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Abstract—We present a novel unsupervised deep learning ap-
proach that utilizes an encoder-decoder architecture for detecting
anomalies in sequential sensor data collected during industrial
manufacturing. Our approach is designed to not only detect
whether there exists an anomaly at a given time step, but also
to predict what will happen next in the (sequential) process.
We demonstrate our approach on a dataset collected from a
real-world Additive Manufacturing (AM) testbed. The dataset
contains infrared (IR) images collected under both normal
conditions and synthetic anomalies. We show that our encoder-
decoder model is able to identify the injected anomalies in a
modern AM manufacturing process in an unsupervised fashion.
In addition, our approach also gives hints about the temperature
non-uniformity of the testbed during manufacturing, which was
not previously known prior to the experiment.

Index Terms—additive manufacturing, machine learning,
anomaly detection, fault detection and diagnosis

I. INTRODUCTION

Anomaly detection is an important task with applications

across a diverse variety of domains, such as fault and in-

terference detection [5], intrusion and fraud detection [20],

and process control [21], amongst many others. The goal

of anomaly detection is to identify patterns in data that do

not conform to a well-defined notion of normal behavior [2].

Early detection of anomalies and faults enables planning for

preventive measures, and is thus crucial for real-world process

control. With the growing availability of massive amounts of

data due to the introduction of pervasive sensing techniques,

there are now ample opportunities for data-driven anomaly

detection applications. However, an unresolved challenge is

how to properly make use of these data for anomaly detection,
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especially when there is no label information that can be

used to differentiate between normal and anomalous working

conditions. In this paper, we tackle this challenge by using an

unsupervised learning method for detecting anomalies in an

Additive Manufacturing (AM) application.

A. Learning-Based Anomaly Detection

Depending on the availability of labeled anomalous data,

learning-based anomaly detection approaches can generally

be categorized into supervised and unsupervised methods.

Supervised methods utilize label information for both normal

and anomalous data to train classification models. The trained

classification models from supervised learning can not only

tell the existence of faults but also indicate the likelihood of

an input belonging to a particular type of fault.

A review of the literature reveals that data-driven ap-

proaches relying on supervised learning have demonstrated

promising results in various applications, e.g. Fault Detection

and Diagnosis (FDD) in air conditioning systems [10], [14],

[15]. To train a well-performing model using supervised

learning, a good amount of labeled data from both normal

and anomalous conditions are needed, which is not always

easy to obtain in practice. In addition, supervised models

typically lack the ability to classify an unseen example that

does not belong to any of the classes that appear in the training

set. In the context of anomaly detection, models trained with

supervised learning are likely to give incorrect predictions

on out-of-distribution data instances. This is a limitation of

most supervised methods because it is almost impossible to

obtain every possible type of anomaly that could happen

on a system. To address this problem, Jin et al. recently

proposed a FDD method that uses Monte-Carlo dropout [10]

to estimate the prediction uncertainty of deep neural networks.

The method was applied to the identification of incipient faults

that are not represented in the training data that only consists

of labeled data of normal and severe faults. Nevertheless,

the approach [10] still requires a reasonable amount of la-

beled anomalous data for training the supervised classification

model.

1008

2019 18th IEEE International Conference on Machine Learning and Applications (ICMLA)

978-1-7281-4550-1/19/$31.00 ©2019 IEEE
DOI 10.1109/ICMLA.2019.00171

Authorized licensed use limited to: University of Texas at Austin. Downloaded on October 12,2020 at 01:31:19 UTC from IEEE Xplore.  Restrictions apply. 



In scenarios where labeled anomalous data are scarce or

unavailable, unsupervised and semi-supervised anomaly de-

tection approaches are usually applied. The two approaches

differ in their assumptions about the labels of training data.

In semi-supervised learning, it is assumed that the training

set is comprised of only data instances from the normal

class1, while in an unsupervised setting, it is often implicitly

assumed that a few anomalous instances can exist in the

training data [2]. We note that the approach we introduce in

this paper can be applied to both settings. We choose to use

the term “unsupervised learning” throughout this paper to refer

to both situations where normal data account for the majority

or the entirety of the training data. Although unsupervised

approaches usually lack the discriminative ability to assign

labels to anomalous data, it is still an appealing complement

to supervised approaches in many real-world applications due

to its ability to learn and predict without using labeled data.

Recently, deep neural networks have attracted much atten-

tion from the machine learning community, due to their ability

to process natural data in their raw form and learn internal

representations that can be used for detecting or classifying

patterns [12]. Yet, as a recent review paper [12] also pointed

out, supervised learning accounted for the majority of the

recent success of deep learning, while unsupervised learning

is expected to be far more important in the longer term. In this

paper, we aim to leverage recent developments in deep learn-

ing and provide a methodology for developing unsupervised

anomaly detection algorithms for handling sequential sensing

data in industrial applications such as additive manufacturing.

B. Our Contributions

We investigate the applicability of an encoder-decoder ap-

proach on sequential image sensing data collected in a real

industrial setting. The contributions of this paper are two-fold:

• We propose using an encoder-decoder architecture for

detecting anomalies in sequential image sensing data

collected from AM process. The learning process is

unsupervised, meaning that no anomalous data are needed

a priori to train the detection model.

• We design a Convolutional Neural Network (CNN)-based

encoder-decoder network to monitor the manufacturing

process of the Laser Additive Manufacturing Pilot System

(LAMPS) testbed, a platform that uses Selective Laser

Sintering (SLS) technology for AM. In our experiment,

the network can not only detect the artificially injected

laser anomalies with high accuracy, but also can indicate

regions of the manufacturing testbed where the tempera-

ture is higher than usual. The proposed method has the

potential to be deployed in an online setting. Our results

demonstrate the effectiveness of the proposed algorithm

in detecting anomalous phenomena.

1Note that semi-supervised anomaly detection differs from the traditional
notion of “semi-supervised learning” in machine learning, where both label
and unlabeled data are used simultaneously for training.

C. Paper Organization

The remainder of this paper is organized as follows.

In Sec. II, we will give the background about LAMPS,

the encoder-decoder architecture and deep-learning-based

anomaly detection approaches. We will define the anomaly

detection problem for sequential data in Sec. III. We will

describe our anomaly detection methodology for sequential

image data in Sec IV. In Sec. V, we will describe in details

our anomaly detection algorithm when applied to a real-world

AM dataset with injected faults. Experimental results will be

demonstrated and evaluated in Sec. VI. We will discuss future

work and conclude the paper in Sec. VII.

II. BACKGROUND

A. Laser Additive Manufacturing Pilot System (LAMPS)

Additive Manufacturing (AM) technologies have trans-

formed the manufacturing landscape. [7] In contrast to tradi-

tional manufacturing technologies, AM technology is capable

of printing 3D parts with highly complex geometries in a

single process step. Due to its versatility, AM is used in

a wide variety of applications such as medical devices and

aircraft manufacturing [1]. One of the most prominent AM

technologies is Selective Laser Sintering (SLS) which uses a

laser to form solid parts out of powdered material. Building

parts with consistent high-quality across all layers is a key

challenge for SLS today [7]. Anomalies in certain layers,

e.g., unexpected temperature changes in the build chamber,

or fluctuation of laser power, may result in highly defective

parts. Therefore, having an algorithm that can monitor the

SLS printing process in real time and can indicate potential

anomalies will significantly improve SLS process control [21].

We now briefly introduce the SLS printing process and the

testbed we used for data collection and testing purposes. SLS

utilizes a laser to fuse powder geometries layer-by-layer and

generates a solid 3D structure. At the beginning of each layer, a

roller spreads a new powder layer across the powder bed. Once

the powder has been spread, the laser melts the cross-section

of the desired part according to the digital 3D model. After

the laser has finished scanning for the current layer, a new

powder layer is spread and the scanning process is repeated.

Over time the melted powder locations on each layer will cool

down and will solidify to one.

LAMPS is an SLS testbed that was designed and built for

process control research. LAMPS is capable of building 3D

parts out of high-performance plastics (melting temperatures

as high as 350 °C) and is equipped with a variety of sensors,

such as IR and visual cameras, that provide in-situ measure-

ment access. Fig. 1a shows the general architecture of the

LAMPS testbed.

In the context of this paper, we focus on images collected

by the high-speed mid-wave infrared (IR) camera that is bore-

sighted with the laser optics for recording the laser focus

and its immediate surroundings. The camera has a resolution

of 64 × 64 pixels and has a maximum recording frame

rate of 2.24 kHz. Fig. 1b shows an exemplary IR image
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(a) LAMPS architecture (b) Boresight image example

Fig. 1: (a) LAMPS testbed [19]. (b) An example image

captured by the boresighted temperature sensor.

of the bore-sighted camera. The recorded IR information is

translated to gray-scale (single-channel) temperature images,

where the intensity value of each pixel represents the measured

temperature value at that pixel. In addition, the image data

are collected in real-time during the manufacturing process,

and hence can be used for online quality monitoring [21] of

the manufacturing process. This makes our approach different

from existing approaches that aim to detect anomalies in post-

build scan data [18].

B. Encoder-decoder architecture

The encoder-decoder architecture has proven to be a useful

approach for learning (deep) representations, and is widely

used in various application domains of deep learning, in-

cluding machine translation [3], and image denoising [26].

An encoder-decoder model generally consists of three parts:

the encoder, the latent space representation, and the decoder.

The purpose of the encoder network Enc is to transform the

input data into a latent space representation z that is often a

vector; the decoder network Dec then produces the output by

decoding z. During training, the encoder and the decoder are

trained together to minimize the empirical risk.

Proper design of the latent space representation z is crucial

to the successful application of the encoder-decoder approach.

Let us take the basic autoencoder model as an example. An

autoencoder is a neural network model that is trained to

reconstruct its input. In other words, an autoencoder is trained

to learn an identity function for the data distribution. By con-

straining z to be a low dimensional vector, the training process

encourages the model to learn the most useful information for

reconstructing the input.

C. Unsupervised anomaly detection with deep learning

Supervised deep learning has been extensively studied in

various applications domains. In fault/anomaly detection tasks,

we often do not have access to the entire spectrum of off-

nominal data, as well as the labels that come along with

it. As a result, unsupervised approaches that do not require

labeled anomaly data are more suitable in such scenarios. In

this paper, we aim to explore unsupervised anomaly detection

using a deep learning approach. Specifically, we will adopt the

encoder-decoder scheme described earlier in Sec. II-C.

The general idea behind unsupervised anomaly detection

approaches is to find an approximate model that can capture

the normal behavior of complex systems. The approximate

model can then be used to flag anomalies if the deviation of

the predicted behaviors of the trained model from the actual

observation exceeds some certain threshold. Examples that

share this general idea include One-class Support Vector Ma-

chine (OC-SVM) [6], [9], [23], Principal Component Analysis

(PCA) [13] and autoencoders [22].
The encoder-decoder schemes for anomaly detection that

appeared in literature in general fall into three categories,

which differ in their prediction outputs: 1) autoencoder mod-

els [16], 2) prediction models, and 3) composite models [25]

that performs both reconstruction and regression. We denote

our observation at time instant τ by Sτ . The observations

we observe in time then forms as a sequence {Sτ}. Let g
be a function that maps an input sequence of length p to an

output sequence. These encoder-decoder schemes are therefore

summarized below:

(Sτ−p+1
, . . . , Sτ0)

g−→

⎧⎪⎨
⎪⎩

(Sτ−p+1 , . . . , Sτ0), reconstruction model,

(Sτ1 , . . . , Sτq ), regression model,

(Sτ−p+1
, . . . , Sτq ), composite model.

(1)

As previously described, reconstruction models (a.k.a. au-

toencoders) aim to find a compact representation for input

data distribution. Depending on the format of the input data,

different neural network architectures or their combinations

are used to design encoders and decoders. Autoencoders are

first trained on data that are normal or almost fault-free. The

reconstruction errors given by autoencoder models are often

used as anomaly scores to indicate potential anomalies. This

approach is seen in previous literature for anomaly detection

in multivariate timeseries [16].
Similarly, we can also use the encoder-decoder architecture

for prediction tasks. In the case of time series data, a neural

network prediction model can be trained to predict the future

from past observations. Taking the past p observations as input

(Sτ−p+1 , . . . , Sτ0), the model is trained to predict the next q
observations (Sτ1 , . . . , Sτq ). During training, the encoder will

look for information needed for the decoder to predict the

future, and encode the information as latent space representa-

tions. In this case, the prediction errors are used to indicate

potential anomalies.
The authors of [25] argue that a composite model, by

performing the reconstruction and the regression tasks simul-

taneously, can overcome the drawbacks of each one when

performed alone, and thus achieving better performance at

learning useful representations in the data. Previous literature

reports on schemes for detecting anomalies in videos [17]

and multivariate time series [16]. In our case study to be

later discussed, we designed our encoder-decoder network

as a composite model to leverage the advantages of both

reconstruction and regression models.

III. THE ANOMALY DETECTION PROBLEM

We are given a series of observations, Sτ0 , Sτ1 , . . . , Sτi , . . .,
where each Sτi ∈ S (S being the input domain) denotes the
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representation of the ith data point in the sequential data. In

the anomaly detection setting, we assume that all data points

from the training set are in the normal state.

Let F be a model class, where each f ∈ F : S → R≥0

denotes a score/fitness function that characterizes how close a

data point is to an abnormal state, i.e., larger f implies higher

chance of a data point being abnormal.

For a given threshold value ε > 0, we define the detection

precision of f as:

prec(f, ε) = ES [1 {S is abnormal} | f(S) > ε]

where the expectation is taken over the distribution of the test

data, and the recall of f as:

recall(f, ε) = ES [1 {f(S) > ε} | S is abnormal]

Our goal is to learn a score function fscore ∈ F and a

corresponding threshold ε, such that (fscore, ε) achieves the

best precision-recall tradeoff on the (unseen) test data.

IV. METHODOLOGY

We utilize the encoder-decoder architecture described in

Sec. II-C to design a neural network that can be used to

detect possible anomalies in AM process. Since we are dealing

with image data in LAMPS application, we choose to use

CNNs [11] as the main building blocks for our encoder-

decoder model. Our approach uses the composite prediction

model described earlier in Sec. II-C—the designed model will

not only attempt to reproduce the input but also predict what

will happen next.

A. CNN-based encoder-decoder model

In our unsupervised learning setting, we only have access

to data points collected under normal condition. The learning

goal is to use a neural network to model the normal behaviors

of the system under study. Outliers to the learned distribution

will be identified as potential anomalies.

Let us suppose that each observation Sτ in the sequential

data is a single-channel 2D image of dimension m × n,
i.e. Sτ ∈ R

m×n. To capture the temporal correlations among

the observations, a sliding window approach can be used to

divide the original image sequence into snippets, where each

snippet Zk ∈ R
m×n×(p+q) comprise of p + q consecutive

frames, and k is the index of the snippet.

When a regression or composite prediction scheme is used

to train an encoder-decoder model, the frames in a snippet

constitute the input and the output. For training a regression

model, the first p frames in a snippet Xk ∈ R
m×n×p constitute

the model input, and the rest q frames are the output to be

predicted. In the case of a composite model, the input is still

the Xk, and the output is the entire p+ q frames. If we view

the frames in a snippet as channels in an image, the learning

problem can be cast as an image-to-image translation task. To

be more specific, we will train the encoder-decoder network

M to learn a mapping g : R
m×n×p → R

m×n×(p+q) that

transforms a p-channel image input Xk to an output Ẑk with

(p+ q) channels. The prediction output Ẑk can be seen as the

combination two parts, X̂k and Ŷk. X̂k is the reconstruction

of the p input frames, and Ŷk is a prediction of the q frames

following the input frames.

When training the encoder-decoder model, we aim to min-

imize the errors on both the reconstruction part and the

regression part. Since the model input and output are both

images, the following pixel-wise Mean Square Error (MSE)

can be used as the error metric on frame Sτ :

�mse(Sτ , Ŝτ ) = ‖Sτ − Ŝτ‖F , (2)

where ‖·‖F is the Frobenius norm of a matrix.

Let us suppose the frames in snippet k are taken at time

instants τ0k , τ
1
k , . . . , τ

p+q−1
k . By choosing (2) as the error met-

ric, we can define the reconstruction error ereck and regression

error eregk on snippet k as follows:

ereck
.
=

∑
0≤i<p

�mse(Sτ i
k
, Ŝτ i

k
), (3)

eregk
.
=

∑
0≤i<p+q

�mse(Sτ i
k
, Ŝτ i

k
). (4)

The loss function L to minimize during model training can

then be defined as as the weighted sum of reconstruction error

ereck and regression error eregk on all training samples k ∈ K:

L =
∑
k

ereck + λeregk (5)

where λ is a weighting factor that adjusts the relative impor-

tance between reconstruction and regression error.

B. Using the trained model for anomaly detection

Assuming the trained encoder-decoder model has learned a

good representation of the normal behavior of the system, the

differences between the predicted images and their correspond-

ing ground truth can be used to indicate possible anomalies.

By comparing the images, we are essentially measuring pixel-

wise disagreements, and thus a method is needed to process

this information in order to detect and locate the anomalies.

One simple idea is to use the original loss function (5) used

for training the network, which can be derived directly from

the prediction results. However, this simple approach suffers

from two drawbacks. First, if the anomaly is only localized

to a small area, it is likely that the prediction errors are only

significant in a small part of the image. When we calculate the

pixel-wise MSE over the entire image, useful indications of

anomalies may be buried in noise and averaged out. Second,

even if a significant loss is observed on an image, this approach

only indicates a potential anomaly on the per-pixel level. Thus,

it is unknown whether the anomaly is local to only a small

area or affects the entire image.

To address the above challenges, we propose a “spatial

scoping” approach: we aim to find an a × b window from

the m× n error matrix Eτ = Sτ − Ŝτ that has the maximum

Frobenius norm. The new error metric �ss is thus defined as:

�ss(Sτ , Ŝτ ) = max
0≤i≤m−a
0≤j≤m−b

‖Ei:i+a,j:j+b
τ ‖F , (6)
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Fig. 2: A top-down illustration of the benchmark dataset. (Left) On the top we show examples of boresight images when the

laser head it at column start, line start, line middle and line end, respectively; on the bottom we illustrate the trace of scanning

laser; (Middle) the nominal and off-nominal scan lines pattern; (Rigth) Examples of preprocessed data (boresight images)

where the superscript in Ei:i+a,j:j+b
τ indicates the position of

the window in the original error matrix Eτ .

Next we define two anomaly scores, the reconstruction
anomaly score f rec

score(τ) and the regression anomaly score
f reg
score(τ), as the metrics for evaluating the “degree of anomaly”

of an observation Sτ . Note that there is more than one snippet

that encompasses Sτ because we used a sliding window

approach to generate the snippets. To get a single anomaly

score taking into account the prediction errors from all relevant

snippets, we define the anomaly score as the average prediction

errors from all these snippets.

Suppose K rec
τ is the index set of snippets whose reconstruc-

tion window covers Sτ , and K rec
τ is the index set of snippets

whose reconstruction or regression window covers Sτ . The

reconstruction and regression anomaly scores on Sτ can be

defined by as follows:

f rec
score(τ) =

1

|K rec
τ |

∑
k∈Krec

τ

ereck , (reconstruction) (7a)

f reg
score(τ) =

1

|K reg
τ |

∑
k∈Kreg

τ

eregk , (regression) (7b)

where |K rec
τ | and |K reg

τ | are the cardinalities of sets K rec
τ

and K reg
τ respectively. A notable difference between K rec

τ and

K reg
τ is their sizes. In the reconstruction case, all snippets

whose regression windows (of length p) cover Sτ are included

in K rec
τ . As a result, |K rec

τ | = p, except at the start or

end of sequence {Sτ}. In the regression case, as long as

an anomaly is seen in either the reconstruction window (of

length p) or the regression window (of length q), the anomaly

would (probably) be caught in the regression error. Therefore,

|K reg
τ | = p+ q except at the start or end of sequence {Sτ}.

The anomaly scores introduced above can be used to

evaluate how likely an observation Sτ will correspond to an

anomalous state of the system under study. Later in Sec. V and

Sec. VI, we will present a case study on LAMPS to illustrate

our proposed approach.

V. ALGORITHMIC DETAILS FOR LAMPS

A. Benchmark dataset with synthetic faults

Fig. 2 shows the laser trajectory in LAMPS machine. It

is clear that the laser follows a periodical motion pattern in

our experiment. The laser firstly moves rightward till the right

boundary of the column and then move leftward to the left

boundary. During each period of motion, the laser power will

move forward 1 unit in the line axis. There is no laser power

in the leftward process which is depicted with dashed lines

in Fig. 2. We therefore only took the rightward process into

consideration in this experiment.

For testing our anomaly detection algorithm, we created an

“off-nominal” build with the LAMPS machine. In this build,

the laser power was altered at specific time instances from its

nominal power. We detail the layout of the build below.

The off-nominal build consisted of three columns being built

over the course of 250 layers. Each column had the same off-

nominal pattern applied in order to create a large dataset. For

each layer, the laser scanned the rectangles (the horizontal

section of the columns) with straight scan lines that were

horizontally aligned. Off-nominal conditions were applied to

every fourth layer by scanning specific scan lines with off-

nominal laser power instead of nominal laser power. The off-

nominal conditions were only applied every fourth layer to

ensure that there would be no temperature influences between

off-nominal layers.
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Fig. 3: Network Structure

The horizontal cross-section of each column is of a rectangle

shape. Fig. 2 illustrates the off-nominal scan line pattern for

one of the three rectangles. Each rectangle consists of 215

horizontal scan lines and the bore-sight camera is able to

approximately take 40 frames for each scan line. The off-

nominal laser power magnitude stayed the same within every

off-nominal layer, but was continuously changed throughout

the build. For more comprehensive testing, the anomalies

injected have different lasting areas, from 1 line to 4 lines.

B. CNN-based encoder-decoder network design

To create training data for the encoder-decoder model, we

divide the dataset into snippets with each consisting p + q
frames. As illustrated in Fig. 2, each snippet is oriented

in the vertical direction and spans p + q scan lines. The

frames within a scan line are ordered by the time sequence

the images were taken. Let us denote by Si,j the jth frame

taken in the ith scan line; here the indices for column num-

ber and layer number are omitted for brevity. The encoder-

decoder model is trained to transform each input data point

Xk = (Si,j , Si−1,j , . . . , Si−p+1,j) ∈ R
m×n×p into a predicted

output Ẑk = (Ŝi,j , Ŝi−1,j , . . . , Ŝi−p+1,j) ∈ R
m×n×(p+q).

We choose to use a VGG-based [24] structure for designing

the network. The convolution kernel size is chosen to be

3 × 3 and the pooling kernel size is chosen to be 2 × 2
to build a deeper network instead of using a large kernel

size. As shown in Fig. 3, in our network there are four

stacked down-sampling layer groups and four stacked up-

sampling layer groups to sample the data and reconstruct the

data respectively. Each down-sampling group has one or two

Convolution layers (depending on the network depth) and a

“Maxpooling” layer and correspondingly each up-sampling

layer has the same number of “Convolution” layers and a

“Up-sampling” layer. Functionally, when the data is input

into the neural network, each down-sampling layer group

will down-sample the spatial dimensions (width, height) and

double the depth of the data while each up-sampling layer

will up-sample the spatial dimensions and halve the depth.

Between the up-sampling groups and down-sampling groups,

we set two fully connected layers, from which the latent

space representations can be extracted. In addition, in order

(a) Reconstruction (b) Regression (c) Temperature

Fig. 4: Top-down views

TABLE I: Experiment results on different layers

Layers
Off-nominal laser power

(% of max value)
Absolute power deviation

(% of max value)
Precision Recall

A1 58 13 0.93 0.95
A2 56 11 0.90 0.99
A3 54 9 0.88 0.87
A4 50 5 0.81 0.65
A5 48 3 0.75 0.61

to prevent the network from over-fitting, we add a “Dropout”

layer to each group. To make training more efficient, we add

a “BatchNormalization” [8] layer to each group between the

“Maxpooling” layer and the “Dropout” layer.

VI. EXPERIMENTAL EVALUATION

A. Data preparation and preprocessing

We choose five nominal layers as our training set and five

off-nominal layers with different size of anomalies as our test

set; see Table I for details about the off-nominal layers.

In our data preprocessing step, the data was normalized

by changing the range (the difference between max and min

values) of the data to one. We down-sampled the original

64 × 64 image data to a resolution of 32 × 32, to reduce

the complexity of our network. We chose p = q = 3 in our

experiment for creating the snippets as described in Sec. V-B.

To improve the robustness of our model against small per-

turbation in input data, we augmented our dataset by adding a

small Gaussian noise (with zero mean and a standard deviation

of 0.01°C) to the training data. In addition, we know from

physics that the thermodynamics of the powder bed is largely

governed by the gradient of the temperature distribution;

therefore, we can do data augmentation by adding a constant

temperature bias b (in our experiment b ∈ [−1.8°C,+1.8°C])
to the original data. This helps regularize our network to better

capture the underlying thermodynamics.

B. Network implementation and hyperparameter tuning

We used Keras [4] as the framework for implementing the

encoder-decoder model. λ was set to 1 so that the reconstruc-

tion and regression errors were equally weighted. The model

was trained for 500 epochs.

In our unsupervised setting, we did not have labeled anoma-

lous data to use for conventional cross-validation for hyper-

parameter tuning as in supervised learning. 20% of the training
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(a) (b)

Fig. 5: (a) The line-wise reconstruction and regression anomaly scores, averaged on each scan line, and (b) the de-trended and

normalized line-wise reconstruction and regression anomaly scores, as well as the detected anomalies. In (a), the raw MSE

error metric (2) is used to calculate the errors and the anomaly scores; in (b) the spatial scoping error metric (6) is used. To

give the readers a clearer understanding, we use pink shades in (b) to indicate the locations of injected anomalies. A blue color

is used to indicate lines adjacent to the injected anomalies if one (or more) window that is used for calculating the anomaly

score at this line overlaps with the injected anomalies. In our setting, the affected region has a width of p+ q− 1 = 5 on each

side of an anomaly. In the plots, the first (and last) three lines are grayed out to ignore boundary effects.

data was left out for validation. To augment the validation set

so that it contains both normal and anomalous data points, we

used some simple methods to inject some synthetic anoma-

lies (e.g., adding big white noises and blanking out some

parts of the original images). We tuned the hyperparameters

(e.g., dropout rates and the number of convolution kernels)

until the validation loss on normal data had converged.

C. Result analysis and evaluation

To assess performance, we tested our model using layers

that have different degrees of anomaly. We plotted the distri-

butions of the reconstruction anomaly score in Fig. 4a and the

regression anomaly score in Fig. 4b from a top-down view,

with the raw MSE (2) used as the error metric. It can be

clearly seen that some of the regions with a high anomaly score

are located along certain scan lines. To better visualize and

quantify the variation of anomaly scores across different scan

lines, we show in Fig. 5a the average anomaly score along each

scan line. We can see that scan lines with high anomaly scores

appear either as “sharp peaks”, or as “big bumps”, which may

indicate different causes of anomalous conditions, and should

thereby be treated and analyzed separately.

Sharp peaks. To isolate these sharp peaks in Fig. 5a, a

detrend technique can be applied to filter out the slowly

varying component; here we use a simple detrend technique

by subtracting the moving average from the signal using

a window size of 20. We also apply the spatial scoping

technique (6) as the error metric for calculating the anomaly

score. The resulting signal is displayed in Fig. 5b, where we

can see a clear correlation between the large peaks and the

Fig. 6: The ROC curves of our learning-based model (darker

colors) vs. the non-learning model (lighter colors) on the five

test layers A1-A5 with injected anomalies.

injected anomalies. A simple thresholding method is used to

detect anomalies. We test our model on the entire training

set and choose the maximum line-wise regression score as the

threshold, so no false positives are detected on all these normal

layers. Most injected anomalies can now be correctly detected.

We also observe that the first anomaly is difficult to detect.

Due to the fact that the deviated laser power merely lasts for

one line, the temperature there has not yet been significantly

changed since the energy accumulated is not sufficient to cause

temperature variation, and these anomalies may be buried in

the noise. Table I shows the performance of our detection

model on the five off-nominal layers. The detection model
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performs better on layers with higher laser power deviation;

the precision and recall rates both exceed 90% in layers A1

and A2. In layers A4 and A5, the precision and recall rates

drop significantly, which is due to the reduced temperature

disturbance due to smaller laser power deviation. Fig. 6 shows

the Area Under the Curve (AUC) rate exceeding 0.97 in layers

A1 and A2 but dropping to 0.776 in layer A5.

For comparison, we also implemented a simple non-learning

method that used raw temperature measurements for detecting

anomalies. The anomaly score for each image Sτ is defined as

its root-mean-square intensity (temperature) over the image:

f temp
score(τ) = ‖Sτ‖F . (8)

As an example, we visualize the distribution of the anomaly

scores on Layer A2 from the non-learning method in Fig. 4c.

The ROC curves obtained from applying this non-learning

method on these anomalous layers are displayed in Fig. 6. It

can be seen that our encoder-decoder approach gives a much

superior performance to the non-learning method.

Big bumps. Having found the cause of sharp peaks, we would

like to identify the cause of large bumps in the anomaly scores.

By comparing the three top-down views in Fig. 4, we observe

an obvious correlation among these large bump regions. We

conjecture that the elevated anomaly scores are due to the high

temperature (generally 2°C higher than surroundings) and the

steep temperature gradient in these parts of the powder bed.

VII. CONCLUSION

In this paper, we proposed an unsupervised deep learning

approach for detecting potential anomalies in an AM system.

As future work, we plan to apply the proposed technique to

other industrial applications. We also plan to conduct a more

in-depth theoretical analysis of the proposed technique.
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