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Abstract

Serverless computing is increasingly popular because of the promise
of lower cost and the convenience it provides to users who do not
need to focus on server management. This has resulted in the
availability of a number of proprietary and open-source serverless
solutions. We seek to understand how the performance of server-
less computing depends on a number of design issues using several
popular open-source serverless platforms. We identify the idiosyn-
crasies affecting performance (throughput and latency) for different
open-source serverless platforms. Further, we observe that just hav-
ing either resource-based (CPU and memory) or workload-based
(request per second (RPS) or concurrent requests) auto-scaling is
inadequate to address the needs of the serverless platforms.

CCS Concepts +Networks — Network measurement; Cloud
computing; Network design principles.
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1 Introduction

Serverless computing has ushered in a new era in cloud computing.
Cloud computing seeks to provide compute and storage services at
large scale and low cost to end-users through economies of scale and
effective multiplexing. Serverless computing takes this multiplexing
and scalability to the next level by allowing providers to commit
just the required amount resources to a particular application (as
many instances as necessary, but only when needed) and utilize the
resources for just the time needed to execute an invoked function.
Resources are scaled dynamically to meet the demand from user
requests. Unlike the ‘traditional’ cloud deployment model, where
the number of necessary compute instances are deployed well in
advance, serverless computing allows the cost to be near zero when
there is no demand, and scales to as many instances as needed
to meet the traffic demand. Thus, serverless is meant to be both
scalable and more cost effective.

In addition to scaling and multiplexing, serverless computing
allows developers to build, deploy and run the application on de-
mand without focusing on server management, according to the
Cloud Native Computing Foundation (CNCF) [2]. When an event
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Figure 1. Kubernetes: Network routing to export the services.

is triggered, a piece of infrastructure is allocated dynamically to
execute the code. The underlying details of resource management:
resource allocation, communication of user data, and the execu-
tion of functions is abstracted from the user. Serverless computing
manages cloud resources typically by deploying applications in dy-
namically instantiated containers. For instance, Amazon provides
AWS-Lambda [3], an event-driven, serverless computing platform
that enables to implement and deploy application code in any of the
supported languages and execute on-demand as docker-containers.
The serverless infrastructure manages the queuing of requests and
can automatically scale containers to meet fluctuating demands.
Our focus is not only on the evaluation and comparison of per-
formance, but seek to identify the key differences in the workings
of different Kubernetes-based open-source serverless platforms. We
systematically identify the strengths and deficiencies of Knative!,
Kubeless?, Nuclio® and OpenFaaS*. Our key contributions include:
e We provide an understanding of the role and interaction of the
different components of each of these platforms.

e We describe the impact of key configuration parameters of dif-
ferent components (platform, gateway, controller and function).

e We evaluate the mode and operation of auto-scaling supported
by these different platforms for different kinds of workloads.

2 Background & Com{)arison

Several cloud service provides (CSPs) offer serverless computing
platforms on their public clouds e.g., AWS Lambda functions, Google
Cloud Platform, Microsoft Azure, and IBM Bluemix etc. These cloud
platforms also offer other supporting services such as an event no-
tification service, storage service, database services etc. that are
necessary for operating an overall serverless ecosystem. These CSPs
govern many of the function-related characteristics such as: how
long functions can run, how long can they be kept idle, the number
of concurrent active instances, load balancing among the active
instances, retry in the case of failed requests etc. These are almost
entirely dependent on the cloud providers’ terms and conditions.
To understand the impact of these choices, it is useful to study the

! https:/github.com/knative 2 https://kubeless.io 3 https://nuclio.io

4 https://www.openfaas.com
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Figure 2. Working model for different kubernetes-based serverless platforms (Nuclio, OpenFaas, Knative and Kubeless).

functioning of open source serverless platforms such as Knative,
Kubeless, Nuclio, OpenFaa$, OpenWhisk5 ,etc.

2.1 Open-source Serverless platforms

Several open source serverless platforms allow us to freely leverage
and mix-and-match different open source services, and to deploy
and manage the functions on self-hosted clouds. However, the chal-
lenges are the i) readiness (requires learning and setup expertise)
of the necessary infrastructure and integration of different services,
ii) challenges with management and maintenance of the neces-
sary service infrastructure. iii) lack of technical support. Hence, in
this work we specifically select four of the Kubernetes [4] based
open source serverless frameworks based on the recent popularity,®
community support and feature richness of these platforms.

2.2 Dependency on Kubernetes

Kubernetes is a portable and extensible platform that facilitates both
declarative configuration and automation of deployment and man-
agement of containerized workloads. The serverless frameworks
rely on Kubernetes APIs for orchestration and management of the
serverless functions. Serverless platforms typically extend and pro-
vide the Custom Resource Definition (CRD) features necessary to
create and deploy the container pods (group of containers). They
depend primarily on Kubernetes for i) Configuration management
of containers and pods; ii) Pod scheduling and service discovery;
iii) Update roll-outs for functions; and iv) Replication management.

2.3 Salient Characteristics of Serverless Platforms

Fig. 2 shows the framework and key components of the 4 different
serverless platforms considered in this work.

Nuclio: Fig. 2a shows the key components of Nuclio. The distinct
feature of Nuclio is the ‘Processor’ architecture which provides
work parallelism through multiple worker processes that can run in
each container. First, the Nuclio service model supports invocation
of the ‘function’ pod directly from an external client, without the
need for any ingress controller or API gateway. Second, the function
pod consists of two kinds of processes namely the i) event-listener
and ii) one or more worker (user deployed function) processes.
Note, the event-listener can be configured with a timeout parameter
to control how long events can be queued. Third, the number of
worker processes can be setup as a static configuration parameter.
This enables the function pod to run a desired amount of function

5 https://openwhisk.apache.org ¢ Until the release of Knative and Nuclio, the
Kubeless and OpenFaa$S were shown to be the top two leading serverless platforms in
terms of current and planned usage [10]
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instances as different processes, and allows parallel execution on a
multi-core node.
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(a) Throughput in requests/second.
Figure 3. Throughput and latency for different number of workers

within one Nuclio function pod (100 concurrent requests).

(b) Latency in ms.

To quantify the benefit of having multiple workers, we experi-

mented with simple ‘http-workload” where we implement a simple
python function that communicates with a local HT TP server (lo-
cated on Kubernetes master node), to fetch and respond with a 4
byte payload for each of the requests. Fig. 3a shows the impact
on throughput and latency for multiple workers. We observe a 4x
throughput increase with 4 workers and almost 10X improvement
with 50 workers. Note, scaling the number of workers also improves
the latency as shown in Fig. 3b.
OpenFaaS: The key components of OpenFaa$ are shown in Fig-
ure 2b. The API gateway provides access to the functions from
outside the Kubernetes cluster (external routing), collects metrics
and provides scaling by interacting with the Kubernetes orchestra-
tion engine. The API gateway can be scaled to multiple instances.
Also, it can be replaced by a third-party Ingress controller.

Each function pod consists of a single container running two
kinds of processes namely the i) ‘of-watchdog’ and ii) user deployed
function process. The ‘of-watchdog’ is a tiny Golang HTTP server
that serves as the entry-point for HTTP requests to be forwarded
to the function process. Based on use case requirements, the ‘of-
watchdog’ can be operated in 3 modes, i.e., ‘HTTP’, ‘streaming’
and ‘serializing’. In ‘HTTP’ mode, the function is forked only once
to one instance (worker) at the beginning and kept warm for the
entire life-cycle of the function pod. In both the ‘streaming’ and
‘serializing’ mode, a new function instance (worker) is forked for
every request, resulting in significant cold-start latency and im-
pact on the throughput. Fig. 4 shows the throughput and latency
when running the watchdog in different supported modes. The
‘streaming’ mode results in very low performance and is typically
only desirable for memory-heavy workloads, while the ‘serializing’
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mode is equally poor due to fork per request. For our subsequent
evaluation, we choose the ‘HTTP’ mode.
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Figure 4. Throughput and latency for different modes of OpenFaa$S

of-watchdog (100 concurrent requests).

Knative: Fig. 2c, shows the key components of Knative. We see that
each function pod consists of two containers namely the ‘queue-
proxy’ and the ‘function’. The ‘queue-proxy’ is responsible for
queuing incoming requests and forwarding them to the ‘function’
container for execution. It also handles the timeout of queued re-
quests. This queue enables the worker to quickly fetch requests
from the ingress controller and process them, thus achieving better
throughput, although incurring queuing latency. Interestingly, we
can observe that since Knative implements the ‘queue-proxy’ and
‘function’ as two different containers in a pod, the communica-
tion overhead is higher than the process model of the Nuclio and
OpenFaaS, resulting in relatively lower performance.
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Figure 5. Throughput and latency for different number of workers
within one Knative function pod (100 concurrent requests).

For the python runtime, we observed that Knative levarages
gunicorn’ - a Python web server gateway interface (WSGI) server,
which supports the pre-fork worker model to create multiple worker
processes in a function pod. However, unlike Nuclio, the number of
concurrent workers is not exported as a configuration parameter for
deployment. Figure 5 shows the impact on throughput and latency
for multiple workers. The characteristics are similar to the Nuclio
workers, discussed earlier.

Another distinct feature of Knative is the ‘panic mode’ scaling

mechanism of the autoscaler component. Panic mode enables the
autoscaler to be more responsive to sudden traffic spikes (two
times the desired average traffic or a configured threshold value)
by quickly scaling the functions instances (up to 10X the current
pod count or the maximum configured limit).
Kubeless: Kubeless is another open source platform built on top
of Kubernetes. Figure 2d describes the key components and the
working model of serverless functions in Kubeless. We also experi-
mented with NGINX ingress controller,’ and opted for Traefik due
to better performance.

7 http+//gunicorn.org 8 https:/kubernetes.github.io/ingress-nginx
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2.3.1 Exporting Services and Network routing

Serverless frameworks leverage Kubernetes network model to ex-
port services (cluster of function pods) and to route requests to
specific functions. An API Gateway and/or the Ingress Controller
components of the serverless platform can be either exported with
a public IP address or can also use the Kubernetes networking
model to export the services. Fig. 1 describes ‘Flannel’ - a simple
Kubernetes overlay networking framework to export serverless
functions and route the traffic to function pods. The Kube-Proxy
component of Kubernetes is responsible for setting up the routing
and load-balancing rules (e.g., setup the netfilter rules to intercept
network packets and change their destination/routing) of the traf-
fic intended for Kubernetes pods, while the Kube-Flannel pod is
responsible for intercepting the packets destined for Kubernetes
pods (listen to traffic for the virtual Kubernetes pod IP range) and
performing UDP encapsulation/decapsulation for the traffic exit-
ing/entering the physical network interface. In Fig. 1, once the API
Gateway/Ingress Controller receives client packets, and determines
the service (function) to be executed, it leverages the Kube-Proxy
and Kube-Flannel to load-balance and route the traffic to a specific
function pod of a worker node. With Kube-Flannel, the traffic leav-
ing the physical network interface is encapsulated and carried over
an unreliable UDP transport.

Impact of Ingress Controller and API Gateway components:
Typically, the API Gateway components enable the URL based rout-
ing to different services in a Kubernetes cluster. The function pods
are dynamic entities that can be created and destroyed any time
because of zero-scaling, auto-scaling, failures etc. Hence, Kuber-
netes provides service (a virtual cluster with fixed IP, a.k.a. ‘Cluster
IP’) as an abstraction to access the pods of a similar kind. The API
Gateway/Ingress controllers can route the incoming requests in
two possible ways: i) route the incoming traffic to the service and
let Kubernetes control load-balancing of the traffic across active
pods (e.g., with the OpenFaaS API Gateway); ii) load-balance and
route the traffic directly to any of the active pod instances (e.g.,
with the Knative-Istio ingress controller).

In the former case (API Gateway), we observed that, in order
to avoid the overhead of connection setup time, the API Gateway
(OpenFaaS API Gateway) sets up multiple connections with the
service ‘Cluster IP’® at the beginning (the first access to the func-
tion) and it uses these connections to forward subsequent requests.
No new connections are setup afterwards, unless the existing con-
nections get terminated. Note that if the connections are not setup
after auto-scaling, the traffic cannot get distributed to the newly
created pods, thus significantly impacting the performance with
auto-scaling (refer §3.3). However, in the second case (case ii), the
ingress controller needs to keep track of the health and status of
all the active pods and setup the connections explicitly with each
of the active pods to load-balance the traffic.

3 Evaluation

The main focus of our evaluation is to distinguish and illustrate
the impact of the serverless platform specific design choices and
their dependency on the Kubernetes orchestration and management
services. A second important focus is to understand the auto-scaling
capabilities, and the need to go beyond the resource utilization
based scaling services provided by Kubernetes.

9 Service being a logical entity, the actual TCP connections are setup with different
active pods based on the Kubernetes routing/load-balancing rules (e.g., netfilter rules).
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3.1 Experimental setup and Workload description

We evaluate the serverless platforms on the Cloudlab testbed [9]
consisting of one master and two worker nodes, each of them
equipped with Intel CPU E5-2640v4@2.4GHz (10 physical cores),
running Ubuntu 16.04.1 LTS (kernel 4.4.0-154-generic). We built all
four serverless platforms on Kubernetes (v1.15.3), using the latest
version available at the time of writing.'® We choose Python 3.6
and implement different serverless functions viz. i) simple Hello-
world function as the baseline, and ii) HT TP server function that
fetches and serves pages of different sizes from the local HTTP
server. We use wrk [1] to generate the HTTP workloads and invoke
the serverless functions.

3.2 Performance - Throughput and Latency

3.2.1 Baseline Performance

To evaluate the baseline performance i.e., throughput (average
requests processed per seconds) and response latency of different
serverless platforms, we use a simple ‘Hello-world’ - a no operation
function, that returns 4 bytes of static text in the response. For a
fair comparison, we limit to a single instance of the function pod,
disable auto-scaling and configured the same queue size and timeout
parameters (50K requests, and 10s timeout) at the ingress/gateway
and function pod components across all the platforms. For Nuclio,
we further restricted it to a single worker process.
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Figure 6. Throughput and latency of ‘hello-world’ function.

Fig. 6a shows the baseline throughput achieved by different
platforms for different concurrent executions of requests. Nuclio
outperforms the other platforms due to the low overhead of a direct
function call. Routing through the API gateway/Ingress controller
components incurs not just the overhead for HTTP connection
termination, but also for the context-switch/transfer of the packets
across the kernel and user-space of the worker node twice to get
it routed to the function pod as shown in the Fig. 1. To quantify
the overhead, we also experimented with Nuclio using an ingress
controller mode and observed the overhead. It resulted in almost
half the throughput (~1700 RPS as opposed to ~3000 RPS for direct
call) and nearly 2x latency overhead (increases from 356ps to 611ps).
At the other extreme, Kubeless forks the function for every request,
resulting in severely degraded throughput and latency.

From Fig. 6b, we can observe that median latency is lowest for
Kubeless, and is marginally higher (20~50 ms) for the queue based
frameworks. However, tail latency (above 95%ile) degrades severely
for Kubeless and OpenFaaS, while Nuclio and Knative do not see
this increased heavy tail-latency. The results indicate that having
process based communication within a container (e.g., Nuclio) along
with a local worker queue achieves better throughput by having
lower overhead for processing requests.

19 Nuclio (v1.1.16). OpenFaa$S consists of: Gateway (v0.17.0), Faas-netes (v0.8.6),
Prometheus (v2.11.0), Alert manager (v0.18.0), Queue worker (v0.8.0) and Faas-cli

(v0.9.2), and the HTTP mode of-watchdog. We use Knative (v0.8) with Istio (v1.1.7)
ingress controller, and Kubeless (v1.0.4) with Traefik ingress controller (v1.7).
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3.2.2 HTTP Workload

Next, we change to having http-workload. Again, we keep the server-
less platform settings the same as described in the baseline exper-
iment §3.2.1. Fig. 7 shows the throughput for varying number of
concurrent connections and the latency profile for concurrency
level of 100. Nuclio has the least 99%ile latency within 500ms, as
it allows queuing only within the function pod, while OpenFaaS
and Knative can queue requests at ingress/gateway components.
OpenFaaS shows heavy tail due to queuing at both the gateway
and watchdog components, each having distinct timeout param-
eters. Kubeless drops the connections at the ingress, resulting in
additional retries from the client - hence it’s lower throughput (the
lower latency with Kubeless is because it is measured only for those
requests that succeed at a concurrency level of 100).
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Figure 7. Throughput & latency of ‘http-workload’ function across
different serverless platforms at different concurrency levels.

3.2.3 Variable Payload Size

For this experiment, in order to assess the data transfer overhead
of serverless platforms, we scale the size of payload in the HTTP
response and analyze the overheads and impact of assembling,
packaging and transporting the HTTP response payload across
different serverless platforms. In Fig. 8, we observe that Nuclio
performs better for small payload sizes (i.e., less than 1KB), while
OpenFaa$S and Knative perform better for large payloads.
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Figure 8. Throughput & latency of ‘http-workload’ function with
different payload sizes for different serverless platforms.

3.2.4 Impact of different modes of exporting services

In order to avoid the added queuing latency, we run the http work-
load with wrk tool and limit the number of maximum concurrent
(in-flight) requests to 1 and repeat the experiment 1000 times. Fig. 9
shows the impact on throughput and latency for three different
modes of exporting and invoking the serverless functions. LC refers
to local call, where the client and function pods reside on the
same node in the Kubernetes cluster, and client invokes the func-
tion directly using the IP-address of the function pod. Nuclio has
marginally better throughput and lower latency than Knative and
OpenFaa$, while Kubeless suffers in both latency and throughput.
IG/GW refers to exporting and invocation of serverless function
through the ingress/API gateway components. This mode brings
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down the throughput across all platforms, and also incurs (~ 1ms)
additional latency than ‘LC’ mode. DC (direct call) approach is only
supported by Nuclio, which exports the function pod using the
nodeport service of Kubernetes. DC avoids the additional routing
overheads in the worker node (netfilter rules that translate the
packet destination, and forward the packets to the function pod).
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Figure 9. Throughput & latency for different methods of exporting

the services on different serverless platforms.

3.2.5 Analysing the latency impact of serverless platforms
We analyze the delay overheads incurred in processing the server-
less functions for different platforms. We breakdown the processing
delays within the function pod. For this experiment, we use curl
to send one request for ‘hello-world’ function and use tcpdump to
capture the packets on the worker node of the function pod. We
record four timestamps, i.e., (1) when the request reaches the func-
tion pod; (2) start of the function runtime; (3) end of the function
runtime; (4) when the response is sent out of function pod. Time
intervals between these timestamps are shown in Fig. 10. In all
frameworks, the actual run-time of the function (0.001ms) is the
same. However, the function initiation time (time taken for request
to be forwarded to the function instance) and function response
delay (time taken for the response of the function to be sent out
of the pod) vary. This depends on how the data is packaged and
shared with the function instance. Also, Kubeless (due to forking
per request), incurs very high delay in forwarding the packet to the
function instance. We also experimented with the "http-function’
and found the startup and response delay overheads to be same.

@ Process 152 253 34

Function Pod Nuclio 0.63 0.001 0.54

@”@ OpenFaaS | 1.32 0.001 0.93
Function Knative 1.30 0.001 0.62

I Runtime I Kubeless | 496 0.001 2.63

Figure 10. Latency breakdown (ms) parts of serverless execution.

3.3 Auto-scaling

Auto-scaling capabilities exported by different serverless platforms
vary. Here, we compare the auto-scaling features of Knative and
OpenFaaS for both the rate-based and Kubernetes-based horizontal-
pod-autoscaler (HPA) modes under different workload characteris-
tics. For a fair comparison, we tune the auto-scaling related config-
uration parameters in both the platforms to have the same interval
for the auto-scale triggers and factors for scaling functions.!! We
use the same python function as in §3.2.2. Note: In OpenFaaS, auto-
scaling is based on the average rate of the incoming requests (RPS);
oy Knative, we disable panic mode, and set the minScale and maxScale instances as
1 and 10, target to 10, max-scale-up-rate to 100, tick interval to 2s, and stable window
to 10s, which ensures triggering auto-scale notifications on a 2s window and scaling
to 1 or more instances at a time. Likewise, for OpenFaaS, we set scale-factor to 10 and

configure the alert-notification window to 2s, and RPS threshold to 10. For HPA, we
set CPU limits to 50.
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in Knative, auto-scaling is based on the concurrency level observed
per function instance. The subtle difference is that the average RPS
value can be lower or higher than the observed concurrency de-
pending on whether the time for processing a function invocation
is higher or lower respectively. We will demonstrate the benefit
and deficiency of both approaches.

3.3.1 Workload based auto-scaling

Steady workload: We use the wrk tool, set a steady rate for out-
standing requests (concurrency of 100) and run the experiment for
60s. Also, to enforce proper traffic distribution across newly created
pods, we force the OpenFaaS gateway to terminate and reestab-
lish connections with the function pods. Periodically, every 2s, we
monitor the number of pod instances, CPU and memory usage, and
throughput. From Fig. 11, we observe that Knative scales multiple
instances at a time to reach the max. (10) instances quickly (in 12s),
while OpenFaasS just scales up one instance at a time, taking 26s
to scale up to the max. (10) instances. Although, the CPU usage
for the scaled instances looks identical, the memory pressure is
higher for Knative. This stems from the difference in the python
runtimes and overheads in the queue-proxy container component
for Knative and of-watchdog components in OpenFaaS.
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Figure 11. Auto-scaling with steady workload.

Bursty workload We also experimented by varying the http work-
load to have bursts of concurrent requests followed by a large idle
period. Fig. 12 shows that, Knative is more responsive to bursts,
and is able to scale quickly to a large number of instances, while
OpenFaasS scales gradually and has lower average throughput.
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Figure 12. Auto-scaling with bursty workload.

Issues with auto-scaling in OpenFaa$S and Knative: In another
experiment, we use the same setup as in the steady workload exper-
iment, but lowered the number of outstanding requests from 100
to 9. From Fig. 13, we observe that Knative fails to auto-scale and
continues to operate with just 1 function pod instance, resulting in
almost 7Xx lower (200 RPS) throughput compared to the earlier case
(1500 RPS). Next, we revert to vanilla OpenFaaS (i.e., as in github,
and disable the workaround of resetting the connections to the
function pods), and run the same steady workload experiment. The
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Figure 13. Auto-scaling issues with Knative and OpenFaaS.

function pods get auto-scaled as before. But, the throughput shows
no improvement. Also, note that with auto-scaling the memory
usage increases, but CPU utilization remains steady. We found the
issue to be due to incorrect traffic distribution. Due to the long
running connections (setup by OpenFaa$ gateway at the beginning
with the first function pod), all the traffic is just routed only to the
first function pod, while the remaining, newly scaled pods, do not
receive any traffic.!?

3.3.2 Resource based auto-scaling

We use the same setup (steady state), configure the cpu usage limit
to 50%, and leverage Kubernetes HPA for auto-scaling. Note, the
auto-scaling of function pods is governed by Kubernetes only. From
Fig. 14, we can observe that, except for Kubeless, the auto-scaling
behavior is same across all the platforms i.e., auto-scaling tries to
double the instances at each step until it reaches the maximum (10).
However, the duration of each step depends on the CPU utilization
factor, which in turn depends on the serverless platform specific
components (event-listener, of-watchdog, queue-proxy). Nuclio,
being relatively more CPU hungry is able to scale more rapidly
(in 40s), than Knative and OpenFaaS. With Kubeless, the fork-per-
request results in high latency, dropping of incoming requests that
in turn results in low throughput and low CPU utilization. Thus, it
results in poor auto-scaling as well.
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Figure 14. HPA-based auto-scaling on steady workload.
4 Related Work

Serverless Platform comparison: In work [6, 11], the authors

conducted several measurements on different cloud serverless plat-

forms (AWS Lambda, Microsoft Azure, Google Cloud), and found
the AWS to be better in terms of throughput, scalability, cold-start

12 Bug raised: https://github.com/openfaas/faas/issues/1303.
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latency. The works [5, 12] investigate the different factors that in-
fluence the performance of AWS lambda, namely the impact of
the choice of language of the function, memory footprint of the
function, etc. Work [7] evaluates the performance of Fission, Kube-
less and OpenFaaS serverless frameworks and characterizes the
response time and the ratio of successfully completed requests for
different loads. However the work fails to characterize the through-
put of these platforms and accounts for the mean latency (response
time) and successful responses at different load characteristics,
which is debatable, without the proper consideration and configu-
ration of the serverless platform specific configuration parameters,
resulting in inaccurate results. In the most recent work [8], the
authors quantitatively evaluate Apache OpenWhisk, OpenFaas,
Kubeless, and Knative platforms. The results for Kubeless are sim-
ilar, but for the other platforms, we feel the presented results are
inaccurate. This could be due to the usage of Kubernetes. In contrast,
our work focuses on discerning the architectural blocks that im-
pact the performance of Kubernetes based open-source serverless
platforms.

5 Summary

Through measurements, we explored different open-source server-
less platforms and identified the key design considerations and their
impact on performance and auto-scaling. We show that the interac-
tion between the API Gateway/Ingress controller and the function
pods, the overheads of this component and the way requests are
queued influence baseline performance. Further, the ‘RPS’-based
and ‘Concurrency’-based auto-scaling approaches by themselves
are insufficient and need to evolve to properly meet workload
demands, so that we can avoid maintaining a large number of in-
stances active. Acknowledgements: This work was supported
by US NSF grants CRI-1823270 and CNS-1763929, and grants from
Hewlett Packard Enterprise Co., Futurewei Technologies Inc, and
the National Key Research and Development Program of China
under Grant 2018YFB1800100, 2018YFB1800500, 2018YFB 1800800,
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