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Abstract—In this paper an optimization problem to minimize
the energy drawn from the network grid by utilizing the
harvested energy and dynamic sleeping of the Small Base Stations
(SBSs) is presented. Due to the complexity of the optimization
problem, a new UEs’ movement prediction method is introduced
to provide future information for the model to apply an accurate
optimization problem. This method is based on a combined ap-
proach of Non-linear Autoregressive with External input (NARX)
and probabilistic Latent Semantic Analysis (pLSA) to provide
accurate prediction for multiple steps. Furthermore, extensive
simulation results are presented to show the effectiveness of our
approaches in comparison to the optimal results.

Index Terms—Energy Efficiency, 5G, Energy Harvesting, Mo-
bility Prediction, Deep Learning.

I. INTRODUCTION

Over the past few years the cellular mobile communication
technology has exponentially expanded from 2G with Small
Messaging Service (SMS) to the video streaming capabilities
of the 4G [1]. The main motivation behind this evolution is
the rise of the data demands. Applications like Device-to-
Device (D2D)communications, Internet of Things (IoT) and
automation are emerging with needs of more robust Quality of
Service QoS and scalability. The legacy systems, unfortunately
are not capable of matching these new and growing demands.
Therefore, 5G includes new technologies that are able to
accommodate these new demands.

The SBSs are introduced to solve the problems that arise
by the increasing demand for higher data rates. However,
due to the dense deployment of SBSs, the network’s energy
consumption will increase as the SBSs number increases.
Energy Harvesting is a promising solution for minimizing the
energy consumption of a BS. The Harvested Energy (HE)
could partially sustain the needs of the BS and for the case
of SBSs could be fully sustained by HE [2].According to [2]
the renewable energy has not been fully exploited in cellular
networks due to economical reasons. However, with the dense
deployment of the SBSs, installing HE parts could provide the
network with a reliable source of energy.

Mobility prediction as part of the wireless networks design
has attracted attention from academia and industry. The main
concept of the mobility prediction is that giving the current
and previous locations for a unique UE, what will be the
next location or locations for that UE. Such predictions
help optimize the wireless networks resource allocation and
increase its performance. There are many research activities
done in predicting the UE mobility. Works [3], [4], are based
on Markov Chain, which is easy to implement but can suffer
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from overfitting for low data. The authors of [5], [6], are
proposing mobility prediction based on Hidden Markov Model
(HMM). HMM is more accurate but requires a more complex
structure and higher computational capacity. The works of [7]-
[11], apply the Artificial Neural Network (ANN) to predict
users’ mobility by learning their inherent characteristics.

Authors of [3] investigated Markov chain to predict the

users movement in SBSs, specifically in Femto BSs, where
their results show the prediction accuracy is affected by the
regularity of the user’s movement. The authors of [10] are
using an enhanced Markov chain algorithm to predict user
mobility by introducing an algorithm that is composed of
two components: Global Prediction Algorithm (GPA) and
Local Prediction Algorithm (LPA). IF GPA fails when the cell
does not exist in the training database, then LPA is used. In
[4], the authors employed Markov chain user prediction in
proactive caching in anywhere in the network rather than just
at the edge. The authors discussed a system where vehicles
are connected to Roadside Units (RSU), can be BSs or
Access points (APs), to allow them to connect to the internet
backbone. In order to proactively cache data into the RSUs,
the authors presented a mobility prediction based on Markov
chain to predict the vehicle’s next RSU. In [12] the authors
proposed a mobility prediction based on Markov Chains to
predict the users trajectory to minimize the interruption time
when the handover is triggered. In [13], the authors combined
the HMM with pLSA to improve the probabilistic prediction
performance. Their results show successful prediction with as
low as 2.2% inaccuracy. However, none of the previous works
investigated a multistep prediction, which has a significant
impact on the prediction quality. Therefore, we present our
work which developed to produce a more accurate prediction
in a multistep prediction.

The main contributions of this paper are summarized as

follows:

1) We formulate an optimization problem to minimize the
energy drawn from the network grid by utilizing the
harvested energy and dynamic sleeping of the SBSs. The
problem updates the UEs association with SBSs in every
time slot to accommodate the UEs new locations.

2) A new UEs locations prediction method is introduced
which employs a combined approach of Nonlinear Au-
toregressive with External input (NARX) and proba-
bilistic Latent Semantic Analysis (pLSA) to provide an
accurate multistep Neural Network prediction. A new
algorithm, Nonlinear AutoRegressive with external input
and probabilistic latent Semantic Analysis (NARSA), is
presented to show the details of the computation steps for
this new joint method.
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3) Lastly, we evaluate the performance of our proposed
algorithm through an extensive simulation study to verify
its superior computational performance compared with
the optimal solution.

II. SYSTEM MODEL AND PROBLEM FORMULATION

This paper considers a HetNet where several SBSs co-exist
in a designated area. The SBSs are deployed randomly which
provides high quality of service (QoS) for UEs.

Fig.(1) shows the architecture of the network where SBSs
are equipped with energy harvesting methods (solar panels for
example.) and are serving UEs under their coverage. Moreover,
every SBS is connected to the Smart Grid with a two way
connection.
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Fig. 1: The system model topology.

A. Energy Harvesting Model For SBSs

Let f = 1,...,F denote the set of the SBSs that are
randomly distributed in the macro cell coverage area of A,
while v = 1,...,U and ¢ = 1,...,C denote the set of a
randomly distributed users covered by the SBSs and the set of
available resource blocks in the network, respectively. More-
over, we consider a time slotted system with fixed duration
7, and n = 1,..., N denotes the index of the slot number.
Furthermore, every user is assumed to be associated with only
one SBS.

The SBSs harvest energy from a renewable source (e.g.
wind, solar... etc), where the amount of harvested energy
for every SBS f and time slot n is denoted by hr¢[n] and
it follows the truncated Gaussian distribution [8]. Moreover,
every SBS is equipped with a battery to store its harvested
energy with a maximum capacity of B,,,, with battery
level at time slot n is B[n]. However, due to the stochastic
nature of energy harvesting, every BS is connected to a non-
renewable energy source to compensate for the renewable
energy shortage. In other words, every SBS is set to use the
energy from renewable sources first, and then request power
from the grid. However, the promising technology of Smart
grid which allows a two-way flow of power [9], can be used
here to transfer the harvested energy between SBSs, i.e., the
SBS with surplus harvested energy will transfer it to other
SBSs that suffer from renewable energy deficit. Therefore, at
the end of every time slot, the SBS will either transfer the
surplus of its harvested energy or request energy from other
SBSs to compensate its deficit. If the energy surplus of the
other SBSs cannot match the energy demand of the SBS with

the shortage, then the SBS will request a non-renewable energy
from the smart grid directly. Hence, every SBS is equipped
with two power sources: the non-renewable power from the
grid and the power from the renewable sources. Therefore, the
transmission power between user v and BS f using resource
block ¢, during the time slot n is: p$,, [n] = p%, ,[n]+p%, (0],
where p},, [n] is the power drawn from the grid and p§,, ,.[n]
is the power drawn from the renewable source (including the
energy transferred from other SBSs).

Let Af[n] and ps[n] denote the amount of the harvested
energy the BS f is injecting into or receiving from the smart
grid at the end of slot n, respectively. Then the amount of the
harvested energy that is transferred into the smart grid equals
the harvested energy that is drawn from the smart grid, where
7 is the transfer efficiency.

prln] = nAs(n] ¢h)

Therefore, at time slot ¢ = 1 the battery will be zero, and at
the end of every slot ¢ = 1,2,...N the battery storage will be
the sum of the harvested energy subtracting the transmission
power and the transferred energy 0 < By[i] < B4y, Where
By[i] is defined as:

Byli] = hrsln] = >3 " plsnlr = Asln @)

n=1u=1

B. User Association and Achievable Rate

Let @ ;[n] be a binary indicator that is equal to 1 if user
u and SBS f are associated using resource block ¢ in n, or 0
otherwise. Also, let zf,[n] be a binary indicator that is equal
to 1 if user w is associated with SBS f in n, or O otherwise.
ys[n] indicates the SBS on/off status, where ys[n] = 0 if the
SBS is OFF during the time slot n and y¢[n] = 1 if the SBS is
ON. However, a deactivated SBS will keep harvesting energy
and injecting it into the smart grid to serve other active SBSs.

The time-varying distance between the fth SBS and the uth
user can be expressed as follow:

dusln] = ||lu[n] = sl VueUVfeF (3)

where the [,[n] is the @ — y coordinates for the location
of the user at time slot n, and the fixed location of the SBS,
respectively. It follows from (3) that the channel power gain
can be modeled as:

_ B Bo
dosln]  [lluln] =g

1, 2 )

where [y denotes the channel gain at the reference distance
of dy = 1m, and « is the path loss exponent. Moreover, the

interference at a user u which is associated with SBS f from
all other SBSs at a time slot n will be:

U F
Iipln) =Y pilnlhsan)l?, )
JFuwiASf
Then, the signal to interference and noise ratio SINR for every
user is:

c [ ] _ pif[n”hif[n”z

= 2w 6
YuflT Iﬁf[n]‘f‘UJNO ) (6)
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where huf [n] denotes the channel gain from SBS f to
user u using resource block ¢ at time slot n, w is the
available bandwidth for every channel, and Ny is the channel
noise spectral density which is assumed to be Additive White
Gaussian Noise AWGN, and wN, is the noise variance o2.
Thus, the data rate for every user using a single channel during

a time slot is as follow:

Ris[n] = wlog(1 + vyur[n]) @)

However, Eq.7 is non-convex, in which Taylor Expansion is
used to linearize it to get the following:

R ¢[n] = wlog ZZpuanh f[n]]? + wNo) — Rry  (8)

where Ry, is the first-order Taylor approximation around
point (pgjifn]), and is as follows:

Rry 2 wlog Zzpoﬂ 11RS:[n]|? + wNo)
jFu i f
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In(2)pg;; [n]|hg;[n]]* + wNo
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C. Problem Formulation

In this section, an optimization problem, which minimizes
the non-renewable energy consumption of the transmission
power for a cooperative heterogenous network is formulated.
The formulated problem evaluates users association, sleeping
strategy and energy minimization within a single optimization
problem. The problem can be stated as follows: given the
number of users and SBSs, the problem will solve the user
association, sleeping strategy and power consumption, at every
time slot. The optimization problem can be mathematically
state as below:

Problem P :
F,U,N,C F
Minimize o] T Eyys[n
i f,u,;c:lpf (] ; ysln]
subject to
F C
R ZZ u[n]RGu[n] Vu,Vn

f=1c=1

C2: ZZp?u,T[n]T < Byln — 1]+ pg[n] Vf,Vn,

u=1c=1

C3: Bfn| < Bmaz Vf,Vn,

C4:ZZ/Lf[i] :ZZnAf [i] Vn

f 1i=1 f=1i=1

CS:Zpru

< P f,Vn

U
C6 : 25,[n] <1 Vf, Ve, Vn
f

u=1

P
C7: Zzuf[n} =1 Vuvn

=1
(&) c C
_1 TN
C8: % S Zuf[n} < Z uf[n], v favuavn
c=1
EZ L Zufln -

C9: WBSS} <yrn] < uzl zup[n], Vf.Vn

where T = {p,[n] As[n], s, s [nl, zup[n), 2 ]}
Constraint (C1) represents the QoS for every user. The con-
straints from (C2) to (C5) are dealing with energy transfer
and cooperation between SBSs. Constraint (C2) represents the
energy consumption causality where the BS cannot use energy
more than what is available. Constraint (C3) limits the battery
capacity. Constraint (C4) is for energy conservation, where
the total injected energy into the smart grid equals the total
received energy by all BSs. Constraint (C5) limits the max-
imum allowed transmission power for every BS. Constraints
from (C6) to (C9) are dealing with the UEs association and
SBSs sleeping strategy.

Problem P is an Mixed Integer NonLinear Problem
(MINLP) which is too complex due to the coupling of the
binary and continuous variables. Moreover, due to the dynamic
nature of UEs movement, where each UE is expected to move
in every time slot which causes the system to update its
association and sleeping strategy accordingly, problem P is
required to be solved every time slot to match the changes.

One solution for this problem is to predict the future location
of the UEs and solve the problem according to the predicted
location of each UE. Therefore, a user mobility prediction
approach is introduced , where the UEs’ movements are
predicted for the next NN slots. This will help simplify the
problem where it will be solved for the next IV predicted time
slots instead of every slot.

III. PREDICTION MODEL FOR USER MOBILITY

In this section we investigate two approaches to predict the
UEs’ future mobility pattern and location. First, we solely
apply Nonlinear Autoregressive (NAR) method to predict
each UE individually. Second, a joint approach to predict
the UEs’ future mobility pattern and location by exploiting
ANN Nonlinear Autoregressive with External input (NARX)
and probabilistic Latent Semantic Analysis (pLSA) to provide
an accurate multistep Neural Network prediction. This joint
approach leverages ANN NARX outstanding results in time
series prediction tasks and the (pLSA) ability in detecting
hidden patterns between different UEs.

A. Nonlinear Autoregressive (NAR) Time Series Prediction

The Nonlinear Autoregressive (NAR) are types of Neural
Networks that are used to forecast samples framed in a one-
dimensional time series. NAR networks is used to predict the
value of certain time series data by using the past data. The
following equation shows how NAR networks work:
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y(n) = fly(n = 1),y(n = 2),...y(n - d))

where the function f is unknown and the neural network is
used to approximate. This equation describes how NAR works
in predicting the future values of y. In every step, NAR uses
the past d values of y to predict the future data point in series

Y

10)

The advantage of NAR is its simple structure and requires
less computation time. However, for multistep prediction
where the predicted output ¢(n) is used to predict future re-
sults, the error will adds up in every step which is accumulated
to produce inaccurate results. Therefore, NARX is better in
predicting future works since it relies not only on the data but
on other external set of correlated data.

B. Nonlinear Autoregressive with External input (NARX) Time
Series Prediction

In many applications, there are an important correlation
between the predicted time series and some other external data.
Some stock exchange prices are correlated with certain times
of the years, e.g., Apple stock price after the holidays. The
following equation shows how NARX networks work:

y(n) = h(y(n—1),y(n—2),...,y(n—d), k(n—1), ..., k(n—d)) (11)

Similar to NAR networks, NARX predicts the future of y
according to the past d values, where for every one future
prediction NARX will employ the past data to make its
prediction. However, NARX includes the external data set
k(n) to approximate the function h.

NAR is simpler to perform and requires less computation
power. However, NARX can have better performance, spe-
cially when there is strong correlation between the predicted
data and the external data. Therefore, in the following section
a statistical method is employed to detect the correlation
between different data sets to use them in performing the
prediction.

C. probabilistic Latent Semantic Analysis (pLSA)

pLSA was originally introduced to derive a representation
of the observed variables in terms of certain hidden variables
[14]. pLSA is a statistical technique used for the analysis of
co-occurrence data which is based on a mixture decomposi-
tion derived from a latent class model. Mobile UEs usually
follow daily movement patterns, e.g., some UEs use public
transportation daily, others drive to business districts. Thus,
pLSA is used in this work to reveal the hidden patterns that
each UE is using and employ this pattern as an external data,
i.e., k(n) in the previous section, to provide more accurate
predictions.

Let us associate an unobserved class variable my €
my,ma, ..., mi With each observation, where the observation
is the user’s movement from one location to another. Moreover,
let us denote the user’s location at time slot n to be equal to
l[n] € A, where, A is a predefined area. The user’s movement
from location a to location b is denoted by 1%[n] — [°[n].

Here, we are considering the direction of the user’s movement
without considering the traveled distance. Thus, we denote
L[n] as the direction of the movement during time n. Hence,
the probability of the movement toward direction £[n] is:

__ Number of movements toward direction £[n]

P(Lln]) =

12
Total number of movements (12)

Moreover, every observed data item is a pair of data
(u, L£[n]). Therefore, the joint probability of the observed data
will be:

P(u, Lln]) = Y P(u)P(m|u)P(L[n]jmy)

k=1

13)

where parameter my € [mq, me, ..., mx] denotes the mobility
class, and the probability that a user u is following mobility
class my, at any given time, is defined as P(my|u). Moreover,
the probability of the direction of movement given the mobility
class my is P(L[n]jmy), while P(u) = %
denotes the probability that u made a movement, where
m(u, L]n]) is the number of times UE « made a movement.

However, the two probabilities P(L[n]|my,) and P(my|u)
cannot be calculated analytically, since the classes my are
unknown. The Expectation Maximization (EM) algorithm is
a well-known algorithm that is used to compute Maximum
Likelihood Estimates (MLE) [15]. The EM algorithm consist
of two consecutive steps: an expectation step, followed by
a maximization step. The first step: the expectation (E) step
where posterior probabilities are calculated for the latent
variables, based on the current estimates of the parameters.
The second step the Maximization (M) step where param-
eters are updated to maximize the expected complete data
log-likelihood, which depends on the posterior probabilities
computed in the E step.

In our model the classes my € M = {my,ma,....,mK}
are unobserved and unknown, which can only be estimated
using the EM algorithm. Applying the EM algorithm to the
pLSA model as in [14] introduces the two steps as follows:
The expectation (E) step the Bayes’ estimator is calculated for
the latent variables, based on the current values of P(my|u)
and P(L[n]|my). The Maximization (M) step is used to update
the parameters to maximize the expected complete data log-
likelihood, which depends on the P(my|u) and P(L[n]|my)
equations that are computed in the E step.

In the Expectation step, we use Bayes’ estimator to calculate
the posterior probabilities based on the current estimates of the
parameters. The Bayes’ estimator is as follows:

P(Lln][mx, u) P(my|u)

P D = s UL ) Pl

(14)

In the Maximization step, the expectation of the complete
data log-likelihood E[L] is maximized as follow:

E[L] =Y m(u, Ln))*

u=1 L[n]

X (15)
Z P(my|u, £n])log [P(Ln]|mk, w) P(my|u)]

k=1
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where m(u, L[n]) indicates the number of times the user
moved according to direction £[n] during time slot n. Then,
the following two re-estimation equations are used in the M-
step:
Zu m(u7 ‘C’[n])P(mk'uv ,C['IL])

Sony X0, m(u, L[n]) P(mlu, L[n])

> Soney m(us L[n]) P(mi|u, Lln])
> 2 mlu, Lln)

After evaluating Egs. (16) and (17) each UE will be assigned
to the class with the highest probability, which it will share
with other UEs where they share a common pattern. Let us
denote «; as the UE w that belongs to class & and €2, as the
group that contains all UEs that belong to class k. Lets denote
aj as the UE that has the highest probability in class k.

In the prediction stage using NARX network, every group
Q. will choose the UE that has the highest probability in
P(my|u, L[n]) as the external data k(n) for predicting the
movement of every UE in that Group. This ensures the external
data that is used in NARX has a strong correlation with all of
its associates.

P(L[n]|my) = (16)

P(my|u) = a7

Algorithm 1 UEs’ Movement Prediction using NARSA.

. Input: w; L[n]; K; e

- Initialize P°(my,|u);PY(L[n])|me); A + oosi + 1

. while A > ¢ do

Compute Pl (my|u, L[n]) in (14) using P (my|u)
and PU=1(L[n])|my);

s Update Pl(my|u), PUE(L[n])|my) using (16), (17);
6:  Compute the expectation E[L][" in (15);

7. A = |E[L]F - E[L)E-1);
3:

9

W =

1+ 1+1;
: end while
10: Output: P(my|u), P(Ln])|my),op.0f. Q.
11: for k=1:K do
122 k(n) < o
13:  for V UE € Q. do

14: y(n) < af

15: Train NARX Network by estimating Eq.11
16:  end for

17: end for

18: Output: §(n)

Algorithm 1: NARSA is constructed of two parts: The first
is the EM algorithm, and the second is the NARX network
training. First we initialize the probabilities of P(L[n])|my)
and P(my|u[n]) with random initial values, then the algorithm
will alternate between the Expectation and maximization parts
i.e., between Eq.(14) and Eqgs.(16) and (17). In every step
E[L] is calculated using eq.(15), and compared to E[L][—1I.
If the difference is less than A the algorithm will stop and
P(myg|u), P(L[n])|my) will be the local optimal values and
oy, is computed. Otherwise the algorithm will repeat the
previous two steps again. At the second part, NARSA will
employ the results from EM to feed NARX network the
external data and train it to predict ¢(n). However, since the
EM is nonconvex, the algorithm is repeated with different
initials multiple times to find the maximum value for E[L].

Table I: Simulation Parameters

[ Parameter | Value [| Parameter | Value |
Pmaz 4 W Rmzn 1 MbpS
No —174 dBm/Hz w 5 MHz
Bmaa: 600 J T 10s
P 09 E, 207

IV. SIMULATION RESULTS

In this section we evaluate the performance of algorithm
1, on the Mobile Data Challenge (MDC) data set [16] and
[17]. DMC data contains GPS traces for both pedestrians and
vehicular from Lake Geneva region in Switzerland. The data
is gathered from participants using GPS where their locations
are recorded every 10 seconds for over one year of time. The
data is processed to improve their quality, i.e., some outliers
are removed. Figures 2 and 3 evaluate the performance of
Algorithm 1 to predict UEs’ movements and compare it with
NAR method. The system parameters are listed in Table I
unless stated otherwise.

Fig.2 shows the comparison between NAR and NARX. In
this figure we use an ANN with three layers, the first is the
input layer, the second is the hidden layer and the third is
the output layer. The hidden layer consists of 10 neurons with
Tanh function. In this part we applied a delay of 4 steps, i.e.,
d = 4. Moreover, 10 UEs are used from DMC data set with
my = 3 classes. One UE data from every class is used as an
external data in NARX, while NAR system does not require
external data. Moreover, 2000 data pairs are used to train
the network, with 70% for training, 15% for validation and
15% for testing purposes. The figure shows the accumulated
error percentage of both NAR and NARX systems. As shown
in the figure NAR predicts the next two steps with very
accurate prediction, however, after the fifth prediction NAR
accumulated error, which is defined as how far the prediction
is compared to the actual location, increases rapidly. On the
other hand, NARX kept a relatively accurate prediction until
the tenth step with error percentage of around 10%. This is
understandable since the external data has a strong correlation
with the input data that is being predicted.

—NAR
~—NARX

The Percentage of Error (%)

//

1 2 3 4 5 6 7 8 9 10 1"
The Step Prediction

|

Fig. 2: Comparison between NARX and NAR for 11 Steps.

With the same setting as in Fig. 2, Fig. 3 show the
probability of success as the number of prediction increases.
In this figure we also compare NAR with NARX, and as the
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figure depicts both approaches start with high probability of
success but as the number of prediction steps increases the
performance of NAR decreases rapidly, while the performance
of NARX decreases slowly. This is understandable since the
highly correlated external input that is used in NARX helped
sustaining the prediction for more steps.

Propability of Success

The Step Prediction

Fig. 3: The probability of success as the prediction steps increases.

Fig 4 shows the change of power consumption due to the
prediction inaccuracy. In this figure we solved problem (P)
according to the actual locations and predicted locations of
both NAR and NARX. We used 8 SBSs that are placed
to cover the area of the future movement of 1 UE. First
the problem was solved according to the actual locations in
order to decide the user association in every time slot n.
Then, using this association we changed the UEs locations
according to the prediction to calculate the consumed power.
The figure shows how the inaccurate prediction affected the
energy consumption in both NAR and NARX. In NAR, after
the fifth step the assigned SBS to the UE cannot maintain the
communication since it used the maximum allowed power,
which is represented by the straight red line. On the other
hand, NARX has a more accurate prediction of the system
that kept the UE associated with SBS until the tenth step.

The Consumed Power

i e i i I ey o
1 2 3 4 5 6 7 8 9 10 "
The Step Prediction

Fig. 4: Consumed Power Due to Prediction Error.

V. CONCLUSIONS

In this paper, an optimization problem is formulated to min-
imize the energy drawn from the network grid, with updating
the UEs association with SBSs in every time slot instead

of keeping the association stationary. A new UEs’ prediction
method is introduced that is based on a combined approach
of Non-linear Autoregressive with External input(NARX) and
probabilistic Latent semantic Analysis (pLSA) to provide
accurate prediction for longer times. Moreover, a new algo-
rithm NARSA is presented to show the general steps that
are employed to predict the UEs’ next locations. The results
show that the employment of UEs prediction and ANN in
solving the optimization problem gave efficient computational
performance with a near optimal solution.
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