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A B S T R A C T

Discrete choice experiments are becoming more popular in the tourism and travel literature. While Bayesian
methods to analyze discrete choice experiment data have been used in other disciplines, they have not been
used in the tourism literature. In this article, we develop a Bayesian Mixed Logit Model in which we use a little
known prior distribution developed by Lewandowski, Kurowicka, and Joe (LKJ) and half Cauchy distributions
as an alternative to the more traditionally used inverse Wishart distribution as a prior scheme for the covariance
matrix of random parameters in mixed logit estimation. Using multiple simulated data sets, we show that use
of the LKJ prior scheme improves the estimation of coefficients, especially for small data sets. Finally, we
test the model with an actual small discrete choice data set examining tourist preferences for reducing glacier
recession, and discuss the implications of the model for research and policy.

1. Introduction

Over the past decade, discrete choice experiments (DCEs) have be-
come increasingly popular in the tourism literature (Kim & Park, 2017;
Kubo, Mieno, & Kuriyama, 2019; Landauer, Pröbstl-Haider, & Haider,
2012). When the market for a good does not exist, or when a good is a
bundled composite of different attributes such as in many tourism ap-
plications (Chen, Masiero, & Hsu, 2019), the DCE is a sophisticated way
to disentangle the roots of consumer preferences. DCEs are also widely
used across many other disciplines, including economics (Johnston
et al., 2017), health (de Bekker-Grob, Donkers, Jonker, & Stolk, 2015),
marketing (Bryant & Hill, 2019), transportation (Hensher, 2010), and
travel (Adhikari, 2015).

In recent years, the standard statistical approach used to estimate
preference relationships from DCE data has been the mixed logit model
(MLM). The MLM affords many benefits over other DCE estimation
strategies, such as relaxing the IIA assumption and accounting for unob-
served heterogeneity in the sample. Estimating the MLM using classical
econometric methods means using a maximum simulated likelihood
(MSL) algorithm. MSL relies on information provided by the likelihood
along with asymptotic properties. As a result, complete separation (Al-
bert & Anderson, 1984) can occur when analyzing small-sample DCE
data sets using MSL, implying that the maximum likelihood estimates
are unbounded and do not exist.
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Yet despite the falling cost of collecting DCE data, small samples are
not uncommon. In a survey of 69 DCEs, de Bekker-Grob et al. (2015)
found 32% of them had samples of less than 100 respondents. Indeed,
if research requires sampling a small population, the sample itself is
likely to be small (Grijalva, Berrens, & Shaw, 2011; Huth & Morgan,
2011). A vast majority of the time, preference relationships from those
small samples have been estimated using classical econometrics, which
as mentioned above could be problematic. One potential solution to this
problem is to use Bayesian methods to estimate preference relationships
in small DCE samples. Bayesian methods of estimation are desirable in
this context because (1) inference does not rely on asymptotic theory,
(2) the introduction of prior information stabilizes estimates, especially
in small samples, and (3) posterior distributions allow researchers to
answer a richer set of questions.

The Bayesian approach has been used for other common method-
ologies in the tourism literature. Song, Qiu, and Park (2019) provide a
comprehensive review of the methods that have been used in predicting
tourism demand and note that Bayesian methods are promising. In
particular, placing informative priors on regression coefficients has
been shown to improve forecasting accuracy over classical methods that
use unpenalized coefficient estimates. Wong, Song, and Chon (2006)
employed variations of the Minnesota prior in a Bayesian vector autore-
gression (BVAR) model to improve forecasts of the demand for Hong
Kong tourism. Gunter and Önder (2015) found similar success with
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Fig. 1. Scatterplot of 𝑙𝑜𝑔(𝑆11), the log of the first variance component, by the implied
correlation from 10,000 draws from an inverse Wishart (𝑘 = 3, 𝐼2) distribution.

BVAR models in predicting tourism at select markets in Paris. More
recently, Assaf, Li, Song, and Tsionas (2019) introduced the Bayesian
Global VAR (BGVAR) as a way to simultaneously use priors and con-
sider the interdependencies of multivariate tourism demands. Bayesian
forecasting methods have also been used outside the vector autoregres-
sion framework. In predicting Hong Kong tourism demand, Wu, Law,
and Xu (2012) used a sparse Gaussian process regression model along
with Bayesian estimation to achieve probabilistic inference, as well as
greater accuracy.

Bayesian methods have also been employed in structural equation
models (SEMs). Assaf, Oh, and Tsionas (2016) propose a Bayesian
finite mixture model as a general framework for SEMs. This allows the
researcher to quantify unobserved heterogeneity. In a related work, a
simulation study showed consistent superiority of the Bayesian SEMs
over classical SEMs in terms of parameter bias across multiple sample
sizes (Assaf, Tsionas, & Oh, 2018). Papastathopoulos, Ahmad, Al Sabri,
and Kaminakis (2019) used Bayesian methods to quantify how de-
mographics impact the relationship between tourism perception and
support for tourism development. Importantly, this work notes that the
Bayesian framework offers a natural way to use non-normal distribu-
tions for the data, resulting in potentially better representations of the
data generating process.

To our knowledge, Bayesian methods have yet to be demonstrated
for DCE analysis in the tourism literature. The use of Bayesian esti-
mation to analyze DCE data began gaining in popularity around the
same time Train (2003) generalized its use for that purpose. As com-
puters have become more powerful, other researchers have employed
Bayesian estimation techniques, especially in economics (Balcombe,
Chalak, & Fraser, 2009; Rigby, Balcombe, & Burton, 2009; Rigby &
Burton, 2006). Common across the aforementioned studies is the as-
signment of an inverse Wishart prior to the variance–covariance matrix
in mixed logit estimation, which has historically been the default prior
choice. That default prior assignment can be problematic when there
is not a good reason for choosing it. Recently, Akinc and Vandebroek
(2018) developed a Bayesian MLM, which they use to show that the
choice of prior distribution in Bayesian estimation is important. Using
a large simulated data set, they find that the default use of the inverse
Wishart prior on the variance is inappropriate because it can exert too
much influence on the results and cause biased estimates. Instead, they
use a flexible prior for correlation matrices developed by Lewandowski,
Kurowicka, and Joe (2009), which has desirable properties.

We extend the work of Akinc and Vandebroek (2018) and contribute
to the nascent literature discussing the deliberate choice of prior distri-
bution in Bayesian analysis. In particular, we develop a Bayesian MLM

in which competing priors are assigned to the variance–covariance
matrix of the random parameters. We then explore the model using
both simulated and real data gathered during a 2015 DCE. We find that
our model is able to reduce coefficient bias for both small and large data
sets, with the bias reduction particularly pronounced for small data sets.
We are also able to estimate higher order interaction effects to tease
apart differences in willingness to pay (WTP) along sociodemographic
lines, which would not be possible using MSL.

The rest of the paper is structured as follows: In Section 2, we
present a general Bayesian model framework for analyzing DCE data.
We then test the general model with a simulation study in Section 3,
after which we extend the model for an application incorporating
sociodemographic heterogeneity in Section 4. Section 5 discusses the
results, and Section 6 concludes.

2. Model

In this section, we present a general model of consumer choice
given a set of alternatives. Let 𝑖 = 1,… , 𝑁 represent individual, 𝑗 =
1,… , 𝐽 represent alternative, and 𝑠 = 1,…𝑆𝑖 represent situation. Let
𝒙𝑖𝑗𝑠 represent a 𝐾-dimensional vector of alternative 𝑗 specific non-price
attribute levels for situation 𝑠 seen by individual 𝑖. If 𝑌𝑖𝑗𝑠 represents the
random variable associated with the 𝑖th individual’s choice regarding
the 𝑗th alternative in the 𝑠th scenario, the data model can be specified
as:

𝑃 (𝑌𝑖𝑗𝑠 = 1 ∣ 𝜂𝑖𝑗𝑠) =
𝑒𝑥𝑝(𝜂𝑖𝑗𝑠)

∑𝐽
𝑗=1 𝑒𝑥𝑝(𝜂𝑖𝑗𝑠)

(1)

where

𝜂𝑖𝑗𝑠 = 𝒙𝑇𝑖𝑗𝑠𝜷𝑖. (2)

We allow for preference heterogeneity across individuals by
setting

𝜷𝑖
𝑖𝑛𝑑∼ 𝑁(𝝁𝛽 ,𝜮𝜷 ) (3)

where 𝝁𝛽 is a 𝐾-dimensional vector and 𝜮𝜷 is a 𝐾 × 𝐾 covariance
matrix. Thus, 𝝁𝛽 is the overall mean of the coefficient vector and 𝜮𝛽 de-
scribes the covariance. Often, 𝜮𝛽 is constrained to have 0 elements on
the off diagonals, implying independence across the parameters. Mariel
and Meyerhoff (2018) detail several reasons why forcing correlations of
zero may be inappropriate, including the risk of introducing bias into
the coefficient vector. Thus, we aim to allow the elements of 𝜮𝛽 to be
estimated freely in a data-driven way.

Traditionally, 𝜮𝜷 is assigned an inverse Wishart prior, e.g., 𝜮𝜷 ∼
𝑖𝑊 (𝜈,𝑺) where 𝜈 is the degrees of freedom and 𝑺 is a 𝑘×𝑘 scale matrix.
This distribution is flexible in that it allows for non-zero correlations.
The inverse Wishart distribution has been desirable as a prior on
covariance matrices in multivariate Gaussian models at least partially
because the resulting (conditional) posterior is conjugate and, thus,
easily sampled from. However, conjugacy is no longer a restricting
factor with sophisticated software available (Plummer, 2003; Stan De-
velopment Team, 2018). Akinc and Vandebroek (2018) describe several
characteristics of the inverse Wishart distribution that may make it
undesirable for use as a prior distribution on a covariance matrix.
First, when we specify that a covariance matrix 𝜮 ∼ 𝑖𝑊 (𝜈,𝑺), we are
placing a distinct correlation pattern between the variance and implied
correlation. This is illustrated in Fig. 1. A priori, we are specifying a
relationship where small correlations occur only with small variances.
Thus, if the variance is large, the correlation will be pulled towards
an extreme (-1 or 1) as well. Second, an inverse Wishart distribution
implies, marginally, inverse Gamma priors on the variance components.
The inverse gamma places very little weight on values close to zero and
can be quite informative in some situations as is illustrated in Gelman
et al. (2013). In particular, it is worrisome when the variances are
truly small as they will be inflated in the posterior because of the prior
influence rather than that of the data.
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Fig. 2. Boxplots representing the distribution of absolute bias observed between the posterior means and the true values of 𝝁𝛽 elements. Shown separately for parameters with
true value -2 (top) and true value 0 (bottom).

We place a prior on the covariance matrix, 𝜮𝛽 , by placing in-
dependent priors on the lower triangular Cholesky factorization of
the correlation matrix and the standard deviation terms. That is, we
decompose the covariance matrix as

𝜮𝛽 = 𝑑𝑖𝑎𝑔(𝜎𝛽1,… , 𝜎𝛽𝐾 )𝜴𝜴𝑇 𝑑𝑖𝑎𝑔(𝜎𝛽1,… , 𝜎𝛽𝐾 ). (4)

This parameterization allows us to specify our prior beliefs about
correlations between parameters (𝜴𝜴𝑇 ) independently from those
about the variances of the parameters. The LKJ (Lewandowski et al.,
2009) distribution is a convenient and flexible way to express prior
beliefs about a correlation matrix. The LKJ(𝜂) distribution is a distri-
bution over all positive definite correlation matrices where the shape
is determined by a single parameter, 𝜂 > 0. If a correlation matrix,
𝜴 ∼ 𝐿𝐾𝐽 (𝜂), then 𝑝(𝜴) ∝ |𝜴|

𝜂−1. Setting 𝜂 = 1 results in a uniform
density over all positive definite correlation matrices. A 𝜂 < 1 results in
a density that is lowest at the identity matrix (independence) while
a 𝜂 > 1 results in the mode of the distribution positioned at the
identity matrix. While one can place an LKJ prior directly on the
correlation matrix, numerical problems can occur during the MCMC
process. Placing the LKJ prior on the lower triangular Cholesky factor
avoids these numerical instability problems. In our application, we
set 𝜴 ∼ 𝐿𝐾𝐽 (1). The joint prior of the unknowns is completed by
specifying 𝜎𝛽𝑘 ∼ Half Cauchy (0, 2.5) independently for all 𝑘.

Gelman, Jakulin, Pittau, Su, et al. (2008) suggests placing indepen-
dent student-𝑡 prior distributions on coefficients involved in generalized
linear models and carefully choosing the degrees of freedom and scale
parameters to reflect one’s prior uncertainty or expectations. We im-
pose weakly informative priors on the elements of 𝝁𝛽 by taking the
degrees of freedom to be 1 and the scale to be 1. That is, each of the
coefficients listed above are assigned independent Cauchy(0,1) prior
distributions.

We have discussed some of the known drawbacks of the inverse
Wishart distribution and Akinc and Vandebroek (2018) has explored
the behavior of the inverse Wishart as compared to the LKJ prior
scheme for 𝑁 = 200 and 𝑆 = 18. To further inform our choice of prior
for the covariance matrix in our data application, we ran a simulation
study to illustrate the behaviors of these two prior schemes as they
relate to the bias introduced into the coefficient vector.

3. Simulation study

We compare the performance of the inverse Wishart and LKJ prior
schemes by varying the sample sizes (𝑁) and number of choice scenar-
ios (𝑆) in the survey and then examining how this affects the estimated

parameter bias. We do this for 𝑁 ∈ {50, 100, 250} and 𝑆 ∈ {3, 18}. This
includes much of the upper and lower bounds of the distribution of sam-
ple sizes and number of alternatives used in practice (Birol, Karousakis,
& Koundouri, 2006; Campbell, Boeri, Doherty, & Hutchinson, 2015;
Collins & Vossler, 2009; Czajkowski, Vossler, Budziński, Wiśniewska,
& Zawojska, 2017; de Bekker-Grob et al., 2015; Interis & Petrolia,
2016). Akinc and Vandebroek (2018) performed a similar simulation
study comparing multiple parameterizations of the two prior schemes
but fixing 𝑁 = 200 and 𝑆 = 18.

For each of the sample size scenarios, we simulate choices according
to (1)–(2) where there are three alternatives (𝐽 = 3) described by three
factors, each with three levels. These choice sets are generated using
the R package choiceDes. We simulate random parameters {𝜷 𝑖 ∶ 𝑖 =
1,… , 𝑁} according to (3) where we fix 𝝁𝑇

𝛽 = (−2, 0,−2, 0,−2, 0) and

𝜮𝛽 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0.5
0 1 0 0 0 0
0 0 1 0 0.5 0
0 0 0 1 0 0.5
0 0 0.5 0 1 0
0.5 0 0 0.5 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

For the inverse Wishart prior, we set 𝜮𝛽 ∼ inverse Wishart(𝐾 +
1, (𝐾 + 1)𝐼𝐾 ) where 𝐼𝐾 is a 𝐾 × 𝐾 identity matrix. For the LKJ prior
scheme, we set 𝜇𝛽𝑘

𝑖𝑖𝑑∼ 𝐶𝑎𝑢𝑐ℎ𝑦(0, 1), 𝜎𝛽𝑘
𝑖𝑖𝑑∼ 𝐻𝑎𝑙𝑓 𝐶𝑎𝑢𝑐ℎ𝑦(0, 1) for

𝑘 = 1,… , 6, and 𝜴 ∼ 𝐿𝐾𝐽 (1).
Fig. 2 summarizes the absolute bias, calculated as |𝜇̂𝛽𝑘 − 𝜇𝛽𝑘|, for

each of 5 replications of each sample size scenario where 𝜇̂𝛽𝑘 represents
the posterior mean of 𝜇𝛽𝑘. We show the results separately for true
values of −2 and 0 as the performance seems to depend on whether
or not there is a true signal. As expected, each of the prior schemes
benefits from a larger 𝑁 and 𝑆. In addition, we find no practical
difference between the estimated bias when 𝑁 = 250 and 𝑆 = 18.
However, in surveys with either small sample sizes or a small number
of choice scenarios, we see that the inverse Wishart clearly suffers more
than the LKJ prior scheme in estimating non-zero signals (𝜇𝛽𝑘 = −2).
In fact, even when the number of respondents is high (𝑁 = 250), a
small number of choice scenarios (𝑆 = 3) results in somewhat unstable
estimates.

𝜮𝛽 controls, to a large extent, the values that the individual level
coefficients are able to take on and, thus, the estimates for 𝝁𝛽 . Fig. 3
summarizes absolute bias for the covariance and variance elements
of 𝜮𝛽 . Again, we show the bias separately depending on the true
value of the parameter. We suspect the bias in the estimates for the
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Fig. 3. Boxplots representing the distribution of absolute bias observed between the posterior means and the true values of 𝜮𝛽 elements. Shown separately for covariance
parameters with true value 0 (top), true value 0.5 (center), and 1 (bottom).

Table 1
Attribute levels used in survey.
Attribute Levels used

Annual glacier loss (measured in volume) 0.15 km3, 0.20 km3, 0.25 km3, 0.35 km3

Insulating ice blanket Yes, No
Climate agreement (CO2 abatement) None, Limited, Vigorous
Monthly program cost $0, $5, $10, $20, $25, $40, $50, $60, $100

mean vector 𝝁𝛽 is introduced as a result of the relatively restrictive
nature of the inverse Wishart prior. In particular, it limits the ability
of the variance components to reach small values, as opposed to the
Half Cauchy distribution, which tends to shrink variance estimates
towards smaller values. Fig. 4 illustrates the differences in posterior
distributions resulting from the two prior schemes. While this is shown
for 𝑁 = 250 and 𝑆 = 3, it is representative of the general pattern
of outcomes one would see when comparing posteriors resulting from
these two priors under small sample size situations. The posterior
distribution of the variance components can be seen on the diagonal
positions. In these we can see that the inverse Wishart consistently
results in more posterior probability associated with larger variances.
For several of the elements, we can see that most of the posterior mass
is larger than the true value, which is indicated by red vertical lines.
Compare this with Fig. 5, which shows the posterior distributions from
a replication when 𝑁 = 250 and 𝑆 = 18. It takes a large amount of data
to overwhelm a prior that has so little mass in potentially important
areas of the joint parameter space.

This simulation study shows the effect of sample size (𝑁 and 𝑆) on
bias. However, we limited the results to one parameterization of the in-
verse Wishart (inverse Wishart((𝐾+1), (𝐾+1)𝐼𝐾 )). It is likely, especially
in small sample size scenarios, that the values of the hyperparameters
will be highly influential on these results. Therefore, as an additional
sensitivity analysis, we present the simulation study results for six
commonly used inverse Wishart hyperparameter schemes in Figs. 6 and
7. Our findings agree with the Akinc and Vandebroek (2018) result
that the performance of the inverse Wishart is sensitive to the values of
the hyperparameters. We also find that the posterior distributions can
be influenced by the scale parameter of the half Cauchy distribution,
especially in small sample size scenarios. In this simulation study, we
set the scale parameter to 1. However, much larger parameter values
may allow for variance components that are much too large, which can
be especially troubling in situations when the parameter estimates tend
to veer off in the extremes (e.g., in cases where we have quasi-complete
separation). Thus, we recommend setting the scale parameter to more
reasonable values to shrink the standard errors towards 0.

4. An application - glacier recession and climate change in the
U.S.

Next, we present an application with real DCE data to illustrate
how researchers might use our model in a practical situation. The data
for this application come from a DCE conducted in summer 2015 at
the Mendenhall Glacier Visitor Center (MGVC) in Juneau, Alaska. The
objective of the survey was to estimate tourists’ willingness to pay
(WTP) to slow the rate at which glaciers are receding, as well as the
policies to achieve those outcomes. As such, the choice experiment
design included four attributes, which are described along with their
levels in Table 1. The survey was broken into three sections. The first
section asked preliminary screening and salience questions. The second
section presented respondents with either two or four choice scenarios
in which they were asked to make trade offs between annual rates
of glacier loss at a monthly cost to their household. The final section
collected sociodemographic information. A sample choice scenario is
shown in Fig. 8. The DCE was administered by pen and paper using
random intercept sampling of cruise ship passengers at the MGVC
during the peak of the summer 2015 tourist season. 166 surveys were
administered and 149 were completed. In this application, we use a
subset of 98 observations for which full sociodemographic information
was reported. Of those 98 observations, 30 saw four choice scenarios
and 68 saw two choice scenarios, which resulted in 1280 observations.
Descriptive statistics are presented in Table 2. Further details of the
survey and its development can be found in Vander Naald (2019).

4.1. Baseline model

We estimate an MLM using the inverse Wishart prior scheme, the
LKJ prior scheme, and classical MSL for comparison. The models share
the same data distribution specification (Eqs. (1)–(2)) and mixing dis-
tribution (Eq. (3)), so the priors (or lack thereof) on 𝝁𝜷 and 𝜮𝜷 are
what differentiate the three models.
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Fig. 4. Histogram of posterior draws from 𝜮𝛽 from one representative repetition where 𝑁 = 250 and 𝑆 = 3.

Table 2
Summary statistics.

Variable N Mean Std. Dev. Min. Max.

Age 98 60.76 12.60 24 82
Is female 98 0.49 0.50 0 1
Income 98 117.91 61.39 7.50 220
Is nonwhite 96 0.03 0.17 0 1
Politically liberal 98 0.33 0.47 0 1
Politically centrist 98 0.34 0.48 0 1
Is retired 98 0.47 0.50 0 1
Is unemployed 98 0.02 0.14 0 1
At least Bachelor’s degree 98 0.70 0.46 0 1
Member of env. organization 98 0.46 0.50 0 1
Is aware cc caused by GHGs 98 0.99 0.10 0 1
Topic has high salience to respondent 98 0.67 0.47 0 1

Fig. 9 presents point and interval estimates for the three models.
Importantly, the sign of the point estimates are consistent across the
all models. This makes sense as we know that, for reasonably specified

priors, Bayesian estimates will converge towards MSL estimates as the
size of the data set increases.

In cases of magnitude discrepancies between the three models, the
MSL estimates tend to be large in absolute value while the Bayesian
posterior means are shrunk towards zero. In these cases, the classical
95% confidence intervals are typically quite wide, indicating a large
standard error on the parameter. In unpenalized maximum likelihood
methods for estimating parameters that lie near their space bound-
aries, these characteristics are symptomatic of complete separation
(i.e., when the MSL estimates do not exist). Complete separation is
particularly troublesome in small samples, like this one, that do not
yield enough heterogeneity in the data to provide stable estimates.

The baseline model gives an idea of the preferences of the average
person sampled. However, we aim to explain the variability between
individuals by incorporating demographic characteristics. Since the
classical analysis showed signs of complete separation without this
added granularity, we now focus on Bayesian techniques which use
priors to stabilize estimates.
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Fig. 5. Histogram of posterior draws from 𝛴 from one representative repetition where 𝑁 = 250 and 𝑆 = 18.

4.2. Model incorporating demographics

We extend the previous model described in Eqs. (1)–(3) by (1)
including price and status quo into 𝜂𝑖𝑗𝑠; and (2) by allowing some
preference heterogeneity to be explained by demographic factors, leav-
ing the remaining unexplained variability to be absorbed into 𝜮𝛽 . Let
𝑝𝑟𝑖𝑐𝑒𝑖𝑗𝑠 represent the price, and 𝑠𝑞𝑖𝑗𝑠 represent an alternative specific
constant for the status quo scenario. Now, our linear predictor is:

𝜂𝑖𝑗𝑠 = 𝛾1𝑝𝑟𝑖𝑐𝑒𝑖𝑗𝑠 + 𝛾2𝑠𝑞𝑖𝑗𝑠 + 𝐱𝑇𝑖𝑗𝑠𝜷 𝑖.

Inclusion of observed heterogeneity is informed by the climate
change literature. O’Connor, Bord, Yarnal, and Wiefek (2002) find
political divisions in preferences to mitigate climate change through
public policy, but no political divide with respect to voluntary and
private actions. Leiserowitz (2006) finds that females, members of
environmental groups, and politically liberal respondents perceived
climate change as a greater risk than males, respondents who were
not members of environmental groups, and politically conservative
respondents. Hence, we interact political preference, membership in

an environmental organization, and gender with outcome and pol-
icy variables to see how much variation in WTP estimates they can
help explain. Let 𝒛𝑇𝑖 represent the vector of demographic informa-
tion for individual 𝑖, including the chosen interaction terms. Available
demographic information is as described in Table 2. We set

𝜷𝑖
𝑖𝑛𝑑∼ 𝑁(𝜽0 +𝜣𝐳𝑖,𝜮𝜷 ) (5)

where 𝜣 is a matrix coefficients {𝜃𝑘ℎ ∶ 𝑘 = 1,… , 𝐾; ; ℎ = 1,… ,𝐻},
𝜽0 is a 𝐾-dimensional intercept vector, and 𝜮𝜷 is a 𝐾 × 𝐾 covariance
matrix. We impose weakly informative priors on the coefficients {𝜃𝑘ℎ ∶
𝑘 = 0, 1,… , 𝐾; ℎ = 1,… ,𝐻}, 𝛾1, and 𝛾2 by assigning student-𝑡 distri-
butions where we set the degrees of freedom to be 1 and the scale to
be 1. Finally, we collect our unknowns into 𝜩 = {𝛾1, 𝛾2, 𝜷,𝜽0,𝜣,𝜴,𝝈𝛽}.
With the joint prior on 𝜩 as described above, and the data likelihood
implied by (1), our goal in a Bayesian analysis is to examine 𝑓 (𝜩 ∣ 𝒚),
the joint posterior distribution of the unknowns.

𝑓 (𝜩 ∣ 𝒚) ∝

(

∏

𝑖𝑗𝑠
𝑓 (𝑦𝑖𝑗𝑠 ∣ 𝛾1, 𝛾2, 𝜷 𝑖)

)

𝑝(𝛾1)𝑝(𝛾2)

(

∏

𝑖
𝑝(𝜷 𝑖 ∣ 𝜽0,𝜣,𝜴,𝝈𝜷 )

)
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Fig. 6. Boxplots representing the distribution of absolute bias observed between the posterior means and the true values of 𝝁𝛽 elements for 6 specifications of the inverse Wishart
prior: (1) 𝑖𝑊 (𝐾, 𝑰𝐾 ), (2)𝑖𝑊 (𝐾,𝐾𝑰𝐾 ), (3)𝑖𝑊 (𝐾 +1, (𝐾 +1)𝑰𝐾 ), (4)𝑖𝑊 (𝐾 +3, (𝐾 +3)𝑰𝐾 ), (5)𝑖𝑊 (𝐾 +4, (𝐾 +4)𝑰𝐾 ), (6)𝑖𝑊 (0.5𝐾(𝐾 +1), 0.05𝐾(𝐾 +1)I𝐾 ). Shown separately for parameters
with true value -2 (top) and true value 0 (bottom).

Fig. 7. Boxplots representing the distribution of absolute bias observed between the posterior means and the true values of 𝜮𝛽 elements for 6 specifications of the inverse Wishart
prior: (1) 𝑖𝑊 (𝐾, 𝑰𝐾 ), (2)𝑖𝑊 (𝐾,𝐾𝑰𝐾 ), (3)𝑖𝑊 (𝐾 +1, (𝐾 +1)𝑰𝐾 ), (4)𝑖𝑊 (𝐾 +3, (𝐾 +3)𝑰𝐾 ), (5)𝑖𝑊 (𝐾 +4, (𝐾 +4)𝑰𝐾 ), (6)𝑖𝑊 (0.5𝐾(𝐾 +1), 0.05𝐾(𝐾 +1)I𝐾 ). Shown separately for covariance
parameters with true value 0 (top), true value 0.5 (center), and 1 (bottom).
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Fig. 8. Example choice scenario.

Fig. 9. Bayesian posterior means (using inverse Wishart and LKJ) and classical maximum likelihood point estimates shown with 95% Bayesian credible intervals and classical
confidence intervals.

×

(

∏

𝑘ℎ
𝑝(𝜃𝑘ℎ)

)(

∏

𝑘
𝑝(𝜃0𝑘)

)

𝑝(𝜮𝛽 )

=

(

∏

𝑖𝑗𝑠

(

𝑒𝑥𝑝(𝛾1𝑝𝑟𝑖𝑐𝑒𝑖𝑗𝑠 + 𝛾2𝑠𝑞𝑖𝑗𝑠 + 𝒙𝑇
𝑖𝑗𝑠𝜷 𝑖)

∑𝐽
𝑗=1 𝑒𝑥𝑝(𝛾1𝑝𝑟𝑖𝑐𝑒𝑖𝑗𝑠 + 𝛾2𝑠𝑞𝑖𝑗𝑠 + 𝒙𝑇

𝑖𝑗𝑠𝜷 𝑖)

)𝑦𝑖𝑗𝑠)

×
(

𝜋(1 + 𝛾21 )
)−1 (𝜋(1 + 𝛾22 )

)−1

×

(

∏

𝑖
|2𝜋𝜮𝛽 |

− 1
2 𝑒𝑥𝑝

(

−1
2
(𝜷 𝑖 − 𝜽0 −𝜣𝒛𝑖)𝑇𝜮−1

𝛽 (𝜷 𝑖 − 𝜽0 −𝜣𝒛𝑖)
)

)

×

(

∏

𝑘ℎ

(

𝜋(1 + 𝜃2𝑘ℎ)
)−1

)(

∏

𝑘

(

2.5𝜋(1 + (𝜃0ℎ∕2.5)2)
)−1

)

𝑝(𝜮𝛽 )

Regardless of the form we choose for 𝑝(𝜮𝛽 ), the above distribution
is not available in a closed analytical form, nor can we sample from
it directly. However, we can use Markov chain Monte Carlo (MCMC)
algorithms to obtain samples that are approximately from the joint
posterior distribution. In particular, we use Stan and the No-U-Turn
sampler (NUTS) as an efficient way to obtain these samples which can
then be used to draw inference.

5. Results

Before discussing the results in detail, we make a choice about
which prior regime is best for these data. After making the decision
about the prior, we illustrate how a researcher might use this fine
level of granularity to answer meaningful policy questions. We obtain
samples from the posterior distribution by using an inverse Wishart
prior on the variance covariance matrix, and also with the half Cauchy

Table 3
Posterior summaries of WTP for various attributes. Column 4 (Proportion positive)
represents the proportion of the 98 individuals for which the posterior mean WTP > 0.

Mean Lower Upper Proportion positive

0.15 km3 recession 201 −243 604 0.78
0.20 km3 recession 51 −47 203 0.82
Blanket −118 −361 161 0.23
Limited GHG agreement 11 −268 284 0.51
Vigorous GHG agreement −46 −436 185 0.43

and LKJ prior on the standard deviation components and correlation
matrices respectively.

5.1. Model choice

We assess how well each model describes the data generating pro-
cess first by creating a variety of posterior predictive 𝑝-values (see, for
example, Meng et al. (1994) and Gelman et al. (2013)). The intuition
behind posterior predictive 𝑝-values is that, if an estimated model is
a good representation of a data set, any data set simulated from that
model should resemble the original data set in all of the important
aspects. We estimate

𝑝(𝒚̃ ∣ 𝒚) = ∫ 𝑝(𝒚̃ ∣ 𝜩)𝑝(𝜩 ∣ 𝒚)𝑑𝜩

by simulating draws from the data model (1) conditional on 𝜩 (𝑟) for
each posterior draw 𝑟 = 1,… , 𝑅. From each of these 𝑅 new data
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Table 4
WTP summaries for outcomes and policies for different representative agents in the sample.

Variable Female cons env_org Mean Lower Upper 𝑃 (𝑊 𝑇𝑃 > 0 ∣ 𝒚)

0.15 km3 recession Female not cons not env org 151 −406 1398 0.94
0.15 km3 recession Female not cons env org 169 −467 1427 0.95
0.15 km3 recession Female cons not env org 143 −496 1054 0.91
0.15 km3 recession Female cons env org 160 −463 1198 0.92
0.15 km3 recession Male not cons not env org 249 −689 1531 0.95
0.15 km3 recession Male not cons env org 290 −824 1828 0.96
0.15 km3 recession Male cons not env org 204 −664 1091 0.91
0.15 km3 recession Male cons env org 244 −793 1294 0.93

0.20 km3 recession Female not cons not env org 28 −146 271 0.74
0.20 km3 recession Female not cons env org 27 −160 282 0.73
0.20 km3 recession Female cons not env org −6 −203 215 0.50
0.20 km3 recession Female cons env org −7 −216 228 0.50
0.20 km3 recession Male not cons not env org 98 −263 675 0.95
0.20 km3 recession Male not cons env org 106 −331 685 0.95
0.20 km3 recession Male cons not env org 48 −164 340 0.80
0.20 km3 recession Male cons env org 55 −205 339 0.81

Limited GHG agreement Female not cons not env org −22 −468 304 0.53
Limited GHG agreement Female not cons env org 9 −445 344 0.65
Limited GHG agreement Female cons not env org −40 −578 265 0.44
Limited GHG agreement Female cons env org −8 −495 350 0.57
Limited GHG agreement Male not cons not env org −1 −469 310 0.56
Limited GHG agreement Male not cons env org 32 −389 479 0.71
Limited GHG agreement Male cons not env org −28 −482 336 0.44
Limited GHG agreement Male cons env org 6 −450 403 0.60

Vigorous GHG agreement Female not cons not env org −35 −715 438 0.49
Vigorous GHG agreement Female not cons env org 47 −531 595 0.72
Vigorous GHG agreement Female cons not env org −101 −1252 489 0.29
Vigorous GHG agreement Female cons env org −19 −984 554 0.51
Vigorous GHG agreement Male not cons not env org −79 −820 580 0.33
Vigorous GHG agreement Male not cons env org 12 −525 503 0.62
Vigorous GHG agreement Male cons not env org −239 −1787 894 0.14
Vigorous GHG agreement Male cons env org −147 −1370 581 0.29

sets, we calculate a test quantity, 𝑇 (𝒚̃), such as the number of times a
conservative female who is part of an environmental group chooses the
status quo option. We can compute the same quantity for the observed
data set and then quantify how extreme the model-based simulated
quantities are when compared to the observed. That is, we calculate
the posterior predictive 𝑝-value, 𝑝𝐵 = 𝑃 (𝑇 (𝒚̃) > 𝑇 (𝒚)). A 𝑝𝐵 value
close to 0 (indicating a high probability the model is underestimating
the test quantity) or 1 (indicating a high probability the model is
overestimating the test quantity) is evidence that the estimated model
is not capturing that characteristic well.

We calculate posterior predictive 𝑝-values for a variety of policies
and outcomes within each unique demographic group as an additional
sensitivity analysis. For example, let the function 𝑇 () represent the
number of times respondents chose a vigorous GHG agreement. Fig. 10
illustrates 𝑇 (𝒚) and the distributions of 𝑇 (𝒚̃) for both prior schemes
along with the corresponding posterior predictive 𝑝-values. For both
the LKJ and inverse Wishart prior schemes, we find little evidence that
the models fail to capture the relative frequency with which individuals
select this particular policy. Similar analyses examining the remaining
policies and outcomes result in the same conclusion. Thus, from a
prediction standpoint, neither model seems to have an advantage.2

However, models with very different coefficient estimates can yield
the same or similar predictions. If interpretation of effects is of con-
cern, as it is in this application, we should consider other sources of
evidence toward using one model over another. The Widely Applicable
Information Criterion (WAIC) is an information criterion that can be
used to compare model fit in this scenario. WAIC estimates the log
predictive density in a similar manner to DIC, but WAIC uses the

2 We additionally compute an estimate of the leave-one-out cross-validation
error (LOO), which estimates the predictive accuracy of the LKJ model to be
better than that of the inverse Wishart model, although the difference is small
relative to the standard error.

samples from the posterior distribution while DIC plugs in a point
estimate such as the posterior mean. Gelman, Hwang, and Vehtari
(2014) thus recommends using the WAIC for model evaluation. We
calculate 𝑊𝐴𝐼𝐶𝐿𝐾𝐽 − 𝑊𝐴𝐼𝐶𝑖𝑊 = −18.5 with an estimated standard
error of 3.7. This indicates that the LKJ prior regime is preferred over
the inverse Wishart. So, while the posterior predictive p-values indicate
that both models are acceptable, the WAIC analysis along with the
results of the simulation study for studies of a similar size motivate
us to report the results from the LKJ prior scheme.

5.2. Posterior distributions

Summaries of WTP values across individuals are displayed in Ta-
ble 3. For each person, the posterior mean WTP was calculated, then
the mean of those means was taken to calculate an overall mean. This
overall mean is shown in column 2 while the 2.5 and 97.5 quantiles
are shown in columns 3 and 4. Average WTP for both non-status
quo outcomes is greater than zero. As the outcome improves, average
WTP increases; however, the proportion of individuals with a positive
willingness to pay decreases. Next, average WTP for a limited GHG
reduction agreement is $11, which is greater than the average WTP
for a vigorous GHG reduction agreement ($-46). Further, there is a
smaller proportion of people willing to pay a positive amount for a
vigorous versus a limited GHG reduction agreement. This indicates that
respondents prefer a less aggressive international agreement over a
more modest one, on average. Further, mean WTP for an insulated ice
blanket is -$118, and the posterior probability that it is greater than
zero is 0.23. Not shown is the WTP for the alternative specific constant
status quo, which is calculated as 𝑊 𝑇𝑃sq = − 𝛾2

𝛾1
, with 𝛾2 entering

the analysis as a fixed parameter. 𝑊 𝑇𝑃sq = −$52, and the posterior
probability that 𝑊 𝑇𝑃sq > 0 = 0.13, which indicates that people would
prefer not to do nothing.

Columns 3 and 4 in Table 3 indicate that there is a large amount of
heterogeneity in WTP estimates. Using the climate change literature to
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Fig. 10. Histogram of 50,000 samples of 𝑇 (𝒚̃) where the test quantity function 𝑇 () represents the number of times respondents chose a vigorous GHG agreement. Shown for
inverse Wishart and LKJ prior schemes. Vertical line shows 𝑇 (𝒚). Posterior predictive p-values are shown in the upper left corner.

inform what we include, we explore some of the heterogeneity around
WTP estimates with observed sociodemographic characteristics. We
examine the posterior distribution of the quantity 𝜽0 + 𝜣𝒛 - 𝑓 (𝜽0 +
𝜣𝒛 ∣ 𝒚) - for all possible vectors 𝒛 describing a particular demographic
group. In each scenario, income at $125,000, which is the median level
observed in the data.

Table 4 shows posterior summaries of WTP for both policies and
outcomes for different permutations of the interacted sociodemograph-
ics. Column 5 displays the posterior means, and Columns 6 and 7
display the upper and lower bounds of the 95% credible intervals.

Column 8 displays the probability of a positive WTP for the specified
representative individual and the specific attribute level. For example,
a conservative female (male) who does not belong to an environmental
organization is willing to pay an average of $5 ($44) per month to
achieve a 0.20 km3 rate of recession. Non-conservative males who are
also not in an environmental organization are willing to pay $249, on
average. Compare that to females, who are willing to pay an average
of $151 for the best outcome of 0.15 km3 recession per year.

Tables 5 thru 7 describe the posterior probability that WTP for
a given attribute level is different for a particular sociodemographic
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characteristic. Probabilities that are farther away from 0.5 indicate
a higher degree of separation between the demographic groups. For
example, line 2 in Table 5 can be interpreted in the following way: For
non-conservative individuals who are not members of an environmental
organization, the posterior probability that females (males) are willing
to pay more than males (females) for 0.20 km3 recession is 10% (90%).
On the other hand, lines 3 and 13 in Table 5 can be interpreted jointly
in the following way: Controlling for political preferences and limiting
our scope to individuals who are not members of an environmental
organization, the posterior probability that females are willing to pay
more than males for a program containing an insulated ice blanket is
94%. Tables 6 and 7 can be interpreted in an identical way, except they
compare, respectively, membership to an environmental organization
and political preferences. Fig. 13 succinctly describes the information
given in Tables 5 thru 7.

5.3. Discussion

The role that sociodemographic characteristics play in explain-
ing variation in the posterior distribution of WTP values depends on
whether the issue at hand is a policy or an outcome, as well as
how extreme that policy or outcome is. We examine two attractive
features of the posterior distribution: the ability of explicit interaction
terms to explain variation in baseline WTP distributions, and separation
between categories within sociodemographic classes. We organize the
discussion around three observed sociodemographic characteristics,
which we examine in turn.

Table 5 illustrates that, in general, females are willing to pay more
for policies and less for outcomes, relative to males. For example,
lines 8 and 18 tell us that, controlling for political preferences and
limiting our scope to individuals who belong (do not belong) to an
environmental organization, the posterior probability that females are
willing to pay more than males for a program containing an insulated
ice blanket is 86% (94%). This insight is confirmed in Fig. 11. Contrast
this with WTP for the 0.20 km3 recession outcome. Regardless of
political preferences or membership in an environmental organization,
the posterior probability that females are willing to pay more than
males for 0.20 km3 recession is small, indicating that it is unlikely
females are willing to pay more than males for this outcome. However,
males and females tend to agree on their WTP for a limited GHG
reduction agreement. The posterior probability that WTP for a limited
GHG agreement is positive is greater than 0.50 for all representative
agents except conservative individuals who are also not members of an
environmental organization. Finally, gender disagreements can explain
a large amount of variation in the posterior distribution of WTP values
for 0.20 km3 recession, an insulated ice blanket, and a vigorous GHG
reduction agreement (as seen in Fig. 12).

Table 6 illustrates that environmental organization membership
explains more of the variation in policy than in outcomes. Controlling
for politics, the posterior probability that females (males) belonging to
an environmental organization are willing to pay more for a vigorous
GHG reduction agreement than females (males) not belonging to an
environmental organization is 0.83 (0.87). Moreover, controlling for
political preference, the posterior probability that females (males) who
are members of an environmental organization are willing to pay more
for a limited GHG reduction agreement than females (males) who
are not members of an environmental organization is 71% (73%). In
contrast, controlling for political preferences, the posterior probability
that females (males) belonging to an environmental organization are
willing to pay more for 0.20 km3 recession than females (males) not
belonging to an environmental organization is 0.51 (0.56).

Table 7 shows that self-identified non-conservative respondents
tend to be willing to pay more than conservative respondents and that
this tends to hold for both policies and outcomes. Moreover, there is
more variability in the posterior distribution of WTP values attributed

Fig. 11. Posterior distributions of the WTP for a blanket. This is shown for males and
females as indicated by line type.

to politics when the policy is extreme. Controlling for environmental or-
ganization membership, the posterior probability that non-conservative
females (males) are willing to pay more for a vigorous GHG reduction
agreement than conservative females (males) is 83% (90%). In contrast,
the posterior probability of non-conservatives being willing to pay more
than conservatives for a limited GHG reduction agreement is smaller.
Politics also explains variation in WTP for outcomes. Controlling for
membership in an environmental organization, the posterior probabil-
ity that non-conservative females (males) are willing to pay more than
conservative females (males) for 0.20 km3 recession is 78% (88%).

The results of the Bayesian analysis presented in this section largely
support the results of the classical analysis found in Vander Naald
(2019). When it comes to policy, both analyses find that non-
conservatives are willing to pay more than conservatives and that
environmental membership has a positive impact on WTP for both
limited and vigorous GHG agreements. The environmental organiza-
tion membership and conservative political preference interactions are
significant at the 5% level in the classical analysis, and imply large
deviations in particular for the vigorous GHG agreement. Similarly, the



Tourism Management 78 (2020) 104067

12

L. Follett and B. Vander Naald

Table 5
Posterior probabilities that females are willing to pay more than males within fixed political and environmental groups.

cons env_org Variable 𝑃 (𝑊 𝑇𝑃𝑓𝑒𝑚𝑎𝑙𝑒 > 𝑊 𝑇𝑃𝑚𝑎𝑙𝑒 ∣ 𝒚)

1 not cons not env org 0.15 km3 recession 0.30
2 not cons not env org 0.20 km3 recession 0.10
3 not cons not env org Blanket 0.94
4 not cons not env org Limited GHG agreement 0.45
5 not cons not env org Vigorous GHG agreement 0.68
6 not cons env org 0.15 km3 recession 0.24
7 not cons env org 0.20 km3 recession 0.10
8 not cons env org Blanket 0.86
9 not cons env org Limited GHG agreement 0.40
10 not cons env org Vigorous GHG agreement 0.61
11 cons not env org 0.15 km3 recession 0.38
12 cons not env org 0.20 km3 recession 0.23
13 cons not env org Blanket 0.94
14 cons not env org Limited GHG agreement 0.49
15 cons not env org Vigorous GHG agreement 0.79
16 cons env org 0.15 km3 recession 0.32
17 cons env org 0.20 km3 recession 0.21
18 cons env org Blanket 0.86
19 cons env org Limited GHG agreement 0.44
20 cons env org Vigorous GHG agreement 0.74

Table 6
Posterior probabilities that individuals who are part of an environmental organization are willing to pay more than those who are not
within fixed political and gender groups.

cons Female variable 𝑃 (𝑊 𝑇𝑃𝑒𝑛𝑣 > 𝑊 𝑇𝑃𝑛𝑜𝑡 𝑒𝑛𝑣 ∣ 𝒚)

1 not cons Female 0.15 km3 recession 0.56
2 not cons Female 0.20 km3 recession 0.51
3 not cons Female Blanket 0.72
4 not cons Female Limited GHG agreement 0.71
5 not cons Female Vigorous GHG agreement 0.83
6 not cons Male 0.15 km3 recession 0.66
7 not cons Male 0.20 km3 recession 0.56
8 not cons Male Blanket 0.87
9 not cons Male Limited GHG agreement 0.73
10 not cons Male Vigorous GHG agreement 0.87
11 cons Female 0.15 km3 recession 0.56
12 cons Female 0.20 km3 recession 0.51
13 cons Female Blanket 0.72
14 cons Female Limited GHG agreement 0.71
15 cons Female Vigorous GHG agreement 0.83
16 cons Male 0.15 km3 recession 0.66
17 cons Male 0.20 km3 recession 0.56
18 cons Male Blanket 0.87
19 cons Male Limited GHG agreement 0.73
20 cons Male Vigorous GHG agreement 0.87

Table 7
Posterior probabilities that individuals who do not identify as conservative are willing to pay more than those who do identify as
conservative within fixed gender and environmental groups.

env_org Female Variable 𝑃 (𝑊 𝑇𝑃𝑛𝑜𝑡 𝑐𝑜𝑛𝑠 > 𝑊 𝑇𝑃𝑐𝑜𝑛𝑠 ∣ 𝒚)

1 not env org Female 0.15 km3 recession 0.66
2 not env org Female 0.20 km3 recession 0.78
3 not env org Female Blanket 0.61
4 not env org Female Limited GHG agreement 0.66
5 not env org Female Vigorous GHG agreement 0.83
6 not env org Male 0.15 km3 recession 0.73
7 not env org Male 0.20 km3 recession 0.88
8 not env org Male Blanket 0.63
9 not env org Male Limited GHG agreement 0.68
10 not env org Male Vigorous GHG agreement 0.90
11 env org Female 0.15 km3 recession 0.66
12 env org Female 0.20 km3 recession 0.78
13 env org Female Blanket 0.61
14 env org Female Limited GHG agreement 0.66
15 env org Female Vigorous GHG agreement 0.83
16 env org Male 0.15 km3 recession 0.73
17 env org Male 0.20 km3 recession 0.88
18 env org Male Blanket 0.63
19 env org Male Limited GHG agreement 0.68
20 env org Male Vigorous GHG agreement 0.90
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Fig. 12. Posterior distributions of the WTP for a vigorous climate agreement in the top facet and for a moderate climate agreement in the bottom facet. This is shown for males
and females as indicated by line type.

Bayesian analysis finds moderately high probabilities of differing WTP
for the limited agreement, and high probabilities of differing WTP for
the vigorous agreement. Both analyses find that while most individuals
are willing to pay a positive amount for non-status quo outcomes,
individuals who do not identify as conservative are willing to pay more
than conservatives. However, in the classical analysis, conservative
status does not significantly impact WTP for these outcomes. In the
Bayesian analysis, we find moderate probabilities (between 66% and
88%, depending on other demographic factors) that non conservatives
are willing to pay more than conservatives. One area of disagreement
between the two analyses is of the effect of environmental organization
membership on WTP for non-status quo outcomes. The maximum like-
lihood estimates imply a different directional effect of environmental
group membership than do the Bayesian posterior means. However,
the classical analysis finds no significant effect of environmental group
membership and the Bayesian analysis estimates the probability that
environmental group members are willing to pay more than non mem-
bers at around 50%. Thus, we can conclude no practically significant
effect.

6. Conclusions

The purpose of this article was to introduce a Bayesian MLM
with a non-standard prior regime to analyze small-sample DCE data.
Most studies using Bayesian methods with DCE data assign an inverse
Wishart prior to the variance–covariance matrix. This prior assignment
can be problematic because it enforces a strict relationship between the
correlation and variance components, and can bias posterior estimates
of variances upwards. We developed a Bayesian MLM in which we
decomposed the variance–covariance matrix and assigned an LKJ prior
to the variance. We then compared the performance of this model to
a Bayesian MLM in which we applied an inverse Wishart prior to the
entire variance–covariance matrix using simulated data over a range
of data set sizes from small to large. Based on the WAIC criterion
and a measure of absolute bias, the LKJ prior regime consistently
outperformed the inverse Wishart prior regime.

We tested the model using actual DCE data. We compared baseline
point estimates across the two prior regimes and MSL. Under both prior
regimes, the Bayesian MLM models performed better than the classi-
cally estimated MLM using MSL. An additional benefit of our model is
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Fig. 13. Posterior probabilities that demographic group 1 is willing to pay more than demographic group 2. Demographic groups being compared is indicated by row facet.
Outcomes (columns 1 and 2) and policies (columns 3–5) are indicated by column facet.

that it can be extended to allow for the analysis of second and third
order interaction effects among observed respondent characteristics for
small DCE data sets — something that would not be possible using
classical econometric analysis. Our application illustrated how one
would conduct such an analysis in practice. This is likely to be useful
for situations in which data collection is expensive and the number of
observations is small. Moreover, in many areas of the world, whether
a public policy is enacted depends on whether a majority of voters
approves. This approach provides a straightforward way to determine
exactly what proportion of the population with specific characteristics
might be receptive to possible public policies around environmental
issues, with relatively small data requirements. Further, this approach
has the potential to benefit the market segmentation literature as it
allows for finer separation on observable heterogeneity than is possible
using classical methods.

In our simulation study, we found that the LKJ prior scheme dom-
inated the inverse Wishart prior scheme. One limitation of the current
study is that this result may not generalize to other situations. Depend-
ing on the specific application, prior beliefs might be better represented
by alternative distributional schemes. Future research should include
additional empirical applications, with particular attention paid to
choice of prior scheme. In addition, we make the assumption that the
𝜷 vectors are independently distributed multivariate normal. Different
distributional assumptions should be tested across different applica-
tions. DCEs are a popular tool in other disciplines, including economics,

health, marketing, transportation, and travel. While Bayesian MLM has
been used for DCE analysis in some of these disciplines (Balcombe
et al., 2009), it does not seem to have gotten much attention in others.
Future nonmarket valuation research should consider using Bayesian
analysis for inference. And when using Bayesian analysis, choice of
prior distribution should be carefully considered.
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