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a b s t r a c t 

Eye tracking is an advancing technology holding significant promise to improve our understanding of hu- 

man behavior and decision making. Gaze data gathered by eye trackers contain events known as fixations . 

Fixations indicate visual attention and awareness, and are identified by algorithms that parse eye-tracking 

data into a sequence of gaze point clusters. While great potential exists, eye-tracker imprecision often re- 

sults in noisy gaze data, such as what arises from calibration errors, erratic eye movements, or other sys- 

tem noise. Noise can cause inaccurate identification of fixations in eye-tracking applications, resulting in 

misleading behavioral interpretations and conclusions. Therefore, fixation identification algorithms should 

be robust against data noise. To resolve such inaccuracies, we propose FID 

+ : outlier-aware fixation iden- 

tification via fixation inner-density. We represent the problem of detecting outliers in fixation gaze data 

through a novel mixed-integer optimization formulation, and subsequently strengthen the formulation 

using two geometric arguments to provide enhanced bounds. We show that neither bound dominates 

the other, and that both are effective in reducing the overall solution runtime. Our experiments on real 

gaze recordings demonstrate that accommodating for the reality of fixation outliers enhances the ability 

to identify fixations with greater density in reasonable runtime. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Eye-tracking technologies are an increasingly powerful tool for

nalyzing human behavior and visual attention patterns. An eye-

racking device provides objective, quantitative data concerning

uman gaze, which can be used to analyze focus of attention and

wareness under variable visual stimuli. Eye-trackers can be read-

ly attached to computer devices. Fig. 1 depicts such a screen-based

onfiguration. The eye tracker uses infrared light illuminators and

ameras to identify light source reflection patterns on the eyes of a

ser. The captured patterns are used to algorithmically estimate a

onsecutive stream of ( x, y ) gaze point positions on the computer

onitor. 

The proliferation of eye-tracking devices on personal comput-

rs [1] offers great potential in many practical applications, such

s analysis of user experience [2–4] and enhancement of multime-

ia learning experience [5] . In management science research, many

tudies analyze customer decision-making via visual attention in-

ormation collected by eye-tracking devices. Eye-tracking technol-

gy is used for learning information acquisition patterns in cus-
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omer shopping environments [6] , for studying the efficiency of

ecision processes in conjoint choices [7] , and for the evaluation of

ehavior attention in retail category management [8,9] . In health-

are studies, eye-tracking technology has been employed for re-

earching human cognition and decision making [10] , experimental

sychology studies [11] and attentional neuroscience [12] investi-

ations. Eye-tracking technology has particularly prominent uses as

 supportive diagnostic tool for monitoring vision health [13] and

ental health [14] ; Augmentative and Alternative Communication

AAC) devices commonly adapt eye tracking technologies to sub-

titute for more traditional human computer interaction tools such

s keyboard and touch screen. AAC assists individuals with disabil-

ties like autism [15–17] , muscular dystrophy [18,19] , and cerebral

alsy [20] to more easily use technology. 

The foundation of all of the aforementioned eye-tracking appli-

ations is a system that can accurately process gaze data and cor-

ectly identify human visual attention. For superior performance,

uch systems require both high-quality gaze data, as well as ef-

cient and effective translation of raw gaze data into behavioral

ndicators. 

While high-quality gaze data is a prerequisite for information

cquisition among all eye-tracking recordings, a variety of factors

n real-world settings can adversely affect gaze data quality. These

nclude system issues such as sensor noise and data loss from the

ye tracker [21] , calibration errors prior to the start of an experi-
-Aware, density-Based gaze fixation identification, Omega, https: 
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Fig. 1. An eye-tracking device mounted to a computer monitor, recording eye 

movement positions over time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Illustration of fixation and its apothem (side half-length) identified in a gaze 

data chunk; FID filter: minimizing apothem of fixation bounding box. 
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f  
ment [22] , gaze data processing algorithms [22] , participant char-

acteristics [22] , eye-tracking experiments design [23] , and poor

recording environments and low-skilled operators [22] . The real-

ity of eye movement mismeasurement and data noise in eye track-

ing recordings ensures that outliers exist in gaze data. While out-

liers have been studied in a variety of settings [24–30] , when left

unremedied in accuracy-dependent contexts, outliers can distort

downstream processing and analysis, ultimately leading to inaccu-

rate and less useful research. 

Technically speaking, gaze data is categorized into two primary

types: fixations are clusters of points that are adjacent in proximity

and time, whereas saccades are higher velocity gaze points that oc-

cur between fixations. Because fixations represent visual attention,

the accurate classification of eye gaze data into its constituent cat-

egories is a must for researchers to precisely understand focus of

attention in meta-analysis, which is the most critical issue in eye-

tracking research and development. The process of categorizing fix-

ation and saccade eye movements is known as fixation identifica-

tion [31–33] or event detection [34,35] . While the velocity-based

I-VT filter [31] and the dispersion-based I-DT filter [31] serve as

two foundations upon which many fixation identification methods

are built, each suffers from limited precision that skews fixation

properties [34,35] and hinders downstream research that relies on

these essential properties. 

Trapp et al. [36] advance the state-of-the-art in fixation identifi-

cation through the notion of fixation inner-density , which addresses

some limitations of existing methods including a lack of sensitivity

to peripheral fixation points, as well as possible misrepresentation

of fixation properties. They introduce the FID filter [37] which uses

integer optimization techniques to identify fixations in a sequence

of gaze points by optimizing for inner-density. The benefits of the

FID filter can be seen in Fig. 2 , where it can eliminate extraneous

gaze points #1 and #9 that are at the boundaries of the fixation

– technically under the velocity threshold, but likely not belonging

to the fixation. Computational results demonstrated that the FID

filter is efficient and effective in identifying denser fixations than

the current I-VT method. 

There are opportunities to improve the FID filter, especially its

sensitivity to handle occasional noise and erratic eye movements

within gaze data. The optimization model in [36] enforces that

within a single fixation, all fixation points must be temporally ad-

jacent; this can result in overly strict interpretations of fixations,

whereby some small aberrations which should be otherwise ig-

nored, may force fixations to terminate early. Thus, it is worth-

while to allow for some small deviations in the sequence, for ex-
Please cite this article as: W. Liu, A.C. Trapp and S. Djamasbi, Outlier
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mple if a stray gaze point exists between two larger clusters of

aze points in the same region. In this case, it may be preferable

o allow for the facility to simply omit this gaze point. 

We contribute to the eye-tracking fixation identification litera-

ure by creating the first density-based method for detecting fixa-

ions that is outlier-aware. The FID filter is introduced in [36] and

mploys optimization-based approaches to find the densest fixa-

ions, but is otherwise silent with respect to outliers. The work

resented in this study augments the FID filter by enabling the

etection and elimination of certain outlier points within the fixa-

ion. Our work can significantly improve results in identifying fixa-

ions within noisy gaze data. This is particularly important for eye-

racking experiments where the understanding of human visual at-

ention is of central importance, such as healthcare applications. 

We propose an enhanced mathematical optimization formula-

ion – FID 

+ – to account for this outlier sensitivity . To the best

f our knowledge, this paper and [36] are the only approaches

o identify fixations in gaze data by optimizing for density. The

ddition of a new set of budget-constrained binary variables ac-

ounts for the condition of where a gaze point is labeled as an

utlier. In conjunction with the existing binary variables that in-

icate whether a gaze point is labeled as a fixation point, we in-

roduce two new constraint sets that together represent time con-

istency in light of outlier gaze points. While the new formulation

ccurately remedies the aforementioned limitation, it does so at

he cost of additional complexity. Thus, we present two algorith-

ic techniques to tighten lower bounds on the size of the apothem

which is minimized) to improve the computational performance. 

The remainder of this paper is organized in the following man-

er. In Section 2 we provide background on fixation identifica-

ion algorithms for analyzing eye-tracking data, including classical

ethods, as well as the more recent FID filter. In Section 3 we

resent FID 

+ , a novel mixed integer programming (MIP) formu-

ation for detecting fixations with outlier sensitivity. We subse-

uently provide two geometric arguments to strengthen the op-

imization formulation by enhancing the lower bounds on the

pothem of the bounding box, and demonstrate that both are

dvantageous (we show that neither technique dominates the

ther). Section 4 details the computational experiments on real

ye-tracking data, including a discussion on its observed perfor-

ance. Finally, we conclude the paper and discuss future work in

ection 5 . 

. Background on eye-Tracking technologies 

Gaze data is recorded as a sequence of ( x, y, t ) triplets, often re-

erred as the point of regard (POR) in eye-tracking literature, where
-Aware, density-Based gaze fixation identification, Omega, https: 

https://doi.org/10.1016/j.omega.2020.102298
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Fig. 3. Illustration of accuracy and precision for measuring gaze data quality, reproduced from [39] . Accuracy is the difference between the centroid of grouped recorded 

gaze points, and an actual reference fixation location. Precision is the variance of the gaze point dispersion in a fixation. 
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 x, y ) attributes represent eye movement position on 2D stimuli,

uch as static computer displays. The third attribute t is the times-

amp that represents when the corresponding position is recorded

y the eye-tracking device. The sampling rate of commercial eye-

racking devices commonly ranges from 30 Hz to 1,0 0 0 Hz, or even

igher. 

Eye movements can be separated into two common types of

vents: fixations and saccades. The purpose of eye movement

lassification is to isolate eye movements within the gaze data

tream into distinct time intervals that correspond to oculomo-

or responses or cognitive properties towards visual stimuli [35] .

ixations are clusters of gaze points that occur near in both time

nd location. This is because the act of fixating maintains visual

aze on a single location while cognitive processing occurs. On the

ther hand, saccades are the rapid movements between fixations.

otably distinct from saccades are smooth pursuit [38] eye move-

ents, which allow the eyes to follow a moving visual stimulus.

imilar to many of the current classification algorithms that iden-

ify fixations and saccades [35] , we also limit our discussion to fix-

tion identification, that is, gaze points that are not fixations are

ot further classified as saccades or smooth pursuits. 

The stability of fixation identification is highly influenced by

aze data quality, which has long been discussed in eye-tracking

esearch. We now review the key aspects of data quality and the

ctual impacts for fixation metrics. 

.1. Data quality and fixation outliers 

High-quality gaze data is the foundation of generating valid and

eproducible behavioral research results. As illustrated in Fig. 3 , Ac-

uracy and precision are the two highlighted aspects measured for

ye-tracking data quality. The reference location, denoted with a

+”, is where the participant is asked to fixate. Accuracy , also called

ffset, refers to the shift between the recorded gaze position loca-

ion, and the actual reference location. Precision refers to the vari-

nce of the recorded positions to the reference location [22,29,39] .

Inaccuracy and imprecision can be attributed to multiple fac-

ors: eye-tracking cameras [39] , algorithms for capturing eye

ovements [39] , experimental design [23] , system issues (such as

ensor noise, data loss) [21] , and various participant characteris-

ics (such as glasses, astigmatism, eye color, head movements) [39] .

oor data precision leads to noisy gaze samples, which can chal-

enge the reliability of fixation identification algorithms. 

Fig. 4 (a) illustrates a raw gaze sequence with 425 points

ollected by a Tobii Pro-TX300 [40] eye-tracking device, while

ig. 4 (b) shows a noisy raw gaze sequence with the same length

lso from the same device. Gaze points in Fig. 4 (a) show ex-
Please cite this article as: W. Liu, A.C. Trapp and S. Djamasbi, Outlier
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licit clusters at the location of fixations. However, the clusters in

ig. 4 (b) contain multiple stray points, and those points appear to

rift to the same direction from their temporally adjacent points.

he fixation patterns in Fig. 4 (b) will inevitably contain some noise

oints in a long fixation gaze point sequence. Such noise points

hould be viewed as Fixation Outliers , and subsequently be elimi-

ated from fixations. 

Fixation outliers can have substantial effects on the precision

f fixation metrics, such as the number, and duration, of fixa-

ions [22] . Also impacted is dwell time , a commonly used measure-

ent of gaze duration in eye-tracking research for entering and

emaining in an area of interest [41] . As illustrated in Fig. 5 (a),

hen the point C is included as a fixation point, the square fixation

ounding region increases significantly and the fixation centroid

hifts away from its original position. Fig. 5 (b) shows an actual ex-

mple of possible fixation outliers appearing in real gaze data. 

.2. Common algorithms for fixation identification 

Fixation identification is closely related to cluster analysis. Be-

ause there is inherent ambiguity in assessing the quality of

rouped objects, formal evaluation of fixation identification algo-

ithms is challenging and lacks standardization. While it is com-

only agreed upon that all existing algorithms for event detection

ave limitations [35] , it is valuable to examine those that exist be-

ause they form the foundation of the state-of-the-art and offer

nsights into how to approach solving the fixation identification

roblem. In particular, a recently developed algorithm known as

he fixation identification (FID) filter was the first to incorporate an

ptimization-based approach to identify fixations, optimizing for

xation inner-density [36] . We now review key existing methods. 

.2.1. Velocity-based algorithms 

In velocity-based algorithms for fixation identification, the clas-

ical approach is the Identification by Velocity-Threshold (I-VT) fil-

er [31] . This algorithm sequentially separates gaze points into fix-

tions and saccades based on point-to-point velocity. Points with

elocity exceeding that of a predefined velocity threshold V are

ategorized as saccade points. This process naturally separates gaze

oints into distinct fixations. This algorithm is fairly accurate in

accade detection, easy to implement, and robust for a variety

f practical uses for eye-tracking devices. However, a signification

rawback is that the I-VT filter may result in misclassifying gaze

oints that, while having a velocity technically below the thresh-

ld, are locationally separate from adjacent gaze points. This short-

oming can skew fixation metrics such as fixation centroid loca-

ion, which is an important representation of visual location for
-Aware, density-Based gaze fixation identification, Omega, https: 

https://doi.org/10.1016/j.omega.2020.102298
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Fig. 4. Comparison between normal gaze data and noisy data. 

Fig. 5. Influence of fixation outliers on fixation metrics. 
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user attention in behavioral studies. Another drawback is that con-

stant velocity thresholds are not suitable for gaze stream data with

substantial noise. Some recent studies [34,42–44] enhance the ba-

sic I-VT filter by designing an adaptive velocity threshold that pro-

vides greater flexibility with event classification at different noise

levels. Even so, there exists an inherent challenge: the I-VT filter

does not consider the compactness of constituent gaze points. 

2.2.2. Dispersion-based algorithms 

The Identification by Dispersion-Threshold (I-DT) filter [31] is a

classical dispersion-based method The I-DT filter identifies fixa-

tions using two predefined thresholds: the minimum fixation du-

ration, and the maximum fixation dispersion threshold D . It uses

a fixed-size sliding window to sequentially examine data. To con-

stitute a fixation, the length of the gaze sequence should meet or
Please cite this article as: W. Liu, A.C. Trapp and S. Djamasbi, Outlier
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xceed the minimum duration, while its dispersion should not ex-

eed D . The dispersion of the gaze sequence is measured using

aze point location. One implementation is to set a threshold for

xation radius. It also can be defined as a dispersion threshold D

hat equals to the sum of the length and width of the window

overing a minimum amount of consecutive points. The main lim-

tation of the I-DT filter is that D is a constant parameter, which

ay result in misclassifying gaze points and a lack of sensitivity in

ctual implementation. Some research has been done to further in-

estigate dispersion-based algorithms. Blignaut [32] suggested that

he correct setting of dispersion threshold for fixation radius was

ound in the range of 0.7 ◦ to 1.3 ◦. Veneri et al. [33] propose an al-

orithm with improved dispersion criterion that is based on the

nalysis of fixation variance using covariance thresholds and F -
-Aware, density-Based gaze fixation identification, Omega, https: 

https://doi.org/10.1016/j.omega.2020.102298
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.2.3. Density-based algorithms 

One recent study that identifies fixations by density-based clus-

ering is the modified DBSCAN algorithm proposed in [45] . Tradi-

ional DBSCAN requires two parameters: the minimum distance ε
etween two points, and the minimum number of points minPts

o form a dense region. It then categorizes points into core points,

order points , and others (which are known as noise points). The

odified DBSCAN algorithm in [45] adds an additional require-

ent while evaluating the number of points within the dense re-

ion: the points within distance ε should be temporally adjacent.

n consequence, the core points and border points constitute the

xations, whereas the other points are classified as saccades. 

.2.4. Fixation inner-Density-based algorithms 

Trapp et al. [36] introduced a new fixation identification

ethod known as fixation inner-density (FID). It combines both

emporal and spatial aspects of the fixation. Together, these aspects

re used to evaluate the compactness of a fixation, which has been

hown to be positively correlated with user attention [46] . Inner-

ensity overcomes several limitations of existing methods, such as

 lack of sensitivity to peripheral points of a fixation, as well as the

isrepresentation of fixation properties. The FID filter inherently

iffers from [45] in two aspects: methodology and the interpreta-

ion of density. Two mixed-integer optimization approaches were

eveloped to identify fixations in a sequence of gaze points by op-

imizing for inner-density. The key novelty is the guarantee that

here is no better gaze point identification according to the objec-

ive function of optimizing for inner-density, modulo the param-

ter α. This parameter is a predetermined value (e.g., via expert

udgment) that enables decision-makers to have fine-tuned control

ver the inner-density. 

Simultaneously identifying all fixations in the entire gaze

tream is computationally prohibitive. We exploit the fact that sac-

ades are natural separators of fixation to decompose the entire

aze stream into a series of data chunks for efficient processing.

his decomposition principle, together with the optimization ap-

roach applied over all chunks, constitutes the FID filter. The ex-

erimental results on real datasets demonstrate that the FID filter

ith optimization formulation (13a)–(13f) in [36] is efficient and

ffective, averaging under one second per chunk to identify the

-densest fixation among the constituent gaze points. The iden-

ified fixations exhibit greater density than the existing I-VT filter,

eflecting the ability to refine fixations, as well as more accurately

epresent gaze metrics such as fixation duration and center. The

mproved gaze metrics can form a more precise representation of

ttention and awareness for further analysis in eye-tracking stud-

es. 

While we have addressed the benefits of eliminating fixation

utliers, such as illustrated in Fig. 5 , the FID filter is limited

n its ability to account for fixation outliers due to the overly

trict nature of the constraint set outlined in Proposition 1 of

ection 3.2.2 of [36] that requires every fixation to contain only

onsecutive gaze points in time. Therefore, to enable the FID filter

o account for outlier sensitivity, we extend the approach in [36] . 

. Mathematical developments 

From a gaze sequence S with T points (x t , y t ) , t = 1 , . . . , T , we

eek to identify fixation points to constitute F fixations. The fixa-

ion identification problem discussed in [36] requires each fixation

o contain at least N points for information processing to occur,

nd those points must be temporally adjacent. Define T F binary

ariables z , with z t f = 1 if gaze point t is included in fixation f ,

nd 0 otherwise. Of the two formulations presented in [36] for FID

lter in finding dense fixations, we focus on the latter, Minimize
Please cite this article as: W. Liu, A.C. Trapp and S. Djamasbi, Outlier
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quare Area of Fixations [ 36 , formulation (13a) – (13f)]. The formu-

ation bounds each fixation with a two-dimensional square box of

inimal area; it achieves a minimum area by equivalently min-

mizing the apothem of the square, r f . The model incorporates a

on-negative parameter α into the objective function that balances

he trade-off between the inclusion of additional gaze points and

he compactness of the fixation region. For the sake of complete-

ess, we include this formulation in (1a) –(1h) . 

inimize 

F ∑ 

f=1 

[ 

r f + α
T ∑ 

t=1 

(1 − z t f ) 

] 

, (1a) 

ubject to 

F ∑ 

f=1 

z t f ≤ 1 , t = 1 , . . . , T , (1b)

T 
 

t=1 

z t f ≥ N , f = 1 , . . . , F, (1c)

T ∑ 

j= t+1 

z j f ≤ (T − t)(1 − z t f + z t+1 , f ) , 

t = 1 , . . . , T − 1 ; f = 1 , . . . , F, (1d) 

 f − r f − M x (1 − z t f ) ≤ x t ≤ x f + r f + M x (1 − z t f ) , t = 1 , . . . , T ,
(1e) 

 f − r f − M y (1 − z t f ) ≤ y t ≤ y f + r f + M y (1 − z t f ) , t = 1 , . . . , T ,
(1f) 

 x ≤ x f ≤ u x , l y ≤ y f ≤ u y , f = 1 , . . . , F, (1g)

 f ≥ 0 , x f ≥ 0 , y f ≥ 0 , f = 1 , . . . , F; z t f ∈ { 0 , 1 } , 
t = 1 , . . . , T , f = 1 , . . . , F . (1h) 

Objective function (1a) contains two terms, the first minimizes

he sum of apothems, and the second provides incentive to label

dditional points as fixation points. Constraint set (1b) represents

hat a point can be assigned to at most one fixation. Constraint

et (1c) ensures that each fixation contains at least N points. Con-

traint set (1d) ensures gaze points identified in one fixation are

emporally adjacent. Constraint sets (1e) –(1f) are box constraints

o guarantee that when time point t is assigned to fixation f , it

ies in the square with center ( x f , y f ) and apothem r f . Bounds

or x f and y f are l x = min 

t=1 , ... , T 
x t , u x = max 

t=1 , ... , T 
x t , l y = min 

t=1 , ... , T 
y t , and

 y = max 
t=1 , ... , T 

y t . Then, the values of M x and M y are calculated by

 x = max 
{| x t − l x | , | u x − x t | } and M y = max 

{| y t − l y | , | u y − y t | }. 

ariable definitions and bounds are listed in (1g) –(1h) . 

.1. Decomposition principle 

The gaze sequence length T can easily reach the hundreds

f thousands gaze points, and the number of fixations can like-

ise be in the thousands. Formulation (1a) –(1h) is valid for any

umber of gaze points T and fixations F . This includes subse-

uences obtained after applying the decomposition principle dis-

ussed in [36] . This process separates a gaze data sequence into

istinct data chunks C k , k = 1 , . . . , K, with data chunk separated

y one or more saccade points as identified by benchmark fil-

ers such as the I-VT filter. After the decomposition, a minimal

umber of fixations remain within each data chunk, and formu-

ation (1a) –(1h) can identify α-densest fixations efficiently in each

hunk. Again, we term this approach the FID filter . We also apply

his decomposition principle in the FID 

+ filter. 
-Aware, density-Based gaze fixation identification, Omega, https: 
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3.2. FID 

+ Filter: Detecting fixation outliers in gaze data 

In this section we present the insights for extending the math-

ematical formulation to identify fixations with outlier sensitivity. 

3.2.1. New variables for outlier detection 

We extend formulation (1a) –(1h) to additionally classify a small

portion of gaze points within the identified fixations as fixation

outliers . Although they lie in the interior of a fixation time se-

quence, they are not identified as fixation points (i.e., z t f = 1 ). De-

fine T F binary variables q , with q t f = 1 if gaze point t is an outlier

in fixation f , and 0 otherwise. 

3.2.2. Fixation outlier budget 

We propose a budget P to allow some small number of outlier

points. One reasonable value for P is a percent p of the total num-

ber of gaze points T in the chunk, so that P = � pT � . Hence, the

sum of outlier points over all fixations should be less or equal to

P: 

F ∑ 

f=1 

T ∑ 

t=1 

q t f ≤ P . (2)

Alternatively, P can be set to any user-defined, positive integer. 

3.2.3. Relaxation from absolute time consistency 

Proposition 1 in [ 36 , Section 3.2.2] introduces the following

constraint set: 

T ∑ 

j=t+1 

z j f ≤ (T −t)(1−z t f +z t+1 , f ) , t = 1 , . . . , T − 1 ; f = 1 , . . . , F .

(3)

This constraint set ensures the included points within each fixa-

tion must be consecutive in time. Fixation f terminates once a con-

secutive time pair (z t f , z t+1 , f ) appears as (1,0) among all the pos-

sible values {(0, 0), (0, 1), (1, 1), (1, 0)}. When ( z tf , z t+1 , f ) equals to

(1,0), the right-hand side becomes zero, ensuring that z j f = 0 , for

all j : t + 1 ≤ j ≤ T . It guarantees that the reminder of the points

in the chunk are not included in this fixation. For the other pos-

sible values of (z t f , z t+1 , f ) , the right-hand side is either (T − t) or

2(T − t) , so the constraint set becomes vacuous. Thus, for a fixa-

tion f , a starting gaze point at time a and an ending point at time

b , constraint set (3) ensures z tf is assigned in the following fashion:

i) z t f 
t : t 	∈{ a, ... ,b} 

= 0 , ii) z t f 
t : t ∈{ a, ... ,b} 

= 1 . 

However, when a set of outlier gaze points E ⊂
{ a + 1 , . . . , b − 1 } appears between the starting and ending fixation

points, as indicated by q t f 
t : t ∈E 

= 1 , the corresponding z t f 
t : t ∈E 

should

be assigned to zero. The assignment ii) changes to z t f 
t : t ∈E 

= 0 and

z t f 
 : t ∈{ a, ... ,b}\E 

= 1 . The consecutive pair (z t f , z t+1 , f ) equals to (1,0) not

only happens at the termination of f , but can also occur when

point t + 1 is identified as an outlier, i.e., q t+1 , f = 1 . When fixation

f terminates, (z t f , z t+1 , f ) is (1,0) and q t+1 , f should be assigned as

zero. Following this interpretation, we extend the constraint set

from (3) to (4) by relaxing the assumption that fixation points

must be consecutive in time: 

T ∑ 

j= t+1 

z j f ≤ (T − t)(1 − z t f + z t+1 , f + q t+1 , f ) , 

t = 1 , . . . , T − 1 ; f = 1 , . . . , F . (4)

When q t+1 , f = 0 , indicating point t + 1 is not an outlier for fix-

ation f , the right-hand side in (4) equals zero when consecutive
Please cite this article as: W. Liu, A.C. Trapp and S. Djamasbi, Outlier
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ime pair (z t f , z t+1 , f ) equals (1,0). Thereby it ensures the follow-

ng variable z jf , for all j : t + 1 ≤ j ≤ T must be zero, which means

xation f terminates as it may no longer include any gaze points.

herefore, when q t+1 , f = 0 , the constraint set has the same impact

s constraint set (3) . However when q t+1 , f = 1 , the constraint set

nduces no restrictions under any alternatives of (z t f , z t+1 , f ) , be-

ause the right-hand side is always at least (T − t) . Thus, the con-

ecutive variables z jf , for all j : t + 1 ≤ j ≤ T may still be assigned

o one. Therefore, the subsequent gaze points from t + 1 to T can

e included in fixation f and the assignment of (1, 0) to the pair

(z t f , z t+1 , f ) no longer delineates the end of the fixation. 

.2.4. Controlling the position of outliers 

While constraint set (4) generalizes the condition of strict time

onsistency, there is no implication on the values that points z jf ,

or all j : t + 1 ≤ j ≤ T can take when q t+1 , f = 1 . In the absence of

ny other constraints, this may cause a fixation to be decomposed

nto multiple components. To ensure that every fixation f has con-

ecutive gaze points formed by only fixation points ( z t f = 1 ) and

utlier points ( q t f = 1 ), the following set of constraints can be in-

orporated: 

 t f ≤ q t+1 , f + z t+1 , f , t = 1 , . . . , T − 1 , f = 1 , . . . , F . (5)

Constraint set (5) ensures that if q t f = 1 , the next gaze point

t t + 1 must be classified as a fixation point ( z t+1 , f = 1 ) or a fix-

tion outlier ( q t+1 , f = 1 ). When q t f = 0 , the constraint is always

alid. While this constraint set technically allows both z t+1 , f = 1

nd q t+1 , f = 1 , there are scarce outlier points available by (2) , and

o gaze points are classified as outliers only when it is beneficial

or the objective, that is, when subsequent gaze points are classi-

ed as fixation points. Constraint set (5) introduces T F − F addi-

ional constraints. 

.3. Minimizing square area of fixations with outlier sensitivity 

We now present the final MIP formulation for FID 

+ : outlier-

ware fixation identification via density optimization. Note that the

xtensions discussed in Section 3.2 can also be applied to Mini-

ize Average Intra-Fixation Sum of Distances [ 36 , formulation (12a)

(12f)]. 

inimize 

F ∑ 

f=1 

[ 

r f + α
T ∑ 

t=1 

(1 − z t f ) 

] 

, (6a)

ubject to 

F ∑ 

f=1 

z t f ≤ 1 , t = 1 , . . . , T , (6b)

T 
 

t=1 

z t f ≥ N , f = 1 , . . . , F, (6c)

T ∑ 

j= t+1 

z j f ≤ (T − t)(1 − z t f + z t+1 , f + q t+1 , f ) , 

 = 1 , . . . , T − 1 , f = 1 , . . . , F, (6d)

 t f ≤ q t+1 , f + z t+1 , f , t = 1 , . . . , T − 1 , f = 1 , . . . , F, (6e)

F 
 

f=1 

T ∑ 

t=1 

q t f ≤ P, (6f)

 f − r f − M x (1 − z t f ) ≤ x t ≤ x f + r f + M x (1 − z t f ) , t = 1 , . . . , T ,
(6g)
-Aware, density-Based gaze fixation identification, Omega, https: 
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 f − r f − M y (1 − z t f ) ≤ y t ≤ y f + r f + M y (1 − z t f ) , t = 1 , . . . , T ,
(6h) 

 f ≥ 0 , l x ≤ x f ≤ u x ; l y ≤ y f ≤ u y , f = 1 , . . . , F, (6i)

 t f ∈ { 0 , 1 } , q t f ∈ { 0 , 1 } , t = 1 , . . . , T , f = 1 , . . . , F . (6j)

Formulation (6a) –(6j) uses binary variables z tf to assign time

oint t to fixation f . It incorporates binary variables q tf to iden-

ify outlier points in each fixation f . Objective function (6a) mini-

izes the sum of fixation square apothems, penalizing the number

f excluded points with parameter α. Constraints (6b) and (6c) are

he fundamental constraints indicating that a time point can be

ssigned to at most one fixation, and each fixation contains at

east N points. Constraint set (6d) relaxes fixation point assign-

ent from absolute time consistency, while constraint set (6e) en-

ures points identified as outlier points are succeeded by either

utlier or fixation points. Constraint set (6f) ensures the number

f identified outlier points is within the fixation outlier budget

. Constraints (6g) –(6h) ensure that the identified points in fixa-

ion f present in the fixation bounding box with center ( x f , y f ) and

pothem r f . Variable definitions and bounds are listed in (6i) –(6j) . 

While formulation (6a) –(6j) is correct and detects fixation and

utlier points, initial computational testing on larger instances re-

ealed that, while strong feasible solutions were quickly found, the

IP solver Gurobi [47] experienced difficulty proving optimality. 

.4. Deriving lower bounds on r f 

Objective function (6a) minimizes the apothem r f of the bound-

ng box encompassing the fixation points. While feasible solutions

o (6a) –(6j) representing strong upper bounds are quickly com-

uted using the MIP solver Gurobi [47] , the lower bounds often ex-

ibit only gradual progress toward convergence, likely due to poor

elaxation strength from constraint set (6d) . 

To accelerate the computational proof of optimality, we present

eometric arguments that can strengthen lower bounds on r f . We

lgorithmically preprocess the gaze point sequences to identify

ower bounds � on r f , f = 1 , . . . , F . 

.4.1. Deriving lower bounds on r f via sliding windows 

Consider identifying F fixations from a gaze sequence with T 
otal points, each of which requires at least N fixation points to

nsure cognitive processing occurs [1] . Further, suppose the entire

udget of P outlier points is used in a fixation with the minimum

umber of points N . Lemma 1 states that there will be at least

ne subsequence separated by outlier points that contains at least
N 

P+1 

⌋
consecutive gaze points. 

emma 1. Suppose for fixation f, the fixation point sequence s f has

ength N f , and it is decoupled into subsequences by P f fixation out-

iers. There always exists a subsequence s of s f with length of at least
N 

P+1 

⌋
points. 

roof. The average length of all subsequences in fixation f is
N f 

P f +1 , hence there is at least one subsequence s whose length

s greater than or equal to 
N f 

P f +1 . Because N f ≥ N and P f ≤ P

y (6c) and (6f) , this implies 
N f 
P f 

> 

N f 
P f +1 ≥ N 

P+1 ≥
⌊ N 

P+1 

⌋
. Thereby

he length of s is also greater than or equal to 
⌊ N 

P+1 

⌋
. �

For fixation f , the apothem r f represents a minimum bounding

ox covering all included fixation points, starting from a gaze point

t time a to an ending gaze point at time b . The apothem of the

ounding box must satisfy r f ≥ 1 
2 max i, j 

{| x i − x j | , | y i − y j | } for all
Please cite this article as: W. Liu, A.C. Trapp and S. Djamasbi, Outlier
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he point pairs ( i, j ): a ≤ i < j ≤ b . The apothem r f of the bound-

ng box is monotonically nondecreasing as the number of points in

he range [ a, b ] increases. Thus, a conservative global lower bound

 1 on r f can be derived from the individual lower bounds originat-

ng from the distance arising from t , to t shifted by the minimum

umber of consecutive gaze points, � N 
P+1 � . By considering all pairs

f points 
(
t, t + � N 

P+1 � − 1 
)

for t = 1 , . . . , T − � N 
P+1 � + 1 , we obtain

 lower bound on r f . Finding � 1 can be accomplished in polynomial

ime. For each begin-end point pair, we compute the correspond-

ng minimum bounding length � ′ 1 : 

 

′ 
1 = 

1 

2 

max 
i, j 

{ 

| x i − x j | , | y i − y j | 
∣∣∣ t ≤ i < j ≤ t + 

⌊ N 

P + 1 

⌋ 

− 1 

} 

.

(7) 

hen a smaller � ′ 
1 

is found, we update � 1 to be � ′ 
1 
. The cost of

his method is O 

(
T −

⌊ N 
P+1 

⌋)
, that is, it is linear in the number of

aze points T . This method is summarized in Algorithm 1 . 

lgorithm 1 Determine Valid Lower Bound � 1 . 

nput: Gaze sequence S with length T ; fixation outlier budget P;

minimum number of fixation points N . 

utput: Lower bound � 1 on the fixation apothem r f . 

1: Set � 1 ← max { | u x − l x | , | u y − l y | } . 
2: for t = 1 , . . . , T −

⌊ N 
P+1 

⌋
+ 1 do 

3: Calculate the minimum bounding length 

� ′ 
1 

= 

1 
2 max 

i, j 

{ 

| x i − x j | , | y i − y j | 
∣∣∣ t ≤ i < j ≤ t + � N 

P+1 � − 1] 

} 

.

4: if � ′ 
1 

< � 1 then 

5: Set � 1 ← � ′ 1 . 
6: return � 1 . 

heorem 1. For a gaze sequence S, � 1 is a valid lower bound for

 f , f = 1 , . . . , F , i.e. � 1 ≤ r f . 

roof. Suppose there exists � 1 > r f for fixation f from Algorithm 1 .

y Lemma 1 , we can find a subsequence s of fixation f with a

ength of at least 
⌊ N 

P+1 

⌋
. We further truncate s by sequentially

liminating points from either the beginning or the end, until the

emaining sequence s is exactly 
⌊ N 

P+1 

⌋
points. The remaining se-

uence constitutes a new sequence s ′ , and let the apothem of

he minimal bounding box be � 1 
′ . Because s ′ is contained in s , it

as fewer fixation points than fixation f . The lower bound on the

ounding box apothem, by the construction in (7) , is a nondecreas-

ng function in the number of points in the fixation, thus we con-

lude that � ′ 
1 

≤ r f . This implies that � ′ 
1 

< � 1 , which contradicts the

act that � 1 is the minimal bounding box apothem for all the con-

ecutive gaze subsequences with length of 
⌊ N 

P+1 

⌋
. Thus, the origi-

al statement holds. �

.4.2. Deriving lower bounds on r f via smallest enclosing squares 

For a gaze sequence of T points, the apothem length of the

mallest enclosing square covering N points, irrespective of tem-

oral adjacency, is a valid lower bound � 2 for r f , f = 1 , . . . , F . We

dapt Algorithm 2 from [48] for finding the smallest square bound-

ng box of N points for each input gaze sequence. Algorithm 2 first

orts the gaze points at x -decreasing order and sweeps each point.

ence, the algorithm sweeps points from right to left. When

weeping at point t , the current x t is recorded as p 1 . From the

oints lying to the right of the vertical line drawn by p 1 , it finds a

et of points V whose x -axis value is in the range of [ x t , x t + � 2 ] ,

 -axis value is in the range of [ y t − � 2 , y t + � 2 ] , where � 2 is the

mallest apothem of the enclosing square identified thus far. It

hen finds the squares that exactly cover N points and their left

ide is on the vertical line through p and bottom side is on the
-Aware, density-Based gaze fixation identification, Omega, https: 
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Algorithm 2 Determine Valid Lower Bound � 2 . 

Input: Gaze sequence point set S with length T ; minimum num- 

ber of gaze points N . 

Output: Lower bound � 2 on the fixation apothem r f 
1: Sort points in S at x -decreasing order. 

2: Set � 2 ← max { | u x − l x | , | u y − l y | } . 
3: Set P ← empty balanced binary search tree. 

4: for t = 1 , . . . , T do 

5: p 1 = x t . 

6: xMax = x t + � 2 
7: yMax = y t + � 2 . 

8: yMin = y t − � 2 . 

9: Insert a new node into P , key= y t , value= (x t , y t ) . 

10: Set V ← ∅ . 
11: for node p ∈ P do 

12: if x p ≤ xMax then 

13: if yMin ≤ y p ≤ yMax then 

14: Add (x p , y p ) to V . 

15: else 

16: Delete p from P , i.e., P = P \ p. 

17: if | V | ≥ N then 

18: Sort points in V at y -decreasing order. 

19: Set A ← empty balanced binary search tree. 

20: Set B ← empty balanced binary search tree. 

21: for i = 1 , . . . , | V | do 

22: Select q = V [ i ] = (x q , y q ) from V . 

23: Set q 2 = y q . 

24: Insert a new node into A , key= x q , value= (x q , y q ) . 

25: for node a ∈ A do 

26: if y a − q 2 > x a − p 1 then 

27: Delete a from A , i.e., A = A \ a . 
28: Insert a new node into B , key= y a , value= (x a , y a ) . 

29: if i ≥ N then 

30: Find the key k at rank N in (A − p 1 ) ∪ (B − q 2 ) . 

31: � ′ 
2 

= 

1 
2 k . 

32: if � ′ 2 < � 2 then 

33: Set � 2 ← � ′ 
2 
. 

34: return � 2 . 
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F  
line through a point in V . At each p 1 , the algorithm sweeps a hori-

zontal line q 2 from the top point to the bottom point of V . Two bi-

nary search trees A and B are maintained to store every point ( x, y )

above q 2 . If the horizontal distance x − p 1 is greater than the ver-

tical distance y − q 2 , the point is stored in A in increasing x -order.

Otherwise it is stored in B in increasing y -order. For each q 2 , the

element at rank k in the set (A − p 1 ) ∪ (B − q 2 ) is selected. This is

the side length for a square that covers k points in the area from

the top of V to q 2 . We compute � ′ 2 as the half of the side length,

and if � ′ 
2 

< � 2 , we update � 2 to be � ′ 
2 
. 

Theorem 2. For a gaze sequence S, � 2 is a valid lower bound for

r f , f = 1 , . . . , F , i.e. � 2 ≤ r f . 

Proof. Consider the contrary, a fixation f has � 2 > r f by

Algorithm 2 . A different � 2 
′ can be calculated by randomly choos-

ing exactly N of the fixation points in f , as there are at least N 

fixation points in the box bounded by r f . The enclosing square

apothem can only decrease when reducing to N of the enclosed

points. Hence, we can conclude that � 2 
′ ≤ r f . It suggests that these

N points have a smaller bounding box apothem � 2 
′ than � 2 , which

contradicts the fact that � 2 is the apothem of the minimum bound-

ing box covering N points in the given gaze data for fixation f .
Hence, the original statement holds. � m  

Please cite this article as: W. Liu, A.C. Trapp and S. Djamasbi, Outlier
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.4.3. Comparison of two lower bounds 

In this section, we discuss the relation between � 1 and � 2 and

e find that neither bound dominates the other. 

roposition 1. Neither lower bound � 1 or � 2 dominates the other. 

xample 1. Consider the examples of identifying one fixation in

 gaze sequence with seven points, as depicted in Fig. 6 . Suppos-

ng that N is four and the outlier budget P is one, � 1 is deter-

ined by the x, y distances between 

⌊ N 
P+1 

⌋
= 

⌊
4 
2 

⌋
= 2 consecu-

ive points, while � 2 is the apothem of the smallest square bound-

ng box covering N = 4 points in the plane. The relationship of � 1 
nd � 2 varies based on the distribution of gaze points: (a) shows

 1 < � 2 ; (b) shows � 1 = � 2 ; and (c) shows � 1 > � 2 . 

. Computational experiments 

Formulation (6a) –(6j) with the decomposition principle de-

cribed in Section 3.1 represents the FID 

+ filter, which extends the

arlier FID filter of [36] . We now discuss our computational ex-

eriments using real eye-tracking data. We use a dataset obtained

rom the visual task of answering Graduate Record Examination

GRE) Math reading questions on a computer display [36] , though

e note that data from a variety of eye-tracking applications could

e used to evaluate the FID 

+ filter, as outliers occur largely inde-

endent of the context. Algorithms 1 and 2 are introduced to de-

ive lower bounds on r f to improve the computational performance

or solving the new formulation. 

.1. Experimental setup and data preprocessing 

The GRE Math dataset contains ten recordings collected by a

obii Pro-TX300 eye-tracking device at 300 Hz. Each recording is

pproximately five minutes in duration. Table 1 summarizes this

ataset. We used the same data preprocessing strategy as dis-

ussed in [ 36 , Section 4.2]. For each recording, we separate the

ata sequence S into chunks C k , k = 1 , . . . , K � using the Tobii Stu-

io I-VT filter [49] with the default velocity threshold of V = 30 ◦/s .

he minimum number of gaze points is set to N = 30 (100ms),

hich is necessary for information processing to occur [50] . As

hown in Table 1 , this setting eliminates some data chunks and

emain approximately 721 valid data chunks in each recording

n average. We set F 

k 
min 

= F 

k 
max = 1 for formulation (6a) –(6j) . The

xation outlier budget P is set as 1% of the total number of

aze points in each data chunk C k , that is, outlier budget P 

k =
0 . 01 · |C k | ⌉. This value of P 

k allows for at least one point per data

hunk to be identified as a fixation outlier in formulation (6a) –(6j) .

s depicted in Fig. 7 (a), the distribution of data chunks is long-

ailed. Of the total 7208 data chunks with at least N points, there

re 1860 data chunks having more than 100 points (25.8% of to-

al), and 59 data chunks with length of greater than 500 points

0.8% of total). As the size of the data chunk increases, so does

he expected computational effort in solving formulation (6a) –(6j) .

ll computational experiments were conducted using an Intel core

7-6700MQ computer with 3.40 GHz and 16.0 GB RAM running

4-bit Windows 10. Gurobi Optimizer [47] with Python 2.7 was

sed for the optimization modeling, algorithm development and

olution process. We used default parameter settings for seeking

lobal optimality. We also set a time limit of one hour (wall-clock)

or solving the optimization model for each data chunk. MATLAB

016a [51] was used for additional data processing and analysis. 

.2. Computational results and discussion 

Table 2 highlights the computational results of running the

ID 

+ filter on the 300 Hz GRE Math reading dataset, as well as for-

ulation (6a) –(6j) using lower bounds from Algorithms 1 and 2 .
-Aware, density-Based gaze fixation identification, Omega, https: 

https://doi.org/10.1016/j.omega.2020.102298
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Table 1 

Summary results on 300 Hz GRE Math Reading data with I-VT filter, averaged over ten recordings per dataset [36] . 

Stimuli Avg # of All Points in 

Sequence 

Avg # of 

Data Chunks 

Avg # of Valid Data 

Chunks 

Avg # of Points in All 

Data Chunks 

Avg # of Points in Valid 

Data Chunks 

GRE Math Reading Data 90,580 3612 721 80,956 66,677 

Fig. 6. Comparison of lower bounding approaches. The gaze sequence length T = 7 , minimum number of covering points N = 4 , and outlier budget P = 1 . As shown in (a), 

(b) and (c), depending on how the points are distributed, the effectiveness of lower bounds � 1 and � 2 vary. 

Fig. 7. Depicting the distribution of data chunk size (left panel) and the average runtime using formulation (6a) –(6j) in each bin under α = 0 , 0 . 1 , 1 (right panel). The right 

panel also shows that with the increase of α, the runtime decreases; with the increase of 
∣∣C k ∣∣, the runtime increases substantially, and becomes especially apparent when ∣∣C k ∣∣ exceeds 100. 

Table 2 

Results of the FID + filter, (6a) –(6j) with lower bound � 1 , and (6a) –(6j) with lower bound � 2 on 300 Hz GRE Math reading dataset. The entries in the evaluation metrics 

columns report the average metrics over all data chunks in each of the ten recordings; the entries in the runtime columns report the total runtime averaged over each each 

recording, containing approximately 721 data chunks. 

α 300 Hz GRE Math Reading Data 

Duration Density Measures Cover Rate Center Shift Budget Usage Avg Runtime (s) Avg Runtime (s) w/ � 1 Avg Runtime (s) w/ � 2 

δavg (s) ρa v g 
1 

ρa v g 
2 

ρa v g 
3 

γ avg λavg β Gurobi Overall Gurobi Overall Gurobi Overall 

0 0.1038 5.3981 81.2267 10.4529 0.2539 1.9494 0.91 12,548.8 12,647.9 10,624.0 10,724.8 10,729.2 10,969.9 

0.1 0.2597 6.1667 231.2483 9.7190 0.6510 1.0814 0.87 1,898.2 2,006.3 1,637.5 1,742.5 1,560.6 1,802.7 

0.2 0.2744 6.4515 259.4887 9.4059 0.6863 0.8331 0.82 315.5 430.6 242.3 345.5 249.3 493.9 

0.3 0.2787 6.5700 268.5097 10.0599 0.6956 0.7397 0.75 186.3 305.6 145.9 253.6 150.9 398.1 

0.4 0.2806 6.6383 273.4140 10.2574 0.6997 0.6916 0.74 147.1 267.0 116.3 226.0 115.6 363.2 

0.5 0.2831 6.7417 279.7678 10.0763 0.7056 0.6213 0.45 128.8 247.6 96.3 205.4 99.7 347.4 

0.6 0.2840 6.7941 282.5965 10.2516 0.7076 0.5861 0.41 108.9 225.9 82.3 191.0 83.9 331.7 

0.7 0.2844 6.8136 283.7578 10.3622 0.7084 0.5750 0.41 97.7 214.7 71.8 181.6 73.0 320.3 

0.8 0.2848 6.8364 284.9439 10.4752 0.7094 0.5603 0.39 88.4 205.7 63.1 172.5 64.5 311.6 

0.9 0.2850 6.8465 285.3952 10.5318 0.7098 0.5541 0.38 80.3 197.3 56.9 164.8 58.4 306.7 

1.0 0.2859 6.9006 288.2015 10.8704 0.7122 0.5151 0.24 73.4 190.7 51.2 158.4 52.9 303.1 

Please cite this article as: W. Liu, A.C. Trapp and S. Djamasbi, Outlier-Aware, density-Based gaze fixation identification, Omega, https: 
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Table 3 

Results of the FID filter with formulation (1a) –(1h) on 300 Hz GRE Math reading dataset; reproduced from [36] . 

α 300 Hz GRE Math Reading Data 

Duration Density Measures Cover Rate Center Shift Avg Runtime (s) 

δavg (s) ρa v g 
1 

ρa v g 
2 

ρa v g 
3 

γ avg λavg Gurobi Overall 

0 0.1062 5.8589 90.1959 31.9361 0.2598 1.8150 574.3 659.5 

0.1 0.2607 6.5335 241.3585 28.8872 0.6528 0.9478 364.5 454.1 

0.2 0.2762 6.7828 268.4264 28.5850 0.6911 0.6739 264.7 354.7 

0.3 0.2803 6.8764 277.5209 28.2034 0.7004 0.5727 207.2 299.7 

0.4 0.2827 6.9654 283.6307 27.5299 0.7053 0.5046 154.7 246.6 

0.5 0.2840 7.0202 287.1474 27.7181 0.7083 0.4589 119.0 212.0 

0.6 0.2848 7.0571 289.3265 27.8777 0.7100 0.4300 87.0 178.1 

0.7 0.2853 7.0816 290.6830 28.0161 0.7112 0.4095 67.1 159.0 

0.8 0.2857 7.1100 292.1223 28.1589 0.7121 0.3880 53.9 145.1 

0.9 0.2860 7.1251 292.7735 28.2548 0.7126 0.3777 43.4 136.5 

1.0 0.2863 7.1483 294.0966 28.3347 0.7134 0.3612 37.7 128.8 
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The rows of Table 2 are indexed by parameter α, and the columns

display the evaluation metrics, budget usage and runtime, and

are to be compared with those of Table 3 which is reproduced

from [36] , depicting similar results without outlier detection. As in

Table 3 , the evaluation metrics are averaged over all data chunks

in each of the ten data recordings. The evaluation metrics we con-

sider are: fixation duration δ; cover rate γ ; three fixation inner-

density metrics: ρ1 , ρ2 , and ρ3 ; and center shift λ. 

The average fixation duration δ is the average number of fix-

ation points in each fixation, divided by the sampling frequency.

The cover rate γ measures the ratio of points recognized as fixa-

tions points, to the total number of points in a recording. We con-

sider the three density metrics in [36] , each of which is inversely

proportional to density. That is, they represent greater density as

the magnitudes become smaller. The first metric ρ1 is the average

pairwise distance between fixation points within one fixation: 

ρ1 = 

∑ P−1 
p=1 

∑ P 
q = p+1 d pq 

( P 2 ) 
. ρ1 

The second density metric ρ2 has the same numerator with ρ1 :

the pairwise distances of all identified fixation points. The denom-

inator is simply the number of fixation points. Hence, as the num-

ber of included points increases, ρ2 experiences greater amplifica-

tion as compared to ρ1 . The reason that ρ2 is considered in [36] is

due to the relationship with the objective function of its first for-

mulation, Minimize Average Intra-Fixation Sum of Distances [36, for-

mulation (12a) – (12f)] . Though our demonstration for detecting

fixation outliers focuses on the latter formulation in [36] , we re-

tain ρ2 in our comparison for the sake of completeness: 

ρ2 = 

∑ P−1 
p=1 

∑ P 
q = p+1 d pq 

P . ρ2 

The third density metric ρ3 is the minimal square area covering

the fixation divided by the number of included fixation points: 

ρ3 = 

(2 ̂ r ) 2 

P . ρ3 

The center shift λ measures the Euclidean distance between the

FID 

+ fixation centroid to the I-VT filter centroid. Additionally, we

report the fixation outlier budget usage β , which is the ratio of

the total number of identified fixation outliers to the cumulative

outlier budget over all data chunks in the ten data recordings. The

reported runtime is the average of the cumulative runtime of all

data chunks in each of the ten data recordings. 

Each entry in the evaluation metrics columns in

Tables 2 and 3 is averaged over ten recordings and all data

chunks per recording. Each entry in the runtime columns re-

ports the averaged cumulative runtime for solving approximately

721 data chunks of the α-densest fixations. Even for the most

time-consuming α level, α = 0 , the average runtime per chunk

to find the densest fixation with outliers was still well under 20
Please cite this article as: W. Liu, A.C. Trapp and S. Djamasbi, Outlier
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econds (17.8 seconds). For larger values of α, the average run-

ime exhibited even better performance: for α = 0 . 8 , the average

untime of each data chunk is less than 0.13 second. In Table 2 ,

he optimization models for all but twelve chunks (eleven for

= 0 , and one for α = 0 . 1 ) solved to global optimality within the

ne-hour time limit for formulation (6a) –(6j) . The addition of the

ower bound � 1 and � 2 enabled two additional models at α = 0 ,

nd the sole model with α = 0 . 1 , to be solved to global optimality.

The general trend of evaluation metrics and runtime from α = 0

o α = 1 are similar in Tables 2 and 3 . It indicates that α has a

imilar effect on fixation identification and fixation properties in

oth formulations. 

When compared to Table 3 , the entries in the initial columns

f Table 2 demonstrate the effect of removing outliers. In particu-

ar, values of the average fixation duration δavg rate are smaller in

able 2 , indicating that less gaze points are identified as fixation

oints by the FID 

+ filter. The difference of δavg is actually rather

mall, roughly akin to a single gaze point, between Tables 2 and 3 .

imilar to δavg , the average cover rate γ avg value under every α
evel is slightly smaller in Table 2 . Both Tables 2 and 3 have the

ame increasing trends on δavg and γ avg when α increases. 

The three density metrics appear with smaller values in Table 2 ,

s compared to Table 3 . Recalling that density is larger for smaller

alues of ρ1 , ρ2 and ρ3 , it demonstrates that when allowing

utliers within fixations, the mathematical formulation can fur-

her refine the gaze points within chunks to identify denser fix-

tions. It is worth noting that ρa v g 
3 

is two to three times smaller

n Table 2 than in Table 3 . ρa v g 
3 

is the ratio of the minimal

rea bounding box of the identified fixation, to the number of

oints this fixation contains, is identical to the objective in for-

ulation (6a) –(6j) . ρa v g 
3 

becomes smaller either when the fixation

ounding area is smaller, or when the fixation duration decreases. 

This trend of ρa v g 
3 

is strong evidence for the impact of out-

ier points on fixation density. Using the outlier budget P 

k =
0 . 01 · |C k | ⌉ as specified in the experimental setup, 74.2% of the

xations by formulation (6a) –(6j) identify only a single outlier

oint per fixation (chunk size less than or equal to 100 points).

his is further underscored in Table 2 , as the change in fixation

uration is relatively minimal. However, ρ3 reduced by nearly two

hirds. This indicates that a small group of outlier points are sub-

tantially skewing the size of the minimum apothem r and so the

inimum fixation bounding box, and should be eliminated in the

xation. 

For all values of α, the center shift λavg reported in Table 2 is

arger than λavg in Table 3 ; λavg measures the Euclidean distance

in pixels) between the FID 

+ fixation centroid (as specified by ( x f ,

 

f )), and the I-VT filter centroid. This increase in λavg reflects stray

ata points being eliminated via the outlier budget in the FID 

+ 
-Aware, density-Based gaze fixation identification, Omega, https: 
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Fig. 8. Fixation identification result with the FID + filter versus the FID filter, α = 0 . 5 , on the gaze sequence in Fig. 4 (b). 
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lter, so as to better concentrate around the actual fixation. The

utlier budget ratio β in Table 2 decreases as α increases, due to

dentified fixation outlier points being penalized in objective func-

ion (6a) . Therefore, the penalty parameter α not only serves for

alancing the trade-off between density and number of fixation

oints in for formulation (6a) –(6j) , it also has significant influence

n the number of fixation outliers identified by the formulation.

ne notable finding is that the budget P is not always used, even

or small α levels. 

The improved fixation metrics come with the trade-off of in-

reased computational run time. The Gurobi runtime in Table 2 in-

reases substantially compared with Table 3 . The increase appears

etween α = 0 and α = 0 . 1 , where much more effort is consumed

n balancing the objective function trade-off of including a point,

r incurring the penalty of α [36] . As shown in Fig. 7 (b), the aver-

ge runtime at each level of data chunk size increases significantly

t α = 0 and α = 0 . 1 . At the same time, we find that nearly 95%

f the outlier-aware optimization models still solved to global op-

imality in under one second at α = 0 and α = 0 . 1 , which we be-

ieve to be quite competitive. 

The last four columns in Table 2 report the average Gurobi run-

ime and overall runtime when using lower bounds derived from

lgorithms 1 and 2 . Under all α levels, the reported Gurobi run-

ime from formulation (6a) –(6j) with Algorithms 1 and 2 is less

han the Gurobi time from solely solving the formulation (6a) –

6j) , which demonstrates that the bounds produced by both of the

lgorithms are effective in reducing the computational difficulty to

he solver. However, because Algorithm 2 requires additional com-

utational cost for processing the dataset, the average overall run-

ime for formulation (6a) –(6j) with Algorithm 2 only outperforms

he experiment using solely formulation (6a) –(6j) for the α = 0

nd α = 0 . 1 levels. Moreover, the additional time cost for running

lgorithm 2 averages around 246 seconds. On the other hand, the

ime cost for running Algorithm 1 per chunk is negligible, and thus

oes not contribute to much additional time in Table 2 . The aver-

ge overall runtime of formulation (6a) –(6j) with Algorithm 1 is

till smaller than the runtime for running the formulation (6a) –

6j) solely. The runtime comparison indicates that both of the algo-

ithms contribute to reducing the runtime of solving optimization
 c  

Please cite this article as: W. Liu, A.C. Trapp and S. Djamasbi, Outlier
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odels. That said, because Algorithm 2 incurs additional compu-

ational cost for data processing, only formulation (6a) –(6j) with

lgorithm 1 outperforms in both Gurobi optimization time and

verall runtime at every α level than only using formulation (6a) –

6j) . Future work may focus on improving the computational effi-

iency of the implementation of Algorithm 2 . 

. Conclusions 

This paper introduces outlier aware fixation identification for

aze data by extending the recent FID (fixation-inner-density) fil-

er that identifies the densest fixations in gaze data. Our new FID 

+ 

lter enables stray gaze points within fixations to be flagged and

liminated from fixation consideration, thereby increasing the ac-

uracy and precision of key metrics related to the actual fixation.

aze data collected by eye-tracking devices is collected as a se-

uence of points representing the locations where eyes focus. Spa-

ially and temporally adjacent points are clustered as fixations.

ixation features – such as location, duration and inner-density –

arry information about user attention and awareness in behavioral

esearch. Such features are inherently influenced by how fixations

nd saccades (gaze points between fixations) are labeled by the

xation identification algorithms. Downstream behavioral proper-

ies, such as dwell time, fixation heatmap and pupil dilation dur-

ng fixations, are impacted by the accuracy and precision of the

xation identification approach that is used. 

Two popular fixation identification methods in practice are

he I-VT and I-DT filters. They use relatively simple properties of

aze data and can be implemented efficiently in commercial eye-

racking devices. However, they can lead to inaccurate fixation

esults, which will result in misrepresenting behavioral patterns.

he recently developed FID filter [36] overcomes the limitations

f these baseline methods via integer optimization to optimize for

xation inner-density, with an iterative algorithm that exploits the

bility to decompose an entire gaze stream into components, or

hunks. In this paper we augment the FID optimization formula-

ion with a new set of variables that indicate whether gaze point t

s an outlier for fixation f . Moreover, we carefully design enhanced

onstraints that enable the strict fixation time consistency condi-
-Aware, density-Based gaze fixation identification, Omega, https: 

https://doi.org/10.1016/j.omega.2020.102298
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tion to be relaxed, by allowing for a small budget of fixation outlier

points to be admitted. The enhanced integer optimization formula-

tion (6a) –(6j) can recognize stray gaze points as fixation outliers, a

concept that is underexplored in fixation identification algorithms.

Raw gaze data contains inevitable noise (as depicted in Fig. 4 (b)),

and we demonstrate that the FID 

+ filter outlined in this paper can

robustly identify within-fixation outlier points, which is a signifi-

cant enhancement to the existing FID filter [36] . 

We conduct computational experiments to compare the new

FID 

+ filter with the FID filter with formulation (1a) –(1h) on the

300 Hz GRE Math reading dataset used in [36] . The result shows

that the FID 

+ filter can identify fixations with substantially greater

density. In particular, when comparing the density metric ρ3 , the

ratio of minimal area bounding box and fixation point number, the

FID 

+ filter featured a 2–3 times reduction in ρa v g 
3 

while consider-

ing a small number of points as outliers within each fixation. Thus,

these developments hold much promise for outlier-aware fixation

identification. 

Fig. 8 highlights the comparison of fixation identification results

from the FID 

+ filter and the FID filter on the noisy raw gaze se-

quence showed in Fig. 4 (b). The illustrated gaze stream segment

contains three fixations. For Fixation 1, while the identified fixa-

tion boundary looks identical for both methods, it turns out that,

due to the ability to eliminate outlier points, the enhanced formu-

lation contains 50% more points than the original formulation. This

has the unexpected effect that formulation (6a) –(6j) has a slightly

larger area, because such increased area greatly increases the num-

ber of included fixation points after outlier removal. Formula-

tion (1a) –(1h) identifies all gaze points appearing before the out-

lier point flagged by formulation (6a) –(6j) as non-fixation points,

while balancing the inherent trade-off present in objective func-

tion (6a) . The gaze points at Fixation 2 are well clustered, so the

two formulations have fairly similar results. For Fixation 3, formu-

lation (6a) –(6j) identifies two fixation outliers and the fixation area

decreases significantly as compared with the area identified by for-

mulation (1a) –(1h) . The outlier-aware identification results of for-

mulation (6a) –(6j) likely have substantial impacts on the number

of identified fixation points, as well as fixation bounding regions.

This behavior is similar across chunks in the gaze data stream. 

The approach outlined in this paper does have some limitations.

Due to the additional variables and constraints, the runtime for

solving formulation (6a) –(6j) is slower than formulation (1a) –(1h)

at each level of α, and substantially so for the instances with large

chunk size at α = 0 and α = 0 . 1 . We introduce two geometric ar-

guments, and algorithms, for deriving lower bounds on r f to accel-

erate the speed of reaching global optimality. Both algorithms find

stronger lower bounds ( � 1 and � 2 ) that are able to reduce Gurobi

runtime, although more work is needed to improve the competi-

tiveness for a small number of instances at α = 0 and α = 0 . 1 . 

Moreover, more work remains for refining Algorithm 2 to re-

duce its overall run time for computing lower bound � 2 . Another

possible direction of future work is to more carefully investigate

suitable budget values for each data chunk. While we set the out-

lier budget value to approximately 1% of the length of the data

chunk, other features such as data chunk dispersion, and the av-

erage velocity of points, could suggest improved estimates for the

number of fixation outliers. Each data chunk could thereby have a

data-driven budget value based on its features. 

More broadly, we believe that the efforts of FID 

+ will em-

power future studies on fixation micro-patterns – that is, the dis-

tribution of gaze points within an individual fixation which repre-

sent a further refinement of eye movement data [37] . Prior work

in [46] shows that these patterns can reveal significant informa-

tion about focused attention and effort, which subsequent findings

further support [36] . Inner-density, as a representation of fixation

micro-patterns, incorporates both the temporal and spatial aspects
Please cite this article as: W. Liu, A.C. Trapp and S. Djamasbi, Outlier
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f the fixation. When combined, these aspects reveal significant

nd previously undiscovered information about attention. 
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