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Abstract—This  paper proposes  a differential burn-in policy 
that considers the spatial nonhomogeneous distribution  of defects 
in semiconductor manufacturing.  Due to the nonhomogeneous 
distribution of spatial  defects, devices at different  locations on a 
semiconductor wafer may exhibit different probabilities of being 
defective. Unlike  conventional burn-in  policies, which subject all 
devices to the same burn-in test, the differential burn-in policy 
can take different  actions for different  devices, i.e., acceptance 
without burn-in, rejection  without burn-in, or burn-in with a 
certain duration. A mixed integer nonlinear programming model 
is developed  to find the cost-optimal  decisions. A numerical 
example  is used to demonstrate the potential application of the 
proposed burn-in policy. 

Index Terms—burn-in, defects, integrated circuits, optimiza- 
tion, semiconductor manufacturing,  mixture  distribution 

 
I.  INTRODUCTION 

 

Infant mortality has  been widely recognized   as  a  major 

issue in the semiconductor industry [1]. Defects generated in 

the complex fabrication processes can cause early failures of 

defective devices. Burn-in is an effective procedure to identify 

weak devices by running all devices under certain conditions 

for a suitable duration [2]. Devices that survive the burn-in test 

are shipped to customers. Because the burn-in  test is costly, it 

needs to be carefully  designed and optimized. 

The determination of an optimal  burn-in  duration has been 

the subjects  of  numerous  studies  [1]–[3].  Various criteria, 

e.g., maximum mission reliability, maximum mean residual 

life, and minimum expected  total cost, have  been used to 

optimize the burn-in duration [2]. Burn-in populations  are 

usually heterogeneous due to the existence of subpopulations, 

e.g., subpopulations for weak devices with defects and strong 

devices without defects, respectively.  Mixture distributions 

have been frequently  used as lifetime distributions for burn-in 

populations [4]. 

Conventional burn-in policies generally test all devices for 

the same duration. However,  it has been commonly  observed 
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that defects on semiconductor  wafers are not homogeneously 

distributed; instead  they tend to cluster. Consequently,  the 

defective  devices are not homogeneously distributed,  and the 

probability that a  device being defective  varies with  the 

device’s location on a  wafer. This motivates the differential 

burn-in policy proposed  in this paper.  Under the proposed 

burn-in policy, devices at different locations may be subject 

to different burn-in decisions. This differential burn-in policy 

may be a  more cost effective  alternate to the conventional 

burn-in policies. 

The remainder of this paper is organized  as follows. Sec- 

tion II  presents  the proposed  burn-in policy and the opti- 

mization model to find the cost-optimal  burn-in decisions. 

Section III  uses  a  numerical example  to demonstrate  the 

potential application of the proposed burn-in policy. Finally, 

Section  IV  concludes  this paper  and states possible  future 

research work. 
 

II.  METHODOLOGY 
 

This section presents the proposed differential  burn-in pol- 

icy and an optimization  model to find the cost-optimal burn-in 

decisions. For the purpose of comparison, we first establish 

a traditional  cost-optimal  burn-in model that tests all devices 

with a common burn-in duration, tb . Then, we modify the first 

model to incorporate the spatial nonhomogeneous distribution 

of defects. The burn-in decisions may be different  for devices 

at different locations on a wafer. 

A mixture distribution involving two Weibull distributions 

is used to describe the failure-time  distribution of a hetero- 

geneous burn-in population with two subpopulations, i.e., a 

weak subpopulation  consisting  of devices  with defects  and 

a strong subpopulation  consisting  of devices without defects. 

The probability density function (PDF) and reliability function 

of this mixture distribution  are, respectively, given by [5] 
 

f (t) = p[fE (t)RI (t) + fI (t)RE (t)] + (1 − p)fI (t)  (1) 
 

and 

R(t) = RI (t) − pRI (t)(1 − RE (t)), (2) 
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Distribution Parameters Cost Coefficients 
βE 

θE 

βI 

θI 

0.5 
1,000 hours 
2 
100,000 hours 

cst 

cvt 

cf t 

cf w 

$10 
$0.05 
$200 
$1,000 

 

) 

b 

 
 
 

where p is the probability of a  device being defective,  the 

subscripts “E” and “I ” denote extrinsic  and intrinsic failure 

modes, respectively,  and fI (t) (fE (t)) and RI (t) (RE (t)) are 

the Weibull  PDF and reliability function to describe the failure- 

time distribution of the intrinsic (extrinsic) failure mode. The 

Weibull reliability functions are 

TABLE I 
PARAMETERS IN THE NUMERICAL EXAMPLE 

 
RI (t) = exp 

  
t 
 βI 

 
 

− 
θI 

 
and RE (t) = exp 

    
t 

− 
θE 

 βE 

  

 
 

(3) 

 
 
 
of the following three decisions for each device: (1) rejection 

for the two failure modes, where  θ and β are, respectively, 

the Weibull scale and shape parameters. Extrinsic  failures are 

early failures caused by defects; while intrinsic failures are 

caused by intrinsic device wearouts. Therefore, 0 < βE  < 1, 

without burn-in; (2) acceptance without burn-in; and (3) burn- 

in with a duration  tb > 0. For each device, let us define two 

binary decision variables 
    

0,   rejection without burn-in 
βI  > 1, and θI  > θE  are expected. This mixture distribution 
assumes  that a defective   device in the weak subpopulation 

xk  = 
1,   otherwise 

(7)
 

has  both extrinsic and intrinsic failure modes competing  to 

determine  the failure time but a  defect-free   device in the 

strong subpopulation only has the intrinsic  failure mode. It can 

and  
yk  = 

    
0,   acceptance without burn-in 

1,   burn-in with the duration tb 

 
(8) 

be shown that this mixture distribution  has a bathtub shaped 

hazard rate function  [5]. 
An optimization model is developed  to find the optimal 

burn-in duration that minimizes the expected  total cost per 

for k = 1, 2, . . . , K . The optimal burn-in policy will  be the 

solution that minimizes the following expected total cost per 

unit 

unit given by 
 

C0 (tb ) = cst +cvt tb +cf t [1−R(tb )]+cf w [R(tb )−R(tb +tw )], 

1 
C2 (x, y, tb )= 

K 

K 

{cst xk yk + cvt tb xk yk 

k=1 

(4) 

where the burn-in duration tb  is the decision variable,  and 

cst , cvt , cf t and cf w  are, respectively,  the fixed burn-in cost 

per unit, variable burn-in cost per unit per unit time, failure 

cost during burn-in, and failure cost during field operation 

within the warranty period tw . For a given set of Weibull shape 

and scale parameters and cost coefficients,  the optimal  burn-in 

duration t∗  certainly  depends on the defective probability p. 

It has been widely observed that defects are not uniformly 

distributed on a semiconductor   wafer; instead, they tend to 

cluster. Therefore, it is reasonable to assume that the probabil- 
ity that a device has defects, p, in the mixture distribution (1) 
varies according to the device’s location on the wafer. Let zk 

denote the location  of the kth device on the wafer and denote 

pk ≡ p(zk ) the probability of the kth device being defective. 

Then the reliability function of the kth device is 

R(t; zk ) = RI (t) − pk RI (t)(1 − RE (t)).  (5) 

The conventional burn-in cost model (4) may be modified to 

+ cf t [1 − R(tb ; zk )]xk yk 

+ cf w [R(tb ; zk ) − R(tb + tw ; zk )]xk yk 

+ cf w [1 − R(tw ; zk )]xk (1 − yk ) 

+ (1 − xk )cf t } (9) 
 

subject to the constraint 

xk  − yk  ≥ 0, k = 1, 2, . . . , K.  (10) 

The constraint (10) ensures that yk  = 0 when xk  = 0. When 

a device  is discarded without burn-in, i.e., xk  = 0, the total 
cost is the burn-in failure cost; when a  device is accepted 

without burn-in, i.e., xk    = 1 and yk   = 0, the total cost 

includes the field failure cost; and  when a  device is tested 
with the duration tb , i.e., xk    = 1 and yk   = 1, all four 

cost components are included  in the expected total cost. The 
GEKKO Python package is used to solve this nonlinear mixed 
integer programming problem. 
 

III.  NUMERICAL EXAMPLE 

1 
C1 (tb )= 

K 

K ) 
 
k=1 

 
{cst + cvt tb + cf t [1 − R(tb ; zk )] 

 
+ cf w [R(tb ; zk ) − R(tb + tm ; zk )]},  (6) 

 

This section presents a numerical  example  to compare the 

proposed  differential burn-in policy with  the conventional 

policy. Table I  lists the parameters  used in the numerical 

example. In addition, tw = 10, 000 hours. Under the assumed 

where K is the total number of devices. 

Due to the spatial nonhomogeneous distribution  of defects 

and defective   devices,  a  differential burn-in policy, which 

chooses  different burn-in actions for different devices,  may 

be a more cost effective  alternate to the conventional burn-in 

policies that test all devices with the same duration  [6]. A 

proposed differential  burn-in policy attempts to make one out 

distribution  parameters, RE (tw ) = 4% and RI (tw ) = 99%. 
Therefore, it is necessary to weed out the weak units before 

sending the products to customers. 

We first minimize the conventional cost model (4) to ex- 

amine the effect of the defective probability  p on the optimal 

burn-in decision. Figs. 1 and 2 show, respectively, the optimal 

burn-in  duration and expected total cost per unit for different 
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Fig. 1.  Optimal burn-in duration t∗  for different p. 

 
 

 

 
 

 
Fig. 3.  The wafer used in the numerical example. 

 
 
on the wafer. The number of defects on the kth devices is 
assumed to follow the Poisson distribution  with a mean µk  that 

is dependent on its location of the wafer. As an illustration, 
we assume [7] 

 
 
 
 
 
 
 
 

Fig. 2.  Expected total cost C0 (t
∗ ) for different p. 

 

 
values  of p, ranging from 1% to 50%. The optimal burn- 

in duration and expected total cost increase  as the defective 

probability, p, increases. If a device is discarded without burn- 

in the expected total cost is the burn-in failure cost, cf t ; on the 

other hand, if a device is accepted without  burn-in  the expected 

total cost is the field failure cost, cf w [1 − R(tw )]. Fig. 2 

also depicts  those two expected  total costs for comparison. 

As shown in Fig. 2, when p < 0.06 the expected total cost 

per unit with burn-in, C0 (t
∗), is higher than the expected total 

cost per unit if the device is accepted without burn-in. Hence, 

a more economic decision would be the acceptance without 

burn-in when p is small. On the other hand, when p is large, 

i.e., p > 0.28, the expected total cost per unit with burn-in is 

higher than the cost if the device is discarded without burn- 

in, and a reasonable decision  would be the rejection without 

burn-in. When p is between 0.06 and 0.28, burn-in would be 

the reasonable action. 

Next, we use  the wafer shown in Fig. 3 to illustrate the 

proposed differential  burn-in policy. The diameter of the wafer 

 

µk  = γ0 + γ1 rk + γ2 r
2 , (11) 

 

for k = 1, 2, . . . , K , where rk is the distance from the wafer 

center  to the center  of the kth device in centimeters,  and 

γ ≡ (γ0 , γ1 , γ2 ) represents the coefficient  vector. Then, the 

probability that the kth device is defective is given by 

pk = 1 − e−µk , k = 1, 2, . . . , K.  (12) 

If  we assume  γ  = (0.01, 0.01, 0.001), the mean number 

of defects  µk   ranges  from 0.01 to 0.18 and the defective 
probability pk  is between 0.01 and 0.187. All  the pk  values 
are less than 28%. The optimal differential burn-in decision 

obtained  by solving the proposed  differential burn-in opti- 

mization model accepts  133 devices  near the wafer center 

without burn-in and tests  the remaining 340 devices  with 

a  duration of 295.72 hours. The expected  total cost C2  is 

$96.17 per device. If all the devices are subject to the same 

burn-in duration, the optimal burn-in duration can be found 

by minimizing the expected total cost per unit given by the 

model (6). The optimal burn-in duration is 233.97 hours with 

an expected total cost per unit of C1 =$98.19. The differential 

burn-in policy results in a lower expected total cost per unit 

than the conventional burn-in policy. Note that the optimal 

solution of the conventional burn-in model (6) is a feasible 

solution of the proposed differential burn-in model (9). The 

optimal expected total cost per unit of the model (9), therefore, 

is always less than or equal to that of the model (6). 

Next, we modify the µk  function  as 

is 20 cm and there are K = 473 dies (i.e., devices) fabricated    = µk + 0.25I {rk >8} , (13) 
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to simulate the case  where an assignable  cause produces  a 

ring-shaped cluster of defects near the wafer edge. Herein I{·} 

is the indicator function. Under this assumption, there are 90 

devices with defective probability,  pk , higher than 0.28. The 

conventional burn-in policy tests all units with a duration  of 

343.6 hours, resulting  in an expected  total cost per unit of 

$120.2. On the other hand, the proposed differential burn-in 

policy discards 90 devices near the edge of the wafer without 

burn-in, accepts  115 devices  near the wafer center  without 

burn-in, and tests the remaining 268 devices with a burn-in 

duration of 253.5 hours. The expected total cost per unit under 

the differential  burn-in policy is $109.4, which is again lower 

than that of the conventional burn-in policy. 
 

IV.  CONCLUSION AND FUTURE WORK 

This paper proposed a differential  burn-in policy for semi- 

conductor manufacturing. Due to the spatial heterogeneity of 

the defective  probability, devices  at different locations are 

subject to different burn-in decisions. Numerical  results have 

demonstrated that the proposed burn-in  policy may be a cost- 

saving alternate over the conventional burn-in policies that test 

all devices for the same duration. 

The devices that are subject to burn-in are tested for the 

same duration.  In the future, the burn-in policy may be ex- 

tended to allow the devices to have different burn-in times. In 

the current study, only package-level burn-in  was considered. 

In future studies, both package-level and wafer-level burn-in 

tests can be included. 
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