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Eye tracking is an advancing technology holding significant promise to improve our understanding of hu-
man behavior and decision making. Gaze data gathered by eye trackers contain events known as fixations.
Fixations indicate visual attention and awareness, and are identified by algorithms that parse eye-tracking
data into a sequence of gaze point clusters. While great potential exists, eye-tracker imprecision often re-
sults in noisy gaze data, such as what arises from calibration errors, erratic eye movements, or other sys-
tem noise. Noise can cause inaccurate identification of fixations in eye-tracking applications, resulting in
misleading behavioral interpretations and conclusions. Therefore, fixation identification algorithms should
be robust against data noise. To resolve such inaccuracies, we propose FID*: outlier-aware fixation iden-
tification via fixation inner-density. We represent the problem of detecting outliers in fixation gaze data
through a novel mixed-integer optimization formulation, and subsequently strengthen the formulation
using two geometric arguments to provide enhanced bounds. We show that neither bound dominates
the other, and that both are effective in reducing the overall solution runtime. Our experiments on real
gaze recordings demonstrate that accommodating for the reality of fixation outliers enhances the ability

to identify fixations with greater density in reasonable runtime.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Eye-tracking technologies are an increasingly powerful tool for
analyzing human behavior and visual attention patterns. An eye-
tracking device provides objective, quantitative data concerning
human gaze, which can be used to analyze focus of attention and
awareness under variable visual stimuli. Eye-trackers can be read-
ily attached to computer devices. Fig. 1 depicts such a screen-based
configuration. The eye tracker uses infrared light illuminators and
cameras to identify light source reflection patterns on the eyes of a
user. The captured patterns are used to algorithmically estimate a
consecutive stream of (x, y) gaze point positions on the computer
monitor.

The proliferation of eye-tracking devices on personal comput-
ers [1] offers great potential in many practical applications, such
as analysis of user experience [2-4] and enhancement of multime-
dia learning experience [5]. In management science research, many
studies analyze customer decision-making via visual attention in-
formation collected by eye-tracking devices. Eye-tracking technol-
ogy is used for learning information acquisition patterns in cus-
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tomer shopping environments [6], for studying the efficiency of
decision processes in conjoint choices [7], and for the evaluation of
behavior attention in retail category management [8,9]. In health-
care studies, eye-tracking technology has been employed for re-
searching human cognition and decision making [10], experimental
psychology studies [11] and attentional neuroscience [12] investi-
gations. Eye-tracking technology has particularly prominent uses as
a supportive diagnostic tool for monitoring vision health [13] and
mental health [14]; Augmentative and Alternative Communication
(AAC) devices commonly adapt eye tracking technologies to sub-
stitute for more traditional human computer interaction tools such
as keyboard and touch screen. AAC assists individuals with disabil-
ities like autism [15-17], muscular dystrophy [18,19], and cerebral
palsy [20] to more easily use technology.

The foundation of all of the aforementioned eye-tracking appli-
cations is a system that can accurately process gaze data and cor-
rectly identify human visual attention. For superior performance,
such systems require both high-quality gaze data, as well as ef-
ficient and effective translation of raw gaze data into behavioral
indicators.

While high-quality gaze data is a prerequisite for information
acquisition among all eye-tracking recordings, a variety of factors
in real-world settings can adversely affect gaze data quality. These
include system issues such as sensor noise and data loss from the
eye tracker [21], calibration errors prior to the start of an experi-
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Fig. 1. An eye-tracking device mounted to a computer monitor, recording eye
movement positions over time.

ment [22], gaze data processing algorithms [22], participant char-
acteristics [22], eye-tracking experiments design [23], and poor
recording environments and low-skilled operators [22]. The real-
ity of eye movement mismeasurement and data noise in eye track-
ing recordings ensures that outliers exist in gaze data. While out-
liers have been studied in a variety of settings [24-30], when left
unremedied in accuracy-dependent contexts, outliers can distort
downstream processing and analysis, ultimately leading to inaccu-
rate and less useful research.

Technically speaking, gaze data is categorized into two primary
types: fixations are clusters of points that are adjacent in proximity
and time, whereas saccades are higher velocity gaze points that oc-
cur between fixations. Because fixations represent visual attention,
the accurate classification of eye gaze data into its constituent cat-
egories is a must for researchers to precisely understand focus of
attention in meta-analysis, which is the most critical issue in eye-
tracking research and development. The process of categorizing fix-
ation and saccade eye movements is known as fixation identifica-
tion [31-33] or event detection [34,35]. While the velocity-based
I-VT filter [31] and the dispersion-based I-DT filter [31] serve as
two foundations upon which many fixation identification methods
are built, each suffers from limited precision that skews fixation
properties [34,35] and hinders downstream research that relies on
these essential properties.

Trapp et al. [36] advance the state-of-the-art in fixation identifi-
cation through the notion of fixation inner-density, which addresses
some limitations of existing methods including a lack of sensitivity
to peripheral fixation points, as well as possible misrepresentation
of fixation properties. They introduce the FID filter [37] which uses
integer optimization techniques to identify fixations in a sequence
of gaze points by optimizing for inner-density. The benefits of the
FID filter can be seen in Fig. 2, where it can eliminate extraneous
gaze points #1 and #9 that are at the boundaries of the fixation
- technically under the velocity threshold, but likely not belonging
to the fixation. Computational results demonstrated that the FID
filter is efficient and effective in identifying denser fixations than
the current I-VT method.

There are opportunities to improve the FID filter, especially its
sensitivity to handle occasional noise and erratic eye movements
within gaze data. The optimization model in [36] enforces that
within a single fixation, all fixation points must be temporally ad-
jacent; this can result in overly strict interpretations of fixations,
whereby some small aberrations which should be otherwise ig-
nored, may force fixations to terminate early. Thus, it is worth-
while to allow for some small deviations in the sequence, for ex-
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Fig. 2. Illustration of fixation and its apothem (side half-length) identified in a gaze
data chunk; FID filter: minimizing apothem of fixation bounding box.

ample if a stray gaze point exists between two larger clusters of
gaze points in the same region. In this case, it may be preferable
to allow for the facility to simply omit this gaze point.

We contribute to the eye-tracking fixation identification litera-
ture by creating the first density-based method for detecting fixa-
tions that is outlier-aware. The FID filter is introduced in [36] and
employs optimization-based approaches to find the densest fixa-
tions, but is otherwise silent with respect to outliers. The work
presented in this study augments the FID filter by enabling the
detection and elimination of certain outlier points within the fixa-
tion. Our work can significantly improve results in identifying fixa-
tions within noisy gaze data. This is particularly important for eye-
tracking experiments where the understanding of human visual at-
tention is of central importance, such as healthcare applications.

We propose an enhanced mathematical optimization formula-
tion - FID* - to account for this outlier sensitivity. To the best
of our knowledge, this paper and [36] are the only approaches
to identify fixations in gaze data by optimizing for density. The
addition of a new set of budget-constrained binary variables ac-
counts for the condition of where a gaze point is labeled as an
outlier. In conjunction with the existing binary variables that in-
dicate whether a gaze point is labeled as a fixation point, we in-
troduce two new constraint sets that together represent time con-
sistency in light of outlier gaze points. While the new formulation
accurately remedies the aforementioned limitation, it does so at
the cost of additional complexity. Thus, we present two algorith-
mic techniques to tighten lower bounds on the size of the apothem
(which is minimized) to improve the computational performance.

The remainder of this paper is organized in the following man-
ner. In Section 2 we provide background on fixation identifica-
tion algorithms for analyzing eye-tracking data, including classical
methods, as well as the more recent FID filter. In Section 3 we
present FID*, a novel mixed integer programming (MIP) formu-
lation for detecting fixations with outlier sensitivity. We subse-
quently provide two geometric arguments to strengthen the op-
timization formulation by enhancing the lower bounds on the
apothem of the bounding box, and demonstrate that both are
advantageous (we show that neither technique dominates the
other). Section 4 details the computational experiments on real
eye-tracking data, including a discussion on its observed perfor-
mance. Finally, we conclude the paper and discuss future work in
Section 5.

2. Background on eye-Tracking technologies

Gaze data is recorded as a sequence of (x, y, t) triplets, often re-
ferred as the point of regard (POR) in eye-tracking literature, where
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Fig. 3. Illustration of accuracy and precision for measuring gaze data quality, reproduced from [39]. Accuracy is the difference between the centroid of grouped recorded
gaze points, and an actual reference fixation location. Precision is the variance of the gaze point dispersion in a fixation.

(x, y) attributes represent eye movement position on 2D stimuli,
such as static computer displays. The third attribute ¢ is the times-
tamp that represents when the corresponding position is recorded
by the eye-tracking device. The sampling rate of commercial eye-
tracking devices commonly ranges from 30 Hz to 1,000 Hz, or even
higher.

Eye movements can be separated into two common types of
events: fixations and saccades. The purpose of eye movement
classification is to isolate eye movements within the gaze data
stream into distinct time intervals that correspond to oculomo-
tor responses or cognitive properties towards visual stimuli [35].
Fixations are clusters of gaze points that occur near in both time
and location. This is because the act of fixating maintains visual
gaze on a single location while cognitive processing occurs. On the
other hand, saccades are the rapid movements between fixations.
Notably distinct from saccades are smooth pursuit [38] eye move-
ments, which allow the eyes to follow a moving visual stimulus.
Similar to many of the current classification algorithms that iden-
tify fixations and saccades [35], we also limit our discussion to fix-
ation identification, that is, gaze points that are not fixations are
not further classified as saccades or smooth pursuits.

The stability of fixation identification is highly influenced by
gaze data quality, which has long been discussed in eye-tracking
research. We now review the key aspects of data quality and the
actual impacts for fixation metrics.

2.1. Data quality and fixation outliers

High-quality gaze data is the foundation of generating valid and
reproducible behavioral research results. As illustrated in Fig. 3, Ac-
curacy and precision are the two highlighted aspects measured for
eye-tracking data quality. The reference location, denoted with a
“+”, is where the participant is asked to fixate. Accuracy, also called
offset, refers to the shift between the recorded gaze position loca-
tion, and the actual reference location. Precision refers to the vari-
ance of the recorded positions to the reference location [22,29,39].

Inaccuracy and imprecision can be attributed to multiple fac-
tors: eye-tracking cameras [39], algorithms for capturing eye
movements [39], experimental design [23], system issues (such as
sensor noise, data loss) [21], and various participant characteris-
tics (such as glasses, astigmatism, eye color, head movements) [39].
Poor data precision leads to noisy gaze samples, which can chal-
lenge the reliability of fixation identification algorithms.

Fig. 4(a) illustrates a raw gaze sequence with 425 points
collected by a Tobii Pro-TX300 [40] eye-tracking device, while
Fig. 4(b) shows a noisy raw gaze sequence with the same length
also from the same device. Gaze points in Fig. 4(a) show ex-

plicit clusters at the location of fixations. However, the clusters in
Fig. 4(b) contain multiple stray points, and those points appear to
drift to the same direction from their temporally adjacent points.
The fixation patterns in Fig. 4(b) will inevitably contain some noise
points in a long fixation gaze point sequence. Such noise points
should be viewed as Fixation Outliers, and subsequently be elimi-
nated from fixations.

Fixation outliers can have substantial effects on the precision
of fixation metrics, such as the number, and duration, of fixa-
tions [22]. Also impacted is dwell time, a commonly used measure-
ment of gaze duration in eye-tracking research for entering and
remaining in an area of interest [41]. As illustrated in Fig. 5(a),
when the point C is included as a fixation point, the square fixation
bounding region increases significantly and the fixation centroid
shifts away from its original position. Fig. 5(b) shows an actual ex-
ample of possible fixation outliers appearing in real gaze data.

2.2. Common algorithms for fixation identification

Fixation identification is closely related to cluster analysis. Be-
cause there is inherent ambiguity in assessing the quality of
grouped objects, formal evaluation of fixation identification algo-
rithms is challenging and lacks standardization. While it is com-
monly agreed upon that all existing algorithms for event detection
have limitations [35], it is valuable to examine those that exist be-
cause they form the foundation of the state-of-the-art and offer
insights into how to approach solving the fixation identification
problem. In particular, a recently developed algorithm known as
the fixation identification (FID) filter was the first to incorporate an
optimization-based approach to identify fixations, optimizing for
fixation inner-density [36]. We now review key existing methods.

2.2.1. Velocity-based algorithms

In velocity-based algorithms for fixation identification, the clas-
sical approach is the Identification by Velocity-Threshold (I-VT) fil-
ter [31]. This algorithm sequentially separates gaze points into fix-
ations and saccades based on point-to-point velocity. Points with
velocity exceeding that of a predefined velocity threshold V are
categorized as saccade points. This process naturally separates gaze
points into distinct fixations. This algorithm is fairly accurate in
saccade detection, easy to implement, and robust for a variety
of practical uses for eye-tracking devices. However, a signification
drawback is that the I-VT filter may result in misclassifying gaze
points that, while having a velocity technically below the thresh-
old, are locationally separate from adjacent gaze points. This short-
coming can skew fixation metrics such as fixation centroid loca-
tion, which is an important representation of visual location for
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(a) Well-calibrated gaze data in two dimensions recorded by eye-tracking device.
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(b) Noisy raw gaze data in two dimensions recorded by eye-tracking device.

Fig. 4. Comparison between normal gaze data and noisy data.
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(b) Example in raw gaze data: the intermediate red
gaze points (top left) are far from the main cluster of
gaze points, indicating the potential to be fixation
outliers.

Fig. 5. Influence of fixation outliers on fixation metrics.

user attention in behavioral studies. Another drawback is that con-
stant velocity thresholds are not suitable for gaze stream data with
substantial noise. Some recent studies [34,42-44] enhance the ba-
sic I-VT filter by designing an adaptive velocity threshold that pro-
vides greater flexibility with event classification at different noise
levels. Even so, there exists an inherent challenge: the I-VT filter
does not consider the compactness of constituent gaze points.

2.2.2. Dispersion-based algorithms

The Identification by Dispersion-Threshold (I-DT) filter [31] is a
classical dispersion-based method The I-DT filter identifies fixa-
tions using two predefined thresholds: the minimum fixation du-
ration, and the maximum fixation dispersion threshold D. It uses
a fixed-size sliding window to sequentially examine data. To con-
stitute a fixation, the length of the gaze sequence should meet or

exceed the minimum duration, while its dispersion should not ex-
ceed D. The dispersion of the gaze sequence is measured using
gaze point location. One implementation is to set a threshold for
fixation radius. It also can be defined as a dispersion threshold D
that equals to the sum of the length and width of the window
covering a minimum amount of consecutive points. The main lim-
itation of the I-DT filter is that D is a constant parameter, which
may result in misclassifying gaze points and a lack of sensitivity in
actual implementation. Some research has been done to further in-
vestigate dispersion-based algorithms. Blignaut [32] suggested that
the correct setting of dispersion threshold for fixation radius was
found in the range of 0.7° to 1.3°. Veneri et al. [33] propose an al-
gorithm with improved dispersion criterion that is based on the
analysis of fixation variance using covariance thresholds and F-
tests.
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2.2.3. Density-based algorithms

One recent study that identifies fixations by density-based clus-
tering is the modified DBSCAN algorithm proposed in [45]. Tradi-
tional DBSCAN requires two parameters: the minimum distance e
between two points, and the minimum number of points minPts
to form a dense region. It then categorizes points into core points,
border points, and others (which are known as noise points). The
modified DBSCAN algorithm in [45] adds an additional require-
ment while evaluating the number of points within the dense re-
gion: the points within distance € should be temporally adjacent.
In consequence, the core points and border points constitute the
fixations, whereas the other points are classified as saccades.

2.2.4. Fixation inner-Density-based algorithms

Trapp et al. [36] introduced a new fixation identification
method known as fixation inner-density (FID). It combines both
temporal and spatial aspects of the fixation. Together, these aspects
are used to evaluate the compactness of a fixation, which has been
shown to be positively correlated with user attention [46]. Inner-
density overcomes several limitations of existing methods, such as
a lack of sensitivity to peripheral points of a fixation, as well as the
misrepresentation of fixation properties. The FID filter inherently
differs from [45] in two aspects: methodology and the interpreta-
tion of density. Two mixed-integer optimization approaches were
developed to identify fixations in a sequence of gaze points by op-
timizing for inner-density. The key novelty is the guarantee that
there is no better gaze point identification according to the objec-
tive function of optimizing for inner-density, modulo the param-
eter «. This parameter is a predetermined value (e.g., via expert
judgment) that enables decision-makers to have fine-tuned control
over the inner-density.

Simultaneously identifying all fixations in the entire gaze
stream is computationally prohibitive. We exploit the fact that sac-
cades are natural separators of fixation to decompose the entire
gaze stream into a series of data chunks for efficient processing.
This decomposition principle, together with the optimization ap-
proach applied over all chunks, constitutes the FID filter. The ex-
perimental results on real datasets demonstrate that the FID filter
with optimization formulation (13a)-(13f) in [36] is efficient and
effective, averaging under one second per chunk to identify the
o-densest fixation among the constituent gaze points. The iden-
tified fixations exhibit greater density than the existing I-VT filter,
reflecting the ability to refine fixations, as well as more accurately
represent gaze metrics such as fixation duration and center. The
improved gaze metrics can form a more precise representation of
attention and awareness for further analysis in eye-tracking stud-
ies.

While we have addressed the benefits of eliminating fixation
outliers, such as illustrated in Fig. 5, the FID filter is limited
in its ability to account for fixation outliers due to the overly
strict nature of the constraint set outlined in Proposition 1 of
Section 3.2.2 of [36] that requires every fixation to contain only
consecutive gaze points in time. Therefore, to enable the FID filter
to account for outlier sensitivity, we extend the approach in [36].

3. Mathematical developments

From a gaze sequence S with 7 points (x{,y!), t=1,...,7, we
seek to identify fixation points to constitute F fixations. The fixa-
tion identification problem discussed in [36] requires each fixation
to contain at least A points for information processing to occur,
and those points must be temporally adjacent. Define 7.F binary
variables z, with z;; =1 if gaze point ¢ is included in fixation f,
and 0 otherwise. Of the two formulations presented in [36] for FID
filter in finding dense fixations, we focus on the latter, Minimize

Square Area of Fixations [36, formulation (13a) - (13f)]. The formu-
lation bounds each fixation with a two-dimensional square box of
minimal area; it achieves a minimum area by equivalently min-
imizing the apothem of the square, r;. The model incorporates a
non-negative parameter « into the objective function that balances
the trade-off between the inclusion of additional gaze points and
the compactness of the fixation region. For the sake of complete-
ness, we include this formulation in (1a)-(1h).

F T

minimize Y | rp+a ) (1-2zy) |, (1a)
f=1 t=1
F

subject to Y "z <1, t=1,....7T, (1b)
=

;

Zztfz/\/, f=1,..F (1c)

t=1

-

Z Zip < (T =0 —2zp +2115),

j=t+1

t=1,.. T—1.f =1,.. . F (1d)

Xp—Tp—Mx(1—zp) <X <xp+1p+ My(1—2p), t=1,...,T,
(1e)

yr=rr=My(I=zp) <y <yptrp+ My(1=zp), t=1.....T,

be<Xp<uy y<yp<uy, f=1,... F (1g)

rr>0,x>0,y,>0, f=1,....F; z5€{0,1},
t=1,....7, f=1,...,F. (1h)

Objective function (1a) contains two terms, the first minimizes
the sum of apothems, and the second provides incentive to label
additional points as fixation points. Constraint set (1b) represents
that a point can be assigned to at most one fixation. Constraint
set (1c) ensures that each fixation contains at least A/ points. Con-
straint set (1d) ensures gaze points identified in one fixation are
temporally adjacent. Constraint sets (1e)-(1f) are box constraints
to guarantee that when time point ¢t is assigned to fixation f, it
lies in the square with center (x; ys) and apothem ry. Bounds

for x; and yy are Iy = t_rPinTxf, Uy = t_r?axTxf, ly = t_r?inTyt, and

Uy = r{laxTyf. Then, the values of My and M, are calculated by
t=1,...,

My =max {[x — I|. |uy — x|} and My = max { |y — L], [uy - y*|}.
Variable definitions and bounds are listed in (1g)-(1h).

3.1. Decomposition principle

The gaze sequence length 7 can easily reach the hundreds
of thousands gaze points, and the number of fixations can like-
wise be in the thousands. Formulation (1a)-(1h) is valid for any
number of gaze points 7 and fixations F. This includes subse-
quences obtained after applying the decomposition principle dis-
cussed in [36]. This process separates a gaze data sequence into
distinct data chunks ¢k, k=1,..., K, with data chunk separated
by one or more saccade points as identified by benchmark fil-
ters such as the I-VT filter. After the decomposition, a minimal
number of fixations remain within each data chunk, and formu-
lation (1a)-(1h) can identify «-densest fixations efficiently in each
chunk. Again, we term this approach the FID filter. We also apply
this decomposition principle in the FID* filter.
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3.2. FID* Filter: Detecting fixation outliers in gaze data

In this section we present the insights for extending the math-
ematical formulation to identify fixations with outlier sensitivity.

3.2.1. New variables for outlier detection

We extend formulation (1a)-(1h) to additionally classify a small
portion of gaze points within the identified fixations as fixation
outliers. Although they lie in the interior of a fixation time se-
quence, they are not identified as fixation points (i.e., z;f = 1). De-
fine TF binary variables g, with g, = 1 if gaze point ¢ is an outlier
in fixation f, and 0 otherwise.

3.2.2. Fixation outlier budget

We propose a budget P to allow some small number of outlier
points. One reasonable value for P is a percent p of the total num-
ber of gaze points 7 in the chunk, so that P = [p7]. Hence, the
sum of outlier points over all fixations should be less or equal to
P:
3

=1t

Gif <P. (2)

\
gl

Alternatively, P can be set to any user-defined, positive integer.

3.2.3. Relaxation from absolute time consistency
Proposition 1 in [36, Section 3.2.2] introduces the following
constraint set:

;
Y zjp < (T-0)(A=2Z+2enp), t=1,....T-1; f = 1,..., F.
e

3)

This constraint set ensures the included points within each fixa-
tion must be consecutive in time. Fixation f terminates once a con-
secutive time pair (2, 2., y) appears as (1,0) among all the pos-
sible values {(0, 0), (0, 1), (1, 1), (1, 0)}. When (z, 2,4 f) equals to
(1,0), the right-hand side becomes zero, ensuring that z;; = 0, for
all j:t+1<j<T. It guarantees that the reminder of the points
in the chunk are not included in this fixation. For the other pos-
sible values of (zf, 2.1, ), the right-hand side is either (7 —t) or
2(T —t), so the constraint set becomes vacuous. Thus, for a fixa-
tion f, a starting gaze point at time a and an ending point at time
b, constraint set (3) ensures zy is assigned in the following fashion:

l) th =0, 11) th =1.
t:t¢{a,...,b} t:te{a,...,b}

However, when a set of outlier gaze points €& cC
{a+1,...,b—1} appears between the starting and ending fixation
points, as indicated by ¢;; =1, the corresponding z should

titef t:itef
be assigned to zero. The assignment ii) changes to z; =0 and
t:te€

Zi5 = 1. The consecutive pair (z;,z;.1 r) equals to (1,0) not
t:te{a,....b}\&

only happens at the termination of f, but can also occur when
point t + 1 is identified as an outlier, i.e., g, f = 1. When fixation
f terminates, (z;f,2;.q ) is (1,0) and g;,q ; should be assigned as
zero. Following this interpretation, we extend the constraint set
from (3) to (4) by relaxing the assumption that fixation points
must be consecutive in time:

,
> zjp < (T = = Zgp + Ze1 f + Gesn f)-
J=t+1

t=1,...T—1: f =1,...,F 4)

When ¢4 y = 0, indicating point ¢ + 1 is not an outlier for fix-
ation f, the right-hand side in (4) equals zero when consecutive

time pair (zf,2.1,5) equals (1,0). Thereby it ensures the follow-
ing variable zj, for all j:t+1 < j <7 must be zero, which means
fixation f terminates as it may no longer include any gaze points.
Therefore, when ¢, f = 0, the constraint set has the same impact
as constraint set (3). However when ¢, ; = 1, the constraint set
induces no restrictions under any alternatives of (z;f,2..q ), be-
cause the right-hand side is always at least (7 —t). Thus, the con-
secutive variables zj, for all j:t+1 < j <7 may still be assigned
to one. Therefore, the subsequent gaze points from t +1 to 7 can
be included in fixation f and the assignment of (1, 0) to the pair
(2, 2r41,5) DO longer delineates the end of the fixation.

3.2.4. Controlling the position of outliers

While constraint set (4) generalizes the condition of strict time
consistency, there is no implication on the values that points z,
forall j:t+1<j<T can take when ¢, y = 1. In the absence of
any other constraints, this may cause a fixation to be decomposed
into multiple components. To ensure that every fixation f has con-
secutive gaze points formed by only fixation points (z;; = 1) and
outlier points (q;; = 1), the following set of constraints can be in-
corporated:

QthQt+l.f+Zt+1,f’ t=1,....,7T -1, f =1,..., F. (5)

Constraint set (5) ensures that if g;f = 1, the next gaze point
at t + 1 must be classified as a fixation point (z..4 f = 1) or a fix-
ation outlier (qqq ;=1). When ¢,y =0, the constraint is always
valid. While this constraint set technically allows both z; =1
and g4 y =1, there are scarce outlier points available by (2), and
so gaze points are classified as outliers only when it is beneficial
for the objective, that is, when subsequent gaze points are classi-
fied as fixation points. Constraint set (5) introduces 7F — F addi-
tional constraints.

3.3. Minimizing square area of fixations with outlier sensitivity

We now present the final MIP formulation for FID*: outlier-
aware fixation identification via density optimization. Note that the
extensions discussed in Section 3.2 can also be applied to Mini-
mize Average Intra-Fixation Sum of Distances [36, formulation (12a)

- (12f)].

F T

minimize Y | rp+a ) (1-2zy) |, (6a)
f=1 =1
F

subject to » "z <1.t = 1.....7T. (6b)
=

.

Yzg=N. f = 1. F (6¢)

t=1

i

> zjp < (T = = Zip + Ze1 5 + Qe f)-

j=t+1

t=1..7-1f=1.._F (6d)

Qif <Qesrf+2eagp t=1,....T=-1 f = 1,...,F, (6e)

].'
) gy <P, (6)

f=1t=1

—_

Xp—Tp—Mx(1=2p) <X <Xp+1p+ Me(1=24), t=1,....7,
(6g)
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V-1 —-My(1—zp) <y <yp+r,+ My —2p), t=1,...,T,
(6h)
20, k<xf<uw <yr<uy, f=1,...,F, (6i)

z5e{0,1), qsef0 1}, t = 1,...,T, f = 1,..., F. (6§)

Formulation (6a)-(6j) uses binary variables z; to assign time
point ¢ to fixation f. It incorporates binary variables g, to iden-
tify outlier points in each fixation f. Objective function (6a) mini-
mizes the sum of fixation square apothems, penalizing the number
of excluded points with parameter «. Constraints (6b) and (6c¢) are
the fundamental constraints indicating that a time point can be
assigned to at most one fixation, and each fixation contains at
least A points. Constraint set (6d) relaxes fixation point assign-
ment from absolute time consistency, while constraint set (6e) en-
sures points identified as outlier points are succeeded by either
outlier or fixation points. Constraint set (6f) ensures the number
of identified outlier points is within the fixation outlier budget
P. Constraints (6g)-(6h) ensure that the identified points in fixa-
tion f present in the fixation bounding box with center (x;, yr) and
apothem ry. Variable definitions and bounds are listed in (6i)-(6j).

While formulation (6a)-(6j) is correct and detects fixation and
outlier points, initial computational testing on larger instances re-
vealed that, while strong feasible solutions were quickly found, the
MIP solver Gurobi [47] experienced difficulty proving optimality.

3.4. Deriving lower bounds on r¢

Objective function (6a) minimizes the apothem r; of the bound-
ing box encompassing the fixation points. While feasible solutions
0 (6a)-(6j) representing strong upper bounds are quickly com-
puted using the MIP solver Gurobi [47], the lower bounds often ex-
hibit only gradual progress toward convergence, likely due to poor
relaxation strength from constraint set (6d).

To accelerate the computational proof of optimality, we present
geometric arguments that can strengthen lower bounds on ry. We
algorithmically preprocess the gaze point sequences to identify
lower bounds ¢ on 1y, f=1,..., F.

3.4.1. Deriving lower bounds on 1y via sliding windows

Consider identifying F fixations from a gaze sequence with 7
total points, each of which requires at least N fixation points to
ensure cognitive processing occurs [1]. Further, suppose the entire
budget of P outlier points is used in a fixation with the minimum
number of points A. Lemma 1 states that there will be at least
one subsequence separated by outlier points that contains at least
LPLHJ consecutive gaze points.
Lemma 1. Suppose for fixation f, the fixation point sequence s; has
length N, and it is decoupled into subsequences by Py fixation out-
liers. There always exists a subsequence s of s; with length of at least

| 25 | points.

Proof. The average length of all subsequences in fixation f is

ij\+1 hence there is at least one subsequence s whose length

is greater than or equal to ﬁ Because Ny >N and Py <P
L NF N

by (6¢) and (6f), this implies > Pfil > Pﬁ] > 7>+1J Thereby

the length of s is also greater than or equal to | A5 |. O

For fixation f, the apothem r; represents a minimum bounding
box covering all included fixation points, starting from a gaze point
at time a to an ending gaze point at time b. The apothem of the
bounding box must satisfy ry > 5 max;; {|x' — xJ|, [y’ — y/|} for all

the point pairs (i, j): @ < i < j < b. The apothem r; of the bound-
ing box is monotonically nondecreasing as the number of points in
the range [a, b] increases. Thus, a conservative global lower bound
¢4 on 1 can be derived from the individual lower bounds originat-
ing from the distance arising from t, to t shifted by the minimum
number of consecutive gaze points, L%J. By considering all pairs
of points (t,t+ [ A5 —1)fort=1...., T — 1451 + 1. we obtain
a lower bound on ry. Finding ¢; can be accomplished in polynomial
time. For each begin-end point pair, we compute the correspond-
ing minimum bounding length ¢,:

1 B . N
’ 1 j i i _
0 = 5 m {|x —x, |yt =y ‘ t§l<]§t+Lp+]J 1}.
(7)
When a smaller ¢} is found, we update ¢; to be ¢{. The cost of

this method is O(7 — | A |). that is, it is linear in the number of
gaze points 7. This method is summarized in Algorithm 1.

Algorithm 1 Determine Valid Lower Bound ¢;.

Input: Gaze sequence S with length 7; fixation outlier budget P;
minimum number of fixation points N.

Output: Lower bound ¢; on the fixation apothem ry.

1: Set ¢1 < max {|ux — L], [uy — I}

afort=1....7-|[£;]|+1do

3:  Calculate the minimum bounding length
e§=%rg§X{|xf—xf|,lyf—yf| ( tsi<jst+L%J—1]}-

4 if ¢} <¢; then

5: Set £1 « {].

6: return ¢;.

Theorem 1. For a gaze sequence S, ¢ is a valid lower bound for
re, f=1,..., F e & <15

Proof. Suppose there exists ¢; > r¢ for fixation f from Algorithm 1.
By Lemma 1, we can find a subsequence s of fixation f with a
length of at least | £ |. We further truncate s by sequentially
eliminating points from either the beginning or the end, until the
remaining sequence s is exactly | £ | points. The remaining se-
quence constitutes a new sequence s’, and let the apothem of
the minimal bounding box be ¢;’. Because s’ is contained in s, it
has fewer fixation points than fixation f. The lower bound on the
bounding box apothem, by the construction in (7), is a nondecreas-
ing function in the number of points in the fixation, thus we con-
clude that ¢} < ry. This implies that ¢} < ¢;, which contradicts the
fact that ¢; is the minimal bounding box apothem for all the con-
secutive gaze subsequences with length of L J Thus, the origi-
nal statement holds. O

P

3.4.2. Deriving lower bounds on r; via smallest enclosing squares

For a gaze sequence of 7 points, the apothem length of the
smallest enclosing square covering N points, irrespective of tem-
poral adjacency, is a valid lower bound ¢; for rs, f=1,..., F. We
adapt Algorithm 2 from [48] for finding the smallest square bound-
ing box of N points for each input gaze sequence. Algorithm 2 first
sorts the gaze points at x-decreasing order and sweeps each point.
Hence, the algorithm sweeps points from right to left. When
sweeping at point t, the current x' is recorded as p;. From the
points lying to the right of the vertical line drawn by p;, it finds a
set of points V whose x-axis value is in the range of [x, x; + €3],
y-axis value is in the range of [y; —£5.yr + £5], where ¢, is the
smallest apothem of the enclosing square identified thus far. It
then finds the squares that exactly cover N points and their left
side is on the vertical line through p; and bottom side is on the
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Algorithm 2 Determine Valid Lower Bound ¢;.

Input: Gaze sequence point set § with length 7; minimum num-
ber of gaze points A.

Output: Lower bound ¢; on the fixation apothem ry

1: Sort points in S at x-decreasing order.

2: Set £y < max {|ux — k|, [uy — Iy|}.

3: Set P < empty balanced binary search tree.

4 fort=1,...,7 do

© pr=x.

5

6:  xMax =x! + ¢,

7. yMax =yt + ¢5.

8:  yMin=y' —¢,.

9: Insert a new node into P, key=yt, value=(xt, y).
10: SetV « 4.

11: for node p <P do

12: if xP < xMax then

13: if yMin < yP < yMax then

14: Add (xP,yP) to V.

15: else

16: Delete p from P, i.e., P=P\ p.

17:  if |V| > A then

18: Sort points in V at y-decreasing order.

19: Set A < empty balanced binary search tree.

20: Set B < empty balanced binary search tree.

21: fori=1,...,|V| do

22: Select g = V[i] = (x4, y%) from V.

23: Set g, = y1.

24: Insert a new node into A, key=x4, value=(x4, y9).
25: for node a € A do

26: if y9 — g, > x* — p; then

27: Delete a from A, ie, A=A\ a.

28: Insert a new node into B, key=y9, value=(x%, y?).
20: if i > A/ then

30: Find the key k at rank AV in (A—py) U (B—q3).
31: th = %k.

32: if ¢} < ¢, then

33: Set {5 « Z/Z.

34: return ¢;.

line through a point in V. At each pq, the algorithm sweeps a hori-
zontal line g, from the top point to the bottom point of V. Two bi-
nary search trees A and B are maintained to store every point (x, ¥)
above g,. If the horizontal distance x — p; is greater than the ver-
tical distance y — g5, the point is stored in A in increasing x-order.
Otherwise it is stored in B in increasing y-order. For each ¢, the
element at rank k in the set (A — p;) U (B —qy) is selected. This is
the side length for a square that covers k points in the area from
the top of V to q,. We compute ¢ as the half of the side length,
and if ¢/, < ¢,, we update ¢, to be ¢).

Theorem 2. For a gaze sequence S, ¢, is a valid lower bound for
T'f,f=1,...,]:, ie. ZZ < T'f.

Proof. Consider the contrary, a fixation f has ¢, > r; by
Algorithm 2. A different ¢,” can be calculated by randomly choos-
ing exactly N of the fixation points in f, as there are at least N/
fixation points in the box bounded by rr. The enclosing square
apothem can only decrease when reducing to A of the enclosed
points. Hence, we can conclude that ¢,” < ry. It suggests that these
N points have a smaller bounding box apothem ¢,’ than ¢,, which
contradicts the fact that ¢, is the apothem of the minimum bound-
ing box covering N points in the given gaze data for fixation f.
Hence, the original statement holds. O

3.4.3. Comparison of two lower bounds
In this section, we discuss the relation between ¢; and ¢, and
we find that neither bound dominates the other.

Proposition 1. Neither lower bound ¢, or ¢, dominates the other.

Example 1. Consider the examples of identifying one fixation in
a gaze sequence with seven points, as depicted in Fig. 6. Suppos-
ing that A is four and the outlier budget P is one, ¢; is deter-
mined by the x, y distances between | 25 | = |3 | =2 consecu-
tive points, while ¢, is the apothem of the smallest square bound-
ing box covering A =4 points in the plane. The relationship of ¢;
and ¢, varies based on the distribution of gaze points: (a) shows
€1 < €y; (b) shows ¢ = ¢5; and (c) shows ¢ > ¢5.

4. Computational experiments

Formulation (6a)-(6j) with the decomposition principle de-
scribed in Section 3.1 represents the FID™ filter, which extends the
earlier FID filter of [36]. We now discuss our computational ex-
periments using real eye-tracking data. We use a dataset obtained
from the visual task of answering Graduate Record Examination
(GRE) Math reading questions on a computer display [36], though
we note that data from a variety of eye-tracking applications could
be used to evaluate the FID* filter, as outliers occur largely inde-
pendent of the context. Algorithms 1 and 2 are introduced to de-
rive lower bounds on ry to improve the computational performance
for solving the new formulation.

4.1. Experimental setup and data preprocessing

The GRE Math dataset contains ten recordings collected by a
Tobii Pro-TX300 eye-tracking device at 300 Hz. Each recording is
approximately five minutes in duration. Table 1 summarizes this
dataset. We used the same data preprocessing strategy as dis-
cussed in [36, Section 4.2]. For each recording, we separate the
data sequence S into chunks ck k=1,...,K, using the Tobii Stu-
dio I-VT filter [49] with the default velocity threshold of V = 30°/s.
The minimum number of gaze points is set to A" =30 (100ms),
which is necessary for information processing to occur [50]. As
shown in Table 1, this setting eliminates some data chunks and
remain approximately 721 valid data chunks in each recording
on average. We set Fk. = 7K., =1 for formulation (6a)-(6j). The
fixation outlier budget P is set as 1% of the total number of
gaze points in each data chunk C*, that is, outlier budget P* =
[0.01 - [c¥|]. This value of Pk allows for at least one point per data
chunk to be identified as a fixation outlier in formulation (6a)-(6j).
As depicted in Fig. 7(a), the distribution of data chunks is long-
tailed. Of the total 7208 data chunks with at least A points, there
are 1860 data chunks having more than 100 points (25.8% of to-
tal), and 59 data chunks with length of greater than 500 points
(0.8% of total). As the size of the data chunk increases, so does
the expected computational effort in solving formulation (6a)-(6j).
All computational experiments were conducted using an Intel core
i7-6700MQ computer with 3.40 GHz and 16.0 GB RAM running
64-bit Windows 10. Gurobi Optimizer [47] with Python 2.7 was
used for the optimization modeling, algorithm development and
solution process. We used default parameter settings for seeking
global optimality. We also set a time limit of one hour (wall-clock)
for solving the optimization model for each data chunk. MATLAB
2016a [51] was used for additional data processing and analysis.

4.2. Computational results and discussion
Table 2 highlights the computational results of running the

FID* filter on the 300 Hz GRE Math reading dataset, as well as for-
mulation (6a)-(6j) using lower bounds from Algorithms 1 and 2.
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Table 1
Summary results on 300 Hz GRE Math Reading data with [-VT filter, averaged over ten recordings per dataset [36].
Stimuli Avg # of All Points in Avg # of Avg # of Valid Data Avg # of Points in All Avg # of Points in Valid
Sequence Data Chunks Chunks Data Chunks Data Chunks
GRE Math Reading Data 90,580 3612 721 80,956 66,677

1 Lower Bound Box by Method I
mm [ ower Bound Box by Method I1

(a) (b)

Fig. 6. Comparison of lower bounding approaches. The gaze sequence length 7 = 7, minimum number of covering points V' = 4, and outlier budget P = 1. As shown in (a),
(b) and (c), depending on how the points are distributed, the effectiveness of lower bounds ¢; and ¢, vary.

104
5001 a=0.0
108 a=0.1
Imm a=10
400 1
Z e
GE) 107 4
= 3001 5
3 2 10'4
o o
2001 8 0
o 10°4
Z
100 1011
0- 1072 4
30 100 1000 30 100 1000
Data Chunk Size (Logarithmic Scale) Data Chunk Size (Logarithmic Scale)
(a) Distribution of Data Chunk Size (b) Average Runtime under Different Data

Chunk Size and «

Fig. 7. Depicting the distribution of data chunk size (left panel) and the average runtime using formulation (6a)-(6j) in each bin under « = 0, 0.1, 1 (right panel). The right
panel also shows that with the increase of «, the runtime decreases; with the increase of |C"|, the runtime increases substantially, and becomes especially apparent when
|c¥| exceeds 100.

Table 2

Results of the FID* filter, (6a)-(6j) with lower bound ¢;, and (6a)-(6j) with lower bound ¢, on 300 Hz GRE Math reading dataset. The entries in the evaluation metrics
columns report the average metrics over all data chunks in each of the ten recordings; the entries in the runtime columns report the total runtime averaged over each each
recording, containing approximately 721 data chunks.

o 300 Hz GRE Math Reading Data

Duration  Density Measures Cover Rate  Center Shift Budget Usage  Avg Runtime (s) Avg Runtime (s) w/ ¢;  Avg Runtime (s) w/ ¢,

8% (s) o 05" 03" yave A8 B Gurobi Overall Gurobi Overall Gurobi Overall
0 0.1038 53981 81.2267 104529  0.2539 1.9494 0.91 12,5488 12,6479 10,624.0 10,7248 10,729.2  10,969.9
0.1 0.2597 6.1667 231.2483  9.7190 0.6510 1.0814 0.87 1,898.2 2,006.3 1,637.5 1,742.5 1,560.6 1,802.7
0.2 02744 6.4515 259.4887  9.4059 0.6863 0.8331 0.82 315.5 430.6 242.3 345.5 249.3 493.9
03 02787 6.5700 268.5097 10.0599  0.6956 0.7397 0.75 186.3 305.6 145.9 253.6 150.9 398.1
04 0.2806 6.6383  273.4140 10.2574 0.6997 0.6916 0.74 147.1 267.0 116.3 226.0 115.6 363.2
0.5 0.2831 6.7417  279.7678 10.0763  0.7056 0.6213 0.45 128.8 247.6 96.3 205.4 99.7 3474
0.6 0.2840 6.7941 2825965 10.2516 0.7076 0.5861 0.41 108.9 225.9 82.3 191.0 83.9 331.7
0.7 0.2844 6.8136  283.7578 103622 0.7084 0.5750 0.41 97.7 214.7 71.8 181.6 73.0 320.3
0.8 0.2848 6.8364 284.9439 104752 0.7094 0.5603 0.39 88.4 205.7 63.1 172.5 64.5 311.6
0.9 0.2850 6.8465 2853952 10.5318 0.7098 0.5541 0.38 80.3 197.3 56.9 164.8 58.4 306.7
1.0 0.2859 6.9006 288.2015 10.8704 0.7122 0.5151 0.24 734 190.7 51.2 1584 529 303.1
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Table 3
Results of the FID filter with formulation (1a)-(1h) on 300 Hz GRE Math reading dataset; reproduced from [36].
o 300 Hz GRE Math Reading Data
Duration Density Measures Cover Rate Center Shift Avg Runtime (s)
85U (s) o5 5 03" yave g Gurobi Overall
0 0.1062 5.8589 90.1959 31.9361 0.2598 1.8150 5743 659.5
0.1 0.2607 6.5335 241.3585 28.8872 0.6528 0.9478 364.5 454.1
0.2 0.2762 6.7828 268.4264 28.5850 0.6911 0.6739 264.7 354.7
0.3 0.2803 6.8764 277.5209 28.2034 0.7004 0.5727 207.2 299.7
0.4 0.2827 6.9654 283.6307 27.5299 0.7053 0.5046 154.7 246.6
0.5 0.2840 7.0202 287.1474 27.7181 0.7083 0.4589 119.0 212.0
0.6 0.2848 7.0571 289.3265 27.8777 0.7100 0.4300 87.0 178.1
0.7 0.2853 7.0816 290.6830 28.0161 0.7112 0.4095 67.1 159.0
0.8 0.2857 7.1100 292.1223 28.1589 0.7121 0.3880 53.9 145.1
0.9 0.2860 7.1251 292.7735 28.2548 0.7126 0.3777 434 136.5
1.0 0.2863 7.1483 294.0966 28.3347 0.7134 0.3612 37.7 128.8

The rows of Table 2 are indexed by parameter «, and the columns
display the evaluation metrics, budget usage and runtime, and
are to be compared with those of Table 3 which is reproduced
from [36], depicting similar results without outlier detection. As in
Table 3, the evaluation metrics are averaged over all data chunks
in each of the ten data recordings. The evaluation metrics we con-
sider are: fixation duration §; cover rate y; three fixation inner-
density metrics: p1, p2, and ps; and center shift A.

The average fixation duration § is the average number of fix-
ation points in each fixation, divided by the sampling frequency.
The cover rate y measures the ratio of points recognized as fixa-
tions points, to the total number of points in a recording. We con-
sider the three density metrics in [36], each of which is inversely
proportional to density. That is, they represent greater density as
the magnitudes become smaller. The first metric p; is the average
pairwise distance between fixation points within one fixation:

— Z;:]] ZE:[JH qu

()

L1 L1

The second density metric p, has the same numerator with p:
the pairwise distances of all identified fixation points. The denom-
inator is simply the number of fixation points. Hence, as the num-
ber of included points increases, p, experiences greater amplifica-
tion as compared to p;. The reason that p, is considered in [36] is
due to the relationship with the objective function of its first for-
mulation, Minimize Average Intra-Fixation Sum of Distances |36, for-
mulation (12a) - (12f)]. Though our demonstration for detecting
fixation outliers focuses on the latter formulation in [36], we re-
tain p, in our comparison for the sake of completeness:

Pt
_ ZE:! Z§:p+1 dpq
= ==

02 P2

The third density metric p3 is the minimal square area covering
the fixation divided by the number of included fixation points:

pP3 = @- 03

The center shift A measures the Euclidean distance between the
FID* fixation centroid to the I-VT filter centroid. Additionally, we
report the fixation outlier budget usage B, which is the ratio of
the total number of identified fixation outliers to the cumulative
outlier budget over all data chunks in the ten data recordings. The
reported runtime is the average of the cumulative runtime of all
data chunks in each of the ten data recordings.

Each entry in the evaluation metrics columns in
Tables 2 and 3 is averaged over ten recordings and all data
chunks per recording. Each entry in the runtime columns re-
ports the averaged cumulative runtime for solving approximately
721 data chunks of the «-densest fixations. Even for the most
time-consuming « level, @ =0, the average runtime per chunk
to find the densest fixation with outliers was still well under 20

seconds (17.8 seconds). For larger values of «, the average run-
time exhibited even better performance: for o = 0.8, the average
runtime of each data chunk is less than 0.13 second. In Table 2,
the optimization models for all but twelve chunks (eleven for
o =0, and one for @ = 0.1) solved to global optimality within the
one-hour time limit for formulation (6a)-(6j). The addition of the
lower bound ¢; and ¢, enabled two additional models at o =0,
and the sole model with @ = 0.1, to be solved to global optimality.

The general trend of evaluation metrics and runtime from o = 0
to o =1 are similar in Tables 2 and 3. It indicates that « has a
similar effect on fixation identification and fixation properties in
both formulations.

When compared to Table 3, the entries in the initial columns
of Table 2 demonstrate the effect of removing outliers. In particu-
lar, values of the average fixation duration §%'8 rate are smaller in
Table 2, indicating that less gaze points are identified as fixation
points by the FID* filter. The difference of §%¢ is actually rather
small, roughly akin to a single gaze point, between Tables 2 and 3.
Similar to §%8, the average cover rate y®& value under every o
level is slightly smaller in Table 2. Both Tables 2 and 3 have the
same increasing trends on §%¢ and %8 when « increases.

The three density metrics appear with smaller values in Table 2,
as compared to Table 3. Recalling that density is larger for smaller
values of pi, p, and ps3, it demonstrates that when allowing
outliers within fixations, the mathematical formulation can fur-
ther refine the gaze points within chunks to identify denser fix-
ations. It is worth noting that p3"® is two to three times smaller
in Table 2 than in Table 3. p3" is the ratio of the minimal
area bounding box of the identified fixation, to the number of
points this fixation contains, is identical to the objective in for-
mulation (6a)-(6j). p3"¢ becomes smaller either when the fixation
bounding area is smaller, or when the fixation duration decreases.

This trend of p3" is strong evidence for the impact of out-
lier points on fixation density. Using the outlier budget Pk =
[0.01-|ck|] as specified in the experimental setup, 74.2% of the
fixations by formulation (6a)-(6j) identify only a single outlier
point per fixation (chunk size less than or equal to 100 points).
This is further underscored in Table 2, as the change in fixation
duration is relatively minimal. However, p3 reduced by nearly two
thirds. This indicates that a small group of outlier points are sub-
stantially skewing the size of the minimum apothem r and so the
minimum fixation bounding box, and should be eliminated in the
fixation.

For all values of «, the center shift A%8 reported in Table 2 is
larger than A%8 in Table 3; A%& measures the Euclidean distance
(in pixels) between the FID* fixation centroid (as specified by (¥,
), and the I-VT filter centroid. This increase in A®8 reflects stray
data points being eliminated via the outlier budget in the FID*
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Fig. 8. Fixation identification result with the FID* filter versus the FID filter, « = 0.5, on the gaze sequence in Fig. 4(b).

filter, so as to better concentrate around the actual fixation. The
outlier budget ratio 8 in Table 2 decreases as « increases, due to
identified fixation outlier points being penalized in objective func-
tion (6a). Therefore, the penalty parameter « not only serves for
balancing the trade-off between density and number of fixation
points in for formulation (6a)-(6j), it also has significant influence
on the number of fixation outliers identified by the formulation.
One notable finding is that the budget P is not always used, even
for small « levels.

The improved fixation metrics come with the trade-off of in-
creased computational run time. The Gurobi runtime in Table 2 in-
creases substantially compared with Table 3. The increase appears
between o = 0 and « = 0.1, where much more effort is consumed
in balancing the objective function trade-off of including a point,
or incurring the penalty of o [36]. As shown in Fig. 7(b), the aver-
age runtime at each level of data chunk size increases significantly
at « =0 and « = 0.1. At the same time, we find that nearly 95%
of the outlier-aware optimization models still solved to global op-
timality in under one second at « = 0 and « = 0.1, which we be-
lieve to be quite competitive.

The last four columns in Table 2 report the average Gurobi run-
time and overall runtime when using lower bounds derived from
Algorithms 1 and 2. Under all « levels, the reported Gurobi run-
time from formulation (6a)-(6j) with Algorithms 1 and 2 is less
than the Gurobi time from solely solving the formulation (6a)-
(6j), which demonstrates that the bounds produced by both of the
algorithms are effective in reducing the computational difficulty to
the solver. However, because Algorithm 2 requires additional com-
putational cost for processing the dataset, the average overall run-
time for formulation (6a)-(6j) with Algorithm 2 only outperforms
the experiment using solely formulation (6a)-(6j) for the o =0
and o = 0.1 levels. Moreover, the additional time cost for running
Algorithm 2 averages around 246 seconds. On the other hand, the
time cost for running Algorithm 1 per chunk is negligible, and thus
does not contribute to much additional time in Table 2. The aver-
age overall runtime of formulation (6a)-(6j) with Algorithm 1 is
still smaller than the runtime for running the formulation (6a)-
(6j) solely. The runtime comparison indicates that both of the algo-
rithms contribute to reducing the runtime of solving optimization

models. That said, because Algorithm 2 incurs additional compu-
tational cost for data processing, only formulation (6a)-(6j) with
Algorithm 1 outperforms in both Gurobi optimization time and
overall runtime at every « level than only using formulation (6a)-
(6j). Future work may focus on improving the computational effi-
ciency of the implementation of Algorithm 2.

5. Conclusions

This paper introduces outlier aware fixation identification for
gaze data by extending the recent FID (fixation-inner-density) fil-
ter that identifies the densest fixations in gaze data. Our new FID*
filter enables stray gaze points within fixations to be flagged and
eliminated from fixation consideration, thereby increasing the ac-
curacy and precision of key metrics related to the actual fixation.
Gaze data collected by eye-tracking devices is collected as a se-
quence of points representing the locations where eyes focus. Spa-
tially and temporally adjacent points are clustered as fixations.
Fixation features - such as location, duration and inner-density -
carry information about user attention and awareness in behavioral
research. Such features are inherently influenced by how fixations
and saccades (gaze points between fixations) are labeled by the
fixation identification algorithms. Downstream behavioral proper-
ties, such as dwell time, fixation heatmap and pupil dilation dur-
ing fixations, are impacted by the accuracy and precision of the
fixation identification approach that is used.

Two popular fixation identification methods in practice are
the I-VT and I-DT filters. They use relatively simple properties of
gaze data and can be implemented efficiently in commercial eye-
tracking devices. However, they can lead to inaccurate fixation
results, which will result in misrepresenting behavioral patterns.
The recently developed FID filter [36] overcomes the limitations
of these baseline methods via integer optimization to optimize for
fixation inner-density, with an iterative algorithm that exploits the
ability to decompose an entire gaze stream into components, or
chunks. In this paper we augment the FID optimization formula-
tion with a new set of variables that indicate whether gaze point t
is an outlier for fixation f. Moreover, we carefully design enhanced
constraints that enable the strict fixation time consistency condi-
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tion to be relaxed, by allowing for a small budget of fixation outlier
points to be admitted. The enhanced integer optimization formula-
tion (6a)-(6j) can recognize stray gaze points as fixation outliers, a
concept that is underexplored in fixation identification algorithms.
Raw gaze data contains inevitable noise (as depicted in Fig. 4(b)),
and we demonstrate that the FID* filter outlined in this paper can
robustly identify within-fixation outlier points, which is a signifi-
cant enhancement to the existing FID filter [36].

We conduct computational experiments to compare the new
FID* filter with the FID filter with formulation (1a)-(1h) on the
300 Hz GRE Math reading dataset used in [36]. The result shows
that the FID* filter can identify fixations with substantially greater
density. In particular, when comparing the density metric p3, the
ratio of minimal area bounding box and fixation point number, the
FID* filter featured a 2-3 times reduction in p3"® while consider-
ing a small number of points as outliers within each fixation. Thus,
these developments hold much promise for outlier-aware fixation
identification.

Fig. 8 highlights the comparison of fixation identification results
from the FID* filter and the FID filter on the noisy raw gaze se-
quence showed in Fig. 4(b). The illustrated gaze stream segment
contains three fixations. For Fixation 1, while the identified fixa-
tion boundary looks identical for both methods, it turns out that,
due to the ability to eliminate outlier points, the enhanced formu-
lation contains 50% more points than the original formulation. This
has the unexpected effect that formulation (6a)-(6j) has a slightly
larger area, because such increased area greatly increases the num-
ber of included fixation points after outlier removal. Formula-
tion (1a)-(1h) identifies all gaze points appearing before the out-
lier point flagged by formulation (6a)-(6j) as non-fixation points,
while balancing the inherent trade-off present in objective func-
tion (6a). The gaze points at Fixation 2 are well clustered, so the
two formulations have fairly similar results. For Fixation 3, formu-
lation (6a)-(6j) identifies two fixation outliers and the fixation area
decreases significantly as compared with the area identified by for-
mulation (1a)-(1h). The outlier-aware identification results of for-
mulation (6a)-(6j) likely have substantial impacts on the number
of identified fixation points, as well as fixation bounding regions.
This behavior is similar across chunks in the gaze data stream.

The approach outlined in this paper does have some limitations.
Due to the additional variables and constraints, the runtime for
solving formulation (6a)-(6j) is slower than formulation (1a)-(1h)
at each level of «, and substantially so for the instances with large
chunk size at « = 0 and « = 0.1. We introduce two geometric ar-
guments, and algorithms, for deriving lower bounds on ry to accel-
erate the speed of reaching global optimality. Both algorithms find
stronger lower bounds (¢; and ¢;) that are able to reduce Gurobi
runtime, although more work is needed to improve the competi-
tiveness for a small number of instances at « =0 and « = 0.1.

Moreover, more work remains for refining Algorithm 2 to re-
duce its overall run time for computing lower bound ¢,. Another
possible direction of future work is to more carefully investigate
suitable budget values for each data chunk. While we set the out-
lier budget value to approximately 1% of the length of the data
chunk, other features such as data chunk dispersion, and the av-
erage velocity of points, could suggest improved estimates for the
number of fixation outliers. Each data chunk could thereby have a
data-driven budget value based on its features.

More broadly, we believe that the efforts of FID* will em-
power future studies on fixation micro-patterns - that is, the dis-
tribution of gaze points within an individual fixation which repre-
sent a further refinement of eye movement data [37]. Prior work
in [46] shows that these patterns can reveal significant informa-
tion about focused attention and effort, which subsequent findings
further support [36]. Inner-density, as a representation of fixation
micro-patterns, incorporates both the temporal and spatial aspects

of the fixation. When combined, these aspects reveal significant
and previously undiscovered information about attention.
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