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Two-dimensional (2D) semiconducting transition metal dichalcogenides such as MoS2 have attracted exten-
sive research interests for potential applications in optoelectronics, spintronics, photovoltaics, and catalysis. To
harness the potential of these materials for electronic devices requires a better understanding of how defects
control the carrier concentration, character, and mobility. Utilizing a correction scheme developed by Freysoldt
and Neugebauer to ensure the appropriate electrostatic boundary conditions for charged defects in 2D materials,
we perform density functional theory calculations to compute formation energies and charge transition levels
associated with sulfur vacancies in monolayer and layered bulk MoS2. We investigate the convergence of these
defect properties with respect to vacuum spacing, in-plane supercell dimensions, and different levels of theory.
We also analyze the electronic structures of the defects in different charge states to gain insights into the effect
of defects on bonding and magnetism. We predict that both vacancy structures undergo a Jahn-Teller distortion,
which helps stabilize the sulfur vacancy in the −1 charged state.

I. INTRODUCTION

Two-dimensional (2D) semiconductor materials, such as
transition metal dichalcogenides (TMDCs), monochalco-
genides, group III-V compounds, and phosphorene, have at-
tracted extensive research interests for potential applications
in optoelectronics, spintronics, photovoltaics, and catalysis
[1–18]. One of the most commonly used and promising 2D
semiconductor materials is the prototypical TMDC material,
molybdenum disulfide (MoS2), which has demonstrated inter-
esting electronic, optical, and mechanical properties, making
it a promising candidate for optoelectronic and catalytic appli-
cations [1, 2, 19–21]. Monolayer MoS2 can be directly grown
on substrates using chemical vapor deposition [22] or exfo-
liated from its layered bulk counterpart via micromechanical
[2, 23] or liquid-phase [24, 25] exfoliation techniques. In this
work, we focus on the semiconducting trigonal prismatic 1H-
MoS2 phase and its layered bulk counterpart, 2H-MoS2.

Just as in bulk semiconductors, 2D semiconductors contain
both intrinsic defects, e.g., vacancies and antisites, as well as
extrinsic defects, e.g., substitutional and interstitial dopants
and impurities. These defects are often charged and can also
interact to form pairs or complexes. The lower dimensionality
of 2D materials reduces the electronic screening, and hence
point defects are expected to have an even stronger impact on
the electronic properties of these systems compared to in bulk
semiconductors. Understanding the effect of defects, dopants,
and impurities on the electronic properties is crucial for the
selection of materials and the choice of suitable synthesis and
processing conditions. Accurate determination of defect for-
mation energies and charge transition levels (CTLs) enables
us to predict their effect on the electronic properties and how
they respond to changes in synthesis and processing, allowing

∗ annemarietan@ufl.edu
† rhennig@ufl.edu

for some control over the defect concentrations, and hence to
tailor the carrier concentration, character, and mobility in 2D
materials [26–29].

Unfortunately, experimental data of defect concentrations
are scarce due to the difficulty of measuring defects in low-
dimensional systems and establishing and maintaining ther-
modynamic equilibrium in these systems.Exciton emission
peaks associated with defect states within the bandgap have
been observed in the photoluminescence spectra of MoS2 [30–
32]; however, the type and nature of the defects responsi-
ble for such peaks are not directly known and have to be
inferred by comparison against computational predictions of
defect levels. This highlights the importance of accurate com-
putational studies of defect levels and formation energies to
complement experimental observations to better understand
the effect of defects, dopants, and impurities on the electronic
properties of emerging 2D semiconductor materials.

Density functional theory (DFT) calculations of point de-
fects in solids is a mature field with a proven record of exper-
imentally validated predictions [33]. Similar approaches may
be applied to point defects in 2D materials as well; however,
additional care must be taken to ensure the appropriate elec-
trostatic boundary conditions for charged defects in 2D mate-
rials when applying DFT methods utilizing plane-wave basis
sets and periodic boundary conditions. Several previous com-
putational studies on defects and dopants in MoS2 considered
neutral defects [34, 35], or employed the Lany-Zunger (mod-
ified Markov-Payne) correction [36–38], or a uniform scaling
scheme [39–41] to treat the charged defects.

In this work, we use the 2D charge correction scheme de-
veloped recently by Freysoldt and Neugebauer [42] – which
has an advantage of not requiring any extrapolation or prior
knowledge of scaling laws – to compute the formation en-
ergies and CTLs associated with the single S vacancy in
both monolayer and layered bulk MoS2. The S vacancy has
been observed directly by high-resolution transmission elec-
tron microscopy [43–45] and scanning tunneling microscopy
[46] and has been predicted to have one of the lowest forma-
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tion energies compared to other intrinsic defects [34, 40, 41].
Since the S vacancy is one of the more well-studied defects
in MoS2, we use it here to validate and benchmark this new
charge correction scheme for 2D monolayers as well as the
SCAN+rVV10 functional [47].

The paper is organized as follows. Sec. II lays out the DFT
computational details and benchmarks the calculated struc-
tural and electronic properties of the pristine monolayer and
layered bulk MoS2 against other computational and experi-
mental studies. In Sec. III, we present the defect formation
energies and CTLs for the S vacancy defect in monolayer
and layered bulk MoS2 and demonstrate the effectiveness of
the Freysoldt-Neugebauer 2D charge correction scheme when
applied to these systems. We predict that the S vacancy in
both systems is most stable in either the neutral or −1 charged
states, in agreement with other studies in literature, validating
our approach. In Sec. IV, we analyze the electronic struc-
tures of the S vacancy in the various charge states. The −1
charged S vacancy is found to undergo a Jahn-Teller distor-
tion, which stabilizes this defect in both monolayer and lay-
ered bulk MoS2.

II. COMPUTATIONAL DETAILS

We compute the material and defect properties using den-
sity functional theory (DFT) with the projector-augmented
wave (PAW) method [48, 49] as implemented in the plane-
wave code VASP [50]. The PAW potentials describe the
core states of Mo and S by the electronic configurations of
[Ar]4s23d10 and [Ne], respectively. We treat the exchange-
correlation using two different sets of functionals – the
Perdew-Burke-Ernzerhof (PBE) [51] generalized gradient ap-
proximation (GGA) functional and the strongly constrained
and appropriately normed (SCAN) [52] meta-GGA functional
– and compare the results. For the calculations with SCAN,
we also include long-range van der Waals interactions via the
SCAN+rVV10 functional [47]. We perform spin-polarized
calculations employing a plane-wave cutoff energy of 520 eV,
which ensures energy convergence to within 1 meV/atom. To
facilitate rapid convergence of the Brillion zone integration,
we use Methfessel-Paxton smearing [53] with a smearing en-
ergy width of 0.10 eV and a Γ-centered Monkhorst-Pack k-
point meshes [54]. For the structural relaxations, we use k-
point meshes corresponding to a 12× 12× 1 k-point mesh per
hexagonal unit cell for monolayer MoS2 (≈ 400 k-points per
reciprocal atom in 2D) and 12×12×3 k-point mesh per hexag-
onal unit cell for layered bulk MoS2 (≈ 2500 k-points per re-
ciprocal atom in 3D). For the density of states calculations,
we double the density of the k-point meshes in all directions
and use Gaussian smearing with a reduced smearing width of
0.02 eV.

We model the defective systems by constructing 3 × 3 × 1,
4 × 4 × 1, and 5 × 5 × 1 supercells based on the hexagonal
primitive unit cell, as well as 3× 2× 1 and 4× 2× 1 supercells
based on an orthorhombic unit cell, and removing a single S
atom to create a S vacancy. For monolayer MoS2, in addition
to varying the in-plane supercell size, we also vary the amount

of vacuum spacing between layers to be 10, 15, or 20 Å. We
explicitly allow for symmetry breaking during the relaxation
of the defect structures by turning off the symmetrization of
the electronic charge density. Spin-orbit coupling was consid-
ered in a few select calculations and was found to change the
defect formation energies by only 10 to 15 meV and to lead to
a splitting of about 140 meV at the top of the valence band and
of about 70 meV of the S vacancy defect level in monolayer
MoS2. While not insignificant, the effects are not so large as to
qualitatively change our conclusions; therefore, the following
results presented in this paper are reported without including
spin-orbit coupling.

The formation energy E f [Xq] of a point defect X with
charge q is determined from DFT calculations using a super-
cell approach following

E f [Xq] = Etot[Xq]−Etot[pristine]−
∑

i

niµi +qEF +Ecorr, (1)

where Etot[Xq] and Etot[pristine] are the total DFT-derived
energies of the supercell containing the defect X and the
pristine supercell respectively, ni is the number of atoms of
species i added/removed by the defect, µi is the correspond-
ing chemical potential of the species, and EF is the Fermi
energy. In this work, we considered only the Mo-rich/S-
poor limit, for which the appropriate S chemical potential
µS(S-poor) = (µMoS2 − µMo(bcc))/2. The final term in Eq. (1),
Ecorr, contains corrections to the formation energy due to elec-
trostatic interactions with periodic images and compensating
background charges, which are introduced in supercell calcu-
lations using plane-wave DFT approaches. In VASP specifi-
cally, a homogeneous compensating background charge delo-
calized throughout the entire supercell is implicitly included
by setting the average electrostatic potential in the supercell
to zero. Various correction schemes have been developed for
charged defects in bulk 3D materials [36, 39, 55–61]. In this
work, we use the approach developed by Freysoldt, Neuge-
bauer, and Van de Walle [58, 59] to study the S vacancy in
layered bulk MoS2.

Charged defects in single-layer materials pose additional
challenges that lead to the divergence of the energy with vac-
uum spacing. Komsa et al. proposed a uniform scaling
scheme for charged defects at surfaces and interfaces [62] and
in 2D materials [63]. In this work, we study the S vacancy
in monolayer MoS2 using the correction scheme developed
recently by Freysoldt and Neugebauer [42]. The Freysoldt-
Neugebauer scheme uses a surrogate model to directly cor-
rect the electrostatic energy induced by the wrong electrostatic
boundary conditions. This scheme is computationally efficient
as it is implemented as a post-processing step, requiring as in-
put only the electrostatic potential of the converged DFT cal-
culations. The correction scheme proposed by Freysoldt and
Neugebauer has the advantage of not requiring any extrapo-
lation or making assumptions about the finite-size scaling be-
havior, which would require the evaluation of large supercells
to recover the correct asymptotic behavior [64].

Table I compares the lattice parameters, band gaps, and
dielectric coefficients for monolayer and layered bulk MoS2
computed in this work with experimental values. The PBE
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TABLE I. Lattice constants, band gaps, and dielectric coefficients for monolayer and layered bulk MoS2 calculated using different functionals,
compared with experimental values. The PBE and SCAN+rVV10 values are calculated in this work, while the HSE values are taken from the
literature. The in-plane lattice parameter a is well-reproduced by the PBE and SCAN functionals, with SCAN+rVV10 also reproducing the c
lattice parameter (i.e., the interlayer spacing) in the layered bulk MoS2. PBE and HSE functionals fail to reproduce this interlayer distance due
to missing van der Waals interactions, therefore the c lattice parameter is fixed to the experimental value (values marked with *). As expected,
both PBE and SCAN functionals significantly underestimate the band gaps by about 0.8 to 1.0 eV in the monolayer and 0.3 to 0.4 eV in the
layered bulk.

a (Å) c (Å) dS−S (Å) Egap (eV) ε‖ (ε0) ε⊥ (ε0)
ML MoS2:

PBE 3.18 – 3.12 1.67 17.18
SCAN+rVV10 3.17 – 3.11 1.80 16.27

HSE 3.16[40] –
2.17, 2.21[40],
2.25[65], 2.3[66]

Expt. 3.2±0.1[46, 67] –
2.40±0.05[67],
2.63[68], 2.7[69]

bulk MoS2:
PBE@expt. c 3.18 12.30* 3.12 0.88 15.39 6.51
SCAN+rVV10 3.16 12.30 3.11 0.98 14.80 5.15
HSE@expt. c 3.16[40] 12.30*[40] 1.45, 1.47[40], 1.50 [66]

Expt. 3.15[70], 3.16[71] 12.29[71], 12.3[70]
1.17[72], 1.2[73, 74],
1.23[75], 1.29[76] 15.2±0.2[77] 6.2±0.1[77]

and SCAN+rVV10 values are calculated in this work, while
the HSE values are taken from Refs. 40, 65, and 66. All func-
tionals well reproduce the in-plane lattice parameter a, with
SCAN+rVV10 also reproducing the experimental c lattice pa-
rameter (i.e., the interlayer spacing) in the layered bulk MoS2.
PBE and HSE functionals significantly overpredict the inter-
layer distance in layered bulk MoS2 due to missing van der
Waals interactions; therefore the c lattice parameter is fixed
to the experimental value in subsequent calculations. As ex-
pected, both PBE and SCAN functionals significantly under-
estimate the fundamental band gaps by about 30–40% in the
monolayer [67–69] and 20–30% in the layered bulk [72–76].
Some studies report good agreement between PBE-computed
band gaps and experimentally-measured optical band gaps;
however, this is misleading as the appropriate comparison is
with the fundamental band gap as is reported here. Despite
underestimating the fundamental band gaps, it is still worth
noting that PBE and SCAN do qualitatively reproduce the
key features of the band structure, showing the indirect-to-
direct band gap transition when going from the layered bulk
to monolayer MoS2.

The charge correction scheme requires the dielectric prop-
erties as input [42, 58, 59]. We compute the dielectric ten-
sor components for the monolayer with DFT using supercells
containing a slab of thickness dslab and a vacuum region of
thickness dvac (dslab + dvac = dsc = supercell c lattice param-
eter). As a result, the computed dielectric tensor components
for the supercell εsc are combinations of the dielectric tensor
components for the monolayer εslab and vacuum εvac (= 1).
The in-plane components (subscripted ‖) behave as capacitors
in parallel, while the out-of-plane components (subscripted
⊥) behave as capacitors in series, yielding the following re-
lations [78]:

εsc
‖

=
dvac

dsc ε
vac +

dslab

dsc ε
slab
‖

= 1 +
(
εslab
‖
− 1

) dslab

dsc (2)

1
εsc
⊥

=
dvac

dsc

1
εvac +

dslab

dsc

1
εslab
⊥

= 1 +

(
1
εslab
⊥

− 1
)

dslab

dsc . (3)

The dielectric tensor components for the slab εslab
‖

and εslab
⊥

are only uniquely defined for a given choice of slab thick-
ness dslab. To solve for a unique combination of slab thickness
and dielectric constants, we make the simplifying assumption
that εslab

‖
= εslab

⊥ , i.e., that the slab is dielectrically isotropic.
This gives the following expression for the slab dielectric con-
stant [78],

εslab =
εsc
‖
− 1

1 − (εsc
⊥ )−1 (4)

and the corresponding slab thickness,

dslab = dsc

 1
1 − (εsc

⊥ )−1 +
1

1 − εsc
‖

−1

. (5)

Based on these expressions, we estimate the averaged di-
electric constant and slab thickness to be 17.2 ε0 and 5.4 Å
computed with PBE and 16.3 ε0 and 5.4 Å computed with
SCAN+rVV10. These values of slab thickness are physically
meaningful as they correspond approximately to the S–S dis-
tance (dS−S listed in Table I) + 2× the covalent radius of S
(rS = 1.05 Å).

The assumption of an isotropic dielectric slab need not
be valid for a monolayer; however, this simplified dielectric
model correctly reproduces the asymptotic screening proper-
ties of the repeated slab system. The consistent choice of dslab

and εslab ensures that, despite the approximation of mapping
the anisotropic dielectric tensor of the slab onto an isotropic
dielectric tensor, the correct asymptotic behavior of the elec-
trostatic potential is still recovered. At distances shorter or
comparable to the length scale set by dslab, both the dielectric
anisotropy within the layer as well as microscopic variations
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due to the detailed atomic and electronic structure come into
play. Since the latter is unavoidable and fundamentally lim-
its all continuum modeling attempts, we do not expect that
a more elaborate setup of the surrogate model would signifi-
cantly improve its performance.

Calculating the dielectric tensor for the layered bulk MoS2
is much more straightforward since there is no vacuum re-
gion in the cells. The dielectric tensors are evaluated with
the PBE functional using density functional perturbation the-
ory (DFPT), and with the SCAN+rVV10 functional using fi-
nite field method as DFPT is not currently implemented in
vasp for meta-GGAs and hybrid functionals. The in-plane
and out-of-plane static dielectric coefficients for layered bulk
MoS2 computed in this work agree well with experimentally-
measured values [77]. Applying the simple dielectric model
from above to the layered bulk system (εslab

‖
= εslab

⊥ = εslab,
dslab,bulk = 2dslab,ML, dsc = 12.3 Å) predicts in-plane dielectric
constants of 15.2 ε0 (PBE) and 14.3 ε0 (SCAN+rVV10), and
out-of-plane dielectric constants of 5.8 ε0 (PBE) and 5.5 ε0
(SCAN+rVV10), within ≈ 10% of the directly computed val-
ues, which further validates our use of the simple dielectric
model for the monolayer.

The dielectric properties of each system are required as in-
puts to the charge correction schemes employed in this work.
For the bulk charge correction scheme, we provide the full
anisotropic dielectric tensor computed for layered bulk MoS2.
Meanwhile, the 2D charge correction scheme, as currently im-
plemented, takes as inputs only a single averaged dielectric
constant for the slab as well as a slab thickness, which defines
the positions of the dielectric interfaces. We test the sensitiv-
ity of the charge correction scheme to the choice of dielec-
tric constant – changing the dielectric constant by up to 50%
changes the formation energies and CTLs by around 100 meV
which does not qualitatively alter our results.

III. DEFECT FORMATION ENERGY

Figure 1 demonstrates that upon application of the charge
correction scheme, the defect formation energies for charged
S vacancies in the monolayer and the layered bulk MoS2 be-
come well-converged in all cases except for the +1 S vacancy
in layered bulk MoS2. On both plots, the open symbols in-
dicate the uncorrected defect formation energies in the Mo-
rich/S-poor limit, calculated with SCAN+rVV10. The un-
corrected energies strongly depend on the in-plane supercell
size, and for the monolayers, also on the vacuum spacing. Af-
ter correction, the energies are converged to within 100 meV
across all supercell and vacuum sizes in all cases except the
+1 S vacancy in layered bulk MoS2, for which the correction
does not work because the defect charge turns out to be delo-
calized (c.f. Fig. 4). For delocalized defect states, the energy
correction evaluated by the electrostatic correction scheme is
not meaningful, and in this system turns out to be close to
zero, leading to an overlap between the uncorrected and “cor-
rected” (red diamond) symbols in Fig. 1(b). The dotted lines
connecting the corrected energies are included as a guide to
the eye, showing that when the correction scheme is applied
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FIG. 1. Uncorrected (open symbols) and corrected (filled sym-
bols) formation energies for S vacancies in (a) monolayer MoS2

and (b) layered bulk MoS2 in different charge states, calculated with
SCAN+rVV10. The Fermi level is set to the valence band maximum.
In the top plot for S vacancies in monolayer MoS2, the multiple data
points corresponding to each supercell size indicate the energies eval-
uated in supercells with different vacuum spacings of 10, 15, and 20
Å. The uncorrected energies diverge with increasing vacuum spacing
and also exhibit a strong dependence on in-plane supercell size. The
corrected energies are well converged across all supercell and vac-
uum sizes in all cases except the +1 S vacancy in layered bulk MoS2,
for which the correction does not work due to the delocalized nature
of the defect state (see text).

successfully, only a small dependence on in-plane supercell
size, which is comparable to that for the neutral defect re-
mains. This small supercell size dependence reflects the elas-
tic interactions between defects, which are not accounted for
in the electrostatic charge correction scheme. The unphysical
linear divergence in energy with vacuum spacing is effectively
addressed by the correction scheme as evidenced by the over-
lapping filled symbols in the Fig. 1(a). These plots also show
that the magnitudes of the correction terms range from tens to
hundreds of meV depending on the system, charge state, and
supercell size, and must be included when evaluating forma-
tion energies of charged point defects.

Figure 2 shows that the S vacancy is most stable in the neu-
tral charge state in both monolayer and layered bulk MoS2
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FIG. 2. Formation energy of the S vacancy in (a) monolayer MoS2

and (b) layered bulk MoS2 as a function of Fermi level position, cal-
culated with PBE (orange) and SCAN+rVV10 (blue). The valence
and conduction band edge positions calculated with respect to vac-
uum level are indicated by the vertical dashed lines. The slopes of
each segment of the formation energy plots are indicated, and corre-
spond to the most stable charge state for the defect over that range of
Fermi energies. The points at which the slopes change are the charge
transition levels (CTLs) and are marked by black vertical lines. In
all cases, the neutral S vacancy is predicted to be most stable across
most of the gap, and only the 0/−1 charge transition level is predicted
to be within the band gap, close to the conduction band minimum.

for Fermi energies spanning most of the band gap, with the
−1 charged S vacancy becoming more favorable close to
the conduction band minimum (CBM). The formation en-
ergy of the neutral S vacancy in both monolayer and layered
bulk MoS2 under Mo-rich/S-poor conditions is computed with
SCAN+rVV10 to be ≈ 1.5 eV, in good agreement with other
DFT-computed values reported in literature [40, 41, 79]. PBE
predicts the formation energy to be ≈ 0.3 eV lower; this is
in part due to the underestimation of µMoS2 and therefore µS
resulting from missing van der Waals interactions.

The kinks in the formation energy plots indicate charge
transition levels (CTLs). The 0/−1 CTL is predicted to be
within the band gap close to the CBM, corresponding to a
deep acceptor state. Our calculations estimate the 0/ − 1 CTL
to be 1.6 to 1.7 eV above the valence band minimum (VBM)
in monolayer MoS2 and 0.6 to 0.7 eV above the VBM in lay-
ered bulk MoS2, again in good agreement with previous com-
putational studies [40, 41, 79]. Our estimate of the position

of the 0/ − 1 CTL in monolayer MoS2 is also consistent with
the mid-gap defect states identified in electron tunneling spec-
troscopy measurements, which were estimated to be closer to
the conduction band, approximately 0.5 – 0.1 eV below the
CBM [80]. As previously noted, both PBE and SCAN func-
tionals significantly underestimate the band gaps; therefore,
some CTLs which appear outside the band gap in our calcula-
tions may fall within the band gap, leading to multiple defect
levels within the gap. Indeed, calculations with HSE and GW
in the literature have predicted that the +1/0 CTL in mono-
layer MoS2 and the −1/ − 2 CTL in layered bulk MoS2 may
also fall within the band gap [40, 79]. The position of the
+1/0 CTL in layered bulk MoS2 is uncertain since the cor-
rection method does not work when the extra charge occupies
a delocalized state. Figure 4 shows that the extra hole in the
calculation of the +1 charged S vacancy in layered bulk MoS2
has a delocalized charge distribution that corresponds to an
empty state at the VBM. This indicates that the localized de-
fect state associated with the S vacancy is located within the
valence band region (see Fig. 6 in Sec. IV) and not likely to
be stabilized within the band gap, hence the +1/0 CTL is not
relevant.

IV. ELECTRONIC STRUCTURE

Figure 3 shows the total charge and spin density distribu-
tions around the charged S vacancy in monolayer and layered
bulk MoS2. The charge and spin densities associated with the
additional hole or electron(s) remain fairly localized around
the defect site for the +1 and −1 charged S vacancy in the
monolayer, as well as for the −1 and −2 charged S vacancy in
the bulk. The charge and spin densities around the −1 charged
S vacancy look very similar in both the monolayer and lay-
ered bulk, demonstrating a breaking of the 3-fold symmetry
of the native lattice. The 3-fold symmetry around the defect
site is maintained in all the other charged and neutral S va-
cancy configurations we studied. Each of the configurations
depicted in Fig. 3 exhibits a net magnetic moment, including
the −2 charged S vacancy in the bulk for which the parallel
spin configuration is more stable than the anti-parallel (non-
magnetic) configuration by ≈ 150 meV when evaluated with
SCAN+rVV10 (≈ 40 meV when evaluated with PBE). This is
also reflected in the projected density of states plots in Figs. 5
and 6.

Figure 4 illustrates the delocalization of charge in the +1 S
vacancy in layered bulk MoS2, explaining why the charge cor-
rection scheme – which assumes a relatively localized charge
– does not work in this case. Unlike in monolayer MoS2, in
layered bulk MoS2 the extra charge (hole) associated with the
+1 S vacancy is completely delocalized, not only within the
layer containing the S vacancy but also over adjacent layers.
Since the correction scheme assumes a relatively localized
charge, it fails in this case, as seen in Fig. 1. As a result,
we are unable to accurately quantify the formation energy of
this defect. However, the delocalized nature of the charge as
well as the calculated density of states for this defect (Fig.
6b), which indicates that a state at the top of the valence band
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FIG. 3. (a) Total charge and (b) spin density distributions of the extra hole or electron(s) around the charged S vacancy in monolayer and
layered bulk MoS2. Mo atoms are depicted in purple and S in yellow, the position of the S vacancy within each 4 × 4 supercell is marked by
the green circles, and the red (blue) indicate the positive (negative) charge and spin isosurfaces. The symmetry is broken in the −1 charge state
in both the monolayer and layered bulk systems.

VS
1+

FIG. 4. Side view of the total charge density distribution of the extra
hole around the positively charged S vacancy in layered bulk MoS2.
Mo atoms are depicted in purple and S in yellow, the position of the S
vacancy within the 4 × 4 supercell is marked by the green circle, and
the red (blue) indicate the positive (negative) 0.001e charge isosur-
faces. The charge density is completely delocalized not only within
the layer containing the S vacancy but also on adjacent layers.

is depleted when the +1 S vacancy is formed, are consistent
with it being a state within the valence band.

The projected densities of states corresponding to the S va-
cancy in different charge states in monolayer MoS2 (Fig. 5)
and layered bulk MoS2 (Fig. 6) show that a defect state with
primarily Mo dx2−y2 and dxy orbital character is induced in the
gap. The density of states is projected onto the d-orbitals of
the three Mo atoms directly adjacent to the S vacancy. In
defect-free MoS2, the Mo atoms have trigonal prismatic (D3h)
symmetry, which gives rise to the following energetic split-
ting of d-orbitals: dz2 (a′1 orbital) < dx2−y2 = dxy (e′ orbitals)
< dxz = dyz (e′′ orbitals). The degeneracy of the orbitals
is reflected in the overlapping d-orbital contributions in the
projected density of states for the pristine monolayer for the
blue dx2−y2 and dxy states (e′) and green dxz and dyz (e′′) peaks.
When a S vacancy is created, this generates a doubly degen-

erate defect state in the band gap with primarily e′ character.
Another defect state with primarily e′′ character also appears
near the top of the valence band. In the neutral state (V0

S), the
state at the top of the valence band is filled while the states in
the gap remain empty.

When adding an extra electron to the neutral S vacancy,
the system undergoes a Jahn-Teller distortion, which stabi-
lizes the −1 charged S vacancy in both monolayer and layered
bulk MoS2. In the negatively charged state (V1−

S ), the previ-
ously doubly degenerate defect state in the gap splits and the
additional electron occupies the lowest energy state, which ex-
hibits predominantly dx2−y2 (dark blue) character. This break-
ing of the degeneracy among the e′ orbitals is also associated
with the breaking of the D3h symmetry of the vacancy. In
pristine monolayer (layered bulk) MoS2, the three Mo atoms
that surround a S atom form an equilateral triangle with each
pair of Mo atoms 3.17 Å (3.16 Å) apart. Around a S va-
cancy, the Mo atoms relax slightly inward, retaining the 3-
fold symmetry and forming equilateral triangles with atoms
3.07 Å (3.07 Å) apart when in the neutral state. In the −1
charged state, the three Mo atoms form an isosceles triangle
around the S vacancy with two Mo-Mo pairs approximately
3.05 Å (3.05-3.06 Å) apart, and the third Mo-Mo pair 3.18 Å
(3.18 Å) apart. Such simultaneous electronic and geometric
symmetry-breaking is an example of a Jahn-Teller distortion,
and is responsible for stabilizing the −1 charged S vacancy
in both monolayer and layered bulk MoS2. The symmetric
V1−

S structures without Jahn-Teller distortions are higher in
energy by 116 meV (43 meV) and 120 meV (50 meV) in the
monolayer and layered bulk MoS2, respectively, when evalu-
ated with the SCAN+rVV10 (PBE) functional. These relax-
ation energies due to the Jahn-Teller distortion may be suf-
ficiently large for experimental observation as an asymmetry
in the optical excitation/de-excitation energies during photo-
luminescence spectroscopy experiments.

Unlike in the neutral and negatively charged S vacancy, the
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FIG. 5. Projected density of states for the pristine monolayer MoS2 and the S vacancy in monolayer MoS2 in the neutral (V0
S), +1 (V1+

S ), and
−1 (V1−

S ) charge states. The density of states is projected onto the d-orbitals of the three Mo atoms directly adjacent to the S vacancy. The
defect state in the band gap has primarily dx2−y2 (dark blue) and dxy (light blue) character. In the −1 charge state, the degeneracy between these
two orbitals is broken, with the additional electron occupying a state with dominant dx2−y2 character. The insets illustrate the electronic orbitals
corresponding to the defect states of interest.

defect state associated with the positively charged S vacancy
(V1+

S ) appears to have a different character in the monolayer
compared to in the layered bulk. In the monolayer, the elec-
tron is removed from a localized defect state near the top of
the valence band. However, in the layered bulk, Fig. 6 shows
that the electron removal depletes a delocalized state at the
top of the valence band rather than the localized defect state,
which is located 0.6 eV below the VBM.

This difference in behavior between the monolayer and bulk
for the V1+

S vacancy is notable when comparing the predicted
+1/0 CTLs (see Fig. 2). Indeed, the +1/0 CTL is predicted
to fall below the VBM extracted from the Kohn-Sham band
structures in both cases. Therefore, under appropriate elec-
trostatic boundary conditions, one would expect the electron
in both cases to be depleted from a valence-band state that is
delocalized within the slab, instead of from a localized defect
state. This suggests that the charge localization may be an
artefact of the calculation due to the periodic boundary con-
ditions which artificially stabilize the observed localized solu-
tion compared to the delocalized one.

To estimate the energy correction for a delocalized charge,
we consider a surrogate model, similar to the Gaussian charge

model, where the excess charge is delocalized in the plane but
remains localized perpendicular to the layer. We find that the
uncorrected energy of the delocalized solution does indeed ap-
pear to be higher than that of the localized solution. Therefore,
DFT calculations for charged simulation cells can converge to
a localized solution, even though after correction, the delocal-
ized solution might be the actual ground state. This systematic
error arises because the degree of in-plane localization of the
defect charge has a profound impact on the electrostatic en-
ergy, no matter how the vacuum size is chosen. Consider two
extreme cases: one in which the charge is entirely delocal-
ized over the 2D material (e.g., a band-like state) and another,
where the defect charge is laterally localized. At a given vac-
uum separation, we can invoke the superposition principle to
construct the localized case from the delocalized one. For this,
we add a localized charge in the unit cell plus a compensat-
ing background delocalized over the 2D slab equivalent to the
delocalized distribution. The excess electrostatic energy from
this charge-neutral periodic array compared to the isolated lo-
calized case with the counter charge moved to infinity is due
to the interaction between the charge and its counter charge
and is therefore always attractive. This additional attractive
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bulk MoS2 

FIG. 6. Projected density of states for the S vacancy in layered bulk MoS2 in the neutral (V0
S), +1 (V1+

S ), −1 (V1−
S ), and −2 (V2−

S ) charge states.
The density of states is projected onto the d-orbitals of the three Mo atoms directly adjacent to the S vacancy. Similar to the S vacancy in the
monolayer, the degeneracy between dx2−y2 (dark blue) and dxy (light blue) orbitals is broken in the −1 charge state. The degeneracy is restored
in the −2 charge state, for which the parallel spin configuration is lower in energy. The insets show the electronic orbitals corresponding to the
defect states of interest.

energy contribution may lower the energy of the localized so-
lution sufficiently to potentially stabilize the localized solution
even if the delocalized one should be lower in the limit of large
lateral size.

The same argument also explains the apparent discrepancy
between the position of the predicted -1/-2 CTL in layered
bulk MoS2 and the location of the corresponding defect states
in the density of states. When a second electron is added to
create the −2 charged S vacancy (V2−

S ) in layered bulk MoS2,
the D3h symmetry is restored, and the most stable configura-
tion is found to be when the two extra electrons have their
spins aligned (µB = 2). The density of states for V2−

S in lay-
ered bulk MoS2 – depicted in the bottom right panel of Fig. 6
– suggests that the second additional electron also occupies a
localized defect state within the band gap. However, based on
the defect formation energies, we predicted the -1/-2 CTL in
layered bulk MoS2 to be above the CBM. Again, due to the
compensating homogeneous background, the localized defect
state corresponding to V2−

S is artificially stabilized and there-
fore shows up in the gap in the density of states, which is not
corrected. When the correct electrostatic boundary conditions
are accounted for by including the correction term in the de-

fect formation energies, the energy of the defect state is raised
by ≈ 0.7 to 0.8 eV (c.f. Fig. 1(b)), pushing it into the conduc-
tion band.

These implicit consequences of the homogeneous charge
background imply that one must be careful when basing the
analysis of defect states solely on calculations of the elec-
tronic structure – such as the density of states – which is
quite often the case in the literature. In Kohn-Sham DFT,
band structure and density of states are calculated based on
one-electron energies, which is an approximation of the ac-
tual interacting electron system. While these calculations can
provide valuable insight into the defect states and their orbital
contributions, they may not be the most accurate way to es-
timate the positions of these defect states and CTLs. The lo-
cation of the CTLs is given by the energy difference between
different charge states of the defects and, as such, includes
exchange and correlation contributions that are beyond the
single-particle energies of the density of states. This many-
body contribution can shift the energy of the CTLs. Moreover,
as we argue above, there are some cases for which DFT may
predict the wrong electronic ground state when a compensat-
ing homogeneous background charge is included, which can
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lead to incorrect conclusions being drawn based on the density
of states alone. Furthermore, different choices of functionals
may also shift the CTLs and band edge positions relative to
the vacuum level by up to 0.5 eV or more, which also adds
to the uncertainty in predicting the energy of the CTLs rela-
tive to the band edges. A posteriori correction schemes for
band alignment [81, 82] may be used in combination with the
current charge correction scheme to obtain more accurate es-
timates of the positions of the defect states. Therefore, it is
essential to employ and compare different approaches for in-
vestigating defect properties — as presented in this work -–
to obtain a more reliable and complete understanding of these
defects.

Finally, we compare our electronic structure analysis with
previous studies. Based on our electronic structure calcula-
tions, we identify the defect state near the top of the valence
band to have a predominantly e′′ character. The correspond-
ing electronic orbital depicted in the inset of the V1+

S subplot
of Fig. 5 is largely localized in the region between the three
Mo atoms neighboring the S vacancy site, which does sug-
gest significant contributions from the dxz and dyz orbitals with
lobes oriented in those directions. Our findings are in contrast
to previous studies [38, 41], which identified that state as the
singlet a′1 (i.e., dz2 ) state instead. These same studies did iden-
tify the defect state in the gap to be the doubly degenerate e′

state, in agreement with our results. Komsa and Krashenin-
nikov [40] briefly mention that the S vacancy in monolayer
MoS2 undergoes a Jahn-Teller distortion upon addition of an
extra electron; however, they did not elaborate further on that
assertion or present any analysis of the defect electronic struc-
ture. Noh et al. [41] computed the density of states for V1−

S ,
and while they did find a shift between the up and down-spin
states as we did, they did not observe the splitting of the de-
fect state indicative of a Jahn-Teller distortion. This could be
due to the authors not having allowed for symmetry breaking
of the original lattice during the structural relaxation, which
would preclude the Jahn-Teller distorted structure from being
found. Jahn-Teller distortions have not been reported in other
studies on S vacancy in MoS2 [37, 79, 83], which only evalu-
ated the electronic structure of the neutral S vacancy in which
such distortions are not predicted to occur. To the best of our
knowledge, the Jahn-Teller distorted S vacancy structure has
thus far not been observed in experiments. One reason for
this is that the distortion of the lattice is very small, with dis-
placements of about 0.1 Å between neighboring Mo atoms.
Such small distortions challenge even high-resolution STEM

imaging techniques. Furthermore, unless the Fermi level in
the system is close to the top of the gap through n-type dop-
ing, gating, or substrate effects, the majority of S vacancies in
MoS2 is expected to be in the neutral charge state, which does
not exhibit the Jahn-Teller distortion.

V. CONCLUSION

In this work, we performed density functional theory calcu-
lations to compute the formation energies and charge transi-
tion levels associated with sulfur vacancies in monolayer and
layered bulk MoS2. We utilize the correction scheme recently
developed by Freysoldt and Neugebauer to ensure the appro-
priate electrostatic boundary conditions for charged defects in
2D materials. We demonstrate the effectiveness of the correc-
tion scheme for the convergence of the defect formation en-
ergies with respect to vacuum spacing and in-plane supercell
dimensions. We benchmark the SCAN+rVV10 functional and
this new charge correction scheme for 2D monolayers against
other studies in literature, and find good agreement, validat-
ing our approach. By analyzing the electronic structures of
the defects in different charge states, we predict that both sys-
tems undergo a Jahn-Teller distortion, which helps stabilize
the sulfur vacancy in the −1 charged state.

We show that the ubiquitous finite-size errors in charged-
defect calculations for 2D materials tend to favor localized
solutions over delocalized ones, irrespective of the sign of the
correction applied to the localized state, and independent of
the chosen a posteriori correction scheme. As a result, the
uncorrected stability region may fall within the band gap, al-
lowing us to apply the charge correction scheme to estimate
the CTLs even if they fall (after correction) outside the band
gap. The results illustrate that the combination of the a poste-
riori charge correction schemes with computationally feasible
functionals provides a valuable tool for predicting the proper-
ties of charged defects in 2D semiconductor materials.
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