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Abstract— Inferring spatial-temporal properties from data is
important for many complex systems, such as additive manufac-
turing systems, swarm robotic systems and biological networks.
Such systems can often be modeled as a labeled graph where
labels on the nodes and edges represent relevant measure-
ments such as temperatures and distances. We introduce graph
temporal logic (GTL) which can express properties such as
“whenever a node’s label is above 10, for the next 3 time units
there are always at least two neighboring nodes with an edge
label of at most 2 where the node labels are above 5”. This
paper is a first attempt to infer spatial (graph) temporal logic
formulas from data for classification and identification. For
classification, we infer a GTL formula that classifies two sets of
graph temporal trajectories with minimal misclassification rate.
For identification, we infer a GTL formula that is informative
and is satisfied by the graph temporal trajectories in the dataset
with high probability. The informativeness of a GTL formula is
measured by the information gain with respect to given prior
knowledge represented by a prior probability distribution. We
implement the proposed approach to classify the graph patterns
of tensile specimens built from selective laser sintering (SLS)
process with varying strengths, and to identify informative
spatial-temporal patterns from experimental data of the SLS
cooldown process and simulation data of a swarm of robots.

I. INTRODUCTION

Inferring spatial-temporal properties from data is impor-
tant in many applications (e.g., additive manufacturing pro-
cesses, swarm robotics and biological networks). Consider
a powder bed of selective laser sintering (i.e., SLS, one
type of additive manufacturing) processes [1] modeled as
a labeled graph (as shown in Fig. 1). Each subregion of the
powder bed is considered a node of the graph and edges exist
between nodes (subregions) within certain distance. Given
the time-varying temperature labels at each node and the
distance labels on each edge of the graph, we intend to infer
knowledge that can characterize the spatial-temporal patterns
that emerge in this process.

The representation of the inferred knowledge should be
both interpretable to humans and amenable to rigorous
mathematical analysis. Variants of temporal logic and spatial
logic can express temporal and spatial patterns in a form that
resembles natural language [2]. Furthermore, such expres-
sions are suitable for verification and controller synthesis.
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Over the past decade, there has been a growing interest in
inferring temporal logic formulas from system trajectories
[2], [3], [4], [5], [6], [7], [8], [9], [10], [11]. However, to the
best of our knowledge, there has been no work on inferring
spatial or spatial temporal logic formulas from data.

Two different categories exist for inferring such spatial or
temporal logics from data: classification and identification.
Given two sets of data, the classification problem is about
constructing spatial temporal logic formulas that can clas-
sify these two sets of data with minimal misclassification
rate. The identification problem is about identifying spatial
temporal logic formulas that best fit one set of data.

For identification, one measure of the quality of the
inferred formula is its informativeness, i.e., the extent to
which the inferred formula deviates from prior knowledge.
In the example as shown in Fig. 1, suppose that we are given
two candidate formulas: one reads as “for every node, either
it is red or it is not red” and the other one reads as “for
every blue node, there exist at least two red nodes among
the neighbors of its neighbors with edge labels of at least 2”.
While both formulas are consistent with the labeled graph,
the first formula is actually a tautology and holds for any
labeled graph. In comparison, the second formula describes
a specific pattern existing in this labeled graph, hence it is
considered to be more informative than the first formula.
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Fig. 1. The powder bed of SLS process recorded with an infrared camera
(a) [1] and a swarm of mobile robots (b) [12] can be both modeled as a
labeled graph (c), where the colors indicate node labels (e.g., temperature,
probabilistic density) and the numbers indicate edge labels (e.g., distance).

In this paper, we first introduce parametric graph temporal
logic (pGTL), which is an extension of parametric linear
temporal logic and focuses on the spatial-temporal properties
of the labels on a graph. A pGTL formula has free parameters
in the predicates and operators. A graph temporal logic
(GTL) formula is then induced by a pGTL formula by
assigning real values to the parameters of the pGTL formula.
We study the following two problems of inferring GTL

2019 IEEE 58th Conference on Decision and Control (CDC)
Palais des Congrès et des Expositions Nice Acropolis
Nice, France, December 11-13, 2019

978-1-7281-1398-2/19/$31.00 ©2019 IEEE 4761

Authorized licensed use limited to: University of Texas at Austin. Downloaded on October 12,2020 at 01:27:05 UTC from IEEE Xplore.  Restrictions apply. 



formulas from spatial-temporal data over a graph:
• Inferring GTL formulas for classification:

We infer a GTL formula that best classifies two sets of
graph-temporal trajectories (formalized in Sec. II).

• Inferring informative GTL formulas for identification:
We infer a GTL formula that is consistent with a
set of graph-temporal trajectories and provides a high
information gain (formalized in Sec. IV) over a given
prior probability distribution.

In Sec. V-A, we implement the classification method to infer
GTL formulas that can classify the graph patterns of tensile
specimens built from selective laser sintering (SLS) process
with varying strengths. In Sec. V-B and V-C, we implement
the identification method to infer informative GTL formulas
from experimental data of the SLS cooldown process and
simulation data of a swarm of robots, respectively.
Related Work. There exist several spatial (graph) tempo-
ral logics in the literature, such as spatial-temporal logic
(SpaTeL) in [13] and signal spatio-temporal logic (SSTL) in
[14]. Our proposed GTL is different from both SpaTeL and
SSTL as GTL focuses on the propositions on the node labels
and edge labels of a graph, and whether there exist certain
number of neighbors that satisfy the node propositions with
the connecting edges satisfying the edge propositions. GTL
is also different from the logics of graphs in [15], [16] as
they consider logical statements about the structure of the
graphs and the changes in the structure, while we consider
logical statements about (possibly time-varying) labels that
are defined on graphs with fixed structure.

Our approach of inferring GTL formulas from data is
closely related to inferring temporal logic formulas from
data. The work in [2], [5], [8] focus on inferring temporal
logic formulas for classifying two sets of trajectories, while
the work in [3], [6], [9], [17] focus on identifying temporal
logic formulas from system trajectories.

II. PARAMETRIC GRAPH TEMPORAL LOGIC AND GRAPH
TEMPORAL LOGIC

In this section, we introduce parametric graph temporal
logic (pGTL) and graph temporal logic (GTL).

A. Node and Edge Propositions

Let G = (V,E) be an undirected graph, where V is a
finite set of nodes and E is a finite set of edges. We use
X to denote a (possibly infinite) set of node labels and Y
to denote a (possibly infinite) set of edge labels. We use
s(e) = {v1, v2} to denote the fact that the edge e ∈ E
connects v1 ∈ V and v2 ∈ V . T = {1, 2, . . . } is a discrete
set of time indices. A graph with node labels and edge labels
is also called a labeled graph.

Definition 1: A graph-temporal trajectory on a graph G
is a tuple g = (x, y), where x : V × T→ X assigns a node
label for each node v ∈ V at each time index k ∈ T, and
y : E × T → Y assigns an edge label for each edge e ∈ E
at each time index k ∈ T.

We use x(v, k) to denote the label of node v at time index
k and y(e, k) to denote the label of edge e at time index k.

Definition 2: An atomic node proposition is a predicate on
X , i.e., a Boolean valued map from X . An edge proposition
is a predicate on Y .

We use π to denote an atomic node proposition, and O(π)
to denote the subset of X for which π is true. We use ρ to
denote an edge proposition, and O(ρ) to denote the subset
of Y for which ρ is true.

We define that a graph-temporal trajectory g = (x, y)
satisfies an atomic node proposition π at a node v and at
a time index k, denoted as (g, v, k) |= π, if and only if
x(v, k) ∈ O(π). Similarly, we define that a graph-temporal
trajectory g = (x, y) satisfies an edge proposition ρ at an
edge e and at a time index k, denoted as (g, e, k) |= ρ, if
and only if y(e, k) ∈ O(ρ).
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Fig. 2. An example of a graph-temporal trajectory on an undirected graph,
with the red numbers indicating node labels, and the blue numbers indicating
edge labels, all at a fixed time index k.

Example 1: For the graph in Fig. 2, the node and edge
labels are from a graph-temporal trajectory g by fixing a
time index k. The atomic node proposition π = (x ≤ 0)
is satisfied by g at v3 and v6 at time index k. The edge
proposition ρ = (y ≥ 2) is satisfied by g at e1, e4, e6 and
e8 at time index k.

Definition 3: Given a graph-temporal trajectory g =
(x, y) on a graph G, a subset V ′ ⊆ V of nodes and an
edge proposition ρ, we define the neighbor operation ©ρ :
2V × T→ 2V × T as

©ρ (V ′, k) =(
{v|∃v′ ∈ V ′,∃e ∈ E, s(e) = {v′, v}, (g, e, k) |= ρ}, k

)
.

Intuitively, ©ρ(V
′, k) consists of nodes that can be reached

from V ′ through an edge where the edge proposition ρ is
satisfied by g at time index k. Note that neighbor operations
can be applied successively.

Example 2: For the graph-temporal trajectory g on the
graph G at time index k in Fig. 2,

©y≤1({v4}, k) =
(
{v1, v5}, k

)
,

©y≤1©y≤1 ({v4}, k) =©y≤1

(
{v1, v5}, k

)
=
(
{v2, v4}, k

)
.

B. pGTL Formulas and GTL formulas

We define the syntax of a parametric graph temporal logic
(pGTL) formula ϕ recursively as

ϕ :=

π | ∃N (©ρn · · ·©ρ1)ϕ | ¬ϕ | Xϕ | ϕ ∧ ϕ | ϕUϕ | ♦∼iϕ,

where n and N are positive integers, π is an atomic
node proposition, ρi (i = 1, . . . , n) are edge propositions,
∃N (©ρn · · ·©ρ1)ϕ reads as “there exists at least N nodes
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under the neighbor operation ©ρn · · ·©ρ1 that satisfy ϕ ”,
¬ and ∧ stand for negation and conjunction respectively,
X and U are temporal operators representing “next” and
“until”, respectively, ♦∼i is a parametrized temporal operator
representing “parametrized eventually”, where ∼∈ {≥,≤}
and i ∈ T is a temporal parameter. We can also derive ∨
(disjunction), ♦ (eventually), � (always), �∼i (parametrized
always), U∼i (parametrized until) and ⇒ (implication) from
the above-mentioned operators [18]. We can also derive
the parametrized temporal operators ♦≥i1,≤i2 and �≥i1,≤i2
(i1 < i2, i1, i2 ∈ T) as ♦≥i1,≤i2φ = ♦≥i1φ ∧ ♦≤i2φ and
�≥i1,≤i2φ = �≥i1φ ∧�≤i2φ.

The satisfaction relation (g, v, k) |= ϕ for a graph-
temporal trajectory g at node v at time index k with respect
to a pGTL formula ϕ is defined recursively as follows:

(g, v, k) |= π iff x(v, k) ∈ O(π)

(g, v, k) |= ∃N (©ρn · · ·©ρ1)ϕ iff ∃v1, . . . , vN (vi 6= vj for
i 6= j), s.t.,∀i, (vi, k) ∈ ©ρn · · · ©ρ1 (v, k) and (g, vi, k) |= ϕ

(g, v, k) |= ¬ϕ iff (g, v, k) 6|= ϕ

(g, v, k) |= Xϕ iff (g, v, k + 1) |= ϕ

(g, v, k) |= ϕ1 ∧ ϕ2 iff (g, v, k) |= ϕ1 and (g, v, k) |= ϕ2

(g, v, k) |= ϕ1Uϕ2 iff ∃k′ ≥ k, s.t. (g, v, k′) |= ϕ2,

(g, v, k′′) |= ϕ1,∀k′′ ∈ [k, k′]

(g, v, k) |= ♦∼iϕ iff ∃k′ ∼ k + i, s.t. (g, v, k′) |= ϕ

Intuitively, ∃N (©ρn · · ·©ρ1)ϕ is satisfied by a graph-
temporal trajectory g at a node v ∈ V and at a time index k
if there exist at least N nodes in (©ρn · · ·©ρ1)(v, k) where
ϕ is satisfied by g at time index k. Note that, by definition,
if (©ρn · · ·©ρ1)(v, k) consists of fewer than N nodes, then
∃N (©ρn · · ·©ρ1)ϕ is false.

We also define that a graph-temporal trajectory g satisfies
a pGTL formula ϕ at a node v, denoted as (g, v) |= ϕ, if g
satisfies ϕ at node v at time index 1.

Definition 4: We define a graph temporal logic (GTL)
formula ϕθ as a pGTL formula ϕ with fixed parameter
valuation θ.

Example 3: For the pGTL formula ϕ = ∃N©y≤a(x ≥ b),
we can induce a GTL formula ϕθ = ∃2©y≤1 (x ≥ 1) with
θ([N, a, b]) = [2, 1, 1]. For the graph-temporal trajectory g
on the graph shown in Fig. 2, the set of nodes where ϕθ is
satisfied by g at time index k are {v4, v5}.
C. Subtypes of pGTL and GTL Formulas

Graph-temporal trajectories of finite time length are suf-
ficient to satisfy (resp. violate) syntactically co-safe (resp.
safe) pGTL formulas, which are defined as follows.

Definition 5: The syntax of the syntactically co-safe
pGTL formula is defined recursively as

ϕ :=> | π | ¬π | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ♦ϕ | Xϕ | ϕ1Uϕ2

| ♦∼iϕ | �≤iϕ | ϕ1U∼iϕ2 | ∃N (©ρn · · ·©ρ1)ϕ.

Definition 6: The syntax of the syntactically safe pGTL
formula is defined as
ϕ :=⊥ | π | ¬π | Xϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | �ϕ | ♦≤iϕ

| �∼iϕ | ϕ1U≤iϕ2 | ∃N (©ρn · · ·©ρ1)ϕ.

We further introduce type-I and type-II pGTL formulas.
(1) A type-I pGTL formula ϕ is defined as

ϕ := ∃N (©ρn · · ·©ρ1)π | ¬ϕ | Xϕ | ϕ∧ϕ | ϕUϕ | ♦∼iϕ.

(2) A type-II pGTL formula ϕ is defined recursively as

ϕ := ∃N (©ρn · · ·©ρ1)φ,

where φ is defined recursively as

φ := π | ¬φ | Xϕ | φ ∧ φ | φUφ | ♦∼iφ.

The subtypes of GTL Formulas can be defined similarly
with fixed parameter valuations. A pGTL formula can be
neither a type-I pGTL formula nor a type-II pGTL formula.
A pGTL formula could also be of more than one subtypes.
For example, if a pGTL formula is both a type-I pGTL
formula and a syntactically co-safe pGTL formula, then it
is called a type-I syntactically co-safe pGTL formula.

Definition 7: A deterministic finite automaton (DFA) is a
tuple A = (Q, q0,Σ, δ, Acc) where Q = {q0, q1, . . . , qK−1}
is a finite set of states, q0 is the initial state, Σ is the alphabet,
δ : Q×Σ→ Q is the transition relation and Acc ⊆ 2Q is a
finite set of accepting states [19].

We use AP I and AP II to denote the sets of atomic
predicates in the form of ∃N (©ρn · · ·©ρ1)π and π, re-
spectively. At a node v and over AP I (resp. AP II), the
word generated by a graph-temporal trajectory g = (x, y)
is a sequence Lv

(
x(·, 1), y(·, 1)

)
, . . . ,Lv

(
x(·, L), y(·, L)

)
,

where Lv : X×Y → 2AP
I

(resp. 2AP
II
) is a labeling function

assigning a subset of atomic predicates in AP I (resp. AP II)
that hold true at node v to each

(
x(·, k), y(·, k)

)
, k ∈ [1, L].

If a pGTL formula ϕ is a type-I pGTL formula and it is
syntactically co-safe (resp. safe), then we can build a DFA
Aϕθ,v (resp. A¬ϕθ,v) over AP I that accepts precisely the
words generated by graph-temporal trajectories that satisfy
(resp. violate) the GTL formula ϕθ at node v for any θ. If
a pGTL formula ϕ = ∃N (©ρn · · ·©ρ1)φ is a type-II pGTL
formula and it is syntactically co-safe (resp. safe), we can
build a DFA Aφθ,v (resp. A¬φθ,v) over AP II that accepts
precisely the words generated by graph-temporal trajectories
that satisfy (resp. violate) φθ′ at node v for any θ′ [19].

In the following sections of the paper, we only focus on
type I/type II syntactically co-safe/syntactically safe pGTL
(GTL) formulas and we simply call them pGTL (GTL)
formulas for conciseness. We define that a syntactically
co-safe GTL formula ϕθ is violated by a graph-temporal
trajectory g of finite time length L at a node v if ϕθ is not
satisfied by g at node v; and a syntactically safe GTL formula
ϕθ is satisfied by a graph-temporal trajectory g of finite time
length L at a node v if ϕθ is not violated by g at node v.

III. GRAPH TEMPORAL LOGIC INFERENCE FOR
CLASSIFICATION

In this section, we present the problem formulation and
solution to infer GTL formulas for classification.

Suppose that we are given a set DGL = {(gk, lk)}NDk=1 of
labeled graph-temporal trajectories of time length L on a
graph G, where the classification labels lk = 1 and lk = −1
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represent desired and undesired behaviors, respectively. For
a GTL formula ϕθ, we define the satisfaction signature
ζϕθ (gk, v) of a graph-temporal trajectory gk at node v as
follows: ζϕθ (gk, v) = 1 if (gk, v) |= ϕθ; and ζϕθ (gk, v) =
−1 if (gk, v) 6|= ϕθ. A labeled graph-temporal trajectory
(gk, lk) is misclassified by ϕθ at node v if ζϕθ (gk, v) 6= lk.

We define the nodal misclassification rate of ϕθ in DGL as

MR(DGL , ϕθ) =

∑
v∈V |{(gk, lk) ∈ DGL : ζϕθ (gk, v) 6= lk}|

|DGL ||V |
,

where |S| denotes the cardinality of a set S.
The size of a GTL formula ϕθ, denoted as η(ϕθ), is

defined as the number of Boolean connectives (i.e., conjunc-
tions or disjunctions) in ϕθ. Note that logically equivalent
formulas may have different sizes.

Problem 1: Given a dataset DGL = {g1, . . . , gm}, a prior
probability distribution FGL , a real constant mth ∈ [0, 1) and
an integer constant ηth ∈ (0,∞), construct a GTL formula
ϕθ that satisfies the following two constraints:
• classification constraint: MR(DGL , ϕθ) ≤ mth, i.e., the

nodal misclassification rate should not exceed mth;
• size constraint: η(ϕθ) ≤ ηth, i.e., the size of ϕθ should

not exceed ηth.
Most existing approaches for inferring temporal logic

formulas for classification apply readily to solve Problem 1.
As an example, we use the pruning and growing approach
illustrated in [2]. We start from a set P of primitive pGTL
formulas (also called templates), i.e., pGTL formulas that
do not contain conjunctions or disjunctions. We use particle
swarm optimization (PSO) [20] to compute the parameter
valuation θ for each primitive pGTL formula from P that
minimizes the nodal misclassification rate MR(DGL , ϕθ).
Other global optimization methods such as simulated an-
nealing [2] and Monte-carlo sampling [21] are also valid
candidates for such computations. If a GTL formula that
satisfies the classification constraint is not found, we only
keep the pGTL formulas in P such that the misclassification
rates can be achieved below a threshold m̂th ∈ (mth, 1)
(pruning). Then we infer a GTL formula ϕθ in the form of
ϕθ = ϕ1

θ1
∨ ϕ2

θ2
or ϕθ = ϕ1

θ1
∧ ϕ2

θ2
(growing), where ϕ1

and ϕ2 are chosen from the pGTL formulas kept in the first
step. In this way, we keep increasing the number of primitive
pGTL formulas connected with conjunctions or disjunctions
until a GTL formula that satisfies the classification constraint
is found, or the size constraint is violated.

IV. GRAPH TEMPORAL LOGIC INFERENCE FOR
IDENTIFICATION

In this section, we present the problem formulation and
solution to identify GTL formulas from data.

A. Problem Formulation

We use BGL to denote the set of all possible graph-temporal
trajectories with time-length L on the graph G. We are given
a dataset SGL = {g1, . . . , gm} ⊂ BGL as a collection of graph-
temporal trajectories. We use FGL : BGL → [0, 1] to denote
a prior probability distribution over BGL , and PFGL ,ϕθ,v to

denote the probability of a GTL formula ϕθ being satisfied
at node v based on FGL , i.e.,

PFGL ,ϕθ,v = P{(g, v) |= ϕθ}, g ∼ FGL .

Assumption 1: We assume that every graph-temporal tra-
jectory in BGL occurs with non-zero probability based on FGL .

From Assumption 1, for any g ∈ BGL , if (g, v) |= ϕθ, then
PFGL ,ϕθ,v > 0.

Definition 8: Given a prior probability distribution FGL ,
we define F̄ϕθ,vL : BGL → [0, 1] as the posterior probability
distribution given that the GTL formula ϕθ evaluates to true
at node v, which is expressed as

F̄ϕθ,vL (g) =


FGL (g)

PFG
L
,ϕθ,v

if (g, v) |= ϕθ,

0 if (g, v) 6|= ϕθ.

Remark 1: The expression of F̄ϕθ,vL can be directly de-
rived using Bayes’ theorem.

Definition 9: We define

I(FGL , F̄
ϕθ,v
L ) :=

1

L
·DKL(F̄ϕθ,vL ||FGL )

as the information gain when the prior probability distribu-
tion FGL is updated to the posterior probability distribution
F̄ϕθ,vL , where DKL(F̄ϕθ,vL ||FGL ) is the Kullback-Leibler di-
vergence from FGL to F̄ϕθ,vL .

Remark 2: If ϕθ = >, then obviously PFGL ,ϕθ,v = 1 and
I(FGL , F̄

ϕθ,v
L ) = 0 for any node v, i.e., tautologies provide

no information gain. For completeness, we also define that
the information gain I(FGL , F̄

ϕθ,v
L ) = 0 for any node v

if PFGL ,ϕθ,v = 0. So if ϕθ = ⊥, then PFGL ,ϕθ,v = 0

and I(FGL , F̄
ϕθ,v
L ) = 0 for any node v, i.e., contradictions

provide no information gain.
Definition 10: We define χ(ϕθ,SGL ) as the averaged pro-

portion of nodes (in G) at which the GTL formula ϕθ is
satisfied in the dataset SGL , i.e.,

χ(ϕθ,SGL ) =

∑
i |{v ∈ V | (gi, v) |= ϕθ}|

|V ||SGL |
.

Problem 2: Given a dataset SGL , a prior probability dis-
tribution FGL and a real constant pth ∈ (0, 1], compute the
parameter valuation θ for a pGTL formula ϕ (selected from
a set P of templates) that maximizes the average information
gain at each node 1

|V |
∑
v∈V I(FGL , F̄

ϕθ,v
L ) while satisfying

the coverage constraint: χ(ϕθ,SGL ) ≥ pth, i.e., ϕθ is satisfied
for at least pth proportion of nodes in average in SGL .

Note that we focus on the parameter identification problem
based on pGTL formulas selected from a set of templates and
thus the size constraint is not needed.

To solve Problem 2, it is computationally inefficient to
use optimzation algorithms such as PSO and compute the
average information gain for each candidate GTL formula
(see Sec. IV-B for the time complexity). In Sec. IV-C, we
prove that the optimal parameter valuation of a GTL formula
lies in the minimal satisfying set of parameter valuations.
Thus we only need to compute the average information
gain for the GTL formulas with parameter valuation in the
(approximated) minimal satisfying set (see Sec. IV-D).
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B. Computation of Information Gain of GTL Formulas

In this subsection, we present the algorithm for computing
the average information gain for GTL formulas.

Proposition 1: For a GTL formula ϕθ, if PFGL ,ϕθ,v > 0,

I(FGL , F̄
ϕθ,v
L ) =

− log PFG
L
,ϕθ,v

L .

In the following, for computational efficiency we choose
prior probability distributions such that there exist no spatial
or temporal dependencies for the labels on different nodes
and edges. Note that the proposed methodology readily
applies to cases where such spatial or temporal dependen-
cies exist, e.g., when the prior distribution is governed by
Markov random fields (spatial dependence) or discrete-time
Markov chains (temporal dependence), but the computational
complexity is significantly increased (see Sec. IV-B of [17]
for an example for parametric linear temporal logic).

Algorithm 1 is for computing the avearge information
gain for GTL formulas. We first explain how to compute
the avearge information gain for a type-I syntactically co-
safe GTL formula ϕθ. We use pϕθ,vL (`, qk) to denote the
probability of a graph-temporal trajectory of time length L
satisfying ϕθ at node v, conditioned on the fact that the state
of the DFA Aϕθ,v = (Qϕθ,v, qϕθ,v0 , 2AP

I
, δϕθ,v, Accϕθ,v) at

time index ` (1 ≤ ` ≤ L) being the state qk. We first initialize
pϕθ,vL (L, qk) as (Line 9)

pϕθ,vL (L, qk) =

{
1 if qk ∈ Accϕθ,v;
0 otherwise.

We can compute pϕθ,vL (`, qk) recursively as (Line 11) p
ϕθ,v
L (`− 1, q0)

...
pϕθ,vL (`− 1, qK)

 =

 c
`
0,0 . . . c`0,K
...

...
...

c`K,0 . . . c`K,K


 p

ϕθ,v
L (`, q0)

...
pϕθ,vL (`, qK)

 ,
where c`j,k is the probability of transitioning from qj to qk at
time index ` and c`j,k can be calculated based on FGL (Line
11). Finally, we have PFGL ,ϕθ,v = pϕθ,vL (1, q0) (Line 12).

For type-I syntactically safe GTL formulas, by replacing
each ϕθ in the above deductions with ¬ϕθ, we can compute
PFGL ,ϕθ,v = 1− p¬ϕθ,vL (1, q0) (Line 13).

For a type-II GTL formula ϕθ = ∃N (©ρn · · ·©ρ1)φθ′ ,
PFGL ,ϕθ,v can be computed as (Line 17)

Nvϕθ∑
k=N

Nv
ϕθ

!

k!(Nv
ϕθ
− k)!

PkFGL ,φθ′ ,v(1− PFGL ,φθ′ ,v)
Nvϕθ
−k,

where Nv
ϕθ

= |©ρn · · ·©ρ1 (v, 1)| is the number of nodes in
the set ©ρn · · · ©ρ1 (v, 1), and PFGL ,φθ′ ,v can be computed
in a similar way for type-I GTL formulas.

With PFGL ,ϕθ,v , we can compute I(FGL , F̄
ϕθ,v
L ) according

to Proposition 1 (Line 18).
The time complexity of Algorithm 1 is O(|V |LK2), where

|V | is the number of nodes in the graph, L is the time length
of graph-temporal trajectories, K is the number of states of
Aϕθ,v (for type-I formulas) or Aφθ′ ,v (for type-II formulas).

Algorithm 1: Avearge information gain computation
for GTL formulas.

1 function ComputeIG(SGL = {g1, . . . , gm}, ϕθ,FGL )
2 if ϕθ is a type-I GTL formula then
3 ψ ← ϕθ

4 else if ϕθ is a type-II GTL formula then
5 For ϕθ = ∃N (©ρn · · ·©ρ1)φθ′ , ψ ← φθ′

6 for v ∈ V do
7 Obtain the DFA Aψ,v (resp. A¬ψ,v) if ψ is

syntactically co-safe (resp. syntactically safe)
8 for k = 0 to K do
9 Initialize pψ,vL (L, qk)

10 for ` = L to 2, j = 0 to K do
11 For each k ∈ [0,K], calculate c`j,k

pψ,vL (`− 1, qj)←
∑K
k=0 c

`
j,kp

ψ,v
L (`, qk)

12 β ← pψ,vL (1, q0) if ψ is syntactically co-safe
13 β ← 1− pψ,vL (1, q0) if ψ is syntactically safe
14 if ψ is a type-I GTL formula then
15 γv ← β

16 else if ψ is a type-II GTL formula then

17 γv ←
Nvψ∑
k=N

Nv
ψ!

k!(Nv
ψ − k)!

βk(1− β)N
v
ψ−k

18 return I = − 1
|V |L

∑
v∈V log(γv)

C. Minimal Satisfying Set of Parameter Valuations

In this subsection, we introduce some related definitions
and lemmas, leading to the result in Proposition 2.

Definition 11: The polarity %(p, ϕ) of a scalar parameter
p for a pGTL formula ϕ is defined recursively as

%(p,¬ϕ) =∼ %(p, ϕ), %(p, f(x) ≤ p) = +,

%(p, f(x) ≥ p) = −, %(p,♦≤pϕ) = + ◦ %(p, ϕ),

%(p,♦≥pϕ) = − ◦ %(p, ϕ), %(p,Xϕ) = %(p, ϕ),

%(p, ϕUψ) = %(p, ϕ ∧ ψ) = %(p, ϕ) ◦ %(p, ψ),

%(p,∃N ©y≤p ϕ) = + ◦ %(p, ϕ),

%(p,∃N ©y≥p ϕ) = − ◦ %(p, ϕ),

%(p,∃p©ρ ϕ) = − ◦ %(p, ρ) ◦ %(p, ϕ),

%(p, ϕ) = U, iff p does not appear in ϕ,

where f is some real-valued function, the operations ∼ and
◦ are as defined in the following table [3]

∼
U U
+ -
- +

M M

◦ U + - M
U U + - M
+ + + M M
- - M - M

M M M M M

In this table, U,+,− and M represent undefined, positive,
negative and mixed polarities respectively.
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Intuitively, the polarity %(p, ϕ) of a scalar parameter p for
a pGTL formula ϕ is positive, if the pGTL formula ϕ is
easier to be satisfied when p is increased; and it is negative,
if it is easier to be satisfied when p is decreased.

Definition 12: For a graph G, we say that θ dominates θ′

with respect to a pGTL formula ϕ, denoted as θ ≺ϕ θ′, if
and only if ϕθ ⇒ ϕθ′ holds true and ϕθ′ ⇒ ϕθ does not
hold true at any node v for GTL formulas ϕθ and ϕθ′ .

For example, for the six GTL formulas induced from the
same pGTL formula ϕ in Fig. 3, we have ϕθ2 ≺ ϕθ1 , ϕθ3 ≺
ϕθ2 , ϕθ4 ≺ ϕθ2 , ϕθ5 ≺ ϕθ2 , ϕθ6 ≺ ϕθ3 and ϕθ6 ≺ ϕθ4 .

Fig. 3. The domination relationships among six GTL formulas.

Lemma 1: For two parameter valuations θ = [θ1, . . . , θz]
and θ′ = [θ′1, . . . , θ

′
z], θ ≺ϕ θ′ if θ 6= θ′ and the followings

hold for each i ∈ [1, z]:{
θi ≤ θ′i, if %(θi, ϕ) = +;

θi ≥ θ′i, if %(θi, ϕ) = −.
Lemma 2: For two parameter valuations θ and θ′, if

θ ≺ϕ θ′ for a pGTL formula ϕ, then I(FGL , F̄
ϕθ,v
L ) >

I(FGL , F̄
ϕθ′ ,v
L ) for any v and FGL .

For a pGTL formula ϕ, we denote by Θsat the set of
parameter valuations θ such that ϕθ satisfies the coverage
constraint. We further denote Θunsat := Θ \Θsat.

Definition 13: A parameter valuation θ in Θsat is said to
be minimal if there does not exist a parameter valuation θ′ ∈
Θsat such that θ′ ≺ϕ θ. We define the minimal satisfying set
Θs as the set of minimal parameter valuations in Θsat.

Proposition 2: For a prior distribution FGL and Θs, if θ∗ =
arg max
θ∈Θsat

1
|V |
∑
v∈V I(FGL , F̄

ϕθ,v
L ), then θ∗ ∈ Θs.

From Proposition 2, it can be seen that the optimal
parameter valuation belongs to the minimal satisfying set.

D. Information-Guided Identification of GTL Formulas

In this subsection, we present the algorithm for the
information-guided identification of GTL formulas.

For a pGTL formula ϕ, suppose that the parameter val-
uation θ = [θ1, . . . , θz] belongs to a set Θ = [θmin

1 , θmax
1 ] ×

· · ·×[θmin
z , θmax

z ], where θmin
i ≤ θmax

i (i = 1, . . . , z). We define
the mapping Π : Θ → [0, 1]z as follows: for each θ ∈ Θ,
Π(θ) = ω = [ω1, . . . , ωz], where for each i ∈ [1, z], we have

ωi =

{
(θi − θmin

i )/(θmax
i − θmin

i ) if %(θi, ϕ) = +;

(θmax
i − θi)/(θmax

i − θmin
i ) if %(θi, ϕ) = −.

In this way, we transform the set of parameter valuations Θ
to the hypercube [0, 1]z , and for each i the pGTL formula
is easier to be satisfied if ωi is increased. Under this

transformation, we use Ωs to denote the set of parameter
valuations transformed from the parameter valuations in the
minimal satisfying set Θs (we also call Ωs the transformed
minimal satisfying set).

Definition 14: The Hausdorff directed distance from a set
S to a set S′ is defined as

d̂H(S, S′) = max
s∈S

min
s′∈S′

max
1≤i≤z

d(s′i, si),

where s = [s1, . . . , sz] ∈ S, the directed distance d(s′i, si) =
si−s′i, if si > s′i; and d(s′i, si) = 0, if si ≤ s′i (i = 1, . . . , z).

For a pGTL formula ϕ, suppose that after several queries
we obtain the sets Ω̂unsat and Ω̂sat of parameter valuations,
where for each ω ∈ Ω̂sat, ϕΠ−1(ω) satisfies the coverage
constraint; and for each ω ∈ Ω̂unsat, ϕΠ−1(ω) violates the
coverage constraint (see Fig. 4). We use Ω̂s to denote the set
of minimal parameter valuations in Ω̂sat.

Definition 15: (ε-approximation [22]) A set of parame-
ter valuations Ω̂s is an ε-approximation of the set Ωs if
d̂H(Ωs, Ω̂s) ≤ ε, where d̂H(Ωs, Ω̂s) is the Hausdorff directed
distance from Ωs to Ω̂s.

Proposition 3: [22] A set Ω̂s of parameter valuations is an
ε-approximation of the transformed minimal satisfying set Ωs
if d̂H(knee(Ω̂unsat), Ω̂s) ≤ ε, where knee(Ω̂unsat) denotes
the set of knee points of Ω̂unsat (a point in the boundary
of Ω̂unsat is called a knee point if by subtracting a positive
number from any of its coordinates we obtain a point in the
interior of Ω̂unsat).

The algorithm for the information-guided parametric iden-
tification of GTL formulas is shown in Algorithm 2. The
identification is performed in two steps. In the first step
(Line 1 to Line 6), we approximate the minimal satisfying
set Θs (transformed minimal satisfying set Ωs) by iteratively
querying the parameter space and updating the sets of
parameter valuations that satisfy and violate the coverage
constraint, respectively. In the second step (Line 7 to Line
10), we compute the parameter valuation that maximizes
the avearge information gain with the parameter valuations
chosen from the approximated minimal satisfying set.

We first initialize Ω̂sat and Ω̂s to be the vector of ones,
and Ω̂unsat to be the vector of zeros. We use r to denote
the maximal directed distance from the set of knee points
knee(Ω̂unsat) to the set Ω̂s (Line 3), and ω to denote the
knee point with the maximal directed distance to the set
Ω̂s (Line 4). After each query, we select the next query
as ω + r/2, which is guaranteed to lie neither in Ω̂sat nor
in Ω̂unsat (we choose ω + r/2 in the manner of binary
search). Then we update Ω̂sat if ϕΠ−1(ω+r/2) satisfies the
coverage constraint, and update Ω̂unsat if it violates the
coverage constraint [22] (Line 5). And the same procedure
repeats until an ε-approximation of Ωs is achieved. Finally,
we identify the GTL formula with the parameter valuation
in the approximated minimal satisfying set that provides the
highest avearge information gain (Line 7 to Line 10).

V. CASE STUDIES

We illustrate our approaches on three studies, with Case
Study 1 on the classification problem, and Case Study 2 and
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b (normalized to [0, 1])

0
a (normalized to [0, 1])

Fig. 4. Querying the parameter space for a pGTL formula ∃N©y≤a (x ≤
b) (with a and b dimensions shown). Green and red points correspond to
parameter valuations of GTL formulas that satisfy and violate the coverage
constraint respectively, while the purple points denote the knee points.

Algorithm 2: Information-guided parameter identifi-
cation of GTL formulas.

1 Initialize Ω̂sat, Ω̂s, Ω̂unsat, Î ← 0

2 while d̂H(knee(Ω̂unsat), Ω̂s) > ε do
3 r ← max

ω∈knee(Ω̂unsat)
d(ω, Ω̂s)

4 ω ← arg max
ω∈knee(Ω̂unsat)

d(ω, Ω̂s), ω ← ω + r/2

5 Add ω to Ω̂sat if ϕΠ−1(ω) satisfies the coverage
constraint and add ω to Ω̂unsat otherwise

6 Update Ω̂s as the minimal satisfying set of Ω̂sat

7 for ω ∈ Ω̂s do
8 I ← ComputeIG(SGL , ϕΠ−1(ω),FGL )

9 if I > Î then
10 Î ← I, ω̂ ← ω

11 return ϕΠ−1(ω̂)

3 on the identification problem. The data used in Case Study
1 and 2 are from the SLS 3D printer at UT Austin, recorded
with FLIR 6701 MWIR stationary Infrared camera.

A. Case Study 1

The first case study is on classifying the graph pat-
terns of ten tensile specimens built from SLS pro-
cess (see Fig. 5). The tensile specimens have vary-
ing strengths, where the five stronger specimens labeled
1 have tensile strength above 46 MPa and the other
five labeled -1 have tensile strength below 34 MPa.

Fig. 5. Infrared image of the
rectangular cross-sections of the
tensile specimens on the surface
of the SLS powder bed [1].

We partition the fill region of
each tensile specimen into 20
subregions (1200×1200 µm2

for each subregion, with 210
layers), where each subregion
is considered a node of a fully
connected graph. The edge la-
bel y represents the Euclidean
distance between the nodes (1
unit represents 1200 µm). As
different layers are sintered at evenly spaced time instants,
we use the layer indices to represent the time indices.

We use the following templates for type-I pGTL formulas
(while other valid pGTL formulas can be also added to the
set of templates, we choose the following ones as they are

simple and sufficiently expressive for our applications):
P I = {�≥i1,≤i2∃N ©ρ π, ♦≥i1,≤i2∃N ©ρ π,

�≥i1,≤i2♦≤i3∃N ©ρ π, ♦≥i1,≤i2�≤i3∃N ©ρ π,

�(π1 ⇒ �≤i∃N ©ρ π2), �(π1 ⇒ ♦≤i∃N ©ρ π2)},
where π, π1 and π2 are atomic node propositions in the form
of x ≥ c1 or x ≤ c1 (c1 ∈ R), ρ is an edge proposition in
the form of y ≤ c2 (c2 is a positive integer), N is a positive
integer, i1, i2, i3, i ∈ T and i1 < i2.

We use the following templates for type-II pGTL formulas:

P II = {∃N ©ρ �≥i1,≤i2π, ∃N ©ρ ♦≥i1,≤i2π,

∃N ©ρ �≥i1,≤i2♦≤i3π, ∃N ©ρ ♦≥i1,≤i2�≤i3π},

where π, ρ, N , i1, i2 and i3 are as described in P I.
We set mth = 0.02, ηth = 3 and m̂th = 0.1. Using the

approach illustrated in Sec. III, we obtain the following GTL
formula from P I and P II with zero nodal misclassification
rate:

ϕ∗θ∗,1 =�
(
T ≥ 181.1⇒ �≤6∃8©y≤2 T ≤ 198.0

)
∧

�
(
T ≤ 204.0⇒ �≤2∃3©y≤1 T ≥ 181.8

)
,

which means “(for any node) whenever the temperature is at
least 181.1 C◦, then for the next 6 layers there are always
at least 8 nodes within distance of 2 where the temperature
is at most 198.0 C◦; whenever it is at most 204.0 C◦, then
for the next 2 layers there are always at least 3 nodes within
distance of 1 where the temperature is at least 181.8 C◦”.
ϕ∗θ∗,1 is validated with another set of ten tensile specimens

(five labeled 1 with tensile strength above 43 MPa and five
labeled -1 with tensile strength below 37 MPa), with nodal
misclassification rate of 8.33%.

B. Case Study 2

The second case study is on identifying informative pat-
terns from data of SLS cooldown process (see Fig. 1 (a)
in Sec. I). We record 16 graph temporal trajectories from
7 × 7 grids of the powder bed, where each of the 49 cells
(400×400 µm2 for each cell) is considered a node of a fully
connected graph. The edge label y represents the Euclidean
distance between the nodes (1 unit represents 400 µm).

We set pth = 0.98 and ε = 0.05. Through Algorithm 2,
we obtain the best type-I and type-II GTL formulas from P I

and P II as (with the average information gain of 0.1563 and
0.0013, respectively, both with coverage rate of 100%):

ϕI∗
θ∗,2 = �

(
T ≥ 183.4⇒ �≤3∃2©y≤1 T ≤ 182.8

)
,

ϕII∗
θ∗,2 = ∃4©y≤2 �≥3,≤8(T ≥ 178.7),

where ϕI∗
θ∗,2 means “(for any node) whenever the temperature

is at least 183.4 C◦, then for the next 3 time steps there
are always at least 2 nodes within distance of 1 where the
temperature is at most 182.8 C◦”, and ϕII∗

θ∗,2 reads as “(for
any node) there exists at least 4 nodes within distance of 2
where the temperature is always at least 178.7 C◦ from time
step 3 to 8” (each time step lasts for 33 milliseconds).
ϕI∗
θ∗,2 and ϕII∗

θ∗,2 are validated with another set of 16
graph temporal trajectories recorded from another layer of
the powder bed, both with coverage rate of 100%.
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C. Case Study 3

The third case study is on identifying informative pat-
terns from simulation data of a swarm of robots. We
partition the workspace into 9 subregions (as shown in
Fig. 6), where each subregion is considered a node of
a fully connected graph. The edge label y represents the
Euclidean distance between the centroids of the subre-
gions. The probabilistic densities of the robots in the sub-
regions are governed by a time-varying Markov chain [23].

Fig. 6. The swarm of 72
robots in the 9 sub-regions.

We randomly generate graph-
temporal trajectories and ran-
domly choose 10 from them that
satisfy the following constraint:
whenever the probabilistic den-
sity of a subregion reaches
above 1/8, then for the next 2
time units there always exists
at least one neighbor subregion within distance of 1 with
probabilistic density below 1/9. Then we infer a GTL formula
from the 10 graph-temporal trajectories using Algorithm 2.

We set pth = 0.98 and ε = 0.05. Through Algorithm 2,
we obtain the best type-I and type-II GTL formulas from
P I and P II as (with the average information gain of 0.1 and
0.0043, respectively, both with coverage rate of 100%):

ϕI∗
θ∗,3 = �

(
x ≥ 0.1894⇒ �≤2∃1©y≤1 x ≤ 0.1137

)
,

ϕII∗
θ∗,3 = ∃2©y≤1 �≥4,≤6(x ≥ 0.0379),

where x is the probabilistic density in a subregion. It can be
seen that ϕI∗

θ∗,3 is different but similar with the set constraint.
ϕI∗
θ∗,3 and ϕII∗

θ∗,3 are validated with another set of 10
randomly generated graph temporal trajectories that satisfy
the set constraint, both with coverage rate of 100%.

VI. CONCLUSION

We have introduced GTL and proposed the framework and
algorithms to infer GTL formulas from data for classifica-
tion and identification. For future work, we will consider
more efficient methods for inferring more general forms of
GTL formulas. In various networked systems [24], [25],
specifications can be expressed in GTL, hence verification
and controller synthesis can be also conducted with GTL
specifications.
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