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Wireless-Powered Machine-to-Machine Multicasting
in Cellular Networks

Abdullah M. Almasoud

Abstract—In future cellular networks, it is expected that data
traffic will increase significantly due to deployments of large
numbers of Internet of Things (IoT) objects. The IoT objects
operate underlaying a cellular network, and they use Machine-to-
Machine (M2M) communication to transmit multicst messages.
We propose to use Radio Frequency (RF) Energy Transmitters
(ET) to compensate the IoT objects with the energy consumed in
forwarding multicast messages. Our goal is to support multicast
service for IoT objects and transmit energy to them such that
the total transferred energy by the ETs is minimized. We formu-
lated the problem mathematically as a non-convex Mixed Integer
Nonlinear Program (MINLP). Due to the difficulty of solv-
ing the problem optimally, we decompose the original problem
into two sub-problems using Generalized Bender Decomposition
with Successive Convex programming (GBD-SCP). Although
this method facilitates finding a solution for the problem, the
problem is still hard due to binary variables. Hence, we propose
the Constraints Decomposition with SCP and Binary Variable
Relaxation (CDR) algorithm to solve the problem more efficiently.
Simulation results show that the proposed algorithm achieves a
performance close to the GBD-SCP algorithm while the com-
putation time is reduced significantly when the network size is
larger.

Index Terms—Wireless-powered, energy harvesting, power
transfer, multicast, M2M communication, routing, scheduling.

I. INTRODUCTION

ULTICASTING is an essential service for disseminat-
Ming a message to a group of recipients. Instead of
sending a message from a source to a group of destinations
multiple times using unicast communications, multicast ser-
vice allows addressing a message to a group of destinations
simultaneously. Multicast service becomes more appealing
in cellular networks due to a rapid growth in data traf-
fic in the recent years [1]. Multicasting in current cellular
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networks is used for content delivery for typical cellular
phones. However, with the revolution of the Internet of Things
(IoT), Machine-to-Machine (M2M) multicast service for large
numbers of low-power IoT devices in cellular networks is
required. Therefore, we need to consider several challenges
while supporting this emerging type of multicast service.

IoT is a technology that enables physical objects to observe
and monitor activities and phenomena, processes the col-
lected data and communicate with other physical objects in
order to make a decision or accomplish a certain task [2].
It is expected that the number of IoT objects that will be
deployed in the world will reach 50 billions by 2020 [3].
M2M communication, which is also called machine-type-
communication (MTC), is considered as an important enabling
technology for IoT, where it allows direct communication
between neighboring IoT objects.

Multicasting over cellular networks can be classified based
on its applications into human oriented and machine ori-
ented [4]. Multicast service in cellular networks is developed
typically for human-based applications like video content
delivery. On the other hand, machine oriented multicast is
designed to support multicast service for machine-based appli-
cations, which includes: 1) An IoT object sends software
updates to a group of IoT objects; 2) an IoT object sends a
multicast messages to a group of IoT actuators to perform con-
trolling actions in a factory; and 3) an IoT sensing object that
detects hazardous events on the road and multicast warning
messages to a groups of 10T objects embedded in Vehicular Ad
Hoc Networks (VANET). Therefore, machine oriented multi-
casting should address the challenges associated with IoT to
enable its applications in the next generation of the cellular
networks.

IoT devices are typically designed to use small size batteries
to satisfy their energy demands. On the other hand, devices
in wireless-powered networks harvest RF (Radio Frequency)
energy from dedicated energy transmitters or from ambient RF
radiation. RF energy harvesting is a technology that enables
converting a received RF signal to energy [5]. Hence, wireless-
powered network has emerged as a candidate solution for some
applications in future networks [6]. Although wireless energy
transfer gives the IoT devices an efficient way to satisfy their
energy demands without the need for battery replacement, a
significant portion of the transmitted signal for charging is
wasted because of signal attenuation and non-optimality of
the energy harvesters.

There is a trade-off between satisfying the energy demands
of the IoT devices using only wireless energy transfer or
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batteries. The former approach helps the IoT to satisfy their
energy demands without the need for battery replacement or
suffering from energy outage. However, part of the transmitted
energy can be lost due to the warless medium and imperfect
energy harvesters. Therefore, using only conventional batteries
to power IoT devices eliminates wasting energy that hap-
pens during wireless energy transfer. Accordingly, it may not
be feasible to power the whole M2M devices (IoT objects)
in the network using only RF energy harvesting technology.
However, wireless energy transfer can power the M2M devices
partially by supporting the M2M devices with the required
energy to transmit the multicast messages.

In this paper, we consider wirelessly powered M2M multi-
casting underlaying cellular networks. Due to the high cost of
powering the multicast communication using wireless energy
transfer, the goal is that we minimize the total required energy
to be transferred from the Energy Transmitters (ET) to the
M2M devices. Since M2M devices are compensated for the
energy consumed in sending multicast messages, they should
minimize their total consumed energy for transmission to
reduce the total transmitted energy from the ETs. As the M2M
devices operate underlaying a cellular network, they must keep
their interference under certain thresholds to protect the regu-
lar cellular users and the other M2M devices. Within any time
slot, the M2M devices can either: 1) transmit data; 2) receive
data; 3) harvest energy; or 4) stay idle. Hence, we show how
to schedule multicast message transmission and reception and
RF energy harvesting for the M2M devices. The schedul-
ing process aims in supporting the multicast services while
minimizing the required transmitted energy by the ETs.

A. Related Works

1) Wireless-Powered Networks: In [7], the authors studied
the beamforming in multicast wirelessly powered networks.
They formulated the problem mathematically and proposed a
fast parallel iterative algorithm that converges to a KKT point.
The paper in [8] considered energy efficiency optimization for
machined-to-machined communication. The proposed work
considered a joint optimization for channel selection, power
control and time allocation. Moreover, the authors in [11]
investigated maximum energy efficiency in wireless powered
networks using dedicated power transmitters. They considered
time allocation and power control jointly to maximize energy
efficiency.

In [13], a framework for peer-harvesting in wireless-
powered networks is introduced. A hybrid base station sends
data and energy to a set of wireless nodes that can harvest
energy from the hybrid base station and from each other. The
proposed scheme specifies how the wireless-powered network
allows a wireless node to harvest energy from its peers in
addition to the hybrid base station.

2) Cellular Networks: Since energy harvesting from ambi-
ent energy sources may not always be feasible, the authors
in [12] proposed to use dedicated power beacons to charge
devices in wireless-powered cellular networks. A hybrid base
station that sends data can also charge the devices in the cellu-
lar network in addition to the dedicated power beacons. They

demonstrated a significant improvement on the outage prob-
ability for the users when they are charged using dedicated
power beacons rather than using ambient energy resources
or a hybrid base station. In [10], the authors proposed an
architecture and a model to transfer power wirelessly in cellu-
lar networks. They introduced what is called power beacons,
which charge mobile devices using microwave radiation. They
also investigated the deployment of the cellular network under
an outage constraint on the data transmission link. In [14],
the authors proposed a cellular IoT network that transfers
energy to IoT devices and shares the spectrum of the cel-
lular network opportunistically. The proposed work aimed at
enhancing spectrum and energy efficiencies.

3) Internet of Things: In [16], we proposed a cognitive
mobile base station that transmits data and energy to IoT
devices. To transfer energy to the IoT devices within a cer-
tain tolerable time, the mobile base station adjusts its location
and transmission power such that the IoT devices are charged
without delay. To optimize the operation of the mobile base
station, we showed how to minimize the total energy consumed
in energy transfer and the mobility of the base station. The
paper in [15] studied an energy efficient resource allocation
for M2M communication and energy harvesting for IoT. Joint
power allocation and time allocation are considered in order
to minimize total energy consumption. The authors in [17]
studied full-duplex M2M communication for wireless-powered
IoT. The idea of the paper is to utilize the extra energy not
used by receivers, and hence, receiving IoT devices transfer
energy to the transmitting IoT device.

4) Multicasting: An M2M multicast service for transfer-
ring data and energy to a large number of users is proposed
in [18]. It is shown that the proposed scheme reduces energy
consumption and delay while reducing the control overhead.
In [19], the authors introduced a reliable multicast and broad-
cast method for energy harvesting network. The proposed
method guarantees reliable multicast service for the energy
harvesting nodes which suffers from energy deficiency. In [20],
algorithms for routing multimedia multicast in IoT is studied.
It is shown that the speed and the accuracy of the proposed
algorithm outperforms a representative multicast routing algo-
rithm. Wireless-powered multicast and unicast services with
full duplex self-energy recycling is investigated in [9]. The
goal is to maximize the secrecy-multicast rate region subject
to transmit power constraints.

B. Motivations and Contributions

When the M2M devices are small and battery powered, they
tend to optimize their operations to prolong their batteries life-
times. One important application of M2M communication is
the multicast service, where a sender sends a message to a
group of destinations. The multicast tree may include a multi-
hop communication between the M2M devices, where M2M
devices should be encouraged to participate in forwarding the
multicast message. However, the M2M devices can operate
in a greedy way and avoid collaborating in forwarding the
multicast message. Therefore, we propose in this work to
incentivize the M2M devices to collaborate in forwarding the
multicast tree by charging them wirelessly using distributed
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energy transmitters. To best of our knowledge, no paper in the
literature discuss incentivizing the M2M devices to participate

TABLE I
NOTATIONS

in multicast tree forwarding by charging them wirelessly. [ Symbol [Description
The contributions of our paper can be summarized as E The set of channels used by cellular and M2M devices.
foll . C The set of channels used for power transfer.
ollows: . V4 The set of time slots.
e We formulate the problem of wireless-powered M2M s The set of M2M users.
multicasting in cellular network such that the total trans- BES ];a“e;‘sa“o“'
mitted energy by ETs is minimized. We consider the P The set of regular cellular network users.
routing and the scheduling of multicast messages and ET __ |Energy transmitter.
. . . 3 th :
the scheduling of energy harvesting. The Base Station ETi |~ energy transmitter
. . . ETS Energy transmitters set.
(BS) can contribute to forwarding the multicast messages Gt The gaim of channel ¢ between node 7 and node J.
to the destinations if that helps in minimizing the total PL.__|Path loss constant for channel c.
transmitted energy. PLe _|Path loss exponent. :
. . @c, Bc |Fast and slow fading gains for channel c, respectively.
e The formulated problem for ﬁndlng the 0pt1ma1 solu- A, A, |Transmitting and receiving antenna gains, respectively.
tion is a non-convex Mixed Integer Nonlinear Program dij  |Distance between ‘“’dg : "‘“dln"de J. :
I . . . b, ¢ ET;’s antenna azimuth and elevation angles in degree.
(MINLP). Therefore, it is difficult to obtain a solution W, No[Channel bandwidth and the nofse spectral density.
efficiently. We use Generalized Bender Decomposition P (e, 2) Transmission power of M2M device i over channel ¢ and
with Successive Convex Programming (GBDC-SCP) to ' during slot z. i . i
; e Bi(c.z2) The point where R;j(c, z) function is apprqx1mgted
find a solution for our problem. To facilitate the solu- e around it using the first-order Taylor approximation.

. . . X 3 ] o "

tion, we approximate the non-convex data rate function Prnax [Maximum transmission power of M2M devices.
. peell(c, z) A parameter for the transmission power of the i’" regular
by a concave lower bound function. Then, we decom- i 'S 2 cellular users to the BS over channel ¢ and during slot z.
pose the original problem into a convex Nonlinear PET (¢, 2) Tran;ﬂ:iission plower of ET, to M2M device i over channel
. . ei >“7 | ¢ and during slot z.
Program gNLP) and. Mixed Integer Lmea.lr. Program PET [ Maximum transmission power for ETs.
(MILP) using Generalized Bender Decomposition (GBD) PBS ™ | Transmission power of the BS.
[21]. Moreover, we solve the NLP problem succes- w %}l‘am}el bla“dw,ld“;-b N e NN T e

. . . . € signal recerve y J rom 1, over channe
sively using Successive Convex Programming (SCP) ¥ij(€:2) | and during slot z.
within GBD. Rij(c.2) Data rate of the link between a transmitting M2M i to

. . J A7 a receiver j over channel ¢ and during slot z.
hd A]though the GBD-SCP a]gorlthm can find a solution for Rii(c,2) Approximajte data rate of the link bewg/een a transmitting
our problem after decomposing the problem into convex Y37 *7 |M2M i to a receiver j over channel ¢ and during slot z.
. : Maxi that the h: sti i it
NLP and MILP subproblems, the problem is still hard to Ph.. h;ﬁ;::um energy fhat fhe energy atvesting cireutt can
solve due to the binary variables in the MILP problem. vz Parameters used to model the nonlinearity of the energy
Hence, we propose Constraints Decomposition with SCP T g:;vsfslt\‘/;‘ti 2;°$:'energy —_—
and Binary Variable Relaxation (CDR) algorithm to solve TM2M T A threshold used to control SINR of M2M devices.
the optimization problem. We show in this paper that each reell A threshold used to control interference to cellular devices.
group of variables may depend on the solution of another X;(c,2) g}lf;‘,liiy}i{fﬁﬁf :ig?azlg +only I NN transmils over
group of variables. Hence, CDR algorithm decomposes X;:(c.z) | binary variable equals T only if M2M 7 transmits to a
e . ijic, i i - duri
the optimization problem into an LP and two NLP sub- receiver j over channel ¢ during slot z. _ 4
. xeell (¢, z) A parameter equals 1 only if cellular user ¢ transmits over
problems based on the dependence of the variables on i © %)\ channel ¢ during slot z.
each other. Moreover, all binary variable are relaxed to H;(c,z) |/ binary variable equals 1only if M2M 7 harvests energy
. . . e over channel ¢ during slot z.
find a solution for the problem in a more efficient way. Hoi(c,2) A binary variable equals 1 only if M2M i harvests energy
We show that the proposed algorithm converges to a solu- €™ |from ET, over channel ¢ during slot z.

. ithi fini b fi . di d An indicator equals 1 only if M2M i is located within the
tion within a finite number of 1iterations, and it reduces HE; energy harvesting zone of ET, that transmits power over
the computation time significantly when the network size channel c.
is 1 A variable represents the data flow, in bits, of the link
1s large. . . . . (e, 2) between a transmitting M2M i and a receiver j used to

e We study in the simulation section the performance ij *“>%) | route the multicast traffic, over channel ¢ and during slot

of GBD-SCP and CDR algorithms and compare their 2 lo destination y. _______

. . . s The source of the multicast session.
computation times. We show that GBD-SCP slightly out- d The set of destinations for the multicast session.
performs CDR algorithm, but CDR achieves a better g llle(t]liilredfdata demand by the multicast session in bits.

. . . slot duration.

performance in terms of computation time. Moreover, we E,.”‘ (z) |Energy consumed by M2M i for transmission during slot z.
compare the total energy consumption when ad hoc and EM (z) |Energy harvested by M2M i during slot z.
hybrid network architectures are used. We show that the l;i",,(fﬁ f/ﬁﬁfgu?&f;yixll during slot z.
hybrid architectures can reduce the total needed wireless BL™_|Initial battery level of M2M i.
energy transfer compared with the ad hoc architectures. BL™* |Maximum battery level of M2M i.

C. Paper Organization

This paper is organized as follows. In Section II, we using GBD-SCP and CDR algorithms in Sections IV and V,
describe the system model, then we formulate the problem in respectively. We show and discuss the simulation results in
Section III. We discuss how to solve the formulated problem Section VI. Finally, we conclude our paper in Section VII.
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IoT 1

Fig. 1.

M2M multicasting with energy harvesting in cellular networks.

II. SYSTEM MODEL

In this paper, we consider a set of M2M devices, S, oper-
ating underlaying the uplink bands of a cellular network. The
M2M device can transmit over a set of channels, C, and it
keeps its interference to the other M2M devices and to the set
of regular cellular users, P, below certain thresholds rMzm
and Tl respectively. The Base Station (BS) can receive the
multicast message from an M2M device and forward it to all
destination M2M devices. A set of energy transmitters, ETS,
transmit power wirelessly, over a set of channels C, to all
M2M devices engaged in multicast message transmission.

Multicast message transmission and energy harvesting for
M2M devices are scheduled over a set of time slots, Z, where
the duration of each time slot is 7. M2M devices are equipped
with batteries to perform their designated functions. However,
energy consumed for multicast message transmission is com-
pensated by transferring power wirlessly from ETs. M2M
devices operate under harvest-use-store mode [22]. Therefore,
each M2M device harvests energy, uses it in multicast mes-
sages transmission and stores in its battery only the unused
harvested energy. ET with best channel condition to the M2M
is used to transfer the power to minimize total transferred
energy.

Fig. 1 shows a scenario for multicasting in IoT using M2M
communication underlying a cellular network. IoT 1 trans-
mits a multicast message to IoT 4 and IoT 8, whereas IoT
7 transmits a multicast message to IoT 5 and IoT 6. It is
required to minimize total energy consumed for multicast mes-
sage transmission in order to minimize total energy transmitted
by ETs. Therefor, IoT 1 forwards its message to IoT 3 using
M2M link to avoid transmitting with high power to the BS
to deliver the message to the destinations. Then, IoT 3 for-
wards the multicast message to the BS, and the BS forwards
the multicast message to IoT 4 and IoT 8. On the other hand,
IoT 7 is located in close proximity to IoT 5 and IoT 6, and
it consumes less energy when it multicasts directly to these
destinations using M2M communication rather than reaching
them through the BS. Hence, it multicasts the message directly
to the destinations using M2M communication.

The gain of channel ¢ between node i and node j, G
given by

c

ije 18

G = PLc o Be Ay Ay di 7 (1)

where PL. is the path loss constant for channel ¢, PL, is the
path loss exponent, o and 3. are fast and slow fading gains
for channel c, respectively, A; and A, are transmitting and

receiving antenna gains, respectively, and d;; is the distance
between node i and node j. We assume that A; = A, =1
for M2M devices, whereas ETs use directional antennas for
power transfer, and it is approximated by [23]

__ 30,000
b9
where ¢ and ¢ are the antenna azimuth and elevation angles,
respectively, in degree.
Let H¢, be an indicator function equals 1 only if M2M
device i is located within the energy harvesting zone of ET

which transmits power over channel c. Hence, Hgi function is
given by

Ay 2

1
L d < (PEEIPLC ac Be At Ar) PLe
) er =

HE, = . T (3)
0, otherwise
where PLL is maximum transmission power for each ET; €

ETS and TPH is minimum input power to the energy
harvester to harvest energy.

M2M devices operate underlying a cellular network, and
hence, regular cellular users cause interference to M2M
devices’ transmission. Let Pf”(c, z) be the transmission power
of M2M device i over channel ¢ and during slot z. The sig-
nal to noise plus interference ratio for the transmission of an
M2M device to a receiver j is calculated as follows:

(e.2) Pl (¢, 2) Gy
vii(e, z) =
Y ZqES\z’ Ple(c, 2) Gy TN

“)

where Nj = 32, cp Pfl(c,2) GE + NoW, Pfll(c,z2) is
transmission power of the rth regular cellular users to the
BS over channel ¢ and during slot z, Ny is the noise spectral
density and W is the channel bandwidth.

From equation (4), the data rate of a transmitting M2M
device i to a receiving node j over channel ¢ and during slot
z is given by

Rij(c,2) = W logy(1+ i (c, 2)) ©)

The total harvested energy that M2M i can harvest from
ET}, over channel ¢ and during slot z, n(c,z), is given
by [24], [25]

_ . TEH +
(c,2) = Prigs e ™+ -1
Tkt e~ E 0 \ || [T PET (0,2) G 4]
(6)

where PET (¢, z) is the transmission power of ET}, to M2M
device i over channel ¢ and during slot z, P% . is the max-
imum harvested energy that the energy harvesting circuit can
harvest, T is the sensitivity of the energy harvester, v and
T are parameters used to model the nonlinearity of the energy
harvesting circuits and [z]T = max(0, x). Hence, the total
energy consumed and harvested by user i during slot z are

given, respectively, as follows:

E[*(z) =Y P{"(c,2)T )
ceC

Authorized licensed use limited to: lowa State University. Downloaded on October 12,2020 at 03:47:47 UTC from IEEE Xplore. Restrictions apply.



ALMASOUD AND KAMAL: WIRELESS-POWERED MACHINE-TO-MACHINE MULTICASTING IN CELLULAR NETWORKS 519

and

T(2)=> > Toile,2). ®)

ceC keETS

ITII. PROBLEM FORMULATION
We assume that the M2M device is equipped with a single

radio. Hence, the M2M device can either transmit, receive or
harvest energy during each time slot, i.e.,

Z + Z Xii(e,2) | + Z Hi(e,z) <1,

ceC VkeS ceC
Vie S, z€ 7. )

The binary variable X;;(c,z) is set to 1 if there is a flow
from M2M device i to a receiver j over channel ¢ and during
slot z, i.e., when 0 < f z), and it is set to O otherwise.
Therefore, we have the fiollowmg two constraints:

|d]
Xii(c,z) < ng(c,z), VieS,jeS,Vee C,z€ Z.
y=1

(10)
fg(az)

< XZ']'(C,Z),
vieS, jeSceC, yed,z€Z. (11)

The following two constraints set X;(c,z) to 1 if

3 Xij(c,z) = 1 and set X;(c, z) to O otherwise.
Xi(c,z)SZXij(c,z), VieS,ce C,z€ Z. (12)
jes
2 s Xig(e, 2)
jEST < Xi(e,2),Vie S,ce C,ze Z. (13)
Similarly for H;(c, z), we have
Hi(e,2) < ZHezcz) VieS,ce C,ze Z. (14)
ecETS
2 Hei(c, 2) . —=
eeEl%STST < Hi(c,2),i€8,ceC,z€ Z. (15)

A receiver j can receive a message from an M2M device i
over channel ¢ and during slot z if ;;(c, z) is greater than a
certain threshold T'M2M je.,

MM x (e, 2) < (e, 2)

Vie S,jeS,ceC,z€Z. (16)

Let fg(c, z) be a variable representing data flow, in bits, of
the link between a transmitting M2M i and a receiver j used
to route the multicast traffic, over channel ¢ and during slot
z, to destination y. Since the flow over a certain link cannot
exceed its capacity, we have

fin‘(C7 Z) S Rij(cu Z) T?
vies, jeSyedceC,z€Z. (17)

Transmission power of the M2M device over a certain chan-
nel and during a time slot is zero when it is not scheduled

for transmission over that channel and during that time slot.
Therefore, it is upper bounded by the maximum transmission

power, PIZ, . as follows:

P (¢,2) < P& Xi(c,2), Vi€ S, ceC,z€Z. (18)

To satisfy a data flow demand, g, form the source of the
multicast, s, to a set of destinations, d, the flow conservation
constraints are given by

12|
DX D flez =0, Vyed (19)
z=1¢€C ic5\s
12|
DD fhez) =0, Vyed (20)
z=leeljes\y
12|
DX fiHe ) =g, Vyed Q1)
z=1ceCjcS\s
12|
DX D ez =q Vyed 22)
z=lceCicf\y
and

|Z] |Z|

20D filen =33 > fle2),

#=leelnes\y z=lcel jeS\s

Vie S\(s Uy),Vyecd (23)

where flow bifurcation is possible.

M2M devices can share channels with regular cellular users
as long as they do not cause harmful interference to the signal
transmitted by the regular cellular users. Therefore,

P]se”(c,z)Glgb
ZiES Pf”’(c, 2) Gy + NoW
Vk e P,ce C,z€ Z

Fcell Xkcell(c,z) <
(24)

where T'°¢/! is a threshold used to control interference to cellu-
lar devices and X ‘36”(07 z) is a parameter equals 1 if cellular
user i transmits over channel ¢ during slot z and zero otherwise.
ET, transmits power over channel ¢ and during slot z to
M2M device i only if that device is scheduled for receiving
energy from ET, over channel ¢ and during slot z, i.e.,
P& (e,2) < Prgg Hei(c, 2),

maxr

Ve € ETS, Vie S, Yee C,ze Z. (25

To ensure that the M2M device participating in forwarding
the multicast message is compensated for the energy consumed
in transmission, we have

] ]

> BF(2) <Y B
z=1 z=1

Based on the RF energy harvester implementation, the M2M
device can harvest energy from a received signal if the input
power is greater than a certain threshold, red , i.e.,

FEHHei(Ca (C Z)Gc

e’

2), Vies. (26)

z) < PET
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Ve € ETS Vi€ S,¥Yee C,z€ Z. (27)

Moreover, M2M device i needs to be located within the energy
harvesting zone of an ET, to be able to harvest energy from
that ET, i.e.,

H el (Cv Z ) < H¢

e’

Vec ETS,ic S,Nce C,z€ Z. (28)

Let the battery level of M2M device i during slot z be
BL;(z), which is defined as follows:

BL;(1) = BL™ Vie S. (29)
BL;(2) = BLi(z — 1) — E[*(2) + Bl (2)
Vie S, ze Z\1 (30)

where BL™" is initial battery level of M2M i.
The battery level does not exceed its maximum capacity,
and cannot be negative. Therefore,

0 < BLi(z) < BL® Vi€ S,z € Z\1. 31)

M2M device i cannot transmit if the battery energy level is
below a threshold BL™"™. Hence,
< BLi(2)
— BLmin’
The problem of minimizing the total transmitted energy

from all ETs to M2M devices to support multicast commu-
nication is formulated as follows:

Xi(e, 2)

VieS,ce C,z€ Z. (32)

1]

P1 : Minimize: Z Z Z Z PgT(c,z) T (33)

e€ETS i€S 065221
Subject to:
Constraints (9-24), (25-32).
Xi(ca Z)7 Xi,j(ca Z)a Hi(za Z)7 H@i(za Z) € {03 1}3
VieS,je€S,ec ETS,ce C,ce C,z€ Z. (34)
0<fi(e,2) <w

Vi,jeS,yed,ce C,z€ Z. (35)
0< P(c,2) <P, VieSceC,z€Z. (36)
0< PET(E,2) < Phigs,

Veec ETS,ic S,cc C,z € Z. 37)

IV. GENERALIZED BENDERS DECOMPOSITION WITH
SEQUENTIAL CONVEX PROGRAMMING (GBD-SCP)

The optimization problem in Section III is in a form of a
Mixed Integer Nonlinear Problem (MINLP), which is known
to be NP-hard in general [26], and there is no efficient way
to solve this kind of problem optimally. Due to the non-
convexity of equation (5) and (8), the formulated problem
is non-convex even with relaxation of the discrete variables.
To solve the formulated problem, we first approximate equa-
tion (5) with a concave lower bound of the data rate function.
Moreover, we reformulate constraint (26), add an additional
and necessary constraint and relax it. Then, we use a sequen-
tial convex programming method with Generalized Bender
Decomposition (GBD) algorithm [21] to find a solution for
the optimization problem.

A. A Concave Lower Bound for the Data Rate Function

In this section, we find a concave lower bound for equa-
tion (5) since it is not a concave function. First, we rewrite
equation (5) as follows:

Rij(c, z)

P¥(c, z) GS
Wlog2<l+ e z) L >

quS\i Ple(c, 2) Gy + N

Wilogy [ Y Pi(c,2) Gy + N
qeSs

— Wlogy| Y. Pi(c,2) G& + N

qeS\i

(38)

£ ]:Eij(c,z)
To approximate equation (38) with a concave lower bound
function, we approximate the second term, i.e., R;;(c, z), with
a convex function. For the concave function Ry;(c, 2), its first-

order Taylor approximation around a point P;(c, z) is a global
overestimator [27]. Therefore,

Rij(c, Z)

< Wlogy Z Py(c,2) Gy + N
geS\i

WG logs(e) [Pl-t””(c7 2) — Pi(c, z)}

[Sresvi Prle,2) GG+ N

>

geS\i

£ R;‘jp(c, z) (39)

Hence, a concave lower bound function for equation (38) is
given by

Eij(C,Z) = W10g2 Z PSI(C7Z) GLZ +A/’]
qeS
- E?‘.p(c,z). (40)

v

B. Relaxing Energy Harvesting Function
The function EZH (2), defined in (8), is nonconvex due to
the noncovexity of the energy harvesting model described in
equation (6). Similar to [25], we first introduce a slack variable
Api(e,z) = e[TPET(e2)GEl . Then, we rewrite N (c, 2) as
follows:
+

- 1) (41)
££(A(¢,2))

From the equation above, we reformulate the function
&(A(e, 2)) as follows to make it a concave function [7]:

ph 14 e~ +v

e—TIEH 4y 1_‘_ev/Aki(c,z)

Phas (1),
§(A(e, 2)) = o—TTPH 1y T —rTFH Ly
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__TEH
Pﬁmx(l +e i —H}) e”
e e ¥ Ap(c2)
(42)
Finally, we relax Ay;(c,z) = e[rPET (e2)GEl ingo
Api(c,2) < TP (e2) G (43)

It is shown in [7] that the solution of optimization problem is
still optimal after dropping the operator [z]™" in equation (41)
and relaxing Ay, (¢, z) as in (43). Accordingly, we can replace
constraint (26) by

7] 7]
N EF() <Y El(2), Vies (44)
z=1 z=1
where Ffl(z) is defined as follows:
=Y ) TEA(e2). (45)

ceC keETS

. . . —H .
Since £(A(c,z)) is concave function, and hence E; (z) is
concave, the constraint (44) is convex.

From constraint (43), we have

In(Agi(e,2)) < TPET (e, 2) G (46)

The constraint above is not convex. Therefore, we approxi-
mate In(Ay; (¢, z)) using Taylor approximation around a point,
Ap;i(e, z), as follows:

Ak’i(ca Z)

1n(£,m-(c, z)> +3 —1<7PET(¢,2)GE. (47)

ki(c, 2

C. Generalized Benders Decomposition Steps

Generalized Benders Decomposition (GBD) [21] is a pro-
cedure used to solve non-convex MINLP problems. GBD
method decomposes the non-convex MINLP into two sub-
problems, a master and a primal subproblems. The master
subproblem is Mixed Integer Linear Program (MILP), whereas
the primal subproblem is Non-linear Program (NLP). In each
iteration of GBD algorithm, the upper and the lower bounds
of the problem are given by solving the primal and the master
problem, respectively,

The NLP subproblem in GBD algorithm corresponds to the
original problem after fixing the binary variables. In addition
to getting the upper bound after solving the NLP subprob-
lem, we find the Lagrange multipliers associated with the
constraints of the NLP subproblem. From non-linear duality
theory, the Lagrange multipliers of the primal problem are
used in the master problem to find the lower bound. The solu-
tion of the binary variables given by the master problem are
used by the primal subproblem in the next iteration, and the
algorithm iterates until the algorithm converges.

In the following, we describe four steps to solve the
optimization problem iteratively using GBD with Sequential
Convex Programming (SCP). These steps are: 1) Initialization;
2) Solving the primal problem; 3) Solving the feasibility
problem; and 4) Solving the master Problem. A complete
overview of the algorithm is shown in Algorithm 1.

Note: In Algorithm 1, we use + superscript on the binary
variables to indicate their solution after being fixed. Moreover,
the continuous variables with (k) and (/) superscripts indicate
their values after the primal and feasibility problems being
solved feasibly in the k™ and " times, respectively.

1) Initialization: We _find initial values for all binary
variable, P;(c,z) and Ag;(c,z), then we set Xj'(c,z) =
Xi(c, 2), XZ—;_(C z) = Xjj(c, 2), H;‘(E,z) = H,(¢,z) and
H;(E,z) = H.(¢,2),Vi€ S,j €S8, ec ETS, c e C,
¢ e C, z € Z. Moreover, we set the counter, k and [, to 1.

2) Primal Problem: After fixing all binary variables, the
primal problem transforms the MINLP problem into an NLP
problem. We use a concave lower bound function Fij(c, z) in
equation (40) to approximate the data rate function in equa-
tion (38) to preserve the convexity of the primal problem in
GBD algorithm. Moreover, we replace constraint (26) by con-
straint (44) and (47) to approximate the original optimization
problem by a convex approximation. Accordingly, we for-
mulate the primal problem as a convex NLP program as
follows:

P2.1 : Minimize:

1]
)IDIDID I (48)
e€ETS i€S ccC 2=1
Subject to:
Constraints (19-24), (29-31), (35-37), (44) and (47).
ld|
+
X (¢, 2) Zflj ¢, z) <0,
VzES,]ES,cEC,zeZ. (49)
fZ?(C,Z) +
Ty X@j (c,2) <0,
vieS,jeS,ceC,ycd,z€ Z. (50)
P{*(¢,2) = Priag X; (¢,2) <0,
Vie S,ce C,z € Z. (28
PET (¢, 2) — PEL. HY (c,2) <0,
Vec ETS,i€ S,ce C,z € Z. (52)
ij(c z) — X;'(c z) Rij(c,2) T <0,
VvieS,jeS,ycd,ceC,z€ Z. (53)
X+ BL() o vicgcec, ez os
i(C,Z)-w_ 1€ cE S ( )
rM2m X+ Z Pt‘r (c,2) Ggj + ayj
qeS\i
— Pl(c, z2) G <0
VieS,jeS,ceC,z€ Z. (55)
FEHH;T(C, z) — PgT(c7 z2)GE <0,
Vec ETS,i€ S,ce C,z € Z. (56)
1< Agi(e,2),Vee ETS,i€ S,ce C,z€ Z. (57)

After finding an optimal solution for P2.1, we need to
derive the Lagrange multipliers associated with the con-
straints (49-56). The master problem uses these multipliers
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to find solutions for the binary variables. Let ®(*) be the set
of Lagrange multipliers associated with P2.1, i.e., o) =
{)\k(i,j, e,z), AF(i,j,y, ¢ 2), wk(i,e,z), QF(e,i,c, 2),
0% (i,5,y, ¢, 2), OF (i, ¢, 2), CF(i,5, ¢, 2),vF (e, i, ¢, 2)}, Vi €
S,Vj eS8, Veec ETS, Yy € d,Yc € C,z€ Z,1<n
< k. The set members of ®(¥) are associated with lagrange
multipliers of the constraints (49-56), respectively.

3) Feasibility Problem: When the primal problem solution
is not feasible, we solve the feasibility problem to use its
Lagrange multipliers in solving the master problem. The fea-
sibility problem is similar to the primal problem except that
we introduce some variables that serve as upper bounds for
all constraints, and the objective function is to minimize the
sum of these variables in order to minimize the sum of the
constraints violations. Therefore, the feasibility problem can
be formulated as follows:

P2.2 : Minimize:

1]
ZZ: 2{: EE: (us(i, ¢, z) + ug(i, ¢, 2)

2=1VieS \Vcel

[u1(i, 7, ¢, 2)+ur(i, 7, ¢, 2)]

2

VieS
|
+ Z[UQ(i>j7 Y, ¢, Z) + U5(i,j7 Y, ¢, Z)]
y=1
+ Z Z [ug(e,i,¢,2) + ug(e, i,¢, 2))
Ve€eETS vecC

(60)

Subject to:
Constraints (19-24), (29-31), (35-37), (44), (47) and (57).

|d]
X+cz nycz<u12]cz)
VzES,]ES,CEC,zeZ. (61)
(e, z
717(1) _X’ij(c5z) < U2(i7j7y7c7z)
VieS,jeS,ceC,yecd,ze Z. (62)

£(Xie,2), X (e, 2), Hi(e, 2), Hes(72), 13 (e, 2), P (e,2), PET ) (2, 2))

7]
D 9D 9D SELLICER)
E€ETSjegceCz=1
|d|
+ XM (g, e, 2) | Xy(c
q=1

+ @k(i, z) (Xi(c, z) — BLmin

+ 05,3,y . 2) (1 (e, 2) = Xy (e, 2) By

+wk(i,c,z)(P?x(k)( z) —

)

+ Ck(ZLj) C) z)
geS\i

) =S 1 W) | + Ak GGy )

BLi(z)(k)> +Qk(e,z‘,6,z)(PET(k)( 2) -

€l

119 (e, 2)

el

PEL, He(c,2))

(¢, 2) T)
Pfrfain(az)) —|—z/1k(e7z,E,

Z Péx(k)(c, 2)GE

z) (FEHHeZ- (T,2) — Pf;T(k)(E, z) Géfi)

~PW (e ) 6e (58)

qj + Qi ]

R ld| l) y(l)(c,z)
:)\l(i,j,C7Z) X’L] Zf; ¢, Z) +A (’L .] y7C,Z) s v XZ]( )
q=1
. (N .
+6(i,c,2) <Xi(c,z) - %) +Ole, z‘,E,z)(PgT(”( 2)— PET m..(c, ))

+ 01,5,y e 2) (1106 2) = Xy (e, 2) B (e, 2) T) + 4 (e,i, T,

d)l(iv ¢, Z) Pztm(l)( ) PmaxX (Ca Z) + él(i»ja C»Z)

(59)
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PF(c,2) — PZMXJ“(C z) < wus(i,c,z),

VieS,ce C,z€ Z. (63)
PET(e,2) = Prige Hf(e.2) < wie,i, e, 2)

Ve€ ETS,ic S,ce C,z€ Z. (64)
fg(c z) — XJ(C z) Rij(c,2) T < us(i,5,y, ¢, 2)

vieS,jeS,yed,ce C,z€ Z. (65)
Xj(c,z) — Eﬁéfg < ug(i, ¢, 2),

VieS,ce C,z€ Z. (66)
rM2m X+ Z Pm (c,2) Gg; +ay

qeS\s

— Pl%(c,2) G < ur(i,g, ¢, 2)

VieS,jeS,ceC,z€ Z. (67)
FEHH;;(QZ) - PgT(c,z)Geci < ug(e, i, ¢, 2),

VYec ETS,ie S,ce C,z€ Z. (68)

w1 (4,7, ¢,2),u2(4,5, 9, ¢, 2), uz (i, ¢, 2),
ug(e,,¢, 2),u5(1, 7,9, ¢, 2), ug(i, ¢, z),
wy(i,7,¢,2),ug(e, 1,¢,2) >0,
VieS,jeS,ec ETS,ycd,ce C,ec C,z€ Z.
(69)

Let ®() be the set of Lagrange mult1p11ers associated
with the feasibility problem P2.3, i.e., ®() = {Al(i, 7, ¢, 2),
Al(z,],y, ¢,z), &, e z2), Ql(e 1,¢C, z) 91(2 7, y,c,z)
él(i, ¢, 2), fl(i,j, ¢, 2), ﬁl(e, i c,z)}, Vi € 8,5 € 8,
ec ETS,ycd,ccC,cc C,z2€ Z,1 <n <k The set
members of ®() are associated with lagrange multipliers of
the constraints (61-68), respectively.

4) Master Problem: The master problem uses support func-
tions in the model to provide a lower bound solution. These
support functions are given in equations (58) and (59), shown
at the bottom of the previous page. Hence, the master problem
can be formulated as an MILP as follows:

P2.3 : Minimize: y (70)

Subject to:
Constraints (9), (12-15), (28), (34).

£(Xie,2), Xy (e, 2), Hi(e,2), Heg(e,2), f1" (e, 2),
P.tx(n)(c,z) PET(n)( )) <pu

(2 el
Vie S,j€8,ec ETS,y € d,
ceCeceC,ze€Z,1<n<k. (71)

£(Xile2), Xy (e, 2), Hy(@.2), Heo(, 2), £ (e, 2),
P.m(q)(c,z) pET( )( )) <0

(2
VieS,jeS,ec ETS,yc d,

ceCeceC,zeZ,1<qg<l. (72)

D. GBD-SC Algorithm

Due to the non-convexity of equation (5), we substitute
it with an approximate function defined by equation (40).

Moreover, constraint (26) is non-convex. Therefore, we pro-
vide an approximation for the problem by replacing (26) by
constraint (44) and adding constraint (47). Given an initial
point value for P;(c, z) and Ay, (¢, z), we embed SCP within
GBD algorithm to solve the primal problem successively in
order to get a better approximation for the original problem.

Initial values for P; (c z) and Ap,(c,z) can be set to
P (c,z) and el™P Wu(c #)Giil, respectively. Without loss
of generality, we assume that finding feasible initial values
for the binary variables is possible. However, when the initial
values of the binary variables lead to infeasible solution for
the primal problem, feasibility problem can be used to get the
Lagrange multipliers to be used in solving the master problem
then continue the iteration of GBD-CS Algorithm. One way
to get possible feasible initial values for the binary variables
is to solve an optimization problem that minimizes the sum
of all binary variables subject to all linear constraints in P1
associated with the flow, flg(c, z), and the binary variables.

Algorithm 1 shows the required steps to solve our problem
using GBD and SCP. In steps 1-3, we find initial values for
the binary variables, P;(c, z) and A;(c, z), then we solve the
primal problem using SCP algorithm to get the upper bound
and the initial values for the multipliers. Then, we define the
fixed values for the continuous variables to be used by the
master problem. We assume that we can get a feasible solu-
tion for the primal problem using the selected initial values.
However, it is possible to solve the feasibly problem if the
solution of the primal problem is infeasible to find the required
Lagrange multipliers for the master problem. In step 4-9, we
solve the master problem and find the lower bound. The algo-
rithm terminates if the difference between the upper and the
lower bounds is less than a threshold e.

In steps 10-18, we solve the primal problem again after fix-
ing the binary variables with their new values, and we get
the upper bound and the multipliers if the solution is feasi-
ble. The algorithm terminates if the gap between the upper
and the lower bounds is less than a threshold e. If the solu-
tion is not feasible, we solve the feasibility problem to get
the Lagrange multipliers as shown in steps 19-23. Then, the
algorithm iterates until the target gap between the upper and
the lower bounds is achieved.

It is shown in Algorithm 2 that SCP terminates when
the solution does not change or when the maximum num-
ber of iterations is reached. Moreover the set of all binary
variables in the optimization problem is finite. Therefore,
Algorithm 1 terminates in a finite number of steps for any
positive convergence tolerance parameter, €, as shown in [21].

V. CONSTRAINTS DECOMPOSITION WITH BINARY
VARIABLES RELAXATION (CDR)

In Section IV, we use a convex approximation for the non-
convex data rate function. Then, we decompose the problem
into two subproblems: 1) Convex NLP and 2) MILP using
GBD and SCP. Although this method facilitates finding a solu-
tion for the original optimization problem, the problem is still
NP-Hard due to the binary variables in the master problem.
Therefore, in this section we propose another method for

Authorized licensed use limited to: lowa State University. Downloaded on October 12,2020 at 03:47:47 UTC from IEEE Xplore. Restrictions apply.



524 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 4, NO. 2, JUNE 2020

Algorithm 1: Generalized Benders Decomposition With
Sequential Convex Programming (GBD-SCP)

1 Select initial fixed values for X;(c, z), Xi;(c, 2),
H;(¢,2), Hei(C,2), Pi(c,2) and Agi(c,2), Vi € S,
j€S, e€ ETS, ce C,cc C, z € Z, solve problem
P2.1 using Algorithm 2, and let its solution and the
corresponding Lagrange multipliers set be (1) and M),
respectively.

28ethk=1,1=0, UB=nl.

3 Set, £ (e, 2) = £ (¢, ), Pile,2) = P (e, 2),
Beife,2) = Auile,2), P (e,2) = P (e, 2),

PETW (5 4) = PETx (T, ).

Solve problem P2.2.

Let the solution of P2.2 be u*, and set LB = pu*.

if (UB — LB) < ¢ then
‘ Terminate.

else

Xi*(c, z) = X'(c,2), XJ(C, z) = Xi;(c, z),
Ij{"(?,z) = H} (T, 2), H:;(E, z) = H} (T, 2),
Pi(c,z) = PF**(c,z) X} (c, 2).

10 Solve problem P2.1 using Algorithm 2.

11 if (The solution of Algorithm 2, k), s feasible and

optimal multipliers are found) then

2 | UB=min(UB,=").

13 if (UB — LB) < ¢ then

R -EE - B Y I Y

14 ‘ Terminate.
15 else
16 k=k+ 1.
17 Let the corresponding Lagrange multipliers set be
oK)
s | ) = 1 (2, Pile 2) = PER(e,2),
Aeile,2) = Duile,2),
Pim(k)(c,z) = Pl**(c, 2),
| P W@ s) = PET(@.2).
19 else
20 Solve the feasibility problem, P2.3.
21 Find the corresponding Lagrange multipliers set, ),
22 I=1+1

(c,2) = Pf**(c, 2),

]

ET(1) —  pET%/—
P, (¢,z) = PP (c, 2).

23 fig(l)(c’ z) _ f;;*(c, z)’ Pﬁw(l)

24 Go to step 4.

f,g'/j((:, 2) |:>X,;j((:, 2) [>Xi(c., z)‘@@?, 2) i>Hei(E-, Z)‘i> PET(z, )
.
J AN J

U J U

Y
Problem P3.1

Probler?l’ P3.2 Problem P3.3

Fig. 2. Decision variables dependencies.

solving the original optimization problem based on constraints
decomposition and binary variables relaxation.

Fig. 2 shows how the decision variables depend on each
other. To get an advantage of this property, we decompose
the problem into three subproblems accordingly. Due to

Algorithm 2: Sequential Convex Programming (SCP)

1r=110 =
while (r # Max iterations) do

[S]

3 Solve the optimization problem, and let its solution
be II(").

4 if (The solution is feasible) then

5 it (11—1 —11(") > §) then

6 Pi(c,z) = Pl*(c, 2).

7 Acile,z) = Agi(c, 2).

8 r=r+l1.

9 else

10 7(k) = 11(7),

11 Terminate.

12 else

13 L Terminate.

constraint (9) and relaxation of the binary variables, we
decompose the binary variables of data transmission (i.e.,
Xi(c,z) and Xy;(c,z)) and the binary variables for energy
harvesting (i.e., H;(¢,z) and H;(¢,2)) into two problems.
Hence, We find solutions for the flow fg(c, z), Xi(c,z) and
Xj;(c, z) in problem P3.1, then we round the relaxed binary
variables up to 1. Then, we solve problem P3.2 to get solu-
tions for H;(<¢, z) and Hg;(¢, z). Note that the solution of the
relaxed binary variable can only be zero or a positive number
less than or equals one. Hence, we round the positive solution
of each relaxed binary variable up to 1. Finally, we can solve
problem P3.2 where P*(c, z) and PET(Z, 2) depend on the
found solution of the binary variables. In the following, we for-
mulate these subproblems and describe the proposed algorithm
for solving the optimization problem.

Note: In CDR algorithm, we use + superscript on the
binary variables to indicate their solution after being fixed.
Moreover, the continuous variables with (k) superscripts indi-
cate their values after being solved in the k' iteration of CDR
algorithm.

A. Problem P3.1

The goal of solving this problem is to find solutions for the
relaxed X;(c, z) and Xj;(c, z) variables. From Fig. 2, we can
find solutions for fg(c, z) variables by solving the multicast
flow conservation constraints, then we can decide the values
of X;(c,z) and X;;(c, z) accordingly. To explore a variety of
different solutions for the decision variables, we solve problem
P3.1 such that we get different solutions for the relaxed binary
variables in each run of P3.1 problem.

We define a set, p, where it contains initially all X;;(c, z)
variables. After solving P3.1 problem, we remove each
Xjj(c, z) variable from set p if its solution is positive. From
constraint (74), we can get different solution for Xj;(c, 2)
variables after each run of problem P3.1 in CDR algorithm.
Different solutions for X;;(c, z) variables may lead to finding
different solutions for Hg;(¢,z) variables in problem P3.2,
and hence, different solutions for P/*(c, z) and Pg» Tz, 2) in
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problem P3.3. Accordingly, We can formulate P3.1 problem
as follows:

1]
P3.1 : Minimize: Z Z Z Z ng(c, z)  (73)
z=1ceCi€S jegyed
Subject to:
Constraints (10-13), (19-23) and (35).
> Xy(e,z)>0. (74)
Xij(c,2)€p
0< Xi(c,2)<1,VieS,ceC,z€ Z. (75)

0< Xji(c,2)<1,VieS,jeS ceC,zeZ. (76)

B. Problem P3.2
After finding solutions for X;(c,z) and Xj;(c, z) in P3.1,
we round them up to 1 and fix them in addition to fixing
fé{(c7 z). Then, we solve P3.2 in order to find solutions for
H;(¢, z) and H,; (T, z). Hence, we can formulate problem P3.2
as follows:
111

P3.2: Maximize: » > > > PET(c,2) T (77)

e€ETS €S ccC 2z=1

Subject to:
Constraints (14-15), (24), (25), (27-31), (36-37), (44), (47),
(51), (54-55), and (57)

DX () + D X (e, 2)| + > Hile,2) <1,

ceC VgeS ceC
Vie S,z € Z. (78)
fl-?jJr(c,z) —Xi;r(c, z) Rij(c,2) T <0,
vieS,jeS,yed,ce C,z€ Z. (79)
0< Hi(e,2)<1,VieS,ceC,z€ 7. (80)

0< Hei(c,2)<1,VieS,ec ETS,ce C,z€ Z. (81)

C. Problem P3.3

In problem P3.1 and P3.2, we find solutions for the relaxed
binary variables. Therefore, we can formulate P3.3 as a con-
vex NLP to get a solution for power allocation subproblem as
follows:

]

P3.3 : Minimize: Y~ > Y > Y PLET(c,2) T (82)

i€S e€ETS i€S e 2=1

Subject to:
Constraints (19-24), (29-31), (35-37), (44), (47), (49-56)
and (57).

D. CDR Algorithm

The CDR algorithm is described in Algorithm 3. In this
algorithm, we solve problem P3.1, P3.2 and P3.3 itera-
tively after decomposing the original optimization problem.
Moreover, we employ Algorithm 2 to find approximation for
the non-convex data rate function. In steps 1-2, Algorithm 3

Algorithm 3: Constraints Decomposition With SCP and
Binary Variable Relaxation (CDR)

1 Set k = 1, II = oo and Count = 0.
p=1{Xij(c,2)},Vie S, Vj eS,Vee C, z€ Z.
while (Count = Termination Threshold and p #+ {@})

do
4 Solve problem P3.1.
if (The solution of P3.1 is feasible) then
Round the solutions of X;(c,z) and X;;(c,z) up
to 1, ie, X; (c,2) = [X(c,2)] and
X (e,2) = [X}(c,2)], Vi€ S, Vj €5,
Vee C, z€ Z.
7 Remove X;;(c, z) from p V Xi;'(c, z)=1.
Solve problem P3.2.
if (The solution of P3.2 is feasible) then

w N

10 Set P;(c,z) = P!**(¢,z) and
Eei(c,z) =Agi(c,2),Vie S, ec ETS,
Vee C, z € Z.

u Round the solutions of H;(<, z) and He;(¢, 2)
up to 1, ie., H (2, 2) = [H} (T, 2)],
HY(c,z) =[H} (¢, 2)]. Vi € S, e € ETS,
ceC,z€eZ.

12 Solve P3.3 using Algorithm 2, and let the
solution be (k).

13 if (The solution of Algorithm 2 is feasible)
then

14 if (7(F) =1I) then

15 | Count = Count + 1.

16 if (7(F) <II) then

17 1 = n(k),

18 L Count = 0.

19 k = k+1.

initialize some counters and parameters to be used by the algo-
rithm. Moreover, Algorithm 3 initialized the set p to contain
all binary variables X;;(c, z). In steps 4-7, we solve problem
P3.1, round the relaxed variables up to 1 and remove them
from p if they are positive. In steps 8-11, we solve P3.2 and
round the solution of the relaxed binary variables up to one.
Then we solve the problem of minimizing total transmitted
energy in step 12 using Algorithm 2. Steps 13-18 lead to ter-
mination of Algorithm 3 when the solution of the algorithm is
repeated in the recent iterations for a number of times equals
Count. Moreover, Algorithm 3 will terminate when the set p
becomes empty.

Theorem 1: Given a finite number of users, channels and
time slots, CDR algorithm converges in a finite number of
steps.

Proof: In P3.1, constraint (74) ensures that at least one
new variable X;;(c,z) € p is greater than zero in each
iteration of Algorithm 3. Moreover, Algorithm 3 removes all
positive variables X;;(c, z) from p during each iteration. It
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TABLE II
SIMULATION PARAMETERS

l Parameter [ Value ‘ l Parameter Value
PL. 1072 v 0.29
PL. 2 PIx 250 mW

I 15° PET 20 W
3 20° pBS 20 W
w 6 MHz T 1 sec
No “174 dbm/Hz q I Mb
rEH 0.064 mW BL™"n 10 mAh
MM 10 BL™T 1300 mAh
reell 10 BL™* 7500 mAh
T 274 € 0.01
P .. 4.927 mW 6 0.01

is shown in Algorithm 3 that one of the termination con-
ditions is when the set p is empty. Hence, the maximum
number of iterations for Algorithm 3 is reached when one
variable Xj;(c, z) € p is removed from p in each iteration. In
other words, the number of iterations for CDR algorithm is
upper bounded by the maximum cardinality of set p, which is
IS| x |S| x |C| x|Z|. ]

VI. SIMULATION RESULTS

In this section, we study the problem of minimizing the
total transferred energy to support M2M multicast service for
IoT devices in cellular networks. We use General Algebraic
Modeling System (GAMS) [28] with SCIP solver [29] to solve
the original optimization problem, P1, optimally. It is shown
in [29] that SCIP uses a spatial branch-and-bound algorithm
to solve convex and non-convex MINLP problem to achieve
global optimality. Moreover, we use CPLEX [30] and Interior
Point Optimizer (IPOPT) [31] under GAMS to solve MILP
and NLP problems, respectively.

We consider in the simulation two network sizes: 1) Small
networks and 2) Larger networks. The network size is rep-
resented here by the number of devices and ETs. Unless the
network parameters are specified otherwise, the small network
consists of 1 BS, 1 ET, 8 cellular devices and 5 M2M devices.
On the other hand, the large network consists of 1 BS, 4 ETs,
8 cellular devices and 10 M2M devices.

Due to the difficulty of finding the optimal solution when
the network size is large, we compare the optimal solution
with GBD-SCP and CDR algorithm using small networks. For
the other performance comparisons in this section, we use the
larger network. Similar to [12], we assume that the ETs are
distributed within 100 meter of the BS. The distribution of
the multipath fading and the shadowing are exponential with
unit mean and log-normal with standard deviation of 8 dB,
respectively. The rest of the simulation parameters are shown
in Table II.

Fig. 3 shows a comparison between the optimal solution
and the solutions given by GBD-SCP and CDR algorithms.
As the number of iterations for CDR algorithm increases, the
performance improves significantly until it stabilizes when it
reaches around the 6% iteration. Both GBD-SCP and CDR
achieve performance close to the optimal although GBD-SCP
outperforms CDR.
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123 6 25 50
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Fig. 3. A comparison between the optimal solution and the solutions given
by GBD-SCP and CDR algorithms.
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Fig. 4. Transmitted energy vs number of ETs.

Fig. 4 shows the effect of increasing the number of ETs on
the total transmitted energy when the network is larger and
CDR iterations are 10. The performance difference between
GBD-SCP and CDR algorithms decreases by increasing the
number of ETs. Moreover, the total required energy to be
transferred decreases as the number of ETSs increases, as shown
in Fig. 4. The reason for this trend is that increasing the num-
ber of ETs increases the chances for the M2M devices to
receive energy from closer ETs and over channels with bet-
ter conditions. Hence, less energy can be transferred while
supporting the same energy demands for the M2M devices.

Table IIT shows the computation times when the problem
is solved optimally and when GBD-SCP and CDR are used.
We select the number of iterations for CDR algorithm to
be 10 since its performance is close to the optimal and the
performance of GBD-SCP algorithm when the network size
is small and large, respectively. It is shown that finding the

Authorized licensed use limited to: lowa State University. Downloaded on October 12,2020 at 03:47:47 UTC from IEEE Xplore. Restrictions apply.



ALMASOUD AND KAMAL: WIRELESS-POWERED MACHINE-TO-MACHINE MULTICASTING IN CELLULAR NETWORKS 527

TABLE III
COMPUTATION TIME (SECONDS)

Small Network l Large Network ‘

Optimal 129 N/A
GBD 61 73
CDR 13 16
4.5
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Fig. 5. Transmitted energy vs. number of ETS when the network architecture
is ad hoc and hybrid.

optimal solution when the network size is small requires
long computation time whereas it cannot be found efficiently
when the network is large. Moreover, Table III indicates that
GBD-SCP and CDR algorithms reduce the computation time
significantly when the network is small, and they can find
solutions when the network is large. CDR algorithm outper-
forms GBD-SCP when the network size is small and large.
GBD-SCP algorithm performance is significantly influenced
by solving the MILP problem, which consists of binary vari-
able. However, CDR algorithm solves the problem while
relaxing the binary variables, and this contributes to reducing
the computation time.

To study the effect of the network architecture on the total
transmitted energy, we consider hybrid and ad hoc networks
architectures. A hybrid network is similar to the network archi-
tecture shown in Fig. 1 where the multicast message can be
transmitted using M2M communication links and the cellu-
lar downlink from the BS to the M2M devices. On the other
hand, the multicast message is transmitted using only M2M
communication in ad hoc network architecture without help
from the BS.

Fig. 5 and Fig. 6 show the effect of the network archi-
tecture on the transmitted energy. Since only the transmitting
M2M devices are compensated by energy for their consumed
energy to transmit a multicast message, the BS can help in
reducing the total consumed energy by M2M devices by for-
warding the multicast message to the destinations. Hence, the
total transmitted energy can be reduced by using the hybrid
network architecture as shown in Fig. 5 and Fig. 6. On the
other hand, increasing the number of destinations when the
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Fig. 6. Transmitted energy vs. number multicast destination when the network
architecture is ad hoc and hybrid.

network is ad hoc generally results in more M2M commu-
nications, and hence, more energy consumption by the M2M
devices. Therefore, the ETs transmit more energy as the num-
ber of destinations increases in the ad hoc network architecture
as shown in Fig. 6.

VII. CONCLUSION

In this paper, we considered wireless-powered multicast-
ing service for M2M devices in cellular networks. Multiple
ETs are distributed in the network to transfer energy to the
M2M devices. M2M devices utilize M2M communication to
transfer multicast messages, and they are compensated for the
energy consumed for forwarding the multicast messages. We
formulated the problem mathematically, and the goal is to
minimize the total transmitted energy by these ETs. The for-
mulated problem is hard to solve since it is a non-convex
MINLP. Therefore, we utilized GBD algorithm to decompose
the problem into an NLP and an MILP subproblem. Then, we
approximated the non-convex data rate function by a lower
bound concave function and used SCP algorithm within GBD
to solve the problem.

Because the problem is still hard to solve using GBD-SCP,
especially when the number of binary variables is large, we
proposed the CDR algorithm to solve the problem more effi-
ciently. By utilizing the dependence of some variables on each
other, we decomposed the original problem into three easier
to solve sub-problems with binary variables relaxation. We
studied the performance of CDR algorithm which achieves a
performance that is close to GBD-SCP algorithm, but requires
less computation time when the network size is large. We
showed that the hybrid network architecture contributes to
reducing the total transmitted energy by the ETs.
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