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Abstract

Equilibria, or fixed points, play an important role in dynamical systems across various domains, yet
finding them can be computationally challenging. Here, we show how to efficiently compute all equi-
librium points of discrete-valued, discrete-time systems on sparse networks. Using graph partitioning,
we recursively decompose the original problem into a set of smaller, simpler problems that are easy to
compute, and whose solutions combine to yield the full equilibrium set. This makes it possible to find the
fixed points of systems on arbitrarily large networks meeting certain criteria. This approach can also be
used without computing the full equilibrium set, which may grow very large in some cases. For example,
one can use this method to check the existence and total number of equilibria, or to find equilibria that are
optimal with respect to a given cost function. We demonstrate the potential capabilities of this approach
with examples in two scientific domains: computing the number of fixed points in brain networks and
finding the minimal energy conformations of lattice-based protein folding models.

Introduction

A fundamental element in the study of physics and dynamical systems is the notion of fixed points or

equilibria. In the absence of exogenous input or disturbance, a system will not deviate from a fixed point,

and the dynamics in the neighborhood of that point determines its stability, i.e. whether it is an attractor,

repeller, or other type of critical point. Indeed, the state of a system (for our purposes, defined on a network)

evolves in time on a state space that is landmarked by equilibria. Knowledge of these equilibria can therefore

help to predict long term evolution of system trajectories. It is often particularly useful to know the equilibria

that are optimal with respect to some cost function, for example, to find ground states or minimum energy

configurations of materials, protein sequences, or brain networks, or to determine the most cost efficient or

beneficial states in social or economic networks.
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We focus here on dynamical systems where the dependency structure of the components of the state

is described by a graph, and each component can take one of a small number of values. These include

ferromagnetic models, simplified neural networks, models of decision or opinion dynamics on social and

economic networks, foodwebs and ecological networks, and protein folding models. The notion of an

equilibrium or fixed point has wide-ranging interpretations across these applications.

Finding critical points of generalized Ising models is a long-standing problem in theoretical physics [1]

that has remained active over the years [2, 3]. Expanding the scale and types of structures for which we

can completely characterize the critical points has value in the study of magnetism, phase transitions, fluid

dynamics, and other topics [4].

In biochemistry, finding the minimum energy protein sequence is a sought after task for which extraordi-

nary computational resources and schemes have been devoted [5, 6]. Moreover, the ability to find all critical

points can contribute to a greater understanding of the protein folding process, another target of large-scale

computational projects [7]. Comparing the structure of proteins to the underlying fixed-point landscape

can also give clues about the evolution of a protein sequence and provide greater insight into the impact of

protein topology on evolutionary pathways.

In neural network models, fixed points represent invariant patterns of activation that can be associated

with memories, cognitive task goals, or default states of awareness [8]. This is perhaps most prevalent in

the study of memory encoding, where attractor networks have long been a popular model for the formation

and recall of memoranda and other types of associations [9, 10]. More recently, notions of free energy

minimization have been used as a theoretical schema within which to understand brain function at multiple

spatial scales [11]. Testing such hypotheses has been difficult, due to the taxing nature of estimating energy

landscapes from data. Perhaps as a result, the state of the art in brain network analyses, especially at whole-

brain scales, has been largely limited to analyses of inter-region correlation and subsequent (static) graph

theoretical analyses [12]. Nonetheless, key efforts in computational modeling and analysis are now under-

way to bridge architectural characterizations of brain networks to more faithful understanding of temporal

dynamics over such networks [13, 14]. Faster characterization of fixed points can enable novel assessments

of how brain network dynamics – via attractor and energy landscapes, which ultimately mediate the input to
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output lability of these networks [15] – are altered during cognition.

Elucidating fixed points is also a key issue in ecological network and food web models. Here, an equi-

librium is a state in which species populations remain constant due to balance in synergistic and antagonistic

interactions [16] similar to the dynamics of the classical Lotka Volterra model.

A tool for computing the fixed points in these systems would thus be of great consequence across several

scientific domains. Unfortunately, even for discrete valued systems, finding all fixed points is computation-

ally infeasible [17, 18]. Special cases of finding all fixed points of system (1) such as deciding on the

existence of a Nash equilibrium for certain systems [18] and calculating the minimum-energy state of fer-

romagnetic spin models [17] are proven to be NP-hard. This generally means that the time required by any

existing algorithm to compute a solution is exponential in the size of the problem (e.g., number of nodes

in the network). For example, the naive approach of checking for fixed points among all possible config-

urations in a network in which nodes can take one of two states would require a time proportional to 2n,

and it is often not trivial to improve much on this brute force technique. When approximation is sufficient,

methods such as simulated annealing [19, 20] and genetic algorithms [21, 22] can be effective in cleverly

exploring the enormous state space, but these algorithms can generally only provide probabilistic guarantees

on finding fixed points or global extrema. Otherwise, branch-and-bound algorithms [23] can reduce com-

putation time by safely eliminating large regions of the total search space without compromising optimality.

However, these methods often require significant effort in tailoring to a specific problem and their objective

is typically to find a single global extremum. A recent approach to finding the global energy minimum on

Ising lattices involves pairing combinatorial with convex optimization to converge upper and lower bounds

on the solution, and was demonstrated on three-dimensional lattices containing up to 50 nodes, each of

which can take two states [3]. In comparison, the method proposed here found the global minima and all

fixed points on 3-dimensional lattices of 64 nodes, each of which can take three states (see Case Study 2),

and is demonstrated in on other types of networks having hundreds and thousands of nodes.

Significant effort has also been put toward finding attractors in Boolean networks, in which nodes take

one of two values (0 or 1) and local dynamics are based on logic rules. This work is most closely associated

with genetic regulatory network models, where nodes represent genes that are either expressed (1) or not (0),
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and edges indicate causal links between genes. Indeed, for the special case when each node can take exactly

two values, the system used in our framework is equivalent to a Boolean network. Several approaches have

been proposed to find attractors in Boolean networks, including simulation [24], aggregation [25], binary

decision diagrams [26], and satisfiability algorithms [27]. In particular, satisfiability rules paired with a

partition of the Boolean network are used in [28] to find attractors in sequential and parallel implementations.

Since Boolean networks represent just one class of applicable systems, we leave an explicit performance

comparison of these approaches to future work dedicated to this problem domain. Rather, we emphasize

here three conceptual advancements over previous aggregation or partition-based techniques for finding

attractors [25, 28]: (i) One level of partitioning may not be sufficient to make computation on large networks

tractable – the extension to arbitrary levels of recursive partitioning yields what is to our knowledge the first

provably tractable algorithm for computing fixed points on a particular class of networks, namely, those with

local connectivity structure captured by the measure we call partition separability. As will be seen in our

results, partition separability describes the situation where a network can be separated into groups of nodes

(neurons, proteins, species, etc) that have a high degree of interconnectivity and interaction within group,

and fewer, less dense interaction between groups. (ii) Computing the energy function at each stage of the

decomposition allows for useful characterizations of the attractor landscape without explicitly computing

the entire set of attractors, which may become prohibitively large. (iii) Extending to more general discrete-

valued networks makes it possible to analyze networks in which node states can take more than two values.

To highlight the practical versatility of this method, we provide two case studies. In the first, we analyze

the dynamics of functional brain networks extracted from the Human Connectome Project database. We

show that such networks exhibit exponential growth in the number of fixed points as a function of inter-

connected brain regions, a prediction made in theoretical studies but here verified empirically for the first

time. In the second case study, we address the decades-old challenge of finding low-energy configurations

of proteins, toward facilitating a deeper understanding of protein evolution and design. We consider a proto-

typical protein lattice model and are able to efficiently find the global energy minima as well as perform an

exact characterization of the ruggedness of the fixed-point landscape. Each of these case studies features a

stochastic real world system for which a deterministic system is constructed and used as an analytical tool.
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Specifically, we define the deterministic system such that its fixed points contain the set of energy extrema

of the corresponding stochastic system.

Discrete systems and their fixed points

We consider discrete-time and discrete-valued dynamical systems in the general form

x(t+ 1) = f(x(t)), (1)

with state vector x(t) := [x1(t), . . . , xn(t)]>. Each component of the state xi(t) can take one of a finite

set Si of possible values. Define a directed graph G = (V0, E0) in which each node in V0 corresponds to

a component of the state, and the edges E0 define dependencies in the system dynamics. Namely, an edge

(i, j) ∈ E0 indicates that xi(t+ 1) may depend on xj(t). Conversely, the lack of an edge means there is no

dependency. The dynamics are therefore separable into the components xi(t + 1) = fi(x(t)), in which fi

only depends on the states of node i and its neighbors in the network.

A fixed point or equilibrium x∗ of the system is a state in which no node will change between time

steps, i.e. f(x∗) = x∗. Let Ω(V0) denote the set of all such equilibria. Since f(x) is in general nonlinear,

computing Ω(V0) is a challenging task, and the main contribution of this work is a method for exploiting

the network topology and local dynamics to compute a sparse representation of Ω(V0) in an efficient way.

Results

Our main result is an algorithm that computes and optimizes over the global equilibrium set of system (1). In

this section, we describe how to do this using a combination of local dynamical analysis and recursive graph

partitioning, discuss the computational complexity and related literature, and demonstrate the approach on

practical applications in biochemistry and computational neuroscience.

Finding and optimizing over all fixed points

The approach begins by computing the set of local equilibrium (LEQ) states for each node in the network.

A local equilibrium for a given node can be thought of as any system state such that the values of the node’s

neighbors will not cause the node to change its value. Formally, we define the LEQ set for a given node i as
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the set of all system states x such that xi(t) will not change at time t+ 1 according to the local update rule

fi(x(t)):

Li := {x ∈ S : xi = fi(x)}.

For sparsely connected networks in which the numbers of discrete values |Si| that each node can take is

not too large, these sets are fast to compute and can be efficiently stored using the sparse representations

described in Methods. An important observation is that the global equilibrium set is equal to the intersec-

tion of all LEQ sets. In other words, when all nodes are at equilibrium with their respective neighbors, the

entire network is at equilibrium. Unfortunately, computing all of these intersections may be too difficult for

large networks. However, by using graph partitioning while retaining necessary information for each parti-

tioned region, we can decompose the problem in a way that allows for exact construction of the full set of

equilibrium points (see Methods: Recursive partition-based intersections). Specifically, by intersecting

the LEQ sets within each partitioned subnetwork, we form a set of regional equilibrium (REQ) states. This

effectively reduces the problem to finding all compatible REQ states on the partitioned subnetworks, which

can be achieved by intersecting neighboring LEQ sets if the subnetworks are small enough, or otherwise by

performing an additional partition and proceeding recursively. The end result is a top-level REQ set along

with a hierarchical data structure T that efficiently encodes all information necessary to generate the full

equilibrium set Ω(V0).

What renders this algorithm tractable for k-separable networks is both the recursive decomposition and

the fact that we need only a compact representation of the sets (including only the nodes on the partition

boundaries) in order to construct higher level REQ sets and ultimately the global equilibrium set. The com-

putational complexity thus depends primarily on the node degrees (number of connections to each node) and

the number of edges that cross partition boundaries. Another key element in the approach is the construction

of maps between the various stages of partitioning, which allow for quick access to the hierarchy of global,

regional, and local equilibrium sets. Finally, if an energy or cost function is provided, the algorithm com-

putes costs at each stage, which can be used to efficiently extract the optimal equilibrium states with respect

to the given energy function. See Methods for a detailed presentation of this approach.

6



Computational complexity

The key characteristic in determining how much advantage will be gained by using the proposed approach

on this NP-hard problem is how easily the network can be decomposed into smaller parts. We define the

partition separability of a network as the maximum number of edges that cross partition boundaries over all

partitions used in the decomposition. For network topologies such that the partition separability is indepen-

dent of network size, the computation time of the proposed algorithm is exponential only in local network

properties, namely, the number of local connections or degree of the nodes. Fig. 1 shows the time to com-

pute all fixed points for three different network types of various size, governed by two-state best-response

dynamics (See SI: Best-response and linear threshold dynamics). The network diagrams each depict one

of the fixed points of their respective systems, which correspond to Nash equilibria. The top panel of Fig. 1

shows the substantial reduction in computational complexity when using the recursive partitioning approach

compared to exhaustive search or intersecting all LEQ sets to compute all fixed points We note that the local

intersection method is already a steep improvement over exhaustive search. While ring networks are partic-

ularly well-suited to this approach since they are 2-separable, perhaps even better suited are tree networks,

which are 1-separable. Computation times for optimizing over the entire equilibrium space on tree networks

are shown in the middle panel of Fig. 1.

Figure 1: Time required to compute energy-extremal fixed points for three different network types: ring (top), tree
(middle), and geometric random network (bottom). Node states are governed by linear threshold dynamics and en-
ergy is evaluated using a generalized Ising model (see Supplementary Information (SI): Best-response and linear
threshold dynamics). Computation times for exhaustive search and intersecting all LEQ sets on ring networks are
shown in the top panel. Black and white node colorings in the network diagrams respectively depict the states -1 and
+1 in energy-extremal fixed points.

Indeed, we can prove that the algorithm is tractable for k-separable networks. Let d̂ denote the maximum

degree and ŝ the maximum number of discrete values |Si| for any node i ∈ V0 in the network, while q denotes

the number of partition groups at each level, and r is the maximum number of nodes in a group at the lowest

level of partitioning. The following theorem provides the parameterized computational complexity of the

proposed algorithm, namely, that it is linear in the size of the network and exponential only in the node

degree and the partition separability of the network (proof in Appendix).
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Theorem 1. The complexity of computing the top-level REQ set Ωp(V0) and the results tree T for a k-

separable network is at most O(αn), where α := kqŝ4kq + rŝrd̂.

For classes of networks that are not k-separable, although no longer linear, the complexity is reduced

to the degree and separability properties, allowing solutions on much larger networks than is possible using

more naive methods. For example, the algorithm can find all fixed points of these dynamics on geometric

random networks, such as in the bottom panel of Fig. 1, provided they are sufficiently sparse and separable.

However, some other standard graph topologies are less well-suited to this approach. For example, since

Erdos-Renyi random graphs have no local connectivity bias, the partition separability will always grow

with the size of the network, and while scale free networks might have some local connectivity, the large

degrees of hub nodes can be prohibitive even for the calculation of local equilibrium states. Determining

the partition separability of a given network is itself a computationally complex problem, but there exist

fast graph partitioning algorithms, e.g. [29, 30], which can be used to approximate this quantity. See SI:

Computational complexity analysis for a comparison of the separability of several different network types,

as well as a detailed analysis and proof of the computational complexity.

Case Study 1: Finding the critical points in brain networks

A long-standing model of neural networks endows each neuron with a binary state representing whether it

is active (firing) or inactive (not firing) [31]. Edges in such a model represent synaptic connections, which

can be either excitatory, i.e. the firing of one neuron causes another to be more likely to fire, or inhibitory,

i.e. the firing of one neuron causes another to be less likely to fire. Activation of a neuron is determined by

a threshold on its presynaptic (incoming) activity.

In theoretical neuroscience, this class of model at the neuronal scale was initially used as a simplified

descriptor of associative memories [8], where each fixed point in the system represents a complex but sta-

tionary pattern of neural activity corresponding to a particular memory, and, in the case of attractors, the

region of attraction around the fixed point determines how easily the memory is recalled. Later work has ex-

amined stochastic variants of this model, closely related to the Ising model, to assess the role of correlations

within neural populations and their effect on neural coding and information processing [32]. More recently,
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such models have also been used as the basis of theoretical studies to show how properties of neuronal net-

works might arise as a consequence of associative learning, wherein associations are encoded as equilibria

of the underlying networks [10]. The notion of energy via the Ising Hamiltonian is central to these analyses.

However, despite the relative simplicity of this model, many contemporary approaches rely on simula-

tion studies and post-hoc statistical analyses [33]. Because the number of parameters in the model increases

quickly with network size, such simulation-based approaches are inherently limited. Effort is thus being

directed towards methods that can simplify the analyses of such models, especially as it pertains the model

dynamics [34].

The overwhelming majority of functional network characterizations rely on static, graphical descrip-

tions based on calculation of the pairwise correlation of the activity over a set of brain regions. Using

dynamical systems models at such scales offers the potential for greater explanatory power relative to

purely statistical descriptions [35, 36]. Such models span different spatiotemporal levels of description,

from detailed biophysical models at neuronal scales, to mesoscopic, mean-field approximations at the level

of brain regions. Often, these models incur a tradeoff between model complexity (including physiologi-

cal interpretability/abstraction) and analytical tractability. The Ising framework provides a more abstract

description of brain network activation, and has primarily been used as a means of analysis, especially in

regards to establishing correlation between brain regions. However, the model itself does carry dynamical

interpretability and recent efforts have highlighted its potential to generate hypotheses regarding the dynam-

ical underpinnings of observed statistical outputs. For example, [37] uses the Ising framework to suggest

how the architecture of a whole-brain scale network might impact its ‘repertoire’ of achievable states, as

encoded through the network’s equilibria. Such model-based analysis and hypothesis generation is in the

spirit of what we highlight in our Case Study. Indeed, an emerging area of study in functional neuroimaging

pertains to nonstationary fluctuations in network covariance [38]. At a dynamical level, such fluctuations

are fundamentally mediated by the attractor landscape of the system. However, given the high dimension-

ality, finding and characterizing all attractors is generally intractable. Here, as a first step to an attractor

landscape characterization, we quantify the fixed points of 783 functional brain networks from the Human

Connectome Project by ascribing linear threshold dynamics to the functional connectivity networks. The
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average node degree resulting from this processing pipeline is 0.05n2 (see Methods: Processing of data

from Human Connectome Project).

We observe in Fig. 2 that the number of fixed points increases exponentially with network size, with

an exponent that varies for different resting state networks (RSNs). RSNs are subnetworks of the brain

attributed to particular task specializations, including those closely associated with sensory inputs (Audi-

tory, Visual) and others involved in more abstract cognitive tasks [39]. For example, there is substantial

evidence of an RSN called Default Mode that seem to be more active during rest and less active during the

performance of externally cued tasks [40]. In this study, the largest exponent corresponds to the frontopari-

etal network, suggestive of a large encoding capacity relative to networks such as a the ventral attention

network, which possesses fewer stationary states. The frontoparietal network in particular is thought to be

a key mediator of cognitive control [41, 42], though the extent to which its dynamics facilitate such is as

yet opaque. Though our case study is an exploratory proof of concept, these results are intriguing as they

suggest that this network may have a favorable dynamical landscape for encoding a diversity of cognitive

states.

Figure 2: The number of critical points of discrete dynamical systems constructed from resting-state functional brain
networks grows exponentially with network size, with an exponent that varies over the different resting state networks.
The data comes from 783 participants in the Human Connectome Project (see Methods).

Case Study 2: Analysis of a coarse-grained lattice model for protein folding

The biological function of a protein is highly dependent on its structure, i.e. how the linear sequence of

amino acids folds onto itself in 3D space. While this can occur in many different ways, it is well-established

that the most probable structures are those that minimize free energy, which is a function of hydrophobic and

other intramolecular forces. Although a real protein sequence is composed of 20 amino acids, a reduced-

order model can provide valuable insight for protein analysis and design. In particular, we use a model with

3 types of amino acids or residues: those that have positive charge, those that have negative charge, and

those in which hydrophobic forces dominate. We consider a 3D lattice structure in which the nodes take

values xi ∈ Si := {−1, 0,+1}, subject to the following energy function, which is a modification of the
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Hydrophobic Polar model, first introduced in [43]:

Φ(x) :=
n∑
i=1

φi(xi) =
n∑
i=1

∑
j∈Ni

xixj + hi(xi),

where Ni := {j ∈ V0 : (i, j) ∈ E0} for each i ∈ V0 and

hi(xi) :=


1 if xi = 0 and |Ni| < dmax,

b if |xi| = 1 and |Ni| = dmax,

0 otherwise,

where dmax denotes the maximum node degree (six for the 3D lattice) and b is a model parameter. We define

the dynamics of the system such that at each time k, a random node updates to the state that minimizes the

local energy φi(xi). The point of this is not to directly model any physical dynamics, which are inherently

stochastic, but rather to construct a deterministic system in which the set of fixed points is equivalent to

the set of local minima of the energy function. We used the proposed algorithm to find all fixed points of

Figure 3: Optimal protein configurations on a 4 × 4× 4 lattice. Blue and red indicate positive and negative charges,
respectively, and green corresponds to hydrophobic residues.

Figure 4: The 32 global energy minima in the irregular model, represented in the 32 rows of the color matrix, can be
decomposed into 8 components, the nodes of which always take the same residue type, indicated by the color of the
corresponding column entry. For example, the configuration shown on the left appears in row 12 of the color matrix,
indicated by the arrow.

this model for two different cases: a cubic lattice of dimension 4 × 4 × 4, and a more irregular structure

also having 64 nodes, with b = 10. Since each node can take three values, there are a total of 364 possible

configurations in both models. For the lattice model, we find that 587,636,902 are fixed points (a fraction

1.7 × 10−22 of the total), and of these, only two are global minima. For the irregular model, there are

60,594,240 fixed points (a fraction of 1.8 × 10−23), 32 of which are global minima. Both optimal folding

sequences for the regular lattice are depicted in Fig. 3, and the 32 global minima for the irregular model are

shown in terms of eight independent components in Fig. 4. We can also plot the energy distributions of all

fixed points for both models, as shown in Fig. 5. Perhaps counterintuitively, we observe a broader and more

rugged fixed-point landscape in the cubic lattice than in the irregular lattice.

Note that cubic lattice structures are not k-separable for some constant value of k as the dimensions

grow; rather, they are s2-separable, where s denotes the dimension of one side. As a result, regular lattice
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Figure 5: The distribution of energy minima in the cubic lattice (top) is both broader and more rugged than that of the
irregular lattice (bottom).

structures are not ideally suited to this approach. The advantage of this method becomes more striking for

structures with some irregularities, in which the network topology is more suitable for partitioning. Indeed,

the energy distribution of the irregular lattice was computed in approximately 1
30 the time needed for the

cubic lattice.

Despite its simple appearance, the lattice model captures an essential challenge in protein folding and

design: tackling sequence space. Even on this simplified model, the complexity of the problem is suffi-

cient that an exhaustive search through sequence space is not possible. The standard practice for accessing

sequence space relies on Monte Carlo searches, which fail to capture a vast majority of the fixed points

for a given topology [44]. In the case of protein design, vast computational resources are spent sampling

sequence space with the hopes of finding a sufficiently low local energy minimum. The proposed approach

has the potential to significantly enhance this effort by providing a tractable means to map entire fixed-point

landscapes, to within limits on protein size (see also Discussion).

Discussion

The methods presented in this paper provide significant advances in the ability to computationally charac-

terize the dynamics of complex networked systems with discrete state spaces. In the context of whole-brain

modeling (Case Study 2), the discrete-state model may be informative on second-to-second time-scales,

upon which populations can be thought of as being active or not. Here, however, the coarseness of the state

space precludes analysis over finer time-scales, when brain regions undergo more nuanced patterns of acti-

vation. Findings such as those we presented in Case Study 2 should thus be interpreted at the appropriate

spatial and temporal scale, and not as a characterization of dynamics over continuous state spaces. Because

our proposed approach is not restricted to binary models, somewhat richer analyses could be performed by

augmenting the Ising-framework with additional (discrete) states.

Thus, from a practical standpoint, the proposed method will perform best for systems that can be mod-

eled with a few discrete states per unit and with relatively sparse connection structure. When either the
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number of discrete states or node degrees become large, as in the case of scale-free networks for example,

then even the first step of computing the local equilibrium sets becomes intractable. For example, analysis

of a full 20-amino-acid protein-folding model or a micro-scale model of brain activity, where neurons have

thousands of synaptic connections, would currently lie outside the capabilities of the proposed algorithm as

implemented on standard personal computers.

Methods

Sparse set notations and operations

It is convenient to represent a subset of the state space S :=
∏n
i=1 Si as the set of global states in which some

of the nodes take specified values while others are allowed to take any value. This can be expressed as a

sparse vector or a set of (index, value) pairs. For example, define a = {x ∈ {−1, 1}5 : x3 = 1, x5 = −1}.

We could alternatively denote this as a = {(∗, ∗, 1, ∗,−1) ∈ S} in which ∗ indicates that an entry may take

any value. Although illustrative, this notation may become cumbersome for higher dimensional systems, so

we introduce the following more compact sparse representation:

a = {(ik, vk)wk=1}S := {x ∈ S : xik = vk ∀k ∈ {1, . . . , w}},

wherew is the number of nodes whose state is defined. According to this notation, the example above would

be expressed as a = {(3, 1), (5,−1)}S , where S = {−1, 1}5. We also use the notation a[i] to access the

defined element i ∈ Va, where Va denotes the set of all nodes assigned in a. In the example, a[3] = 1

and a[5] = −1. We will achieve our objective primarily through the use of intersections and unions of

these sparse representations of large subsets of the state space S. The following example demonstrates these

operations on two sparsely represented subsets a,b ⊂ {−1, 1}5.

a :={(3, 1), (5,−1)}S

b :={(2, 1), (3, 1), (4, 1)}S

a ∩ b ={(2, 1), (3, 1), (4, 1), (5,−1)}S

a ∪ b ={(3, 1)}S
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We see here that computing the union of two sets is achieved by performing an intersection of the sparse

representations and vice versa, which allows for efficient computation of these operations.

We sometimes need to represent ordered sets of these sparsely represented subsets. For example, define

A = (a1, . . . ,aα) andB = (b1, . . . ,bβ) for some arbitrary integers α and β. Commonly used operations on

these sets include the set of all pairwise intersections and the set of all pairwise unions, which we respectively

denote by

A e B := {ai ∩ bj ,∀i ∈ {1, . . . , α},∀j ∈ {1, . . . , β}},

A d B := {ai ∪ bj ,∀i ∈ {1, . . . , α},∀j ∈ {1, . . . , β}}.

To denote the set of all m-way intersections and unions, we write

m

e
i=1

Ai := A1 eA2 e · · · eAm,
n

d
i=1

Ai := A1 dA2 d · · · dAn.

It is straightforward to confirm that the commutative, associative, and distributive properties hold for these

operations. It will also be convenient to relate whether or not elements of an ordered set A are subsets of

elements of B. For this purpose, we define the matrix of size α× β:

∆
(
A,B

)
:= [δij(A,B)]α×β, (2)

in which each entry is given by

δij(A,B) :=

{
1, if ai ⊇ bj

0, otherwise
. (3)

In addition, let δi∗(A,B) := {j : δij(A,B) = 1} denote the index set of elements of B that are contained

in ai, and let δ∗j(A,B) := {i : δij(A,B) = 1} denote the index set of elements of A that contain bj .

Recursive partition-based intersections

The next step after computing the LEQ sets (as described in Results: Finding and optimizing over all fixed

points) is to partition the network into several smaller subnetworks and compute the regional equilibria on

those subnetworks. The corresponding REQ sets can then be intersected using only the states of their

boundary nodes to obtain a sparse representation of the global equilibrium set. At the end, we have all the

information needed to quickly access any equilibrium without explicitly computing the whole set.
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This method relies heavily on graph partitioning, which is itself a complex problem and an active re-

search area. Although any valid graph partitioning algorithm can be used here, the choice may have a

significant effect on performance. For example, an algorithm that tries to balance subgroup sizes while

minimizing the number of edges that cross partition boundaries will generally lead to faster computation

times than one that does not. It is also computationally advantageous for our purposes if the nodes on the

partition boundaries have small LEQ sets. Optimally balanced graph partitioning is itself a computationally

difficult problem. Fortunately, we do not require an optimal partition; rather, a reasonably good approxima-

tion will suffice, and recent research has shown the existence of algorithms that are tractable with respect

to a parameterization of the requirements[45]. Indeed there are several approaches to choose from that are

fast to compute relative to finding the fixed points, and we encourage researchers to use one of the several

high-performance open-source graph partitioning software packages [46, 47, 48]. In our case studies and

simulations, we used a spectral partitioning algorithm based on a k-means clustering of the eigenvectors of

the weighted adjacency matrix, with weights proportional to the size of the LEQ sets [29].

Before proceeding, we introduce some definitions and notations related to partitioning the network. Let

V̄ := {V1, . . . ,Vq} denote a partition of the node set V ⊆ V0 into q subsets, such that V =
⋃q
k=1 Vk and

Vj ∩Vk = ∅ for all j, k ∈ {1, . . . , q}, j 6= k. Further, we define the set of external boundary nodes (Vout
k ) as

the set of nodes that are not in Vk but are adjacent (either to or from) a node in Vk. In contrast, we define the

internal boundary nodes (V in
k ) as the set of nodes that are in Vk and are adjacent to a node that is not in Vk.

We also define the union of these two sets as the set of combined boundary nodes (Vbound
k ). Formally, these

sets are defined as follows:

Vout
k :=

⋃
i∈Vk

Ni\Vk, V in
k :=

⋃
i∈Vout

k

Ni ∩ Vk,

Vbound
k := V in

k ∪ Vout
k ,

where Ni := {j ∈ V : (i, j) ∈ E or (j, i) ∈ E} denotes the set of all in- and out-neighbors of node i. We

denote the set of interior nodes, having no out-of-group neighbors by

V̌k := Vk \ V in
k .
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Lastly, we respectively denote the union of all boundary nodes in a partition by

Vpart :=

q⋃
k=1

Vbound
k . (4)

By intersecting LEQ sets on a node set V ⊆ V0, we form a set of regional equilibrium (REQ) states.

Ω(V) :=

|V|

e
i=1

Li. (5)

Let r be a free parameter that defines the maximum size of a node set that we will not partition further,

but rather compute the full equilibrium set using (5). The set Z(V) represents the full state space of the

nodes in V and the empty set everywhere else:

Z(V) := {x ∈ S : xi = ∅, ∀i /∈ V}. (6)

We are now ready to introduce the core of the proposed method, which is the following recursive definition

of a compact representation of the REQ sets Ω(V):

Equilibrium points on partition boundary nodes

Ωp(V) :=


Ω(V) if |V| ≤ r
q

e
k=1

Ωb(Vk) if |V| > r
, (7)

Ωb(Vk) := Ωp(Vk) d Z(V̌k). (8)

The set Ωp(V) represents the set of all possible equilibrium values for nodes that lie on the boundary of

the partition of V̄ . At the base level where |V| ≤ r, the problem is small enough to solve by intersecting all

contained LEQ sets as in (5), and Ωp(V) is equal to the full regional equilibrium set. Otherwise, we obtain

Ωp(V) by intersecting the sets Ωb(V) for each partitioned subgroup. Ωb(Vk) is the set of all possible regional

equilibrium values at the nodes that lie on the boundary of Vk with some other partitioned subnetwork Vj ,

j 6= k. This set is obtained by taking the union of the set Ωp(Vk) (defined recursively) with Z(V̌k). Taking

the union of Z(V) with some sparsely represented set has the effect of decreasing the amount of information

needed to represent the resulting set, since it will no longer contain any information about the nodes in V .

Notice that a graph partition V̄ is needed to compute the lower expression in (7).
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It is useful to store the results of this computation in the form of a tree graph T := (VT , ET ), in which

each node VV ∈ VT contains the partition V̄ , the set Ωp(V) of possible equilibrium states on the partition

boundary nodes, and the sets Ωb(Vk) and corresponding ∆ matrices for each partitioned subnetwork:

VV :=
(
V̄,Ωp(V),

{
Ωb(Vk),∆

(
Ωp(V),Ωb(Vk)

)
,

∆
(
Ωb(Vk),Ωp(Vk)

)}q
k=1

)
for each partition V̄ performed in the course of the recursion. The edges ET in the tree simply connect

each tree node VV to the nodes corresponding to the partition of V , i.e. (VV , VVk) ∈ ET for each k ∈

{1, . . . , q}. As a result, we obtain a compact representation of the global equilibrium set. Specifically,

Ωp(V0) is equivalent to the union of the global equilibrium set with all state configurations of nodes interior

to the top level partition, as formalized in the following theorem (proof in Appendix).

Theorem 2. For any partition V̄ = {V1, . . . ,Vk} of an arbitrary node set V such that |V| > r,

Ωp(V) = Ω(V) d Z(Vpart).

When paired with the information contained in T , there is sufficient information in Ωp(V) to efficiently

compute the number of equilibria, the full equilibrium set, or only those equilibria that are optimal with

respect to some cost function.

Figure 6: Example showing a network in which nodes can take one of two states marked by black or white (gray
indicates nodes that can take any value), partitioned into two subnetworks V1 (blue) and V2 (red). We show two
of the eight LEQ sets L1 and L8. Below them are the sets Ωp(V1) and Ωp(V2), generated form the intersection of
their constituent LEQ sets. Further below are the compactly represented sets Ωb(V1) and Ωb(V2) on the two partition
boundary nodes. Finally, we show the top-level set Ωp(V), and the global equilibrium set Ω(V0) constructed from the
information in T .

To provide further intuition into the approach, we illustrate a small example in Figure 6. The network

shown in the center is partioned into groups indicated by the colored node outlines. Best-response dynamics

with an anticoordinating payoff matrix of ( 0 3
1 0 ) was used for all edges in the network (see SI: Best response

and linear threshold dynamics). Two of the eight LEQ sets (L1 and L8) are shown towards the top, with

the elements of the set in a stacked arrangement. The two PREQ sets (Ωp(V1) and Ωp(V2)) corresponding

to the intersections of the LEQ sets within their respective partitioned subgroups are shown at the far left and
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right. Compact representations of these sets on their boundary nodes are shown in the BREQ sets (Ωb(V1)

and Ωb(V2)) just underneath. Finally, the top level PREQ set Ωp(V) resulting from the intersection of the

two BREQ sets and the expanded global equilibrium set Ω(V0) appear at the bottom.

Existence and number of equilibria

The number of equilibria can be computed using the same recursion structure as above and can occur either

simultaneous to searching the equilibrium space or in post-processing. To do this, at the lowest level of

partitioning (the top case of (10)), we simply count in (9) how many regional equilibrium states are included

in each element of the PREQ set. These quantities are then passed to the higher level in the partition tree

along with the requisite bookkeeping steps, ultimately resulting in the total number of equilibria at the top

level, as specified in the following theorem (proof in the Appendix).

Theorem 3. Given the tree T resulting from the computation (7)-(6) on system (1), the total number of

equilibria |Ω(V0)| is given by

neq(Ωp(V0)) :=

|Ωp(V0)|∑
j=1

λ̌j(V0), (9)

where

λ̌j(V) :=

{
1, if |V| ≤ r∏q
k=1 λj(Vk), otherwise

, (10)

λj(Vk) :=

{
0, if δ∗j

(
Ωp(V),Ωb(Vk)

)
= ∅

γi(Vk), i ∈ δ∗j
(
Ωp(V),Ωb(Vk)

)
, otherwise

,

γi(Vk) :=

|Ωp(Vk)|∑
j=1

λ̌j(Vk) δij
(
Ωb(Vk),Ωp(Vk)

)
.

Optimization on the global equilibrium set

Within the set of all fixed points, it is often useful to find the equilibria that optimize a given cost or energy

function. An advantage of this approach is that the optimal equilibria can be quickly extracted from the

results of the computation without generating the full equilibrium set, which can be very large in some

cases.

18



Optimization using this approach works for the class of global cost functions arising from the linear

superposition of possibly nonlinear local cost functions. Let Φ(x) : S → R denote a cost function on the

state space S, which is the summation of local node and edge costs:

Φ(x) :=

n∑
i=1

hi(xi) +

n∑
i=1

∑
j∈Ni

φij(xi, xj). (11)

Suppose that we seek the set of equilibria that minimize this function:

Ω∗(V0) := {x ∈ Ω(V0) : Φ(x) ≤ Φ(y), ∀y ∈ Ω(V0)}. (12)

It is also useful to define the cost of a particular local or regional equilibrium set, which we denote by

ω(V) ∈ Ω(V), where Ω(V) := {ω1(V), . . . ,ωα(V)} and α := |Ω(V)|. Recalling that x[i] denotes the fixed

state of node i in the sparse representation set x ⊆ S , we note that ω(V)[i] has the same interpretation for

the equilibrium set ω(V). We can now express the cost of ω(V) as follows:

Φ(ω(V)) :=
∑
i∈V

hi(ω(V)[i]) +
∑
i∈V

∑
j∈Ni∩V

φij(ω(V)[i],ω(V)[j]). (13)

At the lowest level of the partition tree, the cost of each element ω(V) is computed according to (13).

Notice that while the costs associated with all nodes of V are included, only the costs of edges connecting

pairs of nodes in V are included, while costs related to edges containing nodes not in V are excluded. These

inter-region costs are and defined as follows:

Φ̃(ω(V)) :=

q∑
k=1

∑
i∈V in

k

∑
j∈Ni∩Vout

k

φij(ω(V)[i],ω(V)[j]). (14)

Although the cost of a base-level equilibrium set ω is unique and well-defined, the cost of a PREQ element

ωp(V) or BREQ element ωb(V) may take multiple values, since they encapsulate the set of fixed points for

all configurations of the interior nodes. Hence, we define the costs of these elements as ordered sets:

φ(V) :=({φ : ∃i : Φ(ωpi (V)) = φ}, ρ),

=({φ : ∃i : Φ(ωbi(V)) = φ}, ρ). (15)

Note that the set of feasible cost values in the sets Ωp(V) and Ωb(V) are identical, since they include the

same underlying REQ set Ω(V). Next, we define a matrix that maps the elements of a PREQ set to the
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number of ways each unique cost value is attainable in the respective node groups, in which we have labeled

the rows and columns for ease of interpretation:

W p(V) :=



ωp1(V) · · · ωpµ(V)

φ1(V) wp11 · · · wp1µ

...
... · · ·

...

φν(V) wpν1 · · · wpνµ

, wpij :=
∣∣∣{x ∈ ωpj (V) : Φ(x) = φpi (V)}

∣∣∣ , (16)

where µ := |Ωp(V)|, ν := |φp(V)|, and the matrix W b(V) is defined similarly.

Clearly, computing the quantities (15)-(16) explicitly would require generating the entire set Ω(V).

Fortunately, there is a more efficient way to compute these using the partition tree structure T and the cost

values attained by lower level REQ sets. To help with this task, it will be convenient to define two sets of

matrices. First, the matrix Ŵ (Vk) maps the unique costs achievable by elements of the lower level BREQ

sets Ωb(Vk) to the current level PREQ elements ωp(V) with which the costs are compatible:

Ŵ (Vk) :=


ωp1(V) · · · ωpµ(V)

φ1(Vk) ŵ11 · · · ŵ1µ

...
... · · ·

...
φνk(Vk) ŵνk1 · · · ŵνkµ

, ŵij :=
∣∣∣{x ∈ Ωb(Vk) e {ωpj (Vk)} : Φ(x) = φi(Vk)}

∣∣∣ ,

where νk := |φ(Vk)|. Second, the matrix Ẑ(Vk) contains the costs associated with each entry in Ŵ (Vk), or

∞ if the entry corresponds to an infeasible pairing:

Ẑ(Vk) :=


ωp1(V) · · · ωpµ(V)

φ1(Vk) ẑ11 · · · ẑ1µ

...
... · · ·

...
φνk(Vk) ẑνk1 · · · ẑνkµ

, ẑij :=

{
φi(Vk) if ŵij > 0

∞ if ŵij = 0
.

Next, we construct expanded matrices W̊ (Vk) and Z̊(Vk) for each subgroup k. Let φ̊(V) denote the sums of

all configurations of the unique subgroup costsφ(Vk), of which the total number is |φ̊(V)| =
∏q
k=1 |φ(Vk)|.

20



Then the expanded matrix W̊ (V1) is given by:

W̊ (V1) :=



ωp1(V) · · · ωpµ(V)

φ1(V1) + · · ·+ φ1(Vq−1) + φ1(Vq) = φ̊1(V) ŵ11 · · · ŵ1µ

...
... · · ·

...
φ1(V1) + · · ·+ φ1(Vq−1) + φνq (Vq) = φ̊νq (V) ŵ11 · · · ŵ1µ

φ1(V1) + · · ·+ φ2(Vq−1) + φ1(Vq) = φ̊νq+1(V) ŵ11 · · · ŵ1µ

...
... · · ·

...
φν1(V1) + · · ·+ φνq−1

(Vq−1) + φνq (Vq) = φ̊ν̊(V) ŵν11 · · · ŵν1µ


,

where ŵij is equal to the ijth entry of Ŵ (V1). The successive matrices W̊ (Vk) are defined similarly,

with ŵij appearing in the same row where φi(Vk) appears in the summations yielding the entries of φ̊(V).

Likewise, the expanded matrix Z̊(V1) is given by:

Z̊(V1) :=



ωp1(V) · · · ωpµ(V)

φ1(V1) + · · ·+ φ1(Vq−1) + φ1(Vq) = φ̊1(V) ẑ11 · · · ẑ1µ

...
... · · ·

...
φ1(V1) + · · ·+ φ1(Vq−1) + φνq (Vq) = φ̊νq (V) ẑ11 · · · ẑ1µ

φ1(V1) + · · ·+ φ2(Vq−1) + φ1(Vq) = φ̊νq+1(V) ẑ11 · · · ẑ1µ

...
... · · ·

...
φν1(V1) + · · ·+ φνq−1

(Vq−1) + φνq (Vq) = φ̊ν̊(V) ẑν11 · · · ẑν1µ


,

where ẑij is equal to the ijth entry of ẑ(V1). Next, let φ̃(V) := [Φ̃(ωp1(V)), . . . , Φ̃(ωp|Ωp(V)|(V))] denote a

row vector of inter-group costs. The combined expanded cost matrix Z̊(V) and the number of instantiations

of each cost W̊ (V) can be expressed as follows:

W̊ (V) :=W̊ (V1)� W̊ (V2)� · · · � W̊ (Vq),

Z̊(V) :=

q∑
k=1

Z̊(Vk) + φ̃(V)⊗ 1|Z̊1(V1)|,

where � denotes element-wise multiplication and ⊗ denotes the Kronecker product. Finally, the compact

matrix W p(V) is constructed by extracting the unique cost values in Z̊(V) and counting the total number

of ways each cost is attained in W̊ (V). We again refer the reader to the Cost algorithm in SI for details on

this procedure. The optimal equilibrium set Ω∗(V0) can then be obtained by following a similar procedure,

as described in detail in the Expand algorithm (see SI). Note that by using the null cost function Φ(x) =

0,∀x ∈ S, the set Ω∗(V0) is equivalent to the global equilibrium set Ω(V0) of (1).
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Appendices
Processing of data from Human Connectome Project

The data used consisted of resting state fMRI scans collected from 783 subjects during the Human Connec-

tome Project (HCP). These subjects were part of the s900 release which contained a total of 818 subjects.

However, 35 of these subjects which had been marked as having instabilities in the head coil were removed

[49, 50]. Each subject underwent a total of four 15-minute scans divided among two separate scanning ses-

sions. The two scans per session corresponded to a left-right and a right-left acquisition. Data was acquired

at 3T with a temporal resolution (TR) of 720ms. Detailed information on HCP scan protocols are contained

in [51].
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The publicly available s900 data release includes the following processing procedure. Following the

standard minimal preprocessing pipeline [51], the motion correction strategies recommended by Power and

colleagues were applied [52], with the exception of Frame Censoring (removing time points), which the

authors acknowledge has proven controversial. The remaining motion correction procedure consists of

the FSL ICA-FIX correction [53] and regressing out the twelve HCP motion parameters and global signal

(cerebrospinal fluid, white matter, and grey matter). To remove signal drift, we applied a .009 Hz high-pass

filter and detrended to remove respiratory artifact. Data were parcellated into the Gordon atlas [54] and

functional connectivities were computed using the Pearson correlation between parcels for the combined

data across scans. More details on the task specializations associated with the various resting-state networks

can be found in [55].

To suppress weak correlations and to facilitate comparison between subjects that are independent of

overall connectivity variations, we thresholded correlation coefficients to preserve 5% of all pairwise con-

nections, following similar methods as in [56]. Fixed points were computed for best-response dynamics in

which the payoff matrices between each pair of regions i and j is given by JijI2, where Jij denotes the Pear-

son correlation coefficient between respective regions and I2 is the 2 × 2 identity matrix. These dynamics

are guaranteed to converge to a local minimum of the Ising Hamiltonian:

Φ(x) :=
n∑
i=1

φi(x), where φi(x) := −
n∑
j=1

Jijxixj .

Analysis of a coarse-grained lattice model for protein folding

For this case study, the recursive partitioning algorithm was augmented with two stages of trimming, one to

eliminate infeasible entries in the LEQ sets, and a second to eliminate known infeasible entries in the inter-

mediate REQ sets. These steps are possible due to the regularity of the lattice structure and the uniformity

of the cost function across nodes, and are generally good practice when applicable because of the resulting

computational savings.
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Proof of Theorem 2

Proof. Since |V| > r, according to (7) and (8),

Ωp(V) =

q

e
k=1

(
Ωp(Vk) d Z(V̌k)

)
. (17)

Pulling out the first term in this expression yields

Ωp(V) =
(
Ωp(V1) d Z(V̌1)

)
e

q

e
k=2

(
Ωp(Vk) d Z(V̌k)

)
which can be expanded to

Ωp(V) =

(
Ωp(V1) e

q

e
k=2

(
Ωp(Vk) d Z(V̌k)

))

d

(
Z(V̌1) e

q

e
k=2

(
Ωp(Vk) d Z(V̌k)

))
.

Due to (6) and the fact that the partition is disjoint, we know thatZ(V̌1) ⊆ Ωp(Vk) and thatZ(V̌1)eZ(V̌k) =

∅ for all k ∈ {1, . . . , q}. It follows that

Ωp(V) =

(
Ωp(V1) e

q

e
k=2

(
Ωp(Vk) d Z(V̌k)

))
d Z(V̌1).

Noticing that the middle term is in the same form as (17), we can repeatedly apply the previous two steps to

obtain

Ωp(V) =

q

e
k=1

Ωp(Vk) d
q

d
k=1

Z(V̌k). (18)

Next, suppose that |Vk| > r for each k and let V̄k denote a partition of each Vk. We can then perform the

exact same expansion of each Ωp(Vk) from (17) to (18), resulting in

Ωp(V) =

q

e
k=1

 q

e
j=1

Ωp(Vk,j) d
q

d
j=1

Z(V̌k,j)

 d
q

d
k=1

Z(V̌k).

Similarly as above, since Z(V̌i,j) ⊆ Ωp(Vk,j) and Z(V̌i,j) eZ(V̌k,j) = ∅ for all i, j, k ∈ {1, . . . , q}, i 6= k,

we have

Ωp(V) =

q

e
k=1

 q

e
j=1

Ωp(Vk,j)

 d
q

d
j=1

Z(V̌k,j) d
q

d
k=1

Z(V̌k).
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Since Z(V̌k,j) ⊆ Z(V̌k) for each j ∈ {1, . . . , q}, we can simplify as follows:

Ωp(V) =

q

e
k=1

 q

e
j=1

Ωp(Vk,j)

 d
q

d
k=1

Z(V̌k).

By repeatedly performing this expansion according to (8), the term on the left will eventually become

the union of base-level regional equilibrium sets Ω(Vk,j,...), which is equal to Ω(V). Furthermore, since

dq
k=1Z(V̌k) = Z(dq

k=1 V̌k) = Z(Vpart), due to (4), we obtain

Ωp(V) =

q

e
k=1

Ω(Vk) d Z(Vpart).

Finally, since

q

e
k=1

Ω(Vk) =

q

e
k=1

|Vk|

e
i=1

Li = Ω(V),

we have the desired result Ωp(V) = Ω(V) d Z(Vpart) and the proof is completed.

Proof of Theorem 3

Proof. Suppose |V| ≤ r. Then

neq(Ωp(V)) =

|Ωp(V)|∑
j=1

1 = |Ωp(V)| = |Ω(V)|, (19)

where we used the fact that |Ωp(V)| = |Ω(V)| from (7). Next, suppose |V| > r. Then we have

neq(Ωp(V)) =

|Ωp(V)|∑
j=1

q∏
k=1

λj(Vk), (20)

where |Ωp(V)| is the number of unique configurations of partition boundary nodes in V that appear in the

global equilibrium set, as proved in Theorem 2. Given one of these configurations, the regional equilibria in

each group are independent from each other. Therefore, it suffices to show that λj(Vk) is equal to the number

of REQ states associated with the set Vk that are contained inωpj (V), i.e. λj(Vk) = neq

(
ωpj (V) ∩ Ωp(Vk)

)
.

We can check for compatibility between each entry of Ωp(V) and the constituent BREQ states Ωb(Vk)

using δ∗j
(
Ωp(V),Ωb(Vk)

)
. If there exists j such that this set is empty for some k, then λj(Vk) = 0

and there are no equilibria. Otherwise, δ∗j
(
Ωp(V),Ωb(Vk)

)
is a singleton since Ωb(Vk) is defined on a

subset of the nodes defined in Ωp(V). One can then check that the quantity γi(Vk) is precisely equivalent
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to neq

(
ωpj (V) e Ωp(Vk)

)
, which is then equal to |Ω

(
ωpj (V) e Ωp(Vk)

)
| if |Vk| ≤ r, and otherwise the

number of compatible lower-level equilibria, and the proof proceeds by induction.

Proof of Theorem 1

Proof. The overall computation involves three types of operations: local equilibrium checks, sparse set

intersections, and computing the ∆ mappings.

Computing the local equilibria: Finding the local equilibrium states at each node involves evaluating

the local update rule for a maximum of ŝd̂ total state configurations. Multiplying by the number of nodes n

yields a computational complexity of O(nŝd̂) for this step.

Sparse set intersections: The sparse set intersections occur at two levels. At the base level, the inter-

section of a pair of local equilibrium sets involves checking a maximum of (ŝd̂)2 overlapping state config-

urations. The result is then checked against a third local equilibrium set, and the process repeats until the

maximum group size r is reached, yielding a total for each base-level partition group of

ŝ2d̂ + 2ŝ3d̂ + · · ·+ (r − 1)ŝrd̂ ≤ r2ŝrd̂.

Assuming maximum group sizes, this computation is performed approximately n
r times, yielding an upper

bound of O(rnŝrd̂) for the local intersections.

Intersections at all higher levels depend on the number of boundary nodes between neighboring partition

groups, of which there are a maximum of 2k. However, the states of all boundary nodes must be represented

for each partition group. Since there up to q partition groups, all of which may be adjacent to each other,

the maximum dimension in each group is 2kq. Hence, each intersection involves checking up to (ŝ2kq)2

overlapping state configurations, each of which may contain up to 2kq nodes, resulting in a complexity of

O(2kqŝ4kq) for each partition that is performed. Since the total number of partitions is bounded above by n,

we have a total complexity of O(kqnŝ4kq) for the higher level sparse set intersections. The computational

complexity of all sparse set intersections is then no greater than O(rnŝrd̂ + knŝ4kq).

Computing the ∆ matrices: The ∆ matrices defined in (2) in the main article map regional equilibrium

states between neighboring levels in the partition hierarchy. Since the maximum number of configurations
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on each level is O(ŝ2kq), the number of entries in each ∆ matrix is at most O(ŝ4kq). Since each entry δij

requires at most 2kq computations (see (3) in the article), the computational complexity for constructing

each ∆ matrix is bounded by O(kqŝ4kq). Finally, since both the number of nodes and edges in the tree T

are less than n, the number of ∆ matrices to compute is at most 2n, resulting in a complexity ofO(kqnŝ4kq).

The overall computational complexity of computing T is therefore bounded byO(kqnŝ4kq+rnŝrd̂).
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