there is a clear choice depending on intra-
host or inter-host container communication. For the intra-host
case, Cilium appears best with BPF optimized for routing
within a host. For the inter-host case, Kube-router and Calico
are better due to the lighter-weight IP routing mode compared
to the overlay counterpart. Although Netfilter rules incur over-
head, their rich, fine-grained network policy and customization
can enhance cluster security – highly desirable for CSPs.

Acknowledgement: This work was supported by US NSF
grants CRI-1823270 and CNS-1763929.

REFERENCES

[1] D. Bernstein, “Containers and cloud: From lxc to docker to kubernetes,”
IEEE Cloud Computing, vol. 1, no. 3, pp. 81–84, 2014.

[2] L. A. Vayghan, M. A. Saied, M. Toeroe, and F. Khendek, “Deploy-
ing microservice based applications with kubernetes: experiments and
lessons learned,” in 2018 IEEE 11th international conference on cloud
computing (CLOUD). IEEE, 2018, pp. 970–973.

[3] P. Castro, V. Ishakian, V. Muthusamy, and A. Slominski, “Serverless
programming (function as a service),” in 2017 IEEE 37th International
Conference on Distributed Computing Systems (ICDCS). IEEE, 2017,
pp. 2658–2659.

[4] “Container network interface - networking for linux containers,” https://
github.com/containernetworking/cni.

[5] Flannel, https://github.com/coreos/flannel/.
[6] Weave, https://github.com/weaveworks/weave.
[7] Cilium, https://cilium.io/.
[8] Calico, https://github.com/projectcalico/calico-containers.
[9] Kube-router, https://www.kube-router.io/.

[10] A. Ducastel, “Benchmark results of kubernetes network plugins
(cni) over 10gbit/s network,” https://itnext.io/benchmark-results-of-
kubernetes-network-plugins-cni-over-10gbit-s-network-updated-april-
2019-4a9886efe9c4.

[11] K. Suo, Y. Zhao, W. Chen, and J. Rao, “An analysis and empirical study
of container networks,” in IEEE INFOCOM 2018-IEEE Conference on
Computer Communications. IEEE, 2018, pp. 189–197.

[12] N. Kapočius, “Overview of kubernetes cni plugins performance,”
Mokslas–Lietuvos ateitis/Science–Future of Lithuania, vol. 12, 2020.

[13] R. Bankston and J. Guo, “Performance of container network technolo-
gies in cloud environments,” in 2018 IEEE International Conference on
Electro/Information Technology (EIT). IEEE, 2018, pp. 0277–0283.

[14] Y. Park, H. Yang, and Y. Kim, “Performance analysis of cni (container
networking interface) based container network,” in 2018 International
Conference on Information and Communication Technology Conver-
gence (ICTC). IEEE, 2018, pp. 248–250.

[15] “Romana,” https://github.com/romana/romana.
[16] “Canal,” https://github.com/projectcalico/canal.
[17] “Contiv-vpp,” https://github.com/contiv/vpp.
[18] R. Ricci, E. Eide, and C. Team, “Introducing cloudlab: Scientific

infrastructure for advancing cloud architectures and applications,” ;
login:: the magazine of USENIX & SAGE, vol. 39, no. 6, pp. 36–38,
2014.

[19] Perf, https://github.com/torvalds/linux/tree/master/tools/perf.
[20] “Architecture of cilium,” https://docs.cilium.io/en/v1.7/architecture/

\#datapath.
[21] “Kubernetes: Lifecycle of a pod,” https://dzone.com/articles/kubernetes-

lifecycle-of-a-pod.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 11,2020 at 15:58:04 UTC from IEEE Xplore. Restrictions apply.

