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Abstract—We present a novel unsupervised deep learning ap-
proach that utilizes an encoder-decoder architecture for detecting
anomalies in sequential sensor data collected during industrial
manufacturing. Our approach is designed to not only detect
whether there exists an anomaly at a given time step, but also
to predict what will happen next in the (sequential) process.
We demonstrate our approach on a dataset collected from a
real-world Additive Manufacturing (AM) testbed. The dataset
contains infrared (IR) images collected under both normal
conditions and synthetic anomalies. We show that our encoder-
decoder model is able to identify the injected anomalies in a
modern AM manufacturing process in an unsupervised fashion.
In addition, our approach also gives hints about the temperature
non-uniformity of the testbed during manufacturing, which was
not previously known prior to the experiment.

Index Terms—additive manufacturing, machine learning,
anomaly detection, fault detection and diagnosis

I. INTRODUCTION

Anomaly detection is an important task with applications
across a diverse variety of domains, such as fault and in-
terference detection [5], intrusion and fraud detection [20],
and process control [21], amongst many others. The goal
of anomaly detection is to identify patterns in data that do
not conform to a well-defined notion of normal behavior [2].
Early detection of anomalies and faults enables planning for
preventive measures, and is thus crucial for real-world process
control. With the growing availability of massive amounts of
data due to the introduction of pervasive sensing techniques,
there are now ample opportunities for data-driven anomaly
detection applications. However, an unresolved challenge is
how to properly make use of these data for anomaly detection,
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especially when there is no label information that can be
used to differentiate between normal and anomalous working
conditions. In this paper, we tackle this challenge by using an
unsupervised learning method for detecting anomalies in an
Additive Manufacturing (AM) application.

A. Learning-Based Anomaly Detection

Depending on the availability of labeled anomalous data,
learning-based anomaly detection approaches can generally
be categorized into supervised and unsupervised methods.
Supervised methods utilize label information for both normal
and anomalous data to train classification models. The trained
classification models from supervised learning can not only
tell the existence of faults but also indicate the likelihood of
an input belonging to a particular type of fault.

A review of the literature reveals that data-driven ap-
proaches relying on supervised learning have demonstrated
promising results in various applications, e.g. Fault Detection
and Diagnosis (FDD) in air conditioning systems [10], [14],
[15]. To train a well-performing model using supervised
learning, a good amount of labeled data from both normal
and anomalous conditions are needed, which is not always
easy to obtain in practice. In addition, supervised models
typically lack the ability to classify an unseen example that
does not belong to any of the classes that appear in the training
set. In the context of anomaly detection, models trained with
supervised learning are likely to give incorrect predictions
on out-of-distribution data instances. This is a limitation of
most supervised methods because it is almost impossible to
obtain every possible type of anomaly that could happen
on a system. To address this problem, Jin et al. recently
proposed a FDD method that uses Monte-Carlo dropout [10]
to estimate the prediction uncertainty of deep neural networks.
The method was applied to the identification of incipient faults
that are not represented in the training data that only consists
of labeled data of normal and severe faults. Nevertheless,
the approach [10] still requires a reasonable amount of la-
beled anomalous data for training the supervised classification
model.
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In scenarios where labeled anomalous data are scarce or
unavailable, unsupervised and semi-supervised anomaly de-
tection approaches are usually applied. The two approaches
differ in their assumptions about the labels of training data.
In semi-supervised learning, it is assumed that the training
set is comprised of only data instances from the normal
class', while in an unsupervised setting, it is often implicitly
assumed that a few anomalous instances can exist in the
training data [2]. We note that the approach we introduce in
this paper can be applied to both settings. We choose to use
the term “unsupervised learning” throughout this paper to refer
to both situations where normal data account for the majority
or the entirety of the training data. Although unsupervised
approaches usually lack the discriminative ability to assign
labels to anomalous data, it is still an appealing complement
to supervised approaches in many real-world applications due
to its ability to learn and predict without using labeled data.

Recently, deep neural networks have attracted much atten-
tion from the machine learning community, due to their ability
to process natural data in their raw form and learn internal
representations that can be used for detecting or classifying
patterns [12]. Yet, as a recent review paper [12] also pointed
out, supervised learning accounted for the majority of the
recent success of deep learning, while unsupervised learning
is expected to be far more important in the longer term. In this
paper, we aim to leverage recent developments in deep learn-
ing and provide a methodology for developing unsupervised
anomaly detection algorithms for handling sequential sensing
data in industrial applications such as additive manufacturing.

B. Our Contributions

We investigate the applicability of an encoder-decoder ap-
proach on sequential image sensing data collected in a real
industrial setting. The contributions of this paper are two-fold:

« We propose using an encoder-decoder architecture for
detecting anomalies in sequential image sensing data
collected from AM process. The learning process is
unsupervised, meaning that no anomalous data are needed
a priori to train the detection model.

We design a Convolutional Neural Network (CNN)-based
encoder-decoder network to monitor the manufacturing
process of the Laser Additive Manufacturing Pilot System
(LAMPS) testbed, a platform that uses Selective Laser
Sintering (SLS) technology for AM. In our experiment,
the network can not only detect the artificially injected
laser anomalies with high accuracy, but also can indicate
regions of the manufacturing testbed where the tempera-
ture is higher than usual. The proposed method has the
potential to be deployed in an online setting. Our results
demonstrate the effectiveness of the proposed algorithm
in detecting anomalous phenomena.

'Note that semi-supervised anomaly detection differs from the traditional
notion of “semi-supervised learning” in machine learning, where both label
and unlabeled data are used simultaneously for training.
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C. Paper Organization

The remainder of this paper is organized as follows.
In Sec. II, we will give the background about LAMPS,
the encoder-decoder architecture and deep-learning-based
anomaly detection approaches. We will define the anomaly
detection problem for sequential data in Sec. III. We will
describe our anomaly detection methodology for sequential
image data in Sec IV. In Sec. V, we will describe in details
our anomaly detection algorithm when applied to a real-world
AM dataset with injected faults. Experimental results will be
demonstrated and evaluated in Sec. VI. We will discuss future
work and conclude the paper in Sec. VIL

II. BACKGROUND
A. Laser Additive Manufacturing Pilot System (LAMPS)

Additive Manufacturing (AM) technologies have trans-
formed the manufacturing landscape. [7] In contrast to tradi-
tional manufacturing technologies, AM technology is capable
of printing 3D parts with highly complex geometries in a
single process step. Due to its versatility, AM is used in
a wide variety of applications such as medical devices and
aircraft manufacturing [1]. One of the most prominent AM
technologies is Selective Laser Sintering (SLS) which uses a
laser to form solid parts out of powdered material. Building
parts with consistent high-quality across all layers is a key
challenge for SLS today [7]. Anomalies in certain layers,
e.g., unexpected temperature changes in the build chamber,
or fluctuation of laser power, may result in highly defective
parts. Therefore, having an algorithm that can monitor the
SLS printing process in real time and can indicate potential
anomalies will significantly improve SLS process control [21].

We now briefly introduce the SLS printing process and the
testbed we used for data collection and testing purposes. SLS
utilizes a laser to fuse powder geometries layer-by-layer and
generates a solid 3D structure. At the beginning of each layer, a
roller spreads a new powder layer across the powder bed. Once
the powder has been spread, the laser melts the cross-section
of the desired part according to the digital 3D model. After
the laser has finished scanning for the current layer, a new
powder layer is spread and the scanning process is repeated.
Over time the melted powder locations on each layer will cool
down and will solidify to one.

LAMPS is an SLS testbed that was designed and built for
process control research. LAMPS is capable of building 3D
parts out of high-performance plastics (melting temperatures
as high as 350 °C) and is equipped with a variety of sensors,
such as IR and visual cameras, that provide in-situ measure-
ment access. Fig. la shows the general architecture of the
LAMPS testbed.

In the context of this paper, we focus on images collected
by the high-speed mid-wave infrared (IR) camera that is bore-
sighted with the laser optics for recording the laser focus
and its immediate surroundings. The camera has a resolution
of 64 x 64 pixels and has a maximum recording frame
rate of 2.24 kHz. Fig. 1b shows an exemplary IR image
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(a) LAMPS architecture

Fig. 1: (a) LAMPS testbed [19]. (b) An example image
captured by the boresighted temperature sensor.

(b) Boresight image example

of the bore-sighted camera. The recorded IR information is
translated to gray-scale (single-channel) temperature images,
where the intensity value of each pixel represents the measured
temperature value at that pixel. In addition, the image data
are collected in real-time during the manufacturing process,
and hence can be used for online quality monitoring [21] of
the manufacturing process. This makes our approach different
from existing approaches that aim to detect anomalies in post-
build scan data [18].

B. Encoder-decoder architecture

The encoder-decoder architecture has proven to be a useful
approach for learning (deep) representations, and is widely
used in various application domains of deep learning, in-
cluding machine translation [3], and image denoising [26].
An encoder-decoder model generally consists of three parts:
the encoder, the latent space representation, and the decoder.
The purpose of the encoder network Enc is to transform the
input data into a latent space representation z that is often a
vector; the decoder network Dec then produces the output by
decoding z. During training, the encoder and the decoder are
trained together to minimize the empirical risk.

Proper design of the latent space representation z is crucial
to the successful application of the encoder-decoder approach.
Let us take the basic autoencoder model as an example. An
autoencoder is a neural network model that is trained to
reconstruct its input. In other words, an autoencoder is trained
to learn an identity function for the data distribution. By con-
straining z to be a low dimensional vector, the training process
encourages the model to learn the most useful information for
reconstructing the input.

C. Unsupervised anomaly detection with deep learning

Supervised deep learning has been extensively studied in
various applications domains. In fault/anomaly detection tasks,
we often do not have access to the entire spectrum of off-
nominal data, as well as the labels that come along with
it. As a result, unsupervised approaches that do not require
labeled anomaly data are more suitable in such scenarios. In
this paper, we aim to explore unsupervised anomaly detection
using a deep learning approach. Specifically, we will adopt the
encoder-decoder scheme described earlier in Sec. II-C.

The general idea behind unsupervised anomaly detection
approaches is to find an approximate model that can capture
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the normal behavior of complex systems. The approximate
model can then be used to flag anomalies if the deviation of
the predicted behaviors of the trained model from the actual
observation exceeds some certain threshold. Examples that
share this general idea include One-class Support Vector Ma-
chine (OC-SVM) [6], [9], [23], Principal Component Analysis
(PCA) [13] and autoencoders [22].

The encoder-decoder schemes for anomaly detection that
appeared in literature in general fall into three categories,
which differ in their prediction outputs: 1) autoencoder mod-
els [16], 2) prediction models, and 3) composite models [25]
that performs both reconstruction and regression. We denote
our observation at time instant 7 by S;. The observations
we observe in time then forms as a sequence {S;}. Let g
be a function that maps an input sequence of length p to an
output sequence. These encoder-decoder schemes are therefore
summarized below:

(Sr_pias-->S7)
(Sr_,41s---,S7,), reconstruction model,
EN (S7,...,8z,), regression model, (1)
(S7_,41s+++,S7,), composite model.

As previously described, reconstruction models (a.k.a. au-
toencoders) aim to find a compact representation for input
data distribution. Depending on the format of the input data,
different neural network architectures or their combinations
are used to design encoders and decoders. Autoencoders are
first trained on data that are normal or almost fault-free. The
reconstruction errors given by autoencoder models are often
used as anomaly scores to indicate potential anomalies. This
approach is seen in previous literature for anomaly detection
in multivariate timeseries [16].

Similarly, we can also use the encoder-decoder architecture
for prediction tasks. In the case of time series data, a neural
network prediction model can be trained to predict the future
from past observations. Taking the past p observations as input
(Sr_,1s--->57,), the model is trained to predict the next ¢
observations (S, ..., Sr, ). During training, the encoder will
look for information needed for the decoder to predict the
future, and encode the information as latent space representa-
tions. In this case, the prediction errors are used to indicate
potential anomalies.

The authors of [25] argue that a composite model, by
performing the reconstruction and the regression tasks simul-
taneously, can overcome the drawbacks of each one when
performed alone, and thus achieving better performance at
learning useful representations in the data. Previous literature
reports on schemes for detecting anomalies in videos [17]
and multivariate time series [16]. In our case study to be
later discussed, we designed our encoder-decoder network
as a composite model to leverage the advantages of both
reconstruction and regression models.

III. THE ANOMALY DETECTION PROBLEM

We are given a series of observations, Sr,, Sr,..., 5+, ..
where each S;, € S (S being the input domain) denotes the
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representation of the ith data point in the sequential data. In
the anomaly detection setting, we assume that all data points
from the training set are in the normal state.

Let F be a model class, where each f € F : S — R
denotes a score/fitness function that characterizes how close a
data point is to an abnormal state, i.e., larger f implies higher
chance of a data point being abnormal.

For a given threshold value € > 0, we define the detection
precision of f as:

prec(f,e) = Eg[1 {S is abnormal} | f(S) > €

where the expectation is taken over the distribution of the test
data, and the recall of f as:

recall(f,e) = Eg[1{f(S) > €} | S is abnormal]

Our goal is to learn a score function feore € F and a
corresponding threshold €, such that (fsore,€) achieves the
best precision-recall tradeoff on the (unseen) test data.

IV. METHODOLOGY

We utilize the encoder-decoder architecture described in
Sec. II-C to design a neural network that can be used to
detect possible anomalies in AM process. Since we are dealing
with image data in LAMPS application, we choose to use
CNNs [11] as the main building blocks for our encoder-
decoder model. Our approach uses the composite prediction
model described earlier in Sec. II-C—the designed model will
not only attempt to reproduce the input but also predict what
will happen next.

A. CNN-based encoder-decoder model

In our unsupervised learning setting, we only have access
to data points collected under normal condition. The learning
goal is to use a neural network to model the normal behaviors
of the system under study. Outliers to the learned distribution
will be identified as potential anomalies.

Let us suppose that each observation S, in the sequential
data is a single-channel 2D image of dimension m X n,
ie. S; € R™*™, To capture the temporal correlations among
the observations, a sliding window approach can be used to
divide the original image sequence into snippets, where each
snippet Z; € R™*"*(P+9) comprise of p 4+ ¢ consecutive
frames, and & is the index of the snippet.

When a regression or composite prediction scheme is used
to train an encoder-decoder model, the frames in a snippet
constitute the input and the output. For training a regression
model, the first p frames in a snippet X5 € R™*"*P constitute
the model input, and the rest ¢ frames are the output to be
predicted. In the case of a composite model, the input is still
the Xy, and the output is the entire p + ¢ frames. If we view
the frames in a snippet as channels in an image, the learning
problem can be cast as an image-to-image translation task. To
be more specific, we will train the encoder-decoder network
M to learn a mapping g : R7X"*P — R7™*nx(P+a) that
transforms a p-channel image input X to an output Z,, with
(p+ q) channels. The prediction output 7, can be seen as the
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combination two parts, Xk and YA'k. Xk is the reconstruction
of the p input frames, and Y is a prediction of the ¢ frames
following the input frames.

When training the encoder-decoder model, we aim to min-
imize the errors on both the reconstruction part and the
regression part. Since the model input and output are both
images, the following pixel-wise Mean Square Error (MSE)
can be used as the error metric on frame S;:

gmse(STvS'r) = ||S7. - S’T”Fa 2

where ||-||p is the Frobenius norm of a matrix.
Let us suppose the frames in snippet k are taken at time
instants 70, 78, ..., T +2=1 By choosing (2) as the error met-

5 The
ric, we can define the reconstruction error €} and regression

error €} on snippet k as follows:
efc = Z EmSC(ST;i,ST;;)7 (3
0<i<p
e;:g = Z E’mse (S-r;C ) Sq—i) (4)
0<i<p+q

The loss function L to minimize during model training can
then be defined as as the weighted sum of reconstruction error
el and regression error e ° on all training samples k € K:

k

L=> ¢+ e}t ()
k

where A is a weighting factor that adjusts the relative impor-

tance between reconstruction and regression error.

B. Using the trained model for anomaly detection

Assuming the trained encoder-decoder model has learned a
good representation of the normal behavior of the system, the
differences between the predicted images and their correspond-
ing ground truth can be used to indicate possible anomalies.
By comparing the images, we are essentially measuring pixel-
wise disagreements, and thus a method is needed to process
this information in order to detect and locate the anomalies.

One simple idea is to use the original loss function (5) used
for training the network, which can be derived directly from
the prediction results. However, this simple approach suffers
from two drawbacks. First, if the anomaly is only localized
to a small area, it is likely that the prediction errors are only
significant in a small part of the image. When we calculate the
pixel-wise MSE over the entire image, useful indications of
anomalies may be buried in noise and averaged out. Second,
even if a significant loss is observed on an image, this approach
only indicates a potential anomaly on the per-pixel level. Thus,
it is unknown whether the anomaly is local to only a small
area or affects the entire image.

To address the above challenges, we propose a “spatial
scoping” approach: we aim to find an a X b window from
the m X n error matrix £, = S, — S’T that has the maximum
Frobenius norm. The new error metric ¢, is thus defined as:

ZSS(STa ST) = |‘Ei:i+a’j:j+b||Fa (6)

max
0<i<m—a

0<j<m—b
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Fig. 2: A top-down illustration of the benchmark dataset. (Left) On the top we show examples of boresight images when the
laser head it at column start, line start, line middle and line end, respectively; on the bottom we illustrate the trace of scanning
laser; (Middle) the nominal and off-nominal scan lines pattern; (Rigth) Examples of preprocessed data (boresight images)

where the superscript in E#1+9:7:7+? indicates the position of
the window in the original error matrix E,.

Next we define two anomaly scores, the reconstruction
anomaly score fis (1) and the regression anomaly score
fresie(T), as the metrics for evaluating the “degree of anomaly”
of an observation S;. Note that there is more than one snippet
that encompasses S, because we used a sliding window
approach to generate the snippets. To get a single anomaly
score taking into account the prediction errors from all relevant
snippets, we define the anomaly score as the average prediction
errors from all these snippets.

Suppose K¢ is the index set of snippets whose reconstruc-
tion window covers S, and K™ is the index set of snippets
whose reconstruction or regression window covers S;. The
reconstruction and regression anomaly scores on S, can be
defined by as follows:

1
fiore(T) = K| > €, (reconstruction)  (7a)
T ke K
1 .
seore (T) = ——reg; Z ext, (regression) (7b)
1S e

where |K™| and |Kr®| are the cardinalities of sets K™
and K7 respectively. A notable difference between K™ and
K™ is their sizes. In the reconstruction case, all snippets
whose regression windows (of length p) cover S, are included
in K. As a result, |[KI| = p, except at the start or
end of sequence {S;}. In the regression case, as long as
an anomaly is seen in either the reconstruction window (of
length p) or the regression window (of length ¢), the anomaly
would (probably) be caught in the regression error. Therefore,
|KT8| = p+ q except at the start or end of sequence {S,}.

The anomaly scores introduced above can be used to
evaluate how likely an observation S, will correspond to an
anomalous state of the system under study. Later in Sec. V and
Sec. VI, we will present a case study on LAMPS to illustrate
our proposed approach.

V. ALGORITHMIC DETAILS FOR LAMPS

A. Benchmark dataset with synthetic faults

Fig. 2 shows the laser trajectory in LAMPS machine. It
is clear that the laser follows a periodical motion pattern in
our experiment. The laser firstly moves rightward till the right
boundary of the column and then move leftward to the left
boundary. During each period of motion, the laser power will
move forward 1 unit in the line axis. There is no laser power
in the leftward process which is depicted with dashed lines
in Fig. 2. We therefore only took the rightward process into
consideration in this experiment.

For testing our anomaly detection algorithm, we created an
“off-nominal” build with the LAMPS machine. In this build,
the laser power was altered at specific time instances from its
nominal power. We detail the layout of the build below.

The off-nominal build consisted of three columns being built
over the course of 250 layers. Each column had the same off-
nominal pattern applied in order to create a large dataset. For
each layer, the laser scanned the rectangles (the horizontal
section of the columns) with straight scan lines that were
horizontally aligned. Off-nominal conditions were applied to
every fourth layer by scanning specific scan lines with off-
nominal laser power instead of nominal laser power. The off-
nominal conditions were only applied every fourth layer to
ensure that there would be no temperature influences between
off-nominal layers.
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The horizontal cross-section of each column is of a rectangle
shape. Fig. 2 illustrates the off-nominal scan line pattern for
one of the three rectangles. Each rectangle consists of 215
horizontal scan lines and the bore-sight camera is able to
approximately take 40 frames for each scan line. The off-
nominal laser power magnitude stayed the same within every
off-nominal layer, but was continuously changed throughout
the build. For more comprehensive testing, the anomalies
injected have different lasting areas, from 1 line to 4 lines.

B. CNN-based encoder-decoder network design

To create training data for the encoder-decoder model, we
divide the dataset into snippets with each consisting p + ¢
frames. As illustrated in Fig. 2, each snippet is oriented
in the vertical direction and spans p + ¢ scan lines. The
frames within a scan line are ordered by the time sequence
the images were taken. Let us denote by S, ; the jth frame
taken in the 7th scan line; here the indices for column num-
ber and layer number are omitted for brevity. The encoder-
decoder model is trained to transform each input data point
Xy = (Sij,Si—14,---+Si—pt1,5) € R™*™*P into a predicted
output Zk = (Si1j7 Sifl,ja e Siprrl,j) € Rmxnx(pta),

We choose to use a VGG-based [24] structure for designing
the network. The convolution kernel size is chosen to be
3 x 3 and the pooling kernel size is chosen to be 2 x 2
to build a deeper network instead of using a large kernel
size. As shown in Fig. 3, in our network there are four
stacked down-sampling layer groups and four stacked up-
sampling layer groups to sample the data and reconstruct the
data respectively. Each down-sampling group has one or two
Convolution layers (depending on the network depth) and a
“Maxpooling” layer and correspondingly each up-sampling
layer has the same number of “Convolution” layers and a
“Up-sampling” layer. Functionally, when the data is input
into the neural network, each down-sampling layer group
will down-sample the spatial dimensions (width, height) and
double the depth of the data while each up-sampling layer
will up-sample the spatial dimensions and halve the depth.
Between the up-sampling groups and down-sampling groups,
we set two fully connected layers, from which the latent
space representations can be extracted. In addition, in order
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Fig. 4: Top-down views

TABLE I: Experiment results on different layers

Off-nominal laser power  Absolute power deviation

Layers (% of max value) (% of max value) Precision  Recall
Al 58 13 0.93 0.95
A2 56 11 0.90 0.99
A3 54 9 0.88 0.87
A4 50 5 0.81 0.65
AS 48 3 0.75 0.61

to prevent the network from over-fitting, we add a “Dropout”
layer to each group. To make training more efficient, we add
a “BatchNormalization” [8] layer to each group between the
“Maxpooling” layer and the “Dropout” layer.

VI. EXPERIMENTAL EVALUATION
A. Data preparation and preprocessing

We choose five nominal layers as our training set and five
off-nominal layers with different size of anomalies as our test
set; see Table I for details about the off-nominal layers.

In our data preprocessing step, the data was normalized
by changing the range (the difference between max and min
values) of the data to one. We down-sampled the original
64 x 64 image data to a resolution of 32 x 32, to reduce
the complexity of our network. We chose p = ¢ = 3 in our
experiment for creating the snippets as described in Sec. V-B.

To improve the robustness of our model against small per-
turbation in input data, we augmented our dataset by adding a
small Gaussian noise (with zero mean and a standard deviation
of 0.01°C) to the training data. In addition, we know from
physics that the thermodynamics of the powder bed is largely
governed by the gradient of the temperature distribution;
therefore, we can do data augmentation by adding a constant
temperature bias b (in our experiment b € [—1.8°C, +1.8°C])
to the original data. This helps regularize our network to better
capture the underlying thermodynamics.

B. Network implementation and hyperparameter tuning

We used Keras [4] as the framework for implementing the
encoder-decoder model. A was set to 1 so that the reconstruc-
tion and regression errors were equally weighted. The model
was trained for 500 epochs.

In our unsupervised setting, we did not have labeled anoma-
lous data to use for conventional cross-validation for hyper-
parameter tuning as in supervised learning. 20% of the training
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Fig. 5: (a) The line-wise reconstruction and regression anomaly scores, averaged on each scan line, and (b) the de-trended and
normalized line-wise reconstruction and regression anomaly scores, as well as the detected anomalies. In (a), the raw MSE
error metric (2) is used to calculate the errors and the anomaly scores; in (b) the spatial scoping error metric (6) is used. To
give the readers a clearer understanding, we use pink shades in (b) to indicate the locations of injected anomalies. A blue color
is used to indicate lines adjacent to the injected anomalies if one (or more) window that is used for calculating the anomaly
score at this line overlaps with the injected anomalies. In our setting, the affected region has a width of p+¢—1 = 5 on each
side of an anomaly. In the plots, the first (and last) three lines are grayed out to ignore boundary effects.

data was left out for validation. To augment the validation set
so that it contains both normal and anomalous data points, we
used some simple methods to inject some synthetic anoma-
lies (e.g., adding big white noises and blanking out some
parts of the original images). We tuned the hyperparameters
(e.g., dropout rates and the number of convolution kernels)
until the validation loss on normal data had converged.

C. Result analysis and evaluation

To assess performance, we tested our model using layers
that have different degrees of anomaly. We plotted the distri-
butions of the reconstruction anomaly score in Fig. 4a and the
regression anomaly score in Fig. 4b from a top-down view,
with the raw MSE (2) used as the error metric. It can be
clearly seen that some of the regions with a high anomaly score
are located along certain scan lines. To better visualize and
quantify the variation of anomaly scores across different scan
lines, we show in Fig. Sa the average anomaly score along each
scan line. We can see that scan lines with high anomaly scores
appear either as “sharp peaks”, or as “big bumps”, which may
indicate different causes of anomalous conditions, and should
thereby be treated and analyzed separately.

Sharp peaks. To isolate these sharp peaks in Fig. 5a, a
detrend technique can be applied to filter out the slowly
varying component; here we use a simple detrend technique
by subtracting the moving average from the signal using
a window size of 20. We also apply the spatial scoping
technique (6) as the error metric for calculating the anomaly
score. The resulting signal is displayed in Fig. 5b, where we
can see a clear correlation between the large peaks and the
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Fig. 6: The ROC curves of our learning-based model (darker

colors) vs. the non-learning model (lighter colors) on the five
test layers A1-AS with injected anomalies.

injected anomalies. A simple thresholding method is used to
detect anomalies. We test our model on the entire training
set and choose the maximum line-wise regression score as the
threshold, so no false positives are detected on all these normal
layers. Most injected anomalies can now be correctly detected.
We also observe that the first anomaly is difficult to detect.
Due to the fact that the deviated laser power merely lasts for
one line, the temperature there has not yet been significantly
changed since the energy accumulated is not sufficient to cause
temperature variation, and these anomalies may be buried in
the noise. Table I shows the performance of our detection
model on the five off-nominal layers. The detection model
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performs better on layers with higher laser power deviation;
the precision and recall rates both exceed 90% in layers Al
and A2. In layers A4 and AS, the precision and recall rates
drop significantly, which is due to the reduced temperature
disturbance due to smaller laser power deviation. Fig. 6 shows
the Area Under the Curve (AUC) rate exceeding 0.97 in layers
Al and A2 but dropping to 0.776 in layer AS.

For comparison, we also implemented a simple non-learning
method that used raw temperature measurements for detecting
anomalies. The anomaly score for each image S, is defined as
its root-mean-square intensity (temperature) over the image:

(1) = 15+ (®)

As an example, we visualize the distribution of the anomaly
scores on Layer A2 from the non-learning method in Fig. 4c.
The ROC curves obtained from applying this non-learning
method on these anomalous layers are displayed in Fig. 6. It
can be seen that our encoder-decoder approach gives a much
superior performance to the non-learning method.

temp
score

Big bumps. Having found the cause of sharp peaks, we would
like to identify the cause of large bumps in the anomaly scores.
By comparing the three top-down views in Fig. 4, we observe
an obvious correlation among these large bump regions. We
conjecture that the elevated anomaly scores are due to the high
temperature (generally 2°C higher than surroundings) and the
steep temperature gradient in these parts of the powder bed.

VII. CONCLUSION

In this paper, we proposed an unsupervised deep learning
approach for detecting potential anomalies in an AM system.
As future work, we plan to apply the proposed technique to
other industrial applications. We also plan to conduct a more
in-depth theoretical analysis of the proposed technique.
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