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Cooperative Small Cell HetNets With Dynamic
Sleeping and Energy Harvesting

Abdullah M. Alqgasir

Abstract—This paper considers a heterogenous wireless cel-
lular network (HetNet) where many small base stations (SBS)
coexist. SBSs can be deactivated and put to sleep to save energy
and are equipped with two power sources, harvested energy (HE)
and a grid power source, where an SBS will use its available HE
to serve the associated users first. Then, the SBS will request any
shortage of its energy from other active or deactivated SBSs that
have a surplus of HE. Finally, if there is still an energy short-
age, the SBS will use power drawn from the grid. This transfer
of energy is facilitated through the use of the promising smart
grid (SG)technology. We investigate the grid energy minimization
problem by optimizing both the transmission power and activa-
tion/deactivation (dynamic sleeping) of the SBSs. However, since
the formulated problem is a mixed integer nonLinear problem
(MINLP), generalized Benders decomposition (GBD) is used to
decompose the problem into two subproblems: user association
and energy harvesting which are solved iteratively. Further, a new
heuristic approach is proposed that provides a computationally
efficient algorithm to solve and optimize the user association and
energy harvesting problems of the system model. This approach
uses network centrality to develop a measuring parameter, base
station centrality (BSC), of SBS centrality in the network. BSC
is presented to mark the SBSs that have the most potential to
be deactivated without affecting the quality of service (QoS) of
users. Finally, extensive simulations are performed to verify the
superiority of the proposed BSC-based strategy over GBD in
terms of operational cost.

Index Terms—Energy efficiency, 5G, energy harvesting, smart
grid, dynamic sleeping, generalized benders decomposition,
network centrality.

I. INTRODUCTION

HE RAPID increase in wireless users equipment (UEs)

is boosting demand for higher data rates and better
coverage. However, higher data rates require higher energy
consumption, which increases the CO2 emission caused by the
wireless communication networks in addition to increasing the
operational cost (OPEX) [1]. Recently, energy harvesting has
been considered one of the promising solutions for sustain-
able wireless communications. Energy Harvesting technology
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converts ambient energy to electric energy. Such technology
can be used in cellular networks to help reduce OPEX and the
carbon footprint of wireless networks [2]. For example, a solar
panel with an area of 0.6 m? can harvest up to 500 W with a
14% conversion efficiency [3], an energy level can sustain the
operation of SBSs through power management.

On the other hand, advance SG technology has made
energy cooperation between different components of wire-
less networks feasible. The concept of SG technology can
be regarded as an electric system that uses information and
two-way power flow in an integrated fashion to achieve effi-
cient and sustainable systems [4]. Exploiting SG technology
could provide enormous opportunities for wireless networks.
One approach is by utilizing the SG to transfer HE from one
SBS to another with high transfer efficiency.

Several researches have dealt with powering cellular BSs
with renewable energy sources. In [5] and [3] the authors high-
lighted the importance of combining renewable energy systems
and SG to develop energy-efficient wireless networks. In [6]
the authors formulated a constrained optimization problem
to minimize the total cost incurred by cellular networks
operators by harvesting and transferring energy through SG.
Additionally, the authors of [7]-[10] used dynamic sleeping
to activate and deactivate BSs to minimize the energy drawn
from the grid. In [8] the authors formulated an optimization
problem for the system, and due to the problem’s NP-hardness,
they proposed a greedy decomposition to tackle the problem.
On the other hand, the authors of [9] considered a model
where SBSs are powered solely by HE and grid energy is
optimized by Macro Base Station (MBS) active probability
and SBS transmission power. In [10] the authors considered
a cognitive radio (CR) system and formulated a constrained
optimization problem to maximize throughput by optimizing
the power allocation from the renewable energy and SG.

The authors in [12] considered the stochastic process of
energy harvesting of the remote radio heads (RRHs) to develop
an online resource allocation algorithm, which maximized
user utility while ensuring the sustainability of each RRH in
cloud-RANS.

However, none of the previous studies considered utiliz-
ing the harvesting source of deactivated SBSs to reduce the
power acquired from the grid. In this work, deactivated SBSs
will keep harvesting and injecting the energy into the SG to
aid other SBSs and increase the network efficiency. Moreover,
other SBSs will forward their extra HE into the SG to other
SBSs. The goal of this work is to minimize the power driven
from SG by exploiting HE as much as possible. Therefore, in
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order to benefit from the HE and minimize the power driven
from the grid, our model will push the network to deactivate
as many SBSs as possible and utilize the sleeping SBSs in
harvesting energy. However, to ensure QoS, we set a mini-
mum required rate for every user that the network should not
violate. The main contributions of this work are as follows:

1) We formulated an optimization problem to minimize the
energy driven from the network by utilizing HE and
dynamic sleeping of SBSs. The problem is formulated
such that it drives the network to deactivate as many
SBSs as possible to minimize their energy consumption
and to benefit from their harvesting capability.

2) The formulated problem is MINLP which is NP-hard,
so we decomposed the problem into two subproblems:
a convex nonlinear problem for solving the continuous
variables of the harvesting energy and a mixed integer
linear problem (MILP) for solving the user association
and dynamic sleeping. Then we used GBD algorithm
to solve the two subproblems iteratively for an optimal
solution.

3) We proposed a new computationally efficient algorithm
(BSC) which is based on network centrality to solve
and optimize the dynamic sleeping, user association, and
energy harvesting of the system model.

4) Finally, we supported our proposed algorithm with
extensive simulations to verify its superiority over the
GBD in terms of operational cost.

This paper is an extension of [11] with the following are

extensions made to the conference paper:

1) The original optimization problem is decomposed into
two subproblems: a convex nonlinear problem and a
mixed integer linear problem (MILP), where the GBD
algorithm is used to solve the two subproblems itera-
tively for an optimal solution.

2) The BSC algorithm, which is to solve the dynamic sleep-
ing, user association and energy harvesting of the system
model is introduced to overcome the optimal solution
complexity.

3) The results are reproduced with different scenarios cov-
ering the differences between the optimal algorithm and
GBD and the proposed solution. Also, larger network
topology is used to represent more realistic situations.

This paper is organized as follows: Section II describes

the proposed energy harvesting system model. The problem
formulation with the proposed decomposition is given in
Section III. In Section IV user association and dynamic sleep-
ing is proposed using centrality analysis. Section V discusses
selected numerical results of the simulation. Finally, the paper
is concluded in Section VI.

II. SYSTEM MODEL

This paper considers HetNets where several SBSs co-exist
in a designated area. The deployment of SBSs is a promising
solution to provide higher QoS for users. However, between
the SBSs interference is considered, since the SBSs are
deployed in a densed environment and the reusing the available
resource provides higher throughput.

b

Renewable

energy
SmartGrid
Connection

:

Small Base
Stations (SBSs)

Fig. 1. A network with SBSs powered by renewable energy and connected
to the SG.

Fig. 1 shows the architecture of the network where SBSs are
equipped with EH technology (e.g., solar panels); each SBS
serves UEs under its coverage; and every SBS is connected to
the SG with a two-way connection.

A. Energy Harvesting Model For SBSs

Let f =1,..., F denote the set of the SBSs that are ran-
domly distributed in the macro cell coverage area of A, while
u=1,...,U and ¢ =1,..., C denote the set of a randomly
distributed users covered by the SBSs and the set of avail-
able resource blocks in the network, respectively. We consider
a time slotted system with fixed duration 7; n = 1,..., N
denotes the index of the slot number; and every UE is assumed
to be associated with only one SBS.

Every SBS is equipped with two power sources: non-
renewable power from SG and power from renewable sources
(e.g., wind, solar). The SBSs harvest energy from a renew-
able source, where the amount of HE for every SBS f and
time slot n is denoted by hry[n] and it follows normal dis-
tribution. Normal Distribution is used as a distribution of the
average harvested energy levels by invoking the central limit
theorem, where the sum of a large number of independent and
identically distributed (i.i.d) variables asymptotically becomes
a normal distribution. However, since the harvested energy
cannot have negative values we omitted values below certain
levels [16].

Every SBS is equipped with a battery to store its HE with a
maximum capacity of By,q; Where battery level at time slot n
is B[n]. However, due to the stochastic nature of energy har-
vesting, every SBS is connected to a non-renewable energy
source to compensate for any renewable energy shortage. In
other words, every SBS is set to use the energy from a
renewable source first and then request power form the grid.
However, because SG technology allows a two-way flow of
power [4], it can be used here to transfer HE between SBSs.
In other words the SBS with surplus HE will transfer it to other
SBSs that suffer from renewable energy deficits. Therefore, at
the end of every time slot, an SBS will either transfer the
surplus of its harvested energy or request energy from other
SBSs to compensate its deficit. If the energy surplus of the
other SBSs cannot match the energy demand of the SBS with
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TABLE I
LIST OF NOTATIONS USED THROUGHOUT THE PAPER

[ Notation | Description ]
f SBS index.
U User index.
c Resource block index.
n Time slot index.
T Duration time of every slot.
Bmaz Maximum battery capacity.
p%,[n] Transmission power from f to u by c.
By[n] Battery level of SBS f during slot n.
Ag[n] Injected energy into the SG by f during n.
hr¢[n] HE for every SBS during n.
wrln] Drawn energy from the SG by f during n.
[hG, [n]] Channel gain between f and u by ¢ during n.
n The transfer efficiency of the SG.
vy Indicates if all users associated
with SBS f are offloadable.
o The total number of SBSs that f
can offload its associated users to them.
:1:; “ The binary association between f and u through c.
Y The SBS f ON/OFF status.
w Available bandwidth for every channel.
Ey The energy consumption of the SBS basic circuit.

the shortage, then the SBS will request non-renewable energy
from the smart grid directly. Therefore, the transmission power
between user # and BS f using resource block ¢, during the
Fime slot n is: pfu[n] = pfu,gm + pjfu’r[n], wk.lere pﬁu’g[n]
is the power drawn from the grid and pfu’ [n] is the power
drawn from the renewable source including HE transferred
from other SBSs.

Let Af[n] and pf[n] denote the amount of HE the BS f
is injecting into or receiving from SG at the end of slot n,
respectively. Then the amount of the harvested energy that is
transferred into the smart grid equals the harvested energy that
is drawn from the smart grid, where 7 is the transfer efficiency.

pr[n] = nAg[n] (1)

Therefore, at time slot i = 1 the battery will be zero, and at
the end of every slot ¢ = 1,2,..., N the battery storage will be
the sum of the harvested energy subtracting the transmission
power and the transferred energy 0 < Bf[z'] < Bmaz, Where
Byli] is defined as:

% % U 7
Bli) =Y hrgln] = > Y pipInlr = > Mlnl. )
n=2 n=1

n=1u=1

B. User Association and Achievable Rate

Let z; be a binary indicator that is equal to 1 if user u and
SBS f are associated using resource block ¢, or O otherwise.
Also, let zp, be a binary indicator that is equal to 1 if user
u is associated with SBS f, or 0 otherwise. y; indicates the
SBS on/off status, where yr = 0 if the SBS is OFF (where
there are no users associated with it), and yr = 1 if the SBS
is ON. However, a sleeping SBS will keep harvesting energy
and injecting it into the smart grid to serve other active SBSs.

The time-varying distance between the fth SBS and the uth
user can be expressed as follows:

duf [n] = 3)

Zu[n]—lfH Vue U, VfeF

where the I, [n] and Iy are the x — y coordinates for the pre-
dicted location of the user at time slot 7, and the fixed location
of the SBS, respectively. It follows from (3) that the channel
power gain can be modeled as:

Bo Bo

arlml i - sza @

|h5f[”]|2 =

where [y denotes the channel gain at the reference distance
of dyp = 1m, and « is the path loss exponent.

Further, the interference at user u which is associated with
SBS f from all other SBSs at a time slot n will be:

U F
il =Y pfilnllhg[n]?,
JFu i#Ef

then, the signal to interference and noise ratio (SINR) for every
user is:

(&)

2
GG
Ly ©)

where w is the available bandwidth for every channel, and Ny
is the channel noise spectral density which is assumed to be
additive white Gaussian noise (AWGN), and w Ny is the noise
variance 2. Thus, the data rate for every user using a single
channel will be as follow:

&5ln] = wlog 1+ ~5s[n)) @)

Equation is a lower bound on the capacity that can be
asymptotically approached by using long channel codes and
treating interference as noise. Selecting an exact coding and
modulation technique is out of the scope of this paper, but
we implicitly assume that a technique that can approximately
achieve (7) is being used.

III. PROBLEM FORMULATION

In this section, an optimization problem that minimizes
the non-renewable energy consumption of the transmission
power for a cooperative HetNets is formulated. First, we
formulate a problem where users association, sleeping strat-
egy, and energy minimization are performed within a single
optimization problem. There are two problems, the first is
optimizing over N slots and this requires predicting HE and
channel conditions, where the second is optimizing for every
slot separately, and this is not globally optimal, but more real-
istic, hence we focus on the second problem in this paper. The
problem can be stated as follows: given the number of users
and SBSs, the problem will solve the user association, sleeping
strategy and power consumption, then at every time slot the
optimization problem will recalculate the users association and
the transmission power, while not changing the status of the
SBSs, this will help simplify the problem since the time slot
is relatively very short. However, due to the non-convexity of
the problem we present a more tractable and a convex approx-
imation where we decouple the users association and sleeping
strategy from the energy minimization.
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We can then mathematically state the main optimization
problem as below:

Problem F:
F,U,N,C F
Minimize e, Jn]T + Eyy
pif[n},)\f[n],uf [n],yf,zuf,zlff f,u,%,:cl fu,g le 'f
8)
subject to Z Z xfuRmm < Z Z IfuRfu
f =1 f=1lc=1
Yu,Vn 9)
U C
Z pru,r[n]T < Bf[n - 1] + :uf[n]’
u=1c=1
Vf,Vn, (10)
By[n] < Baa Vf Vn, (11)
F n
> n ZZW va,  (12)
f=1i=1 f=1i=1
U C
D> pflnl < P YL, (13)
u=1c=1
}::ﬁjfgl Vf, Ve, (14)
u=1
F
Zzuf =1, Vu, (15)
f=1
DL ¢
c= U,
ZofUs saﬁgzgqg Y f,Vu, (16)
25:1 Puf d
= <y < 17
#OfSBSS — yf — ;Z’uf? vf’ ( )

Constraint (9) represents the QoS for every user. The con-
straints from (10) through (13) are dealing with energy transfer
and cooperation between SBSs, while constraints from (14)
through (17) are dealing with the users association and SBSs
sleeping strategy. Constraint (10) represents the energy con-
sumption causality where the SBS cannot use energy more
than what is available. Constraint (11) limits the battery capac-
ity. Constraint (12) is for energy conservation, where the total
injected energy into the smart grid equals the total received
energy by all SBSs. Constraint (13) limits the maximum
allowed transmission power for every SBS.

A. Generalized Bender Decomposition

Due to the coupling of the users associations and the
sleeping strategy with energy harvesting, the above problem
is clearly intractable. Since we have three binary vari-
ables (yf, Zfus and xfcu) with four different indices (f, u,
and c), the time needed to find the optimal solution will
increase exponentially as the network size increases linearly
because the problem is MINLP has no efficient algo-
rithm for solving it. Therefore, we propose a decomposi-
tion approach where problem (F) is decomposed into two

subproblems, the first subproblem includes the integer vari-
ables, while the second problem contains the continuous
variables.

Generalized Benders Decomposition (GBD) is a well-
known method for solving mathematical programming prob-
lems with MINLP [13]. GBD is a generalization of the
Benders decomposition [14] to include a broader class of
problems which can be nonlinear. The duality theory for
nonlinear convex problems is exploited to derive the cuts cor-
responding to those in the original Benders Decomposition.
However, GBD requires the optimization problem to be a con-
vex nonlinear problem, which is not the case for problem (F).
Hence, (F) is nonconvex problem due to constraint (9),
where the SINR inside the log will cause the constraint to be
nonconvex.

B. Linearizing QoS Constraint

In this section we derived a concave lower bound of con-
straint (9) using the first order Taylor series to transfer problem
(F) to the standard form in GBD. Therefore, constraint (18)
can be written as:

Sl ¢ n]? )

€.n] = wlog(l +
! 5w S Lg o ] B )P+ oy

U F
=wlog| > > " pirlnllhe[n]* +wNo

u o f
u F
—wzog(zzpﬁ[ g ] +wo
A it f
U F
> wlog 303 piylnl[piylnl| +wio | = Ry
uof
(18)

where RTy is the first-order Taylor approximation around
point (p;[n]), and is as follows:

U F
Ry, £ wlog Z Zpﬁﬂ[nﬂhﬁz[”w +who
’757”7&]”
4—}{3253 il
ju iz 2)pg (][R nll+ who

X (sz‘["] - Poﬁ[”]) (19)

Hence, the approximated concave lower bound of equa-
tion (18) will be as follows:

U F
n] £ wlog| > pisn]
u f

2 A
hl‘if[n]’ +whNo | — Ry

(20)

Thus, replacing (18) by its approximated concave lower
bound R [n] will transfer problem (F) into a convex MINLP,
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which can be rewritten as follows:

Problem P:
F,U,N,C F
. c
e RSt f,%ffu’ﬂ”“fl’fwf
F C F C
subject to Z Z wfuRng < Z Z fc f%
f c=1 f=1lc=1
Vau,Vn (10)—(17). 21)

C. Derivation of the Primal Problem

The problem (P) now falls into the standard forms of GBD
problem form, where the problem has two sets for variables.
The first is the binary variables (yy, zf,, and xfcu) that can be
considered as the complicating variables and the second set is
the continuous variables (pgf[n],)\f[n],uf[n]). Therefore, it
is much easier to solve problem () when the binary vari-
ables are fixed. In fact, fixing the binary variables means
that problem (P) becomes a convex optimization problem
that can be solved efficiently using the Lagrangian method.
Consequently, the problem is decomposed into two subprob-
lems, the primal problem and the master problem. The primal
problem is a convex nonlinear optimization problem and is
formulated as follows:

Problem L:
F,U,N,C F
~ Minimize S = Z pﬁu g[n]T + Z Eyyy
p;f [n],Af['fL],,LLf["'L], f,u,n,c:l ’ f:1

subject to (10)—(13), (20)

The goal of solving the primal problem is to find an upper
bound for the solution given by Algorithm 1. The problem

(L) is convex, since the objective function is linear and all
the constraints are convex [17] (Note: the second part of
the objective function is constant and has no effect on the
final solution.) Therefore, problem (L) can be solved using
the Lagrangian to obtain the optimal solution. Hence, the
Lagrangian of (£) is given in (22), shown at the bottom
of the page, where [y [n], pr[n], (¢[n],&f[n], Brn]] are the
Lagrangian multipliers.

D. Derivation of the Master Problem

The master problem is derived by fixing all continuous vari-
ables and solving the problem with only the binary variables
Z = [yf, 2fu; xfcu] Thus, the master problem will be a pure
binary optimization problem. The master problem goal is to
find the lower bound solution of Algorithm (1). Hence, the
master problem can be formulated as follows:

Problem M:

Minimize v

YfsZuf Tyf

I (awu[n], pyln], ¢¢[nl, €[nl, By
Vay[n], pp[nl, ¢ [n], €[n], 5
VfeF, VneN

£ (auln], py(n), &ln), Elnl, By [n]) <0
Waw[n], pylnl. plnl. €[n), Byln] 2 0, Yu € U, ¥f € F,
Vn e N (14)—(17) (26)
The master problem uses Lagrange equation (22) that is

associated with the primal problem to get a lower bound

for the solution of Algorithm (1). However, when the solu-

tion of the primal problem is not feasible, Algorithm 1
uses Lagrange multipliers for the feasibility problem instead.

(24)

[n]) <v
f[n] >0, YueU,
(25)

F,N,U,C F C . F 4
Dalnl. pylnl. Gl €lnl.Brln) = D" pfy lnlr + Z B+ 303 )|~ 303 Rl + 3 af R
fin,u,c=1 u=1n=1 f=1lc=1 f
F F.,N Uu,C
35 a5l Bnar) + 3 40| B lnlr ~ Bln 1)~ syl
f=1n=1 f,n=1 u,c=1
N F n F n F N v ¢C
2 En DD wlnl =3 % ]|+ > Bylnl ZZ P
n=1 f=1i=1 f=1i=1 f=1n=1 u=1 c=1
(22)
. A . A U N F . F F N
F(@u[n}v ﬁf[n]’ Cf[an[nL Bf[n]) = Z Z é‘u[n] - Z Z fu[n] + Z JffcuRm”L + Z Z ﬁf [n] [Bf[n] Bmaz]
u=1n=1 f=1lc=1 f f=1n=1
F.N U,c
+ fln] [ > Pl = Biln = 1] = ugln]
fin=1 u,c=1
N A F n F F N . U
S| S0 w0 gl |43 S Bl 303 pglnl - Py
n=1 f=1i=1 f=1i=1 f=1n=1 u=1c=1
(23)
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Algorithm 1 Generalized Bender Decomposition

1: Input: f; u; n; c; hfcu [n]; hrg[n]; Ryins Pmaz; wNo; €

2: Initialize: y?; x})uc, z}%;i =0;UB =00; LB = —00; A = 00
3: while A >'1 do
4: Solve the primal NLP problem [£] and let the solution be:

Tlkl = [pqif[n][k],;\f [n] k},ﬂf[n}[k]] and the multipliers: Q¥ =
[au[nﬂk],g{k[]nw,éf [n]*1, &[n)lE], By [n](*1]

5 Set UB =

6:  if T[*] is feasible then

7: if UB — LB < e then

8: T* = Tl

9: Q* = @[k]

10: else

11: k=k+1

12: end if

13: else

14: Solve the feasibility problem and find the lagrangian multipliers
ol

15: I=1+1

16: end if

17:  Solve the Master MIP problem [AM] and let the solution be: zlk]l =
(gl 2181 Zelkl
f 2 Cfu {u
18:  Set LB = pl¥]
19:  if UB — LB < € then

20: z* = 7k
21: A=0

22: else

23: Go to step 4
24 end if

25: end while
26: Output: T*,Z*

feasibility problem is stated as follows:

Problem U:
Minimize K

pq(j,f [n]7)‘f [n}vuf[n}»ﬁ
subject to

(10)—(13), (20). 27

Thus, Algorithm 1 is presented to solve the optimization
problem iteratively between the master M and primal £
problems. First, we initialize feasible points for the binary vari-
ables: [y;), zj% and :r(zf] along with other parameters. Second,
the convex subproblem (L) is solved generating an optimal
solution TMI = [P [n Af[n], fig[n]] and the multipliers
QY = [ay[n], pr[n], {sn], €[n], By[n]], then, this solution is
set as the upper bound of the algorithm. However, if the pri-
mal problem (£) is infeasible, the algorithm then solves the
feasible problem ({/) and sets its solution as the upper bound.
The second step is to solve the master problem (M) with any
efficient Integer Linear algorithm applying the solution of the
primal problem (£) : [T, Q] from the first step. Then we set the
binary solution of the master problem’s output to be the lower
bound. On every iteration the algorithm evaluates the differ-
ence between the UB and LB and if the difference is greater
than €, then the algorithm uses the solution of the binary
variables from the master problem (M) to solve the revised
primal (£) problem and repeat the previous steps. The algo-
rithm iterates until the termination condition is met. It is shown
in [13] that the GBD algorithm terminates in a finite number
of steps.

b, Yo b

) 8. 9
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(sBs)

58S capable of
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for U1 & U3

Associated

Fig. 2. The evaluation of BSC through the calculation of vy and ¢y.

IV. USER ASSOCIATION AND DYNAMIC SLEEPING
USING CENTRALITY ANALYSIS

This section introduces a new approach to choose which
SBS is to deactivate and offload its users to neighboring SBSs.
This approach exploits the centrality analysis that is used in
graph theory to indicate the most important vertices within
a graph [15]. In this section, base station centrality (BSC)
analysis is presented to mark the SBSs that have the most
potential to be deactivated without affecting the users’ QoS.
The basic idea of BSC is to introduce a metric that shows the
fitness of every individual SBS to be deactivated. The fitness
of every SBS is evaluated according to its ability to offload its
users to neighboring SBSs. In other words, a SBS that is able
to offload its users to more neighboring SBSs will have more
potential to deactivate without interrupting the service of the
associated users. Thus, BSC provides intuition for choosing
which SBSs to deactivate instead of a random approach.

We introduce two parameters to calculate the BSC, vy, ¢y.
vy indicates wether all users associated with the SBS f can be
offloaded or not, while d)f denotes the total number of SBSs
that SBS f can offload its associated users to. User can be
offloaded to any SBS that can support QoS, i.e., R,;,. Thus,
we define the BSC of a SBS in the network as follows:

BSCf = qu/)f Vf (28)

Eq. (28) captures the effect of the number of SBSs that its
associated users can be offloaded on the BSC of SBS f. Hence,
BSC works as an indicator on how every SBS is centered
within the network, which means that as the BSC increases
the SBS f is placed close to many other SBSs. Therefore, the
higher the BSC is, the SBS is more likely to be deactivated
and its users offloaded to other SBSs.

Fig. 2 illustrates how to evaluate the BSC of SBS f on a
topology with dense SBSs network. In Fig. 2 users Ul, U2
and U3 are associated with SBS f = 1 according to the best
SINR. However, those users who are associated with this SBS
can also be associated with other SBSs that can support their
QoS (i.e., Ryin). Fore example, U3 can be associated with
three other SBSs, while each of the other two users can be
associated with one SBSs. In this example ¢ will be equal to
five since the associated users can be offloaded to five SBSs
in total, and v; will be equal to one since all associated users

Authorized licensed use limited to: lowa State University. Downloaded on October 12,2020 at 03:54:10 UTC from IEEE Xplore. Restrictions apply.



780 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 4, NO. 3, SEPTEMBER 2020

Algorithm 2 Dynamic Sleeping Using BSC

1: Input: h]%u[n], hrg[n]; Rins Pmaz; wNg

2: nitalize: pf, [n]1%); y}o] —1.k=0

3: while True do

4: Calculate SINR Vu, V£, and associate users with BSs according to the
highest SINR.

50 ifzu; =0 Vu e U then

6: yf =0 Vf eEF

7: end if

8: for <f=1 : |Active SBSs|> do

9: Calculate vr, qbf

10: BSC’f = l/fd)f

11: end for

12: y[lf] + 0, BS f’ is the BS with the highest BSC, and associates its
users with the neighboring BS ifcu[k]

13: Solve problem [£] and let the solution be: Tlk] =

[P [n1™%), Xp[n] ), iy [n] (K]
14: it Sl¥] SS[’z—ll then

15 T* :=T o
*c . 7€
16 zfuc =Ty,
17 Yt = g_;][fk]
18: else if problem [£] is infeasible then
19: I/f =0
20: end if
21: k:i= k+1
22: ifvy =0 Vf € F then
23: Break
24 else
25: Go to step 4
26: end if

27: end while
. .ok * *C
28: Output: T*, Y Tp,

can be offloaded to other SBSs. Thus, the BSC of SBS f =1
equals 5.

Algorithm 2 calculates the BSC values of all the active
SBSs. First, In steps (1,2) we provide the algorithm with
the parameters and set some initial values. Then, for every
iteration SBS (f): First, in step (4) the algorithm will asso-
ciate the users with the SBS that provides the best SINR.
Second, in steps (5-7) all SBSs that have no associated
users are deactivated. Third, in steps (8-11) the BSC is eval-
uated for every SBS by calculating vy and ¢y. Then, in
steps (12, 13), the algorithm will deactivate the SBS with
the highest BSC and offload its associates to neighbouring
SBSs that can support QoS requirements. After the asso-
ciation, the algorithm will solve the optimization problem
(L) and produce a candidate solution for the continuous
variables Tk = [i)gf[n](k),;\f[n](k),ﬂf[n}(k)]. Fourth, in
steps (14-20), if the optimization problem returned to be infea-
sible, then we set vy to be zero to indicate that SBS f cannot be
deactivated, and else if, objective function value for problem
(L) at iteration (k) is less than its value at iteration (k — 1), then
the candidate solution is set as the best solution. Finally, in
steps (22-26), if vp = 0 for all SBSs then the algorithm break
with T*, y;‘ , xfuc is the final solution. Otherwise, go back to
step (4) and recalculate the BSC for the remaining active SBSs.

Algorithm 2 is dominated by two loops that affect its com-
plexity. First, while loop with a number of iterations equals
the number of active SBSs in the network which in the
worst-case scenario equal F. Therefore, while loop has a lin-
ear complexity of O(F). On the second loop, for has two

TABLE II
SIMULATION PARAMETERS

[ Parameter | Value [[ Parameter [ Value |
Praz 2 W Riaz 4 Mbps
No —174 dBm/Hz w 5 MHz
Brax 6] T 100 ms
n 0.9 E, IwW
Bo 0.01 P 2

3 :

—s—Optimal

——BSC Algorithm

Uncaoperative

S5k 4

] / |
0 I I I I I I I

2 25 3 35 4 45 5 55 6
Minimum Required Rate (bps) x10°

Fig. 3. The optimal results compared to BSC algorithm and the uncooperative
as the R,,;, increases.

parts: a maximum number of iterations of F to evaluate the
BSC for all active SBSs, and the evaluation of optimization
problem L. Problem £ is a monotone convex optimization
problem that according to [19] has at most O(y/nlog1/(e))
iterations, where n is the number of variables and e is the
solution accuracy. Therefore, the complexity of for loop is
O(F++/nlog1/(€)). As aresult Algorithm 2 has a total com-
plexity of O(F(F ++/nlog1/(¢))). However, since n is much
larger than F, Algorithm 2 complexity is O(F+/nlog1/(e)).

V. SIMULATION RESULTS

This section provides simulation results that demonstrate the
performance of the system model shown in Fig. 1 to minimize
the HetNets energy consumption. The parameters in all sim-
ulations, unless stated otherwise, are presented on Table II.
HE levels are estimated by a truncated normal distribution
with a mean equal to 0.2 and standard deviation of 0.07, the
truncated normal distribution is set to have values higher than
0.001 [20]. The truncated normal distribution is as follows:

(170.2 2

f(z) = We 507 ) if z > 0.001
0, otherwise.

(29)

For all simulations, we consider an area of 100x100 n?
where the SBSs and associated users are uniformly distributed
over this area. In solving the problem optimally we applied a
branch and bound algorithm to solve MINLP. Namely, we used
Convex Over and Under ENvelopes for Nonlinear Estimation
(Couenne) which aims at finding the global optima of MINLPs
by implementing linearization, bound reduction, and branching
methods within a branch-and-bound framework [21].

In Fig. 3 we compare the performance of the optimal
solution of F to the BSC algorithm and the uncooperative
approach, where the SBSs do not exchange HE. However, F is
very difficult to solve especially for large networks. Therefore,
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I 4000
—Optimal (GBD)
18~ |——Algo 2 (BS Centrality) -
Il Comput Time (Optim) 3500
16~ I Comput Time (Algo)

g (W)
T

The Total P

T
Computational Time (s)

, ‘ [

10 15
Total Number of SBSs

Fig. 4. The optimal results compared to BSC algorithm with respect to the
computational time and total pg consumption.

© Active SBS
x Deactivated SBS
Users

Fig. 5. The behavior of the BSC algorithm for every iteration.

we solve the network for small number of SBSs F = 5, and 10
users with increasing the minimum required rate. Fig. 3 shows
that using sleeping SBSs to harvest energy and transfer it to
other SBSs provides better performance than the noncoopera-
tive approach. On the other hand, the BSC algorithm performs
close to the optimal solution of F within a reasonable time.

Fig. 4 compares the performance of the optimal solution of
the GBD problem of Algorithm 1 to our proposed approach
of BSC in Algorithm 2 in case of the p, consumption and
the computational time. In this scenario, the number of SBSs
are [5, 10, 15, 20]; their associated users are [10, 20, 30, 40]
respectively, and N = 4. Fig. 4 shows that the BSC approach
performs close to the optimal solution of the GBD. In fact for
small networks the two approaches are very close, while for
larger network BSC results in about %10 more energy con-
sumption. On the other hand, the optimal GBD required much
longer times for computations than the BSC algorithm, and
as the network increases in size, the required computational
time increases exponentially (around 2000s for 20 SBSs and
40 users), while BSC achieved a reasonable solution for a
much shorter computational time (around 160s).

Fig. 5 shows the behavior of the BSC algorithm on every
step. In this scenario we have a topology of 100 x 100m?
with 20 SBSs and 40 users (F = 20 and U = 40) with all
of the SBSs and associated users uniformly distributed with
a minimum rate of 1.5 Mbps. In every step the BSC algo-
rithm chooses the SBS with the highest BSC to deactivate
and offload its associated users to other neighboring SBS. The
offloaded users are associated with the SBS that provides them
with the second highest SINR. The enlarged area in Fig. 5

50 -

. . . . .
1 1.5 2 25 3 35 4 45 5 55 6 6.5
Minimum Required Rate (bps) x10°

Fig. 6. The Minimum Rate Compared to the Efficiency.

20 T

I U=35 users
18~ | U=40 users
[CT1U=45 users
16 - I U=50 users

Injected Energy into the smart grid  (J)

22 25

20
Number of SBSs in The Network

Fig. 7. The relation between the increase of the SBSs in the network and
the Injected Energy into the smart grid.

shows how BSC algorithm deactivated an SBS and associated
its users to nearby SBSs.

Fig. 6 investigates the effect of the efficiency parameter (1)
and the increase of the QoS requirement, i.e., R,,;, on the
amount of power used from both sources (P, and Pg). In this
experiment we used 20 SBSs and 40 users while N = 10. As
the results show, for n = 0.9, the network will rely solely on
Py until the R,,;, reaches 3.00 Mbps then the network will
start demanding power from the grid as P starts increasing
to provide the necessary power to match the increase in user
demands. A similar pattern happens in both 7 = 0.75 and
n = 0.60, with lower R,,;, required to trigger the demand
of the power from the grid (P). This is understandable since
the lower the efficiency means the lower the energy transferred
between SBSs in the network. On the other hand, for lower
minimum rates (R, < 2Mbps), P, values for the three sce-
narios are very close to each other, despite the differences in
efficiency. This is due to the fact that for lower rate almost
all SBSs are using their harvested energy and not receiving
or transferring it through the network where the 7 factor will
come into effect.

Fig. 7 shows the effect of increasing the number of SBSs
and the number of users on the amount of injected energy A.
As in the figure, we have two trends. First, the increasing num-
ber of SBSs will increase the amount of injected energy A into
the network. Second, as the number of users in the network
increases A decreases until it becomes almost zero. This can
be explained as follows: as the number of users increases, the
active SBSs will have no energy left to inject into the network,
and only the deactivated SBSs will be injecting energy into
the network. However, for larger user population, the algorithm
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cannot deactivate any SBS because of the high demand. On
the other hand, increasing the number of SBSs in the network
will result in more HE to be injected into the SG causing less
reliance on grid power.

VI. CONCLUSION

In this paper, energy harvesting in cooperative SBSs
HetNets with a dynamic sleeping strategy was investigated,
where the deactivated SBSs are cooperating with the rest of the
network by harvesting then injecting the energy to the network
to be transferred to other SBSs. Each of the SBSs is equipped
with a harvesting device and a finite battery for storing HE.
We formulated an optimization problem designed to minimize
transmission power driven from the grid under user QoS con-
straints. Since the formulated problem is MINLP, we proposed
a decomposition of the problem into two subproblems, a users
association problem and convex optimization problem, and
solved them iteratively using GBD. We also introduced a com-
putational efficient algorithm based on network centrality to
solve and optimize the user association and energy harvesting
of the system model. Finally, performance evaluation was car-
ried out to examine the performance of both the optimal GBD
algorithm and the heuristic BSC algorithm on the energy con-
sumption and computational time. As depicted in the results,
the BSC algorithm showed superiority on computational time
with near optimal results compared to the GBD algorithm
which required longer time to reach the optimal solution.
Additionally, the results showed the benefit of densifying the
network with more SBSs, as the increase of the SBSs num-
bers will lead to more cooperation in adding more HE to the
network.
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