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Shared Autonomous Interface for Reducing Physical Effort in Robot
Teleoperation via Human Motion Mapping
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Abstract— Motion mapping is an intuitive method of teleoper-
ation with a low learning curve. Our previous study investigates
the physical fatigue caused by teleoperating a robot to perform
general-purpose assistive tasks and this fatigue affects the
operator’s performance. The results from that study indicate
that physical fatigue happens more in the tasks which involve
more precise manipulation and steady posture maintenance. In
this paper, we investigate how teleoperation assistance in terms
of shared autonomy can reduce the physical workload in robot
teleoperation via motion mapping. Specifically, we conduct a
user study to compare the muscle effort in teleoperating a
mobile humanoid robot to (1) reach and grasp an individual
object and (2) collect objects in a cluttered workspace with
and without an autonomous grasping function that can be
triggered manually by the teleoperator. We also compare the
participants’ task performance, subjective user experience, and
change in attitude towards the usage of teleoperation assistance
in the future based on their experience using the assistance
function. Our results show that: (1) teleoperation assistance
like autonomous grasping can effectively reduce the physical
effort, task completion time and number of errors; (2) based
on their experience performing the tasks with and without
assistance, the teleoperators reported that they would prefer
to use automated functions for future teleoperation interfaces.

I. INTRODUCTION

Tele-nursing robots are expected to perform a wide range
of patient-caring tasks. The objects manipulated in tele-
nursing tasks range from large, bulky, heavy objects (e.g.,
blankets, linens, patient transfer bed, etc) to small, light
objects (e.g., medicine containers, used syringes), which vary
greatly in their physical properties (see Fig. 1). In such an
intricate and hazardous environment, teleoperation is a prac-
tical way for tackling the complexity of tele-nursing tasks
and protecting the safety of both the patients and healthcare
workers. Compared to other teleoperation interfaces (e.g.,
joysticks [1], a stylus based device with haptic feedback [2],
graphical user interface [3], etc), mapping human motion is
more intuitive and effective to control the multiple degrees of
freedom of the humanoid robot simultaneously. Furthermore,
it is suitable for freeform teleoperation which can perform
unstructured tasks, like collecting a mixture of deformable
and rigid objects in a cluttered workspace. Such tasks are
challenging for fully automated systems. However the phys-
ical fatigue caused due to robot teleoperation via a motion
mapping interface is not trivial, particularly when teleoper-
ation lasts for extended durations. Such physical workload

1 Tsung-Chi Lin and Zhi Li are with the Robotics Engineering
Program, Worcester Polytechnic Institute, Worcester, MA 01609, USA
{tlin2,z1il1}@wpi.edu

2 Achyuthan Unni Krishnan is with the Mechanical Engineering De-
partment, Worcester Polytechnic Institute, Worcester, MA 01609, USA
aunnikrishnan@wpi.edu

978-1-7281-7395-5/20/$31.00 ©2020 IEEE

not only influences the teleoperator’s task performance, but
may also negatively influence the worker’s perception and
attitude towards the usage of teleoperation interface as well
as nursing robot technologies.

This paper will investigate how shared autonomy reduces
the physical fatigue incurred while using the motion mapping
teleoperation interface. Shared autonomy for teleoperation
assistance has been used to enhance the functionality of
the slave platform [4] and improve the accuracy of robot
teleoperation [5]. The design and evaluation of the teleoper-
ation assistance mostly focuses on how it can influence the
task performance and fluency of human-robot teaming [6],
the cognitive workload [7], situational awareness [8] and
trust of the operators. However, limited work has been
done to design shared autonomy which considers the effects
of physical fatigue in teleoperation and thus improve the
“ergonomics of teleoperation assistance”. To fill this gap,
we will explore how to use shared autonomy to manage
the physical workload in freeform teleoperation. Based on
our prior work on assessing the physical fatigue in robot
teleoperation using the motion mapping [9], we will evaluate
the benefits of teleoperation assistance on reducing muscle
effort while improving accuracy and efficiency of freeform
teleoepration.

Fig. 1: Tele-nursing robots perform a variety of patient-caring tasks includ-
ing cleaning and food delivery.

Our prior research [9] identified the fatigue causing actions
by assessing the muscle effort while using the whole-body
motion mapping teleoperation interface to perform general
assistive tasks. Precise manipulation and steady posture
maintenance were identified as actions that caused physical
fatigue. Our prior work identified the Deltoids, Biceps and
Trapezius muscles as the most used and fatigued muscles
during these precise teleoperation tasks. Based on our find-
ings, we hypothesize that automating the fatigue-causing task
components will reduce the physical effort of teleoperation
via motion mapping. We evaluate our hypothesis with the im-
plementation of a manually triggered autonomous grasping
function to assist object grasping during teleoperation. Our
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user study (N=8) helped us conclude that, (1) this simple
autonomous grasping function can effectively reduce the
user’s physical and cognitive workload; (2) the proposed
teleoperation assistance is more effective and less error-
prone for both the dominant and non-dominant hands; (3)
the comparison of robot teleoperation with and without
assistance shapes the user’s preference towards the usage
of teleoepration assistance and improves their acceptance of
using teleoperated robot technologies.

II. RELATED WORK
A. Tele-action Assistance for Motion Mapping Interface

Various motion mapping interfaces have been proposed
for real-time and offline teleoperation, particularly for the
teleoperation of humanoid robots, bimanual and mobile
manipulators (e.g., [10]-[12]). The interfaces range from
the more expensive but accurate systems (e.g., Vicon mo-
tion capture systems [13]) to more affordable and portable
options like Microsoft Kinect and other RGB-D cameras
[14], Inertial Measurement Unit (IMU) sensors [15], whole
body motion capture suits [16] and virtual reality headsets
and controllers [17]. The motion mapping interface promises
to be the future of intuitive and effective teleoperation for
complex robot systems in various domains. However, it
is necessary to develop appropriate teleoperation assistance
for such teleoperation interfaces to mitigate the risk of
work-related musculoskeletal disorders caused by the non-
trivial physical workload that occurs due to extended robot
teleoperation.

Within the spectrum of automation ranging from fully
manual to fully automated, action support and shared control
are often used to assist freeform teleoperation using motion
mapping interfaces (for a review of levels of robot autonomy,
see [18]). Action support like tremor filtering [19], obstacle
avoidance [20] and precise orientation assistance [21], usu-
ally assists the execution of a selected action. Shared control
is mostly used to assist the operator in actions towards a
goal or generating motion along certain trajectories. Rakita
et. al. have recently developed teleoperaion assistance for
a motion mapping interface which uses a predict-then-act
strategy where the implementation infers an action based
on a bimanual action library and engages an appropriate
assistance mode to enhance efficiency [22]. This implemen-
tation blends the suboptimal user translational and rotation
control inputs with known translation and rotation paths in
space in which the user can easily guide the robot. Laghi
et al [23] combined arm motion tracking, impedance control
and hand gesture recognition for using a single arm of the
operator to perform bimanual manipulation. In this paper we
propose to use a manually-triggered autonomous function to
assist precise grasping such that the teleoperators will not be
constrained to follow a specific task structure or trajectory.

As workload is an essential factor in robot teleoperation,
both subjective and objective methods have been proposed to
comprehensively evaluate the mental and physical workload.
Most of the subjective measurement for both mental and
physical workload relies on user surveys [7] like NASA

Task Load Index [24] and customized questionnaires. The
commonly used objective metrics for mental workload is
heart rate measurement which increases with increase in
cognitive workload [25]. Limited work have used quantitative
and objective metrices to assess and monitor the physical
workload in robot teleoperation via motion mapping.

B. Physical Workload Assessment and Management

Over the years, several methods have been utilized to iden-
tify fatigue. Physical fatigue has been analyzed by observing
jerk in human motion [26], changes in joint torque patterns
[27] and human model simulations [28]. Surface based EMG
(sEMG) sensors are a common tool used to identify muscle
effort by monitoring the chemical changes in the muscle
during motion [29]. sSEMG based measurement is a non-
intrusive and real-time method that can help identify the
muscle activity of a particular muscle group, thereby helping
segregate muscle activity during teleoperation.

A study by Liu et al [30] shows that physical fatigue
negatively affects the quality of teleoperation. Hubert et al
[31] report higher workload and physical strain in teleop-
eration without robot assistance than with robot assistance
based on electromyography measurement. Regarding physi-
cal fatigue management, Peternel et al [32] have developed
a co-manipulation interface that varies the support provided
by the robot based on the user’s EMG muscle activity
and force exerted during operation. When muscle activity
goes beyond a pre-defined threshold the robot will take
actions to reduce fatigue by increasing support. This interface
ensures that the robot performs almost autonomously when
the user is fatigued giving time for the operator to recover.
Nevertheless, limited work has been done to manage the
physical fatigue in teleoperation, especially for a whole-
body motion mapping teleoperation interface. Our previous
work has used sEMG-based measurement and analysis to
assess muscle effort in motion mapping teleoperation and
identified that actions involving precise manipulation and
steady postures caused the most fatigue [9]. In this paper,
we further assess whether the user’s muscle effort will be
reduced if the motion mapping teleoperation is implemented
with an autonomous grasping function.

III. PLATFORM AND TELEOPERATION ASSISTANCE

Here we describe the robot platform, the design of the
whole-body motion mapping interface and the autonomous
function for teleoperation assistance. The Tele-Robotic In-
telligent Nursing Assistant (TRINA) (Fig. 2) consists of a
dual-armed humanoid torso (Rethink Robotics Baxter), an
omnidirectional mobile base (HStar AMP-I) and two three-
fingered grippers (Righthand Robotics ReFlex grippers). The
visual sensor suite of this nursing robot includes a 180°
fisheye camera on the head, a Microsoft Kinect 2 attached
to the robot’s chest and two Intel RealSense D435 depth
cameras attached to the robot’s wrists. Table I defines the
controls for the motion mapping interface. Motion capture
of the teleoperator is done using the Vicon motion capture
system (10 Vero cameras). This system captures passive
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Omnidirectional Mobile Base
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Fig. 2: Tele-robotic Intelligent Nursing Assistant (TRINA) system.

reflective makers attached to the human torso, arms and
legs. The users thus control actions like reaching, grasping,
locomotion of the mobile humanoid robot, the selection of
cameras and the movement of these cameras. Human motion
was captured at 100 Hz and streamed at 50 Hz for robot
control. The proportions of the subjects (height, limb lengths,
etc) do not affect the end-effector positions of the robot. This
is because the position and orientation of the wrist and the
swivel angle of the teloperator is mapped to the robot during
teleoperation. The swivel angle is defined as the rotation of
the position of the elbow of the operator with respect to
the axis connecting the centers of the shoulder and wrist
joints [33], which indicates the operator’s arm posture.

left and right sides of the box were identified as the target
grasping points. According to which robot arm is in the TAZ,
the corresponding nearest target point is selected. If both the
arms are in the TAZ, the right hand is selected by default to
move to the target point on the right side of the bounding box.
The inverse kinematics for this target location is solved and
the joints of the selected robot arm are moved to these desired
joint angles. The user is informed that the autonomous grasp
function is ready to be triggered based on auditory and visual
cues (Fig. 4).

—P’ Robot teleoperation using motion mapping interface ‘

Object Detection & Teleoperation Assistance Zone
Detect objects using Mask-RCNN from Kinect RGB-D data
Identify object center position with respect to TRINA
Returns coordinate of the closest object if multiple objects present
TAZ defined as a 3D box around the object

|

Robot end-effector in TAZ? ‘
‘ Notify assistance available via audio feedback ‘

1 Yes
|

Human agent request for assistance?
No (Initiate the trigger)

1 Yes
Approach to the targeted object and grasp

bl S

Human agent request for control?
No (Initiate the trigger)

Yes

Fig. 3: Autonomous Grasping Function for Teleoperation Assistance.

Teleoperation Input

[ Robot Function

Robot’s U

pper Body

Hand position & orientation

End-effector position & orientation

Arm posture & orientation

Manipulator arm posture

Rotate upper body

Rotate mobile base orientation

Hand open/close

Gripper opens/closes

Angle between feet >60°

Gripper preshape pinch grasp

Angle between feet < 60°

Gripper preshape power grasp

Right shank flexion

Activate teleoperation assistance

Robot’s Lower Body

Squat Engage/Disengage teleoperation
Lift left leg Switch primary camera view
Lift right leg Switch secondary camera view

Leg steps forward/backward

Mobile base moves front/back

Left (right) leg steps left (right)

Mobile base moves left (right)

TABLE I: Motion Mapping Teleoperation Interface.

The flowchart in Fig. 3 describes the design of the
autonomous grasping function for teleoperation assistance.
The Kinect camera detected all the objects to grasp in the
workspace using Mask-RCNN [34], [35]. As the teleoperator
controls the robot hand to reach into the Teleoperation
Assistance Zone (TAZ) — a bounding box of (2 x height) x
(3 x thickness) x (5 x width) (cm?) around the center of
an object, the object will be locked as the “target”, and
an autonomous reaching-to-grasp motion will be planned
for this object. Based on the bounding box created by the
computer vision module, points on the mid-point of the

Fig. 4: Demonstration of object detection in cluttered environment.

IV. EXPERIMENT

Our user study aims to evaluate if the teleoperation assis-
tance will reduce the physical workload and improve the task
performance of robot teleoperation via whole-body motion
mapping interface. The hypotheses we evaluate include:

Hypothesis 1: The proposed teleoperation assistance will
reduce the teleoperator’s task completion time, number of
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errors, physical workload in terms of muscle effort and
cognitive workload.

Hypothesis 2: Teleoperators will prefer to use the teleop-
eration assistance based on their experience performing
the tasks with and without teleoperation assistance. With
teleoperation assistance, users will prefer to work more with
the teleoperated robots in the future.

A. Participants and Tasks

We recruited N=8 participants (6 male and 2 female, all
right-handed) to use the teleoperated robot system described
in Section III to perform the following tasks: (1) reaching to
grasp an individual object, and (2) grasping multiple objects
in a cluttered workspace (see Fig. 5). We choose these tasks
because precise orientation control in reaching-to-grasp has
been demonstrated to be challenging for teleoperation and
requires careful design of teleoperation interface assistance
(e.g., [36]). Our prior work has indicated the teleoperation
of precise manipulation is one of the most fatigue-causing
factors.

Fig. 5: Teleoperation tasks: (a) reaching-to-grasp an individual object; (b)
collecting multiple objects in a cluttered counter workspace.

B. Experiment Procedure

a) Preparation: Our experiment uses EMG-measured
muscle effort to assess the physical workload. Before the
experiment, each participant performs a maximum voluntary
contraction (MVC) test for each muscle. The collected data
is used for normalizing the EMG signal with respect to
the maximum force generated by each muscle [37]. Each
participant undergoes a training session to get familiar with
the teleoperation interface, the autonomous grasping function
and the robot. The training task is to pick up a bottle on the
counter and place it in a basket. The participants are allowed
to practice in this traning session until they feel confident and
comfortable to use the teleoperation interface and assistive
function.

b) Session 1 — Object Grasping: In this session, a
participant was instructed to reach and grab a bottle placed
on the counter (Fig. 5). The participants were asked to grab
the objects for five repetitions, using their dominant and non-
dominant arms, with and without the teleoperation assistance
(Total number of trials = 5 repetitions X 2 arms X 2 modes).
The order of arms and modes were randomized. All the
repetitions of the object grasping task were set to have the
same initial robot arm configuration, initial and final location

of the object. The participants were required to pick up
and place the object in a stable manner. During each trial,
we record the time for completing the task, the number of
times the object was knocked down and the EMG signal
of the muscle groups for muscle effort analysis (described
in Section IV-C). The participants also answered survey
questions about their teleoperation experience, in the NASA
Task Load Index (NASA-TLX) format on a 1-7 Likert scale.

c) Session 2 — Cleaning the Workspace: In this ses-
sion, the user has to pick up three cylindrical objects in a
cluttered workspace and place it in a basket (see Fig. 5(b)).
This task was to simulate a real-world scenario in which
a nursing robot needs to clean and organize a workspace
with medical supplies, patient room debris and laundry (as
the tasks identified in [38]). The participant was allowed to
choose between picking up the object manually or using
teleoperation assistance. If the object was dropped they
are allowed to pick it up unless the object falls off the
counter. We counted the number of times that the user uses
teleoperation assistance. We also scored the participant’s task
performance in the following way: (1) +10 points for picking
up each object and placing it in the basket; (2) -20 points
for knocking an object down or dropping an object when
moving it to the basket.

EMG Raw Signal

Teleoperation by Motion Mapping Muscle Effort Analysis
Motion Mapping Interface High Pass Filter
‘ (10 Hz < w)

I Full-Wave Rectification l

!

Low Pass Filter
(6 order, elliptic)

l Input _5
X
Task Performance ot
: @3
B
N2 A
©
£ \
2 \.
0
0 5 10 15 20

Duration (sec)

Fig. 6: Muscle efforts analysis process.

C. Muscle Efforts: Data Collection and Analysis

We used Wireless SEMG sensors (Trigno”™ from Delsys
Inc.) to record the EMG signals at 1,000 Hz for 10 individual
muscles, namely the Anterior and Middle fibers of the
Deltoid, the Biceps, the Brachioradialis and the Trapezius
of the left and right sides of the body. These muscles were
selected as they are the most involved in controlling human
upper body motion.

Our analysis of the SEMG data aims to evaluate individual
muscle effort during teleoperation using motion mapping
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Fig. 7: Performance evaluation procedure and summary for object grasping across all subjects.

with and without the assistance feature. Fig. 6 illustrates our
data analysis process where we have determined individual
muscle contraction levels and contraction duration. In the
graph on the bottom right the black line represents the
muscle contraction and the green bars collectively represent
the contraction duration.

The recorded EMG signals are within the 40 Hz-700 Hz
range in the spectrum domain. In the muscle effort analysis,
the raw EMG data was pre-processed using a high pass filter
(cutoff frequency 10 Hz), to remove the soft tissue artifact
and offset the frequency baseline. The processed signal
further went through a full wave rectification and then a sixth
order elliptical low pass filter (cutoff frequency 50 Hz), to
remove noise and transients and develop a linear envelope of
the EMG signal [29]. Using the method in [29], we determine
the appropriate threshold for muscle contraction to be the
signal baseline offset by thrice the standard deviation of the
muscle static contraction obtained from the first 200 frames
of the EMG signal in the MVC test.

V. RESULTS AND DISCUSSION

We compared the muscle efforts, task completion time
and numbers of errors in Session 1 (object grasping task),
to objectively and quantitatively assess the teleoperators’
physical workload reduction when using teleoperation assis-
tance. We further use the results from the NASA-TLX survey
and customized questionnaires in Session 1 and 2 to assess
their perception of workload, preference of teleoperation
assistance and their change of attitude toward teleoperated
robot technologies.

A. Performance and Efforts of the Object Grasping Task

a) Objective Indices: Fig. 7 illustrates how we com-
puted the indices for rating the teleoperator’s efficiency,
accuracy and effort in Experiment Session 1 (object grasping
task). For Efficiency (T) and Accuracy (A), we averaged
task completion time and the number of errors across all
five repetitions in the four discrete conditions (with and

without assistance, and for both the dominant and non-
dominant hands). The Effort (E) is measured by the mean
contraction duration for all the muscle groups. For each
participant, these three indices were then normalized to range
between 0 and 1, with respect to the the difference between
maximum and minimum values across all the conditions.
Fig. 7 also compares the performance Radar Charts across
participants. Overall, the teleoperation assistance improves
the task Efficiency and Accuracy for all the participants and
for teleoperation using both the non-dominant and dominant
arms. The reduction of Effort is more prominent and con-
sistent for the non-dominant arm across the teleoperators.

Our ANOVA analysis further reveals the improvement
in task Efficiency and Accuracy when using teleoperation
assistance for the object grasping task. This can be seen
by the recorded task completion times (non-dominant arm:
F(1,12)= 33.87, P< 0.01; dominant arm: F(1,12)= 52.35,
P< 0.01), number of errors (non-dominant arm: F(1,12)=
6.02, P< 0.05; dominant arm: F(1,12)= 9.85, P< 0.01) and
duration of muscle contraction (non-dominant arm: F(1,12)=
5.93, P< 0.05; dominant arm: F(1,12)= 7.93, P< 0.05).
Overall, grasping without teleoperation assistance took 13.3
seconds longer for the non-dominant arm and 11.9 seconds
longer for the dominant arm on average. This is mostly
because the teleoperation assistance reduced the risk of
knocking down the object during grasping and the effort for
precise manipulation.

Deltoid Deltoid . .
(Anterior) (Middle) Biceps Trapezius Forearm H‘\ml\‘ on
N T T 1
0.8
2
0.6
3k
2z 0.4
8 02
=
2 0
7l 02
T 04
sl -0.6
I I I I 1
ND D ND D ND D ND D ND D Increase

Fig. 8: Comparison of physical effort across all muscles with dominant (D)
and non-dominant (ND) hand.
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We further compared the muscle efforts between teleop-
eration with and without the assistance across all muscle
groups for each participant. As shown in Fig. 8, most of
the muscles had a significant reduction in physical effort
(marked as green) with a higher level of relaxation for the
deltoids and biceps of the dominant/non-dominant hand. The
different levels of muscle effort was calculated using the
Kullback-Leibler (KL) divergence measurement and all the
results were normalized by the maximum value. It is noted
that the Trapezius muscle however has reduced reduction
(marked as white) or increased physical effort as shown by
the red marks for 2 subjects. Overall, the assistance function
performed equally effectively on both arms for all subjects
thus validating Hypothesis 1. Even if there was a variation
between the subjects (the second half of Fig. 7), most of them
still performed better using teleoperation assistance and we
believe that a greater sample space of users would reinforce
this conclusion.

Mental Physical Temporal Performance Effort Frustration

Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.

ND Manual 325 1.713 3.75 1.391 2875 1.268 3.875 1.615 3.5 1.5 2375 1.727
Assistance 1.625 0.856 1.75 0433 2 1322 2 1 1.75 1.089 1.375 0.484
Manual 3.5 1.870 3.625 1.727 275 147 3 1118 3 1.5 225 1479
Assistance 1.875 0.780 1.75 0.661 1.875 0.927 2.125 0.927 1.75 0.829 1.625 0.695

Mental Demand

Physical Demand
ND

T P<005 I P<0.05 ip<0,01 ' [ P<001

L SR R VYN

Manual ~ Assistance Manual  Assistance Manual ~ Assistance Manual ~ Assistance

Fig. 9: Results of subjective survey from NASA-TLX.

b) Subjective Indices: We also used NASA-TLX sur-
vey with 1-7 Likert scale to evaluate the teleoperators’ per-
ception of task performance and workload. Shown in Fig. 9,
the teleoperators have answered the survey in support of the
usability of the assistance function. Without assistance the
operators rated the mental demand to be 3.25 £+ 1.713 and
3.5 + 1.87 for the non-dominant and dominant hands respec-
tively. With assistance the users rated the mental demand to
be 1.625 £ 0.856 and 1.875 £ 0.78 for the non-dominant and
dominant hands respectively. The lower mental demand rat-
ing for the assistance function is understandable as there was
no errors during operation and the need to manually execute
the precise manipulation to perform grasping is eliminated.
Thus, we have validated the reduction of cognitive workload
in Hypothesis 1. Additionally, as the assistance function
reduces the duration of muscle contraction the mental fatigue
incurred due to teleoperation also reduces. As a result the
operation times are reduced as there are no errors and
user motion is more efficient. The users may have reported
reduced physical workload in their surveys as a result of
these advantages.

B. Preference of the Teleoperation Assistance

In Experiment Session 2, participants were allowed to
choose whether or not to use the teleoperation assistance
to pick and place objects. Table II compares the teleoper-
ators by the number of instrances they used teleoperation

Performance of Collecting Task

Objects Picked Points-Pick up __ Points-Drop in bin _Penalty-Drop Object Total

Subject  Manual Assi Manual Manual Manual _ Assist Manual _Assist
1 0 3 0 30 0 30 0 0 0 60

2 2 1 30 10 20 10 20 0 30 20

3 0 3 0 30 0 30 0 0 0 60

4 2 1 10 10 10 10 20 0 0 20

5 1 2 10 20 10 20 0 0 20 40

6 2 1 20 10 10 10 -40 0 -10 20

7 1 2 10 20 0 20 0 0 10 40

8 0 3 0 30 0 30 0 0 0 60

Sum 3 16 80 160 50 160 -80 0 50 320

TABLE II: Performance of score system for collecting three objects.

assistance with their task scores. Overall, we found (1) more
participants prefer to use teleoperation assistance, and (2)
with the teleoperation assistance their task scores are much
higher than the participants who performed the tasks more
manually.

7 | 4

| I B [

2 [ 2 ° ]
w1 H : L 3
léD T E 1 & § E o
£ Bl 3 1.
~ e g £ 5
5 ] ] £ 1 &

1 E a8 O O S

Preference Factor 1  Factor2 Factor3  Factor 4 Q

Fig. 10: Rating of preference.

After Experiment Session 2, participants rated in hindsight
their preference for teleoperation assistance and manual con-
trol during robot teleoperation. As there was a greater prefer-
ence for the assistive function, the users were questioned on
what factors made them favor teleoperation assistance more.
They were asked to state to what extent the teleoperation
assistance can (1) increase the success rate; (2) reduce the
task completion time; (3) reduce the cognitive workload; and
(4) reduce the physical workload based on their experience
on a 1-7 Likert scale with 1 being the least and 7 being the
most in terms of agreement. Finally, we evaluate their ac-
ceptance of using teleoperated robot technologies by asking
the question (Q): "With the teleoperation assistance, do you
prefer to work more with teleoperated robots?”. The results
represented in Fig. 10 highlight the participant’s belief that
teleoperation assistance improves performance. This further
supports Hypothesis 2.

VI. CONCLUSION AND FUTURE WORK

This paper has demonstrated that with a simple manually-
triggered autonomous grasping function teleoperation as-
sistance can effectively reduce the physical workload and
improve the efficiency and accuracy of the motion mapping
teleoperation interface. This increases the users’ preference
for using teleoperation assistance and the acceptance for tele-
operated robot technology. The work in this paper is limited
to a specific robot platform and motion mapping interface
design. Our future work will evaluate more advanced shared
autonomy for teleoperation assistance and alternate motion
mapping teleoperation interfaces focused on reducing phys-
ical workload. We will also test the teleoperation assistance
technology in a more realistic patient-caring and home-caring
tasks with nursing workers and students as the users.
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