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Exact Multistatic Interferometric Imaging via
Generalized Wirtinger Flow

Bariscan Yonel

Abstract—We present a novel, exact method to address the inter-
ferometric inversion problem for multistatic wave-based imaging
based on Generalized Wirtinger Flow (GWF) [1]. Interferometric
imaging is a relative of phase retrieval, which arises from cross-
correlating measurements from pairs of receivers. GWF provides
a theoretical framework to process scattering data satisfying the
Born approximation, and guarantees exact recovery of the under-
lying scene reflectivity vector from interferometric measurements
if the discretized lifted forward model satisfies the restricted isom-
etry property over rank-1, positive semi-definite matrices with a
sufficiently small restricted isometry constant (RIC). To this end,
we design a linear deterministic discrete lifted forward model for
interferometric multistatic radar measurements such that the exact
recovery conditions of GWF are satisfied. Our results identify a
lower limit on the pixel spacing and the sample complexity for
exact multistatic radar imaging. We provide a numerical study
of our RIC and pixel spacing bounds on synthetic single scatter-
ing data, which show that GWF can achieve exact recovery with
super-resolution. While our primary interest lies in radar imaging,
our results are applicable to other multistatic wave-based imaging
problems such as those arising in acoustics and geophysics.

Index Terms—Multi-static radar, radar imaging, non-convex
optimization, interferometric inversion, phase retrieval, wirtinger
flow.

1. INTRODUCTION
A. Motivation and Objective

N THIS paper, we study the exact reconstruction of complex
I scenes in the context of multistatic interferometric imaging.
Interferometric imaging is a close relative of phaseless imaging
where, in lieu of self-correlated, intensity only data, we have
pairwise cross-correlated data that introduces a phase compo-
nent. This work establishes Generalized Wirtinger Flow (GWF),
a computationally efficient interferometric inversion method
developed in [1], as a theoretical framework for exact multi-
static imaging of arbitrary scenes from scattering data satisfying
the Born approximation, while relating its recovery guarantees
to the imaging system parameters. To this end, we design a
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deterministic and underdetermined linear measurement model
satisfying the GWF’s sufficient condition for exact recovery. In
addition, under the single scattering assumption, we show that
it is possible to obtain exact reconstruction at a pixel spacing
smaller than the resolution limit of Fourier-based methods and
provide minimum order of measurements sufficient to guarantee
such reconstruction.

The recently developed GWF algorithm is inspired by stan-
dard Wirtinger Flow (WF) [2] developed for the generalized
phase retrieval problem to overcome practical drawbacks of
then state-of-the art lifting based methods [3], [4]. The GWF
algorithm extends the standard WF to interferometric inversion
problems, and identifies a sufficient condition for exact recovery
with arbitrary linear measurement models characterized over
the lifted domain. Hence, unlike standard WF which guaran-
tees exact recovery for specific random measurement models,
GWF theory guarantees exact recovery for a general class of
interferometric inversion problems including random and deter-
ministic models that abide by a single condition. In particular,
the sufficient condition requires the lifted forward map to sat-
isfy the restricted isometry property (RIP) for rank-1, positive
semi-definite (PSD) matrices with a sufficiently small restricted
isometry constant (RIC). To the best of our knowledge, our
work is the first in which a deterministic and underdetermined
forward model satisfying RIP for rank-1, PSD matrices in the
lifted domain has been designed.

We provide two outcomes that unify the imaging problem with
the abstract theory of GWF. First, we determine the minimum
pixel spacing that can satisfy the sufficient condition for exact
recovery via the GWF algorithm. Our lower bound depends on
the imaging system parameters, thereby, quantifies the range of
values and imaging scenarios for exact recovery guarantees to
hold. For common radar imaging parameters spanning passive
and active imaging modalities, this fundamental lower bound
outperforms the range resolution limit of Fourier-based imaging
methods for sufficiently small scenes.

Secondly, we determine the sample complexity in the order
of the number of unknowns to be reconstructed. Unlike the
classical results from electromagnetic scattering theory which
study the degrees of freedom of scattered fields via their
spatially band-limited nature and Nyquist sampling [5], [6],
our analysis is based on the discrete problem, with a geometry
consisting of sparsely distributed, static, terrestrial receivers.
Furthermore, our sampling complexity result directly relates to
the exact recovery guarantees of GWF through the properties of
the lifted forward map, rather than the accuracy of interpolating
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the sampled scattered field. Notably, we establish that the exact
recovery guarantees of GWF hold for a discrete lifted forward
model that is underdetermined. Hence, we specify a multistatic
measurement model with an optimal order of measurements for
interferometric wave-based imaging.

B. Related Work and Advantages of GWF

Interferometric techniques have arich history in acoustic, geo-
physical, and electromagnetic wave-based imaging. Cross cor-
relations are frequently deployed as a fundamental formulation
for passive modalities [7]-[11], in which the received ambient
signal originates from a source of opportunity, such as a wireless
communication signal, digital TV signal or FM radio for radar
imaging. On the other hand, cross-correlations were proposed
for active imaging problems to mitigate the effects of statistical
fluctuations in scattering media [12], [13], clutter [14]-[16], and
phase errors in the correlated linear transformations [17]-[20].
More recently, inversion from phaseless scattered fields were
proposed [21]-[23], to fully eliminate the need of coherent
data acquisition in various modalities to cut implementation
costs [24], or evade fundamental issues in maintaining phase
coherence over long synthetic apertures [25]. Here, we motivate
our approach for interferometric multi-static radar imaging via
its advantages over several conventional and modern methods
in the literature.

1) Passive Radar: A popular method for passive imaging is
the time difference of arrival (TDOA) backprojection [7], [9],
[26]-[29]. Although they are computationally efficient, TDOA
backprojection is based on certain assumptions on the scatter-
ers [7] that are not applicable for realistic scenes and can produce
undesirable background artifacts [30].

To mitigate this problem, methods based on lifting have been
adapted to the interferometric measurement model for passive
imaging [11], [31]. These methods are inspired by the convex
semi-definite programming approaches to phase retrieval [3],
[4], [32], [33], which reformulate inversion as a low rank ma-
trix recovery (LRMR) problem. Convexification has the added
advantage that LRMR is known to have theoretical exact re-
covery guarantees under certain conditions on the lifted forward
map [34]. However, these advantages come at the cost of increas-
ing the dimension of the inverse problem, and hence introduce
several limitations. Specifically, as a result of lifting, LRMR
suffers from limitations on spatial sampling of the imaging grid
due to high computational complexity and demanding memory
requirements [1], [11].

GWEF is a non-convex optimization approach that operates
fully on the original signal domain, thus avoids lifting the prob-
lem at implementation and provides computational and memory
efficiency over LRMR methods. Unlike TDOA/FDOA backpro-
jection, GWF guarantees exact recovery without additional prior
knowledge or limiting assumptionson the scene. Furthermore,
the exact recovery guarantees afforded by LRMR [34] require
more stringent conditions on the lifted forward map than that of
GWF [1].
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2) Active Radar: For active imaging, there exists a rich liter-
ature of methods on general multistatic geometries involving
distributed antennas [35], [36] or arrays [37]. These include
time reversal and beamforming [38], [39], subspace methods
(MUSIC [37], [40], linear sampling [41]-[43]), and iterative
optimization schemes [44]-[46].

Time-reversal, beamforming and MUSIC have wide use in
array imaging problems. These methods assume that the scat-
terers in the scene of interest are point-like and the number
of measurements are greater than number of scatterers in the
scene [40], [47]. This is in stark contrast to our GWF framework,
in which no such assumptions are needed.

Linear sampling methods (LSM) were devised to extend
the applicability of subspace methods to the reconstruction of
extended targets in the far field and can recover the boundaries
of extended objects [41], [42]. Similar to our imaging system
geometry, linear sampling methods originally considered a sce-
nario that the receivers and transmitters fully encircle the scene
of interest in the far field. The method reportedly degrades
when the aperture angle is less than 27 radians [48], which
was effectively addressed by using a modified support indicator
and multi-frequency data to produce accurate imagery in [49].
More recently in [50], [51] quantitative reconstructions were
obtained via LSM by means of incorporating virtual experiments
to counter aspect limitations. Notably, our result for multi-static
radar measurements captures an analytic dependence on the
aperture angle to attain the sufficient condition of GWF on
the discrete lifted forward model for exact recovery. Hence, an
imaging system can accordingly be designed to guarantee exact
recovery via GWF when the aperture angle is limited.

Regularized iterative reconstruction approaches, such as total
variation (TV) [44] and /-1 regularization [45], [46], have shown
to achieve edge preservation. However, regularized iterative
reconstruction approaches, in general, do not offer a theoretical
exact recovery guarantee. Notably, TV regularization, while
convex, is known to have multiple non-trivial minimizers. In
addition, the TV regularizer does not have a closed form prox-
imity operator, hence iterative reconstruction requires an inner
optimization problem at each iteration. Similar problems also ex-
ist with /1 regularization due to existence of a tuning parameter,
which is heuristically determined. More importantly, the ¢; regu-
larizer is based on sparsity assumptions on the unknown, which
may not be applicable to realistic scenes. GWF, on the other
hand, offers exact recovery guarantees for complex, realistic
scenes under the Born approximation, with low computational
complexity per iteration to solve the discretized inverse problem.

C. Organization of the Paper

In Section II, we describe the signal model for interferometric
multistatic radar. Section III presents our main results on the rela-
tion of imaging system parameters of multistatic radar to the RIC
over rank-1 real-valued PSD matrices. Section IV describes the
simulated experiments performed with synthetic data generated
under the Born approximation to verify our results in Section III.
Section V concludes the paper.
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II. SIGNAL MODEL
A. Received Data Model

Let IV be the number of receivers each deployed at different
spatial locations a},7 = 1,..., N, where subscript 7 denotes the
i-th receiver and superscript r denotes receiver. Assume a single
transmitter located at a*. Furthermore, without loss of generality,
we assume that the ground topography is flat. Thus, each spatial
location in three-dimensional space is represented as x = [z, 0]
where = € R?. Under these assumptions and that only the
scattered field is being measured under the Born approximation,
the received signal at each receiver for multistatic radar can be
modeled as [52]

filw) = / /0t ) A, (a, w) () d,
D

w € [we— B/2,w.+ B/2] CR (1)
where
pi(x) =[x —aj| + [x — a'| (2)

is the bistatic phase function, D C R? is the support of the scene,
w is the fast-time frequency variable, w. is the center frequency,
B is the bandwidth, ¢y is the speed of light, p is the target/scene
reflectivity function; and A; is the amplitude function given by

Ji(x, w)Jp (x,w)

x — aj| |x —a’l

Ai(x,w) = (3
with J;, and J; being the receiver and transmitter antenna
beampatterns.

B. Correlated Measurements

Given the datamodel (1), we consider the interferometric data,
i.e. fast-time cross-correlation of the measurements at pairs of
different receivers. Furthermore, we make the assumption that
| Je(x,wm)| &~ C; € R . In other words, we assume that the
transmitted waveform has a flat spectrum, and that the scene
remains in the —3 dB beam-width of the illumination pattern.
This is typical of radar waveforms and waveforms of oppor-
tunity such as phase shift keying (PSK) modulation found in
orthogonal frequency-division multiplexing (OFDM) common
among digital communications. Using (1)-(3), the correlated
measurements can be modeled as

d; (w) = / eiw/CO‘Pi-,j(X,x’)Ai’j (:B,az/,w)ﬁ(a:, m/)da)da)/
DxD

4)
where
e ) = b a| + x| — [ — ] — [/ —al].
(5
Ai,j(w7w,aw) = Ai(wi)A;’(w/vw) (6)
and
pla,') = p(a)p’ (@) 1)

with (-)* denoting complex conjugation. We call p the lifted
version of p or the Kronecker scene.
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We next make the small-scene and far-field approximation
and approximate the phase term in (5) as

pij(x,x) & |aj] — [a}] — (], x) + (&}, x) — (&', x — x)
®)

where a is the unit vector in the direction of a, and (6) as

27, X *
Ayl w) v ayy = D) (@0 0)

9
allga?
where x,, denotes the center of the scene, with |.J;(x,,w)| = C;
over the observed frequency band. We assume that the support of
the scene is discretized into K discrete spatial points, {x| k =
1,...,K} and define p = [p(x1),...,p(zx)]’. We further
assume that the support of w is discretized into M samples, 2 =
{wm|m =1,..., M} sothatdi,j = [di’j(wl), ey di,j(wM)]T,
W =we — B/2+ %B.

We write (4) as

dij(wm) = (L, p) (LT, p)" = tr (L(L7) ") (10)
where
L = [eon/@® G0 i=1,..N. (1)
Let
d= ;[le,Q,...,d%_LN]T (12)
M(5)

be the full vectorized data scaled by the number of correlated
measurements. (10) shows that the data vector d is linear in p,
the Kronecker scene, while it is non-linear in p. Thus, the data
vector can be written as

d=F(p) (13)

N
where F is a linear mapping from R¥*% to C (%) Alterna-
tively, if p is the column-wise vectorization of p,

d=Fp (14)

where F is a complex-valued matrix of size M (g] ) x K2,
whose rows are formed by row-wise vectorization of the matrix
| (Lm ) H

[ J .

III. EXACT MULTISTATIC WAVE-BASED IMAGING

In this section, we are concerned with identifying the imaging
system parameters, i.e., design of the measurement vectors L;",
i1=1,...,N,m=1,..., M, so that the lifted forward map F
satisfies the sufficient condition proved in [1] for exact recovery
via the GWF algorithm. We establish all the results presented in
this section under the following assumption.

Assumption 1: Let

oM = (&l xp — xp) — (a7, %) — x)

—|—<ét,Xk—Xk/—Xl+Xl/>. (15)

Then, we assume that 21\5% @ﬁ’jk,’l’ll < 2rforall (4,7, k, k', 1,1")
where B is the bandwidth of the received signal, M is the number

of frequency samples, and ¢y is the speed of light in a vacuum.

Authorized licensed use limited to: Rensselaer Polytechnic Institute. Downloaded on September 24,2020 at 02:23:19 UTC from IEEE Xplore. Restrictions apply.



714

Assumption 1 is used to make small angle approximation in
the proof of Lemma 1 below. This assumption implies that the
number of frequency samples needed depends on the bandwidth
of the transmitted waveform and the maximum value of <I>f77k/’l’l/
which depends on the size of the scene and the placement of the
receivers. As later seen in (25), this assumption is easily satisfied
if the scene is sufficiently small.

We next introduce the following lemma that expresses the
kernel of the operator F in terms of sinc functions. This lemma
is used in proving Propositions 1 and 2, and for the main result
in Theorem 1.

Lemma 1: Suppose Assumption 1 holds. Then, the 2-norm
of the data, d can be written as

( P17 +

Zi<j |O‘i7j|2
X p(xy, ) pr, 581))

s

Id]l5=[Fplls=

Z ’C(I)k:kll

kK AV

(5)

(16)
where the phase term @ﬁ}.’“/’l’l/ is as in (15) and
sin {(w’c + E) 62} — sin {(wé — 5) ;2}
K(®) = el el
co
with w!, = w. — 55
Proof: See Appendix A. |

A. GWF Framework for Interferometric Imaging

For establishing the GWF as an exact interferometric wave-
based imaging framework, we study the restricted isometry
property (RIP) of the lifted forward map F over the set of rank-1,
PSD matrices.

Definition I: Let F : CE*K 5 ¢M(3) denote the lifted
forward model provided in (13). Then F satisfies the restricted
isometry property over rank-1, positive semi-definite matri-
ces of the form p = pp™, with a restricted isometry constant

(RIO)-4, if
(1 —a)lplE < *H}'( P < @ +a)llplE,  (18)
for any p € CX, where || - || » denotes the Frobenius norm.

Notably, we consider a domain of p € R¥ in optimization
via GWF, for which the exact recovery guarantees of [1] directly
apply. Thereby, the GWF algorithm for interferometric imaging
is summarized as follows:
* Inputs: Interferometric measurements d;;(wy,,) and mea-
surement vectors Li", i = 1,--- V.

e [Initialization: Backproject the interferometric measure-
ments to the lifted domain, i.e., form an estimator for the
Kronecker scene as:

A 1
X = 37Ps (Re{F"(d))}, (19)
and keep its rank- 1 approximation Ao py pf , where Py is the
projection operator onto the set of symmetric matrices. The
initialization step consists of the outer product of the two
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measurement vectors for each of the M samples, resulting
in O(M K?) multiplications, followed by an eigenvalue
decomposition with O(K?) complexity.

e [terations: Initializing with po, perform gradient descent
updates as py 1 = Py — o VJ(p;), having

Hpol
T(p) = 51 F(pp") . 0)
which yields
VI (px) = %Ps (Re{F"(ex)}) pr, (21
where (e4)7! = (L") pypfl L — dis(om), Vi # J.

m=1,..., M.

Each iteration requires the following operations:

1) Computing and storing the linear terms (LZT:‘j)H P>
requiring M number of K multiplications for each,
resulting in O(M K') multiplications.

2) Computing the error by cross correlating linear terms,
requiring O(M ) multiplications.

3) Multiplication of the linear terms (L:"])H p;. and the
error eft for each m = 1,... M, requiring O (M) mul-
tiplications.

4) Multiplication of the result in 3 with vectors {L7}2_,
and {Lm}m 1» requiring O (M K) multiplications.

These operations result in O (M K') multiplications for each

iteration.

In particular, [1] establishes that exact recovery of a ground
truth p, € CX is guaranteed upto a global phase factor, if the
forward operator for the lifted Kronecker scene, satisfies the
RIP over the set of rank-1, PSD matrices (i.e., p) with RIC of
less than 0.214. Furthermore, starting from the initial estimate
computed from (19), gradient descent iterations minimizing (20)
using (21) converges geometrically to the true solution at a rate
1 — K, where k is upper bounded by

2p _ (1= 01)h*(61)
o (1 +51)62(51)7

where h < c are positive constants solely depending on ¢ [1].

(22)

B. Asymptotic Result

As a stepping stone for our main result, we begin by showing
the asymptotic isometry of F defined in (13), as w. — oo and
N — oo. Following our asymptotic analysis of the kernel of F,
we characterize its RIP over rank-1, PSD matrices in the non-
asymptotic regime. As a result of our non-asymptotic analysis,
we derive an upper bound on the restricted isometry constant
that is controlled by the imaging system parameters.

Despite its limited use in practice, our initial asymptotic
result offers a valuable benchmark for the non-asymptotic case.
Notably, it justifies assessing how the isometry of F is perturbed
over the set of rank-1, PSD matrices when the central frequency
we, and the number of receivers IV are finite. We specifically
make use of this perspective in establishing our main result,
by analytically evaluating elements pp’! in the range of 7% F,
Furthermore, it characterizes the expected limiting behavior of
our upper bound estimate on the RIC-J.
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The following proposition shows that in the asymptotic
regime, i.e., as w, gets large, F becomes a delta function with
respect to the phase term @fﬁ}kl’l’l/.

Proposition 1: Under Assumption 1, we have

L 0 eFFLT £
lim (@77 ") = e (23)
W, —00 1 @1’} AR a— 0
Proof: See Appendix B. |

Given Proposition 1, the next proposition shows that in the
limit as w, — oo and N — oo, F is an isometry.

Proposition 2 (Asymptotic Isometry of F for large w. and
N): Under Assumption 1, we have

. 1 2
oy 2 Jesal W

2) i<y
]. N !
== > P D K@)
(2) i<j k#K 1Al

X ﬁ(:l:k, (Ekf)ﬁ(il)l/, :Bl) =0 (24)

Proof: See Appendix C. ]

Since in the asymptotic regime F is an isometry, we can
deduce that the RIC over rank-1, PSD should become small
as w. and IV get large. This motivates us to find an upper bound
on the rank-1, PSD RIC constant in the non-asymptotic regime
in terms of the imaging parameters. In the next subsection, we
establish this upper bound.

C. Non-Asymptotic Result

Before we introduce our main theorem, we introduce two
further assumptions.

Assumption 2: The scene is enclosed by a square with side L
and sampled regularly on a square grid. The coordinate system
is centered at the middle of the square. Hence, = = [z, 72]T €
[~L/2,L/2] x [~L/2,L/2] with /K samples in both z- and
xo-axis and L = /KA where A is the pixel spacing.

Under Assumption 2, it is easy to see that the phase term
|<I>k’k,’l’l, is upper bounded by 4 L\/2 for any selection of

2,7
i,7,k,k',1,I'. Then, for Assumption 1, letting A, = 27 5% be
the range resolution given by the Fourier-based methods the

small angle approximation holds to high accuracy if

L
>
M o © (Ares) ’

since max; j.k, k1, |¢ﬁ}k/’l’l/| = O(L)
B.SALms corresponds to a < 1% error for the sinc approximations
in Lemma 1.

Assumption 3:

1) Thereceivers are isotropic and lie on a circular arc equidis-
tant from each other and to the center of the coordinate
system. Let A € (0, 2] be the aperture of the multistatic
system. Then, the azimuth angles of the look-directions
are multiples of A/N.

2) All receivers and the transmitter are located at the same
height. Let ¢ be the elevation angle in radians. Then,

al = [cos ¢ cos 0;, cos ¢ sin 0;, sin ¢ where 0; = %,

(25)

For instance, M >

i:
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0,...,N —1 are the azimuth angles of the receivers’
look-directions.

3) The transmitter is located on the x1-axis. Hence, a; =

[cos ¢,0,sin ¢]T.

Assumption 3 allows us to make integral approximation to a
Riemann sum in the proof of Theorem 1 (see Appendix D).
The approximation error is then incorporated into the result
of Theorem 1. Note that the assumption on the location of the
transmitter is not essential, but is there for convenience.

We now state our non-asymptotic result in the following theo-
rem, which establishes an upper bound on the rank-1, PSD RIC
for the data model presented in (13), in terms of the underlying
imaging parameters.

Theorem 1 (RIC of the Lifted Forward Mapping of Multi-
static Imaging): Let

21cy
.=
We

(26)

be the wavelength corresponding to the center frequency. Then,
under Assumptions 2, 3, and Lemma 1, we have the following
upper bound on the restricted isometry constant § of F over
rank-1, PSD matrices:

§< 2oV Eh O K A2 (27)
A A2 cos py/cos ¢ (N/A)?
where the order is a small constant and
Co L
Apes = 21—, d A= —. 28
s 55 an Nics (28)
Proof: See Appendix D. |

As provided in (22) and explained in [1], § directly controls
the convergence rate of GWF iterates. As such, bound in (27)
establishes that the convergence behavior of GWF for multi-
static imaging depends on system parameters such as the center
frequency w,, the bandwidth B, the number of receivers N, the
number of unknowns K, as well as the side length L of the scene.

Remark 1: Observe that N has a higher order than A_! in
the second term in (27). Hence, our RIC upper bound estimate
tends to 0 as w, — oo, N — 00, consistent with our asymptotic
isometry result for F. Specifically, the first term in (27) captures
the perturbation from the limit when the central frequency is
finite, whereas the second term characterizes the perturbation
due to having finite number of receivers. In fact, the second
term directly arises from the closed form error of a Riemann
sum approximation to an integration over look directions of the
receivers.

Remark 2: The Riemann sum error behaves in an inverted
manner to the first term with respect to the central frequency
of the transmitted signal is increased, given a fixed imaging
aperture and number of look directions. This is indeed an ex-
pected outcome, as the data collection manifold corresponds
to a larger area of the 2D Fourier spectrum of the scene as
the central frequency is increased while the imaging aperture
is fixed. As a result, N number of look directions corresponds
to a poorer discretization of the data collection manifold, and

the factor of A, /2 in the second term in (27) relates directly to
this phenomenon.
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(a) Active Regime. Center frequency was set
at 10 GHz and bandwidth at 50 MHz.

Fig. 1.

Using the decoupled nature of our upper bound estimate on
the RIC, we quantify the minimal pixel spacing at which the
exact recovery guarantees of GWF can hold.

Corollary 1 (Resolution Bound): Suppose we have suffi-
ciently many receivers, i.e., N 2> K, such that the second term
in (27) is negligible. Then GWF guarantees exact recovery if

A > 21 2)\c Vv LAres
—\ A0.214cos p\/cos

Proof: Assuming N2 > K, the second term in (27) in the
upper bound of § vanishes. Recall that exact recovery is guaran-
teed via GWF if § is less than or equal to 0.214. Upper bounding
the RIC bound in (27), we have

21 20V LAre
A A2 cos py/cos ¢

The rest follows by rearranging (30). |

Notably, even with N — oo, (29) is the absolute best reso-
lution at which exact multi-static imaging is possible by GWF.
Hence, Corollary 1 yields a fundamental bound for the pixel
spacing in designing realizable imaging systems with finite
number of receivers.

The resolution bound of Corollary 1 corresponds to the
super-resolution regime when reconstructing small scenes in
both active, and passive scenarios, as depicted in Fig. 1(a)
and Fig. 1(b), respectively. Note that as L gets large, the lower
bound eventually becomes greater than the range resolution limit
of the Fourier-based methods. This is in agreement with our
theoretical arguments, which are established under a small scene
approximation. It should also be stressed that our lower bound
abides by the sufficient condition for exact recovery, but it is
not a necessary one. Therefore, while recovery of scenes at a
higher resolution than A,.s may still be possible via GWF, it is
not covered by the theory in [1].

Additionally, the sufficient number of receivers for (29) to
holdis N2 > O(K). Since M = O(L) by (25), this implies that
super-resolution imaging via GWF requires a sample complexity
of at least M N? = O(K?/?). We reduce this complexity result
by the following corollary, which quantifies the minimal sample

(29)

<0.214. (30)
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at 1.9 GHz and bandwidth at 10 MHz
(similar to CDMA cell phone signals).

Curves of lower bound on the pixel spacing, A for various values of aperture lengths at active and passive regimes.

requirement for exact multi-static imaging via GWF at a fixed
pixel spacing that abides the lower bound of Corollary 1.

Corollary 2 (Sample Complexity): Given the final result
of Theorem 1, exact multistatic imaging condition for GWF is
satisfied at the following sample complexity:

MN? = O(K°/%). (31)

Proof: Reorganizing the upper bound on § in Theorem 1, we
have
K n K
cl—=+co—
17 NG 22
where ¢1, ¢ are O(1) as functions of K and N. Now, for any
fixed pixel spacing A, we have L = O(v/K). Thus,
3/4

=45 (32)

~ K N
01K1/4+Cg N2 K1/4:5

(33)

for some ¢, = O(1). Observe that K/* factor in the first
term of the left-hand side of (33) is non-vanishing and hence
at best yields the RIC upper bound of § = O(K'/*). Now
from Assumption 1, we have M = O(L). Thus, the minimal
sample complexity in which the RIC upper bound is in the order
of K/*is achieved when N2 = O(K?>/*). Therefore,

(&1 + e) KV =6 (34)

when MN? = O(K®/%). [ |

In addition to the minimal sample complexity, Corollary 2
yields a rate at which the algorithm performance deteriorates.
Clearly, from (34), our ability to fine sample the scene while
attaining the exact recovery guarantees of GWF for multi-static
imaging depends on the dimension of the problem, at a rate
K 4 or equivalently, VL. This, again, is consistent with our
theoretical arguments as we derive our results through a small
scene approximation.

The fact that the upper bound of § has a non-vanishing K /4
factor reveals an interesting phenomenon that is also observed
in the performance of spectral initialization in phase retrieval
literature, even when the measurement vectors are random. This
degradation with the increasing dimension of the unknown is not
captured in the probabilistic analysis with random measurement
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Transmitter

Receivers

Fig.2. Illustration of the multistatic imaging set-up for numerical simulations.
(Not to scale.)

vectors, yet is indeed a significant issue which forms the basis for
sample truncation in computing the initialization and gradient
estimates [53].

Specifically for deterministic, wave-based multistatic imag-
ing problems, Corollary 2 necessitates a system design such
that the controllable constants in (34) sufficiently suppress the
K/ factor. This promotes GWF as a highly applicable method
in passive imaging scenarios where the range resolution is
limited, or in active imaging scenarios where small, isolated
extended targets are being imaged, with possible extensions and
applications in spot-light mode synthetic aperture radar [54].

IV. NUMERICAL SIMULATIONS

In this section, we provide several numerical simulations
demonstrating veracity of the theory presented in Section III.
Note that the results in Section III present an upper bound to
achieve the sufficient condition of exact recovery via GWE.
Thereby, even if the specific guarantees we have derived are
not satisfied, exact recovery could be achieved by the algorithm.
The following multistatic set-up is common to all simulations
presented in this section, and conforms to the assumptions laid
out in Section III.

1) There is a single transmitter located at [15.8, 0, 0.25] km.

2) The transmitted waveform has unit amplitude frequency

spectrum.

3) Varying number of receivers are distributed equidistant on

an arc of a circle of radius 10 km from the scene center at
a height of 0.25 km.

4) The scene of interest is square with flat topography.

Fig. 2 illustrates the multistatic set-up used in this section.
Note that the illustration is not to scale.

The figure-of-merit we use throughout is the mean square
error (MSE) of the reconstructed scene. This is computed by
taking the per pixel difference between the true scene and the
reconstructed scene and averaging the squares of the differences.

In all experiments presented, our data is synthetically gen-
erated using our received signal model in (1) under the
single-scattering assumption, i.e., the Born approximation. In
Sections IV-A, IV-B, and IV-C, a single parameter is varied
in each set of experiment while all other relevant parameters
are fixed. The parameters are chosen in the active and passive
imaging ranges. Fig. 3 shows the scene used for all experiments
in the subsequent sections. Finally, in Section IV-D, we provide
simulations that depict the performance of GWF in non-ideal
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(a) Active case. (b) Passive case.

Fig. 3. The ground truth used in the numerical experiments. The colorbar
refers to the reflectivity of the resolution bins. L is set as 60 m in the active,
300 m in the passive case.
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Fig.4. Number of receivers vs. MSE of the reconstruction after 4000 iterations
of GWF for active and passive radar parameters. Blue solid line is the curve for
active radar parameters and black dashed line is for the passive radar parameters.
Number of frequency samples was held constant at 64 and K = 625 for both
cases. The pixel spacing was set at 2.4 m for active case and 12 m for passive.
The center frequency was set at 10 GHz and 1.9 GHz for active and passive
cases, respectively. The bandwidth was set at 50 MHz and 10 MHz for active

and passive cases, respectively.
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(a) 12 receivers. (b) 24 receivers.

Fig.5. Sample reconstructions after 4000 iterations of GWF for active imaging
case with varying number of receivers. Bandwidth was set at 50 MHz with center

frequency of 10 GHz. Number of frequency samples was held constant at 64
and K = 625. The pixel spacing was set at 2.4 m.
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(a) 12 receivers. (b) 24 receivers.

Fig. 6. Sample reconstructions after 4000 iterations of GWF for passive
imaging case with varying number of receivers. Bandwidth was set at 10 MHz
with center frequency of 1.9 GHz. Number of frequency samples was held
constant at 64 and K = 625. The pixel spacing was set at 12 m.
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Fig. 7.

IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 6, 2020

0.07

0.06 |

0.05

0.04

MSE

0.03 -

0.02

0.01

5 16 15 20 25
Bandwidth (in MHz)

(b) Passive Regime. Center frequency was set

at 1.9 GHz and bandwidth ranged from 6
MHz to 24 MHz.

Bandwidth vs. MSE of the reconstruction after 4000 iterations of GWF for active and passive radar parameters. Number of frequency samples was held

constant at 64 and K = 625 for both cases. The pixel spacing was set at 2.4 m for active case and 12 m for passive.

conditions, namely under additive noise at low signal-to-noise
ratios (SNR).

A. Effect of Number of Receivers

The first series of numerical experiments are designed to
verify the effect of the number of receivers on the performance
of GWF reconstruction. In (27), the second term involves the
square of the number of receivers, N 2 in the denominator.
Thus, we expect the number of receivers to have significant
effect on the quality of the reconstruction. To verify the effect
of the number of receivers on the reconstruction, we ran a
series of simulations with varying number of receivers while
fixing all other relevant parameters in active or passive radar
regimes.

Fig. 4 shows the MSE of the resulting reconstruction ver-
sus the number of receivers for active and passive imaging.
Blue solid line is the result for the active case while black
dashed line is for the passive case. For the active case, the
bandwidth was held at B = 50 MHz with the center frequency at
w. = 10 GHz for Fourier-based range resolution of A5 = 3 m.
For the passive case, B =10 MHz and w. = 1.9 GHz for
Aps = 15 m. The pixel spacing was chosen such that it was
smaller than the Fourier-based range resolution for each case.
Namely, A = 2.4 m and A = 12 m for the active and passive
cases, respectively. The number of unknowns was held constant
at K = 625 for both cases. The GWF algorithm was performed
for 4000 iterations for comparison purposes. Since the RIC
directly affects the rate of convergence of GWF, we expect to see
smaller MSE as the number of receivers grows. This behavior
is clearly present in both the active and passive cases as can
be readily observed in Fig. 4. In both cases, we observed exact
convergence behavior from 10 receivers onward. However, as
expected, the convergence rate is slower with smaller number of
receivers.

As a visual confirmation of the experimental verification,
sample reconstructions at two different number of receivers (12
and 24) is provided in Figs. 5 and 6 for active and passive
regimes, respectively.
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(a) 40 MHz bandwidth. (b) 60 MHz bandwidth.

Fig.8.  Sample reconstructions after 4000 iterations of GWF for active imaging
case with varying bandwidth. 18 receivers were used for reconstruction with
center frequency of 10 GHz. Number of frequency samples was held constant
at 64 and K = 625. The pixel spacing was set at 2.4 m.
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(a) 12 MHz bandwidth. (b) 20 MHz bandwidth.

Fig. 9. Sample reconstructions after 4000 iterations of GWF for passive
imaging case with varying bandwidth. 18 receivers were used for reconstruction
with center frequency of 1.9 GHz. Number of frequency samples was held
constant at 64 and K = 625. The pixel spacing was set at 12 m.

B. Effect of Bandwidth/Range Resolution

Next we examine the effect of the bandwidth on the conver-
gence behavior. Both terms in (27) includes square root of A,
the range resolution, in the numerator. This suggests that there is
an inverse relationship between the bandwidth and RIC. Similar
to above, we test the effect of bandwidth on the convergence
behavior of GWF algorithm, and we ran a series of GWF
reconstruction on the same scene while varying the bandwidth
and holding other relevant parameters fixed. The number of
receivers used for the experiments was fixed at NV = 18. All
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Center frequency vs. MSE of the reconstruction after 4000 iterations of GWF for active and passive radar parameters. Number of frequency samples

was held constant at 64 and K = 625 for both cases. The pixel spacing was set at 2.4 m for active case and 12 m for passive. The bandwidth was fixed at 50 MHz

and 10 MHz for active and passive cases, respectively.

other parameters were held to the same values as in the previous
subsection.

Fig. 7 summarizes the result of these experiments. Fig. 7(a)
shows the bandwidth vs. MSE curve for active case. We varied
the bandwidth in the range of 30 MHz to 70 MHz. Fig. 7(b) shows
the same curve for the passive case where the bandwidth was
varied between 6 MHz and 24 MHz. Examining the two figures,
we clearly see that higher bandwidth results in smaller MSE,
and hence faster convergence to exact solution. This agrees
with the theoretical bound in (27). As before, we provide visual
confirmation in form of sample reconstructions in Figs. 8 and 9
for active and passive regimes, respectively.

C. Effect of Center Frequency

The first term of (27) is inversely proportional to the center
frequency of the transmitted waveform and as such we expect the
center frequency to improve the convergence behavior of GWF
as the center frequency gets larger. We examined numerically,
the effect of center frequency on the exact reconstruction and
the convergence rate by, again, running a series of numerical
simulations where we varied the center frequency while keeping
other relevant variables constant. To minimize the effect of
the second term on the RIC and better evaluate the impact of
central frequency in the super-resolution regime, we increased
the number of receivers used in these experiments to N = 32
for both cases.

Figs. 10(a) and 10(b) show the results of simulated experi-
ments for active and passive scenarios, respectively. For active
case, we varied the center frequency in the range between
0.5 GHz and 15 GHz. For the passive case, the range was
restricted to 0.1 GHz to 3 GHz to reflect realistic values for
sources of opportunity. In both cases, we observe a behavior
of downward trend in MSE as the center frequency increases,
albeit, not as drastic as in other parameters. This is due to the fact
that the central frequency appears inverted in the two terms of the
RIC upper bound. The decaying trend of our experiments agrees
with the notion that the order constant of the second term in the
RIC upper bound adequately suppresses A. 8/ > as N2 = O(K)
proves to be sufficient for super-resolution.
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(a) 1 GHz center frequency. (b) 12 GHz center frequency.

Fig. 11.  Sample reconstructions after 4000 iterations of GWF for active
imaging case with varying center frequencies. 32 receivers were used for
reconstruction with bandwidth fixed at 50 MHz. Number of frequency samples
were set as 64 and K = 625. The pixel spacing was set at 2.4 m.
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Fig. 12.  Sample reconstructions after 4000 iterations of GWF for passive
imaging case with varying center frequencies. 32 receivers were used for
reconstruction with bandwidth fixed at 10 MHz. Number of frequency samples
were set as 64 and K = 625. The pixel spacing was set at 12 m.

Notice, however, that in the active case, larger center fre-
quency value is needed to achieve similar performance as in
the passive case. This is attributable to the fact that the first
term is proportional to /LA s /A?. With the active parameters,
this term is approximately 8 times that of the passive case.
Thus, the center frequency needs to be higher to compensate for
the difference. Figs. 11 and 12 show sample reconstructions at
two different center frequencies for active and passive regimes,
respectively.
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Fig. 13. Received signal SNR vs. MSE of the reconstruction after 4000
iterations of GWFE. SNR values depict those in the linear measurements collected
at each receiver, prior to correlations. Dotted and solid curves are for active and
passive radar parameters, respectively. Number of frequency samples were fixed
as 64, with K = 625 for both cases. The pixel spacing was set at 2.4 m for active
case and 12m for passive. The center frequency was set at 10 GHz and 1.9 GHz
for active and passive cases, respectively. The bandwidth was set at 50 MHz and
10 MHz for active and passive cases, respectively.
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Fig. 14.  Sample reconstructions after 4000 iterations of GWF with 0 dB SNR
at the receivers. 30 receivers were used for reconstruction. Number of frequency
samples was held constant at 64 and K = 625. The pixel spacing was set at
12 m, and 2.4 m, respectively.

D. Effect of Additive Noise

Next, we evaluate the robustness of the proposed method
for interferometric multi-static radar imaging, in passive, and
active cases. As before, we use a flat spectrum signal with 10
MHz bandwidth centered around 1.9 GHz frequency in the
passive, and a 50 MHz bandwidth centered around 10 GHz
frequency in the active experiments. We incorporate additive,
zero-mean white Gaussian noise on the linear signal model at
the receivers, and consider SNR levels varying from —20 to
30dB. Fig. 13 demonstrates the reconstruction MSE with respect
to the received signal SNR with 5 dB increments, with errors
averaged over 10 realizations. The MSE curves indicate that
GWEF is robust to additive noise at the receivers in both active
and passive cases, and the performance of the algorithm degrades
predictably with decreasing SNRs, with steady decay in MSE
as the SNR at the receivers improve.

It should be noted that the correlation operation amplifies
the noise variance, hence the interferometric measurements
processed in the experiments have lower SNR than the spec-
ified levels at the receivers. Nonetheless, we observe that the
reconstruction performance of GWF degrades gracefully as SNR
decrases, as Figs. 14, 15 and 16 demonstrate that GWF is capable
of producing highly accurate imagery with O dB in the received
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Fig. 15. Sample reconstructions after 4000 iterations of GWF with —5 dB
SNR at the receivers. 30 receivers were used for reconstruction. Number of
frequency samples was held constant at 64 and K = 625. The pixel spacing
was set at 12 m, and 2.4 m, respectively.
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Fig. 16.  Sample reconstructions after 4000 iterations of GWF with —10 dB
SNR at the receivers. 30 receivers were used for reconstruction. Number of
frequency samples was held constant at 64 and K = 625. The pixel spacing
was set at 12 m, and 2.4 m, respectively.

signals at the antennas. However with SNRs below —10 dB the
algorithm performance degrades noticeably, which motivates
filtering or sample truncation at the implementation of GWF
in low SNR scenarios.

V. CONCLUSION

In this paper, we utilize GWF theory developed in [1] for
exact multistatic imaging of extended targets by designing the
underlying imaging parameters such that the sufficient condi-
tion for exact recovery is satisfied. Our work has two signifi-
cant contributions. 1) Unlike the state-of-the-art interferometric
inversion methods based on LRMR, GWF avoids lifting the
problem. As a result, it is computationally efficient and does not
require large memory allocations, making it suitable for practical
applications. 2) We demonstrate that the underlying imaging
parameters can be designed so that the RIP over rank-1, PSD
matrices is satisfied by a deterministic lifted forward model.

We first show the asymptotic isometry of the lifted forward
model, F, of interferometric multistatic radar, as the center
frequency and the number of receivers go to infinity. We then pro-
ceed with estimating the deviation from the asymptotic behavior
when imaging parameters are finite, and derive an upper bound
for the RIC of F over the set of rank-1, PSD matrices. Hence,
we identify the relation of imaging parameters to the sufficient
condition of exact recovery. Using the RIC upper bound, we
determine a lower limit for pixel spacing to achieve exact recov-
ery. This limit is superior to the Fourier-based range resolution
for sufficiently small scenes. Furthermore, we determine the
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minimal sample complexity needed for RIC upper bound to be
sufficiently small, hence identify the practical requirements for
reconstruction when designing a multistatic imaging system. In
our numerical simulations, we evaluate the impact of the imaging
parameters in our upper bound estimate of RIC in reconstruction
performance, verify our theoretical results, and finally assess the
performance of GWF to additive noise at low SNRs.

For future work, we will study the robustness of our method
with respect to deviations from our imaging setup, such as
non-equi-distant locations, or non-circular configurations of re-
ceivers. In addition, we will investigate extensions of our theory
to the case involving additive noise and outliers, moving target
imaging, as well as implementation of our method using real
scattering data.

APPENDIX

A. Proof of Lemma 1

We first examine the 2-norm of the data. For a rank-1 p, we

have that ||p||% = ||p||3- We can also rewrite
N N M )
~112 " m
1Fpl5 = ZZ ST p)? L p) P (35)
i=1 i<j m=1
Thus, from (11), (8), and (9) we have
|< Z e —iwm /o ((AT % =X )+ (A% X —x4))
o k'
. il
x p(xk)p (mk/)|ar||2||at|2' (36)
Similarly, we have that
(L) (L p)[* = Y e/t
kLU
X " Ci 1G5
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J

where <I>f’jk LS asin (15). Then, under Assumption 1, we have
that
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where W/, = w. — %. The second line is from geometric sum

and the last line is from small angle approximation.
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Using (38) and changing the order of sum, and denoting
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We can split (39) into two parts as
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Having a real-valued p, we rewrite the latter term in (40) as
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We can further rewrite K(@ﬁ’f’l’l/) (41) using trigonometric
identity as
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(42)
which proves the claim.
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B. Proof of Proposition 1

First we express K as

Co co
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This can be proved using similar machinery to proving the delta
function limit for sequence of scaled sinc functions. We prove
the first equation (45). The second equation follows similarly.

Let f € S(R) be a smooth test function, where S(R) is the
Schwartz space. Then we need to prove that

o]
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Let € > 0 and break-up the integral into two parts.
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The first part of the integral is
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We compute the first part of (50). Integrating by parts,

e (HEE)
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Since f € S(R), taking the limit as w), — oo, (51) goes to 0.

Similarly, we can see that the second integral in (50) also goes
to zero. Thus,

lim 9o, (2) f(z)dz =0 (52)
W}, —00 |z|>e
Now, the second integral in (49) can be rewritten as
[ 0@ - sopa+50) [ 6

The first integral can be rewritten as

o we [ , B\ =\ f(z)— f(0)
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Since f € S(R), we can use Riemann-Lebesgue lemma to con-
clude that (54) goes to zero as w/, — oo [55].
For second integral, we have
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After change of variables u = (w, + g)%, we have
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C. Proof of Proposition 2
Without loss of generality, let the receivers and transmitters
have common elevation angle ¢ such that

AT

a) = [cos ¢ cos b;, cos ¢ sin 0;, sin qb]T (58)
(59)

where 0; is the azimuth angle of the i-th receivers look-direction,
0, is the azimuth angle of the transmitter look-direction and ¢ is
the elevation angle. Furthermore, we have that for any k and &’

a' = [cos ¢ cos by, cos ¢ sin Oy, sin ¢] .

xp — xp = ||z — p || [COS Gk,kgsin(‘)k,kﬂT (60)

where 0, ;s is the angle of the vector @), — «;/. Then we have

that
RN
i

cos @ = ||.’1}k — sr:k/|| (COS(Gi — ok,k") + COS(et — Hk.,k/))

— |l&r — @y (cos(0; — 61,1) + cos(by — O1)).
(61)
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Thus, for the non-diagonal terms where k # k', | # I’ we have

kKL .
that ®;; =0if
Ty — Tk
|||ZII[ — IBl/” (COS(@; — ek,k’) + COS(@t — ok,k’))

—cos(fy — O, p) = cos(B; — O ). (62)

For fixed k, k', 1,1’ and i, there are at most 2 values of 6;’s for
which (62) is satisfied. Furthermore, we know that |v; j|’s must
be bounded. Thus, by Proposition 1, for each fixed k, k', 1,1’
where k 75 k' and [ # I’ we have that

! ! ]_
Z|a”| hm L K(@ PPty = o(N).

7,<j

(63)

Now taking the limit as N — oo, we have the desired result.

D. Proof of Theorem 1
We want to upper bound the following

(67 WZ SRl
Zz ,1<] | J| \J Z Z K((bf,bk N )

];[) (2) 1,0<g k,kFk IEl

X ﬁ(wk, zckr)ﬁ(:vl/, CL'Z) . (64)

where, | ;|? ~ a = % by Assumption 3. Without loss
1

of generality we set « = 1. We begin by noting that

kKLU
(I)ZJ (

tay) - (op—ae) + B (69)

where 0" = —(a; + &) - (x; — xp). Thus, fixing I, I, and &,
we have convolution between G and p. Let

Gi (@ — @) = K((&; + &) - (@ — ) + B7). (66)
We take the Fourier Transform of G; ; and p to represent the

convolution. Denoting, G, ; as the Fourier Transform of G; ;, we
have

ZZ’C kkll

kK T£L

el ZP T, Ty ZP T / G, i (w)p(w)dw

1Al

p(xr, T )p(xr, x)

(67)
To compute C;i j» we first rewrite G; ; as

/ B
OJ(—F?

. . wet 2, Ly
Gij(x) = —5—=sinc T((a¢+at)'$k+ﬁj)

1 _ B w/_g ,
— g Esine | ——2((@; +a) a7 |
(68)

Let x), = [2%, 25]7, w = [wy,ws]T and 6; be the azimuth angle
of the ¢-th receiver’s look-direction. Then, given (68), the Fourier

Transform of G and using the assumption that a; = [1,0]7,
5 co K 400
Gijlw) = Do i S@RW)  (©9)

723
where
L
Lo B;
= 70
Vi cos ¢(cosb; + 1) (70)
1 w1
R B t
(cn) cos ¢(cosb; + 1) ree 2(wg+€)cos ¢(cos 0;+1)
co
w1
— rect 71
rec 2(w’Cf%)cos¢(cosai+1) ( )
co
and
sin 6; L
S(w) = si o] = ] 72
(w) smc((cug wlcosGi—i—l) 2) (72)

Noting that R is only non-zero where (‘”L;% cos ¢(cos b; +

1) <w; < %{?/2) cos ¢(cosb; + 1), and w,, > B/2, we ap-
proximate (70) as

v wifcosO;,sind)T - xp Wzl —al)cose
w ~ .
%5 cost; +1 Co
(73)
Next, we note that
)eiw'mk _ ﬁ*(w) (74)

> o=
k

Thus, interchanging the sum and the integral in (67), and plug-
ging in (69) we have

ZZ’C kkll

kK T£L

1 CoK
-@ﬁﬁf/s

p(xr, T )p(xy, x)

R(w1) |p(w)|”

X Z ei“’”w play, xp)dw (75)
[
- 1 Co K 2
AfﬂBL/s R(@n) [p(w)]
x | p(w")[? dw (76)
where
/
W' = wi[cosb,sin6;]" + e cos o[1,0]" (77)
€o
r_ w1
w1 = cosf; +1 (78)
Now, by employing Cauchy-Schwartz, we have
[ StRen) ) 1) |
< \// §2(wh, wa) R2(w}) |p(w")[* duwsdut
/ |p(w)|* dow (79)
where
R(w}) = (cosb; + 1)R((cos b; + 1)w)). (80)
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By Jensen’s inequality, (79) becomes

[ stRten) ) 1) o

< \/ [ st et o) ()] dionds [ 15te0)* de

1)

=4W2|p§\// S2(wh, wa) R2(wh) ()| dwpdw)  (82)

Noting that for any fixed wy,

2
/ S2(w)dws = =2, (83)
L
we have
[ 82wt B2 () () donde
/ R2(W) |p(w)]* duw). (84)
We use Jensen’s inequality once more to get
\/ [ s2twn e o) dunds
2
<= / R(W) |p(w')? du,. (85)

Next, appr0x1mat1ng the sum over 6; as an integral, we have

s 2 a2 ] e

i i#]
1 S IN AL IV 2 /
~~ 1 R(w}) |p(w')|” dwidb; + ER |,
where E'r denotes the Riemann sum error, A is the aperture of
look directions in the imaging setup.

We ﬁrst consider the inner integration over w}, where w’ =
[w],8;]. Using Cauchy-Schwartz and Jensen’s inequalities,

/ [/ it
[\// dw1/|w'1| ﬁ(‘*’/)|2dw/1] do;
it [ [l @' @7

Computing the first integral in (87), we get

)‘ dW1

(86)

2
) 6] 15() dwa} 6,

wl+B/2

/ 1 R2( ! )d ! 2 cos¢ 1 d /
— w Wy = ——— — aw
(wll)2 ! ! cos? (b %%5/2 cos ¢ (wll )2 !

_ 2¢ 1 1
~cos3p \w,— B/2 W, + B/2

N 2300
B (CAE I R
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Consider the second integral in (87). Since the integrand is
strictly positive, from the ¢; integration we have

/A / 1w 1) de’ < / / W |2 de’. (89)

We now make the following change of variables

cosfwi = wY, sinfw] = ws. (90)
Computing the Jacobian, we get
1 1
= . 91

A N CAES AR

Thus, setting w” = [w}, wj], the upper bound in (89) becomes

/\w’lllﬁ(w’)\zdw’=/\ﬁ(w”)Ide”=4W2Hp||2, (92)

where the last identity follows from Parseval’s theorem. Hence,
we obtain the upper bound on our integral approximation, i.e.,
the first term in (86) as
- 472 p|*v2B
[ Rl < —— e
(cos ¢)3/2/(w)? — (B/2)?
_ 47 |pl’V2Be
"~ wi(cos )32

We next evaluate the error term of the integral approximation
in (92). Namely, the midpoint Riemann-sum approximation
error is upper bounded as

93)

AS
< -
|Erl < Q377 (94)
where @ is defined as
82 ictf/? "2
= — 7 dw 95
Q=max| 3z [ sy P09

using the definition of R(w)}).

Since the integrand is the squared absolute value of the Fourier
transform of the reflectivity function evaluated at frequencies w’,
(95) can equivalently be written as

9% - _
Q = max %j a0 we)p(n, xv) (96)
which is the form of a Frobenius inner product, where
i St o]
J0, 2, xp) = e @) gy (97)

f“ cos¢)

Observe that () has an upper bound that only depends on the
{5 norm of the underlying scene as

Q< max|| il

—HlelolP,

(98)

and that mngHg—;zf' |7 has only dependence on the imaging

system, hence yields a universal upper bound for any scene re-
flectivity function in the specific imaging geometry. Evaluating
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the integral in (97) and having w. > B, f can be approximated
under the narrow-band assumption as

7~ Bine (”Cy(e) (@ — a:l/)) . (99)

Co Co

Denoting z = £27(f) - (x; — 1), the second order derivative

of each component in f with respect to 6 is obtained as

% cosz sin z
002 z 22

02\ 2 sinz 2cosz 2sinz
+ <89) ( — -t ) (100)
where
0%z We T 92\ 2
0= a[cos@,sm@] Az — @), ((‘39)

2
= <tc> ([=sin@,cos )T - (x; — )% (101)
0

By definition, the amplitude of sinc-function derivatives in
(100) have a decay rate of 1/z, whereas z and its derivatives in
(100) grow with an order of the scene dimension L, as O(‘Z—SL).
Hence, evaluating the squared integral for the Frobenius norm,
the growth is at a maximal order of O((%2=)* L?). We thereby
obtain a final approximate upper bound on the universal constant

Q as

wetB/2
|7‘~'0 cos ¢

82

EYT) ‘ s Cow‘ plw(cosh + 1), wsin b)dw
co

3
B (we)® L3
Co Co

Putting the terms derived in (102) and (93) into (85) and (76),
we have

<0 lpl?. (102)

5 < @5 2771'& 472\/2B¢
" BLV L A\ W.(cosg)3/?

B T, A3
DY) 32
Co Co N2

for the definition of § in Definition 1, using the fact that || p||* =
|pl|% for the rank-1, PSD element p = pp*.

Re-organizing the terms using (26) and (28) defined in the
statement of Theorem 1, and the fact that

K VL
LVL A%

+0 (103)

(104)

we finally obtain

5 < 271 2he/ LA es

K —-3/2

(N/A)?

which completes the proof.
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