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a b s t r a c t

Spatially dense vibration measurement can be obtained by use of a continuously scanning

laser Doppler vibrometer (CSLDV) system that sweeps its laser spot along a scan path. For a

linear, time-invariant, viscously damped structure undergoing free vibration, a type of vibra-

tion shapes called free response shapes was defined and obtained by the authors using a

CSLDV system with the demodulation method. To date, application of free response shapes

is limited to structural damage identification, and they cannot be directly used for model val-

idation while mode shapes can be. This paper extends the concept of free response shapes

by proposing a new modal parameter estimation (MPE) method using a CSLDV system to esti-

mate modal parameters of the structure undergoing free vibration, including natural frequen-

cies, modal damping ratios, and mode shapes; the MPE method is applicable to linear struc-

tures without repeated and closely spaced modes. Advantages of the proposed method are:

(1) modal damping ratios and mode shapes can be accurately estimated from obtained free

response shapes in the least-square sense, (2) the scanning frequency of the CSLDV system can

be relatively low, and (3) estimated mode shapes can be used for structural damage identifi-

cation as if they were measured by stepped scanning of a scanning laser Doppler vibrometer.

A baseline-free method is applied to identify structural damage using mode shapes estimated

by the proposed MPE method. The method does not require any baseline information of an

undamaged structure, such as its complete geometry, material properties, boundary condi-

tions, modal parameters, and operating deflection shapes. In the proposed MPE method, nat-

ural frequencies of the structure are identified from free response of certain fixed points on

the structure; its modal damping ratios and mode shapes are simultaneously estimated using

free response shapes measured by a CSLDV system. Both numerical and experimental inves-

tigations are conducted to study the MPE method and its application to baseline-free damage

identification with mode shapes estimated by the MPE method.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Vibration-based damage identification has been a major research topic of structural dynamics in the past few decades [1,2].

Occurrence of damage in a structure undermines its capability of supporting design loads and can result in its excessive defor-
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Table 1

First five (a) natural frequencies in Hz and (b) modal

damping ratios in percentage of the damaged beam from

its finite element model and the MPE method using its

response caused by a single impulse.

Mode Finite element MPE method

(a)

1 12.64 12.62

2 79.04 79.00

3 222.0 222.0

4 434.8 434.7

5 711.2 711.2

(b)

1 0.0032 0.0032

2 0.0199 0.0199

3 0.0558 0.0558

4 0.1093 –

5 0.1787 –

Fig. 1. Mass-normalized mode shapes of the damaged cantilever beam associated with its first five modes from its finite element model.

mation, which is attributed to changes in its structural properties, such as its stiffness. One assumption of a vibration-based

damage identification method is that occurrence of damage changes modal parameters of a structure, including natural frequen-

cies, modal damping ratios, and mode shapes, which can be accurately estimated by modal analysis [3]. Accurately estimated

modal parameters can also assist model validation and updating.

A continuously scanning laser Doppler vibrometer (CSLDV) system is an ideal instrument for modal parameter estimation

(MPE) as it is capable of accurate, non-contact and temporally dense vibration measurement and also capable of spatially dense

mode shape measurement [4]. A CSLDV system consists of three key components: a laser Doppler vibrometer, a scanner and a

controller [5]. The vibrometer measures the velocity of a point on a test structure where its laser spot is located. The laser beam of

the vibrometer is directly shined onto first-surface mirrors of the scanner and the spot is continuously swept along a prescribed

scan path on the structure by rotating the mirrors that are controlled by the controller. While the spot is continuously swept,

velocity at each measurement point on the scan path is measured at the instant when the spot arrives at the measurement point,

and the number of the measurement points can be tens and even hundreds of thousands, depending on the sampling and scan

frequencies of the vibrometer. A CSLDV system has been successfully used for modal analysis and measurements of vibration

shapes, such as mode shapes [6–8] and operating deflection shapes [9–13], which can be achieved with high accuracy.

A CSLDV system has been used to measure high-fidelity vibration shapes of structures undergoing steady-state vibrations for

damage identification [5,14], and the vibration shapes measured by a CSLDV system can be used to identify structural damage as

small as notch-size ones [15]. A type of vibration shapes called free response shapes was defined and measured by a CSLDV sys-

tem when a linear underdamped beam underwent free vibration [16]. Free response shapes were defined to identify structural

damage, where damage indices associated with multiple elastic modes of a beam could be obtained. A free response shape is

different from a mode shape, since the former is time-varying with decaying amplitudes and the latter is not. So far, application

of free response shapes is limited to structural damage identification and they cannot be directly used for model validation and

updating due to two reasons. One is that a free response shape has an amplitude that is determined by excitation. Unless one

can accurately measure the excitation, a free response shape cannot be used for model validation and updating. Another reason
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Fig. 2. Position of the laser spot of the simulated CSLDV system on the damaged beam.

Fig. 3. (a) Response of the damaged cantilever beam at x = 0.7 due to the single impact at its free end and (b) the auto-power spectrum of the response in (a).

is that modal damping ratios cannot be estimated from free response shapes that are obtained in the method in Ref. [16]. An

experimental modal analysis method was proposed [8], where excitation to a test structure and its free response measured by a

CSLDV system yielded pseudo-frequency response functions of the structure, which were used to estimate modal parameters of

the structure. In this method, the measured response is lifted to each measurement point as if the response were measured in a

pointwise manner. A limitation of the method is that measured mode shapes of modes with relatively high natural frequencies

can have low qualities due to speckle noise caused by a relatively high scanning frequency, which is needed since the scanning

frequency of the CSLDV system is equal to the sampling frequency of the lifted response at each measurement point.

Fig. 4. (a) Response measured by the simulated CSLDV system in the first 8 s and (b) a spectrogram of the response in (a).
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Fig. 5. Free response shapes of the damaged cantilever beam associated with its (a) first, (b) second, (c) third, (d) fourth and (e) fifth modes obtained from the response

measured by the CSLDV system in the first five half-scan periods.

In this work, derivation of free response shapes of a linear, time-invariant, viscously damped structure undergoing free vibra-

tion is shown. A new MPE method using free response measured by a CSLDV system is proposed to accurately estimate modal

parameters of the structure with a step-by-step procedure. The proposed MPE method is novel as it extends the concept of free

response shapes of the structure to simultaneously estimate its modal damping ratios and mode shapes and the estimated modal

damping ratios and mode shapes can be used for model validation and updating and structural damage detection. A baseline-

free non-model-based damage identification method is applied to identify structural damage in a structure. The method does

not require any baseline information of an undamaged structure, such as its complete geometry, material properties, boundary

conditions, modal parameters, and operating deflection shapes. In the damage identification method, a curvature damage index

(CDI) is obtained by comparing a curvature mode shape, which corresponds to a mode shape estimated by the MPE method,

with that from a polynomial; the polynomial fits the mode shape estimated by the MPE method. Structural damage can be iden-
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Fig. 6. Comparison between mode shapes of the damaged cantilever beam from the MPE method using the free response shapes and its finite element model associated

with its (a) first, (b) second and (c) third modes.

tified in neighborhoods with consistently large CDIs corresponding to multiple modes. A numerical investigation is conducted to

study the MPE method and application of the damage identification method. An experimental investigation was also conducted

to validate the MPE method and application of the damage identification method by using data from a test for free response

shapes in Ref. [16].

The remaining part of this paper is outlined as follows. Derivation of free response shapes is presented in Secs. 2.1 and 2.2, the

new MPE method using a CSLDV system is proposed in Sec. 2.3, and the structural damage identification method is presented in

Sec. 2.4. Numerical and experimental investigations of the MPE method and baseline-free method are presented in Secs. 3 and

4, respectively. Finally, conclusions of this study are presented in Sec. 5.

2. Methodology

2.1. Free response of a damped structure

Free response in the form of the displacement of a linear, time-invariant, viscously damped structure can be obtained by

solving its governing partial differential equation:

B

[
𝜕2z (x, t)

𝜕2t

]
+ C

[
𝜕z (x, t)

𝜕t

]
+ L [z (x, t)] = 0, x ∈ D, t ≥ 0 (1)

where B (·), C (·) and L (·) are a mass operator, a damping operator and a stiffness operator, respectively, z is the displacement

of the structure at the spatial position x at time t, and D is its spatial domain. Boundary and initial conditions of the structure

are known. Note that the initial conditions can be induced by an external force that the structure is subject to when t < 0. A

solution to Eq. (1) can be obtained using the expansion theorem [17]:

z (x, t) =
∞∑

i=1

𝜑i (x)ui (t) (2)

where 𝝋i is the i-th mass-normalized eigenfunction of the associated undamped structure, whose governing equation
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Fig. 7. Comparison between curvature mode shapes of the damaged cantilever beam from the MPE method and polynomial fits associated with its (a) first, (b) second and

(c) third modes.

is assumed to be self-adjoint, and ui is the corresponding unknown time function. Orthonormality between 𝝋i and 𝝋j

(j = 1, 2,… ,∞) with respect to B is expressed by

∫D

𝜑j (x) B
[
𝜑i (x)

]
dx = 𝛿ij (3)

where 𝛿ij denotes Kronecker delta function, which satisfies 𝛿ij = 1 if i = j and 𝛿ij = 0 if i ≠ j. Assuming that damping of the

structure can be modeled by Kelvin-Voigt viscoelastic model, which leads to a classically damped system [17,18], one can obtain

ui in Eq. (2) by solving an ordinary differential equation:

üi (t) + 2𝜁i𝜔iu̇i (t) + 𝜔2
i

ui (t) = 0 (4)

where 𝜔i is the corresponding i-th undamped natural frequency of the structure, 𝜁 i is the i-th modal damping ratio, which is

smaller than 1 for an underdamped structure, and an overdot denotes differentiation with respect to t. The initial conditions

ui (0) and u̇i (0) can be determined from the initial conditions of Eq. (1). The solution to Eq. (4) can be expressed by [19]

ui (t) = e−𝜔i𝜁it

[
ui (0) cos

(
𝜔i,dt

)
+ u̇i (0) + 𝜔i𝜁iui (0)

𝜔i,d
sin

(
𝜔i,dt

)]
= Aie

−𝜔i𝜁it cos
(
𝜔i,dt − 𝛾i

)
(5)

where

𝜔i,d = 𝜔i

√
1 − 𝜁2

i
(6)

is the i-th damped natural frequency of the structure,

Ai =

√[
ui (0)

]2 +
[

u̇i (0) + 𝜔i𝜁iui (0)
𝜔i,d

]2

(7)

6



Y.F. Xu et al. Journal of Sound and Vibration 485 (2020) 115536

Fig. 8. CDIs of the damaged cantilever beam associated with its (a) first, (b) second and (c) third modes; (d) the auxiliary CDI associated with the curvature damage indices

in (a) through (c). Ends of the damage are indicated by two dotted lines.

is an amplitude constant, and

𝛾i = arctan2

(
u̇i (0) + 𝜔i𝜁iui (0)

𝜔i,d
, ui (0)

)
(8)

is a phase angle; 𝜔i𝜁 i in Eq. (5) is referred to as the decay rate of ui. Based on Eq. (5), Eq. (2) becomes

z (x, t) =
∞∑

i=1

Ai𝜑i (x) e−𝜔i𝜁it cos
(
𝜔i,dt − 𝛾i

)
(9)

2.2. Free response shapes

A free response shape associated with the i-th mode of the structure can be defined by

yi (x, t) = Ai𝜑i (x) e−𝜔i𝜁it (10)

and Eq. (9) becomes

z (x, t) =
∞∑

i=1

yi (x, t) cos
(
𝜔i,dt − 𝛾i

)
(11)

The i-th eigenfunction 𝜑i that is the i-th undamped mode shape of the structure exists in the definition of yi in Eq. (10). A

similarity between𝜑i and yi is that they both correspond to the i-th mode of the structure; however, the former is time-invariant

while the latter is time-varying due to the term e−𝜔i𝜁it in Eq. (10).

A CSLDV system continuously sweeps its laser spot over a surface of a structure with a specific scan path. The system mea-

sures response of a measurement point on the structure with a certain sampling frequency, where its laser spot is located during

7



Y.F. Xu et al. Journal of Sound and Vibration 485 (2020) 115536

a scan, and a finite number of modes of the structure are included in free response measured by the system. Let x̃ (t) be the posi-

tion of a laser spot on the surface of the structure at time t, which describes the scan path on the structure as a function of t. Free

response of the structure measured by the CSLDV system along x̃ (t) can be expressed by

z̃ (t) =
N∑

i=1

ỹi

[
x̃ (t) , t

]
ũi (t) (12)

where N is the number of modes included in z̃, and ỹi and ũi are the free response shape and time function associated with the

i-th mode measured by the system, respectively. The free response shape ỹi in Eq. (12) can be written as

ỹi

[
x̃ (t) , t

]
= Ai𝜑i

[
x̃ (t) , t

]
e−𝜔i𝜁it (13)

The time function ũi can be expressed by

ũi (t) = cos
(
𝜔i,dt − 𝛼i − 𝜃i

)
(14)

where 𝛼i is the difference between the phase determined by the initial conditions and force associated with the i-th mode and

that by a mirror feedback signal, and 𝜃i is a phase variable that controls amplitudes of in-phase and quadrature components of

ỹi , which can be expressed by

ỹI,i = ỹi

[
x̃ (t) , t

]
cos

(
𝛼i + 𝜃i

)
(15)

and

ỹQ ,i = ỹi

[
x̃ (t) , t

]
sin

(
𝛼i + 𝜃i

)
(16)

respectively [5]. Assume that all damped natural frequencies of the structure are well separated. The demodulation method

has been used to obtain ỹI,i and ỹQ ,i corresponding to each half-scan period by the system [16]. The demodulation method to

estimate ỹI,i and ỹQ ,i of the i-th mode is applied by multiplying time-domain CSLDV measurement of free vibration in one half-

scan period by a sine function and a cosine function at the natural frequency of the mode, respectively, and then applying a

low-pass filter to the multiplied measurements so that their sinusoidal components with non-zero frequencies are removed.

Resulting filtered multiplied measurements are ỹI,i and ỹQ ,i of the mode in the half-scan period. A half-scan period starts when

the laser spot of the system arrives at one end of a scan path and ends when the laser spot arrives at the other end of the scan

path. In this work, ỹ is represented by ỹI,i , whose amplitude is maximized by adjusting 𝜃i in Eq. (15). Multiple ỹi can be obtained

from free response of the structure measured by the system in one scan. To identify the start and end of a half-scan period, one

can refer to mirror feedback signals of the system and determine instants when its laser spot arrives at ends of a scan path.

2.3. MPE method

The amplitude of ỹi in Eq. (13) is time-varying and exponentially decays to zero with t at the decay rate 𝜔i𝜁 i. In order to

obtain a non-zero amplitude of ỹi from the demodulation method, one needs to determine natural frequencies of the structure

and instants when the amplitude of ỹi decays to zero. By assuming that the structure does not have repeated or closely spaced

modes, the natural frequencies can be determined from the auto-power spectrum of z at a point that is measured by the system,

and the instants can be determined using the short-time Fourier transform of z̃ [20], which is denoted by Ṽw. Some details of

the short-time Fourier transform can be found in Appendix A. Multiple non-zero ỹi can be obtained by using z̃ of the first Ni,0

half-scan periods, where Ni,0 is an integer that is defined by

arg max
Ni,0

Ni,0T

2
≤ ti,0 − t1 (17)

in which T is the length of a scan period, ti,0 is the instant when Ṽw at the i-th natural frequency of the structure becomes almost

zero, and t1 is the instant when the first half-scan period starts.

Let

Qi = Aie
−𝜔i𝜁i t1 (18)

which is a complex constant, and Qi𝜑i can also represent the i-th mode shape of the structure. One has Qi = Ai when t1 = 0,

and Eq. (13) with t ≥ t1 can be expressed by

ỹi

[
x̃ (t) , t

]
= Qi𝜑i

[
x̃ (t) , t

]
e−𝜔i𝜁i(t−t1) (19)

One can estimate Qi𝜑i in Eq. (19) if 𝜁 i is known. Let tk be the instant when the k-th half-scan period starts and ỹi,k be the free

response shape associated with the i-th mode in the k-th half-scan period. The term Qi𝜑i in Eq. (19) associated with ỹi,k can be

estimated by eliminating e−𝜔i𝜁i(t−t1) in ỹi,k; it can be expressed by

Qi,k𝜑i,k

[
x̃ (t) , t

]
= ỹi,k

[
x̃ (t) , t

]
e𝜔i𝜁i(t−t1) (20)

8
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Fig. 9. CSLDV system used in this work.

Fig. 10. (a) Schematic of the test setup and dimensions of the damaged aluminum cantilever beam with a region of machined thickness reduction, (b) the region of machined

thickness reduction, (c) the beam with its left end clamped by a bench vice and (d) the experimental setup for free response shape measurement of the beam.

where 0 ≤ t − tk ≤ T

2
. The mean of Qi,k𝜑i,k with k ∈

[
1,Ni

]
, where Ni ≤ Ni,0, can be defined by

𝜇i

(
x̃
)
=

∑Ni

k=1
Qi,k𝜑i,k

(
x̃
)

Ni

(21)

Though 𝜔i𝜁 i in Eqs. (19) and (20) is unknown, it can be estimated by solving an associated optimization problem:

𝜔i𝜁i = arg min
𝜔i𝜁i

Ni∑
k=1

|||𝜇 (
x̃
)
− Qi,k𝜑i,k

(
x̃
)||| (22)

9
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Table 2

Estimated natural frequencies and modal damping ratios of the damaged cantilever beam from the proposed

MPE method.

Mode 1 2 3 4 5

Natural frequency (Hz) 22.07 135.74 393.36 746.48 1261.07

Modal damping ratio (%) 0.16 0.18 0.12 0.12 0.14

where |·| denotes the L2-norm of a function in a half-scan period. Note that Ni must be greater than two; otherwise 𝜔i𝜁 i cannot

be estimated since the optimization problem in Eq. (22) becomes trivial. With estimated 𝜔i,d and 𝜔i𝜁i, 𝜁 i can be estimated by

𝜁i =
𝜔i𝜁i√

𝜔2
i,d

+
(
𝜔i𝜁i

)2
(23)

The physics behind the optimization problem is to find 𝜔i𝜁 i, which can compensate decays in ỹi in each half-scan period, and

Qi,k𝜑i,k of the same mode will compare well with each other in each half-scan period.

This completes theoretical derivation of the MPE method using free response of the structure measured by the CSLDV system.

The procedure of the method is summarized below:

Step 1. Measure z (t) of the structure using the system with its laser spot staying at at least one fixed point of the structure.

Step 2. Estimate 𝜔i,d of the structure using the auto-power spectrum of z measured in Step 1.

Step 3. Measure z̃ [x (t) , t] using the system along a scan path with certain scan and sampling frequencies.

Step 4. Estimate ỹi [x (t) , t] associated with measured modes in Ni half-scan periods using the demodulation method.

Step 5. Estimate 𝜁 i based on Eq. (23) using 𝜔i𝜁i obtained by solving the optimization problem in Eq. (22).

Step 6. Express Qi𝜑i

(
x̃
)

as ỹi,1

(
x̃
)

e𝜔i𝜁i(t−t1) with 0 ≤ t − t1 ≤ T and 𝜔i𝜁i obtained in Step 5.

2.4. Baseline-free structural damage identification

Local damage of a structure can cause prominent anomalies in its curvature mode shapes in neighborhoods of the damage,

and the damage can be identified by comparing the curvature mode shapes with those of the associated undamaged structure

[21]. However, the curvature mode shapes of the undamaged structure that can be considered as baselines are usually unavail-

able in practice. When the undamaged structure is geometrically smooth and made of materials without mass and stiffness

discontinuities, the curvature mode shapes of the undamaged structure can be well approximated by those from polynomials

that fit mode shapes of the damaged structure with properly determined orders. In previous works [14,15,22], a curvature dam-

age index (CDI) was proposed, which consists of the difference between a curvature mode shape of a damaged structure and

that from a polynomial fit:

𝛿i (x) =
[
𝜑″

i
(x) − 𝜑p″

i
(x)

]2

(24)

where a prime denotes spatial differentiation with respect to the arc length s of a scan path at x, and 𝜑p

i
is the corresponding

mode shape from the polynomial that fits 𝜑i. The curvature mode shapes 𝜑″
i

and 𝜑p″
i

are numerically calculated in this work

using a multi-resolution finite difference scheme with a derivative interval spanning 256 measurement points [22]. Since mode

shapes corresponding to multiple modes can be measured in one scan, CDIs corresponding to multiple modes can be obtained

in the scan, and damage regions can be identified in neighborhoods with consistently large CDI values associated with the mea-

sured modes. Note that use of 𝛿i corresponding to rigid-body modes of a structure should be excluded in damage identification

as their curvature mode shapes are zero, and one should use 𝛿i corresponding to elastic modes of the structure in damage iden-

tification. An auxiliary CDI associated with 𝛿i corresponding to various measured modes can be defined to assist identification

of the neighborhoods; it can be expressed by

𝛿 (x) =
∑

𝛿i

(̃
x
)

(25)

where 𝛿i is the normalized CDI associated with the i-th mode of the structure so that its maximum amplitude is one and
∑

denotes summation of 𝛿i over all measured modes. Since boundary distortions would occur in curvature free response shapes

of a structure associated with its free response shapes obtained from the demodulation method [16], similar distortions would

occur in curvature mode shapes here. Hence, boundary regions are excluded in normalization of 𝛿i in 𝛿 and presenting them.

Neighborhoods with consistently large values of 𝛿i associated with measured modes can be identified in those with large values

of 𝛿.

10
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Fig. 11. Auto-power spectrum of the measured free response of the damaged cantilever beam.

Let s be a one-dimensional parameter corresponding to x, and its upper and lower limits correspond to two ends of x. By

nondimensionalizing s so that it ranges between −1 and 1, a polynomial that fits 𝜑i with an order r can be expressed by

𝜑p

i

(̃
s
)
=

r∑
q=0

aq̃sq (26)

where s̃ denotes the nondimensionalized s, and aq are coefficients of the polynomial. As pointed out in Ref. [16], an increase of r

in the polynomial in Eq. (26) can improve the level of approximation of 𝜑p

i
to 𝜑i. To determine a proper order of the polynomial

fit, the modal assurance criterion (MAC) value between a mode shape of the damaged structure and that from a polynomial that

fits the mode shape, which is defined by

MAC
(
𝜑i, 𝜑

p

i

)
=

(
𝜑H

i
𝜑p

i

)2

(
𝜑H

i
𝜑i

)(
𝜑pH

i
𝜑p

i

) × 100% (27)

where the superscript H denotes the conjugate transpose of a matrix or vector, is used. A proper order for the polynomial fit is

two plus the minimum order with which MAC
(
𝜑i, 𝜑

p

i

)
is greater than 90% [22]. Two is added here in order to preserve smooth-

ness of a curvature mode shape from the polynomial fit, since calculation of a curvature incurs second-order differentiation that

reduces the order of a polynomial by two.

3. Numerical investigation

A finite element model of a damaged aluminum cantilever beam with a length L = 0.8 m, Young’s modulus of 68.9 GPa,

a mass density of 2700 kg/m3 and a damping coefficient of Kelvin-Voigt damping model of 8 × 10−7 s is constructed using

ABAQUS. The beam has a uniform square cross-section with a side length of 0.01 m. The damage is in the form of thickness

reduction, which is located between x = 6

16
L and x = 7

16
L, where x is the position of a point on the beam. The damaged portion

of the beam has a height of 0.008 m and a length of 0.05 m. The beam has fixed and free ends at x = 0 and x = L, respectively.

The first five natural frequencies and modal damping ratios of the beam are listed in Table 1(a) and (b), respectively. The first

five mass-normalized mode shapes of the beam from its finite element model are shown in Fig. 1.

In this section, a single impulse is applied to the damaged cantilever beam. Assume that the beam has zero initial conditions;

responses of the beam are calculated using the expansion theorem, where the number of included modes is five. A simulated

CSLDV system is used to measure responses of the beam caused by the forces with a scan period T = 2 s and a sampling

frequency of 16384 Hz. The number of measurement points on a free response shape is equal to the sampling frequency mul-

tiplied by the duration of a half-scan period. In this simulation, the number of measurement points on a free response shape is

16384 × 1 = 16384. The simulated CSLDV system is capable of measuring response in the form of displacement. Positions of

the laser spot of the system on the beam in the first 8 s of a scan is shown in Fig. 2.

A single impulse with an intensity of 0.01 N is applied to the free end of the damaged beam x = L at t = 0 s. Response of

the beam at x = 0.7 m is measured in the form of displacement for 8 s, as shown in Fig. 3(a), and its auto-power spectrum is

shown in Fig. 3(b). Natural frequencies of the beam can be identified in the spectrum as frequencies where prominent peaks are

found, and identified natural frequencies are listed in Table 1(a). The largest error between the identified natural frequencies

and those from the finite element model is 0.16%. Response of the beam is then measured using the simulated CSLDV system,

and the measured response in the first 8 s are shown in Fig. 4(a); the associated spectrogram is shown in Fig. 4(b), where the

window size is 2, 048. It can be observed that amplitudes of frequency components associated with the third through fifth modes
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Fig. 12. Free response shapes of the damaged cantilever beam with its (a) first, (b) second, (c) third, (d) fourth and (e) fifth modes in the first three half-scan periods.

decay faster than those with the first and second modes. Specifically, the frequency component associated with the fourth mode

decays to almost zero before the second half-scan period ends and that associated with the fifth mode fast decays within the

first half-scan period. Since the duration of a half-scan period is
T

2
= 1 s, non-zero-amplitude free response shapes of at least one

half-scan period associated with the first through fourth modes can be obtained from the free response measured by the CSLDV

system and that associated with the fifth mode cannot. Free response shapes obtained from the free response are shown in

Fig. 5(a)–(e), which correspond to the first through fifth modes, respectively. It can be seen that amplitudes of the free response

shapes associated with the fourth and fifth modes of the structure decay to almost zero faster than those associated with the

first three modes, which verifies the observations on the spectrogram in Fig. 4(b).
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Table 3

Scan frequencies, forms of excitation, and numbers of mode shape points of free response shapes associated with the first five modes of

the beam.

Mode 1 2 3 4 5

Scan frequency (Hz) 0.1 1.0 1.0 10.0 10.0
Form of excitation bending deformation impact impact impact impact

Number of mode shape points 1, 250, 000 125, 000 125, 000 12, 500 12, 500

Since there is only one non-zero-amplitude free response shape associated with the fourth mode and the free response shape

associated with the fifth mode has decayed almost to zero before the end of the first half-scan period of the CSLDV system, modal

damping ratios and mode shapes associated with the two modes cannot be estimated here. However, they can be estimated if

a higher scan frequency is applied so that at least two non-zero-amplitude free response shapes associated with each of the

two modes can be obtained from the response measured by the CSLDV system. By applying the MPE method in Sec. 2.3, modal

damping ratios and mode shapes associated with the first three modes can be estimated with the obtained free response shapes

here. Estimated damping ratios associated with the first three modes are listed in Table 1(b), and they compare well with those

from the finite element model. Estimated mode shapes are shown in Fig. 6, and modal assurance criterion (MAC) values between

mode shapes from the MPE method and finite element model are above 99.99%, which indicates that the mode shapes compare

well with each other. Note that the mode shapes are normalized so that they have a maximum unit amplitude.

The estimated mode shapes are then used for structural damage identification. The three mode shapes of the damaged

cantilever beam are fitted by polynomials with properly determined orders. The orders of the polynomial fits are 7, 8 and 11

for the first through third mode shapes, respectively. Curvature mode shapes corresponding to the first three mode shapes and

those from the polynomial fits are shown in Fig. 7. It can be seen that local anomaly due to the damage can be well observed by

comparing the curvature mode shapes of the beam with those from the polynomial fits. CDIs corresponding to the three mode

shapes are shown in Fig. 8(a)–(c), and the auxiliary CDI corresponding to the three damage indices is shown in Fig. (d). The

structural damage can be clearly and accurately identified in neighborhoods with consistently large values of the CDIs associated

with different modes in Fig. 8(a)–(c) and the auxiliary CDI in Fig. 8(d) can well assist identification of the neighborhood.

4. Experimental investigation

An experimental investigation was performed in Ref. [16] to obtain free response shapes of a damaged cantilever beam

and identify its damage. Experimental data and results from the investigation, including free response measurements of the

beam under different excitation methods, which were measured by a CSLDV system with different scan frequencies, natural

frequencies and free response shapes of the beam, were used here to perform the proposed MPE method and identify the

damage. In this section, the configuration of the CSLDV system and experimental setup of the investigation are described, and

MPE and damage identification results of the damaged cantilever beam are presented.

4.1. CSLDV system and experimental setup

The CSLDV system used in the experimental investigation is shown in Fig. 9. The system consists of a Cambridge 6240H

scanner, a Polytec OFV-353 single-point laser vibrometer and a dSPACE MicroLabBox controller board that controls a pair of

orthogonal scan mirrors of the scanner termed as X and Y mirrors. Triangular and constant input signals were given to the X and

Y mirrors, respectively, so that the laser spot could continuously sweep along the length of the damaged beam. The schematic

diagram of the experimental setup and dimensions of the damaged beam are shown in Fig. 10(a). The undamaged portion of the

beam had a thickness of 6.35 mm. There was a region of machined thickness reduction of 1.27 mm on one side of the beam along

its length, as shown in Fig. 10(a) and (b). The thickness reduction is about 20% of the thickness of the undamaged portion; its

location and length are shown in Fig. 10(a). A bench vice was used to clamp the left end of the beam to simulate a fixed boundary.

A straight scan path was assigned on the intact side of the beam, as shown in Fig. 10(a) and (c). A strip of retroreflective tape

was attached on the intact side to enhance laser reflection that directly determined the signal-to-noise ratio of measurement

by the CSLDV system. The scan path was non-dimensionalized with respect to its length so that it ranged from 0 to 1, where 0

and 1 represented left and right ends of the scan path, respectively. The damage was located between 0.46 and 0.51 on the scan

path. The experimental setup is shown in Fig. 10(a), (c) and (d), where the CSLDV system was used to measure free response of

the beam along the scan path. The sampling frequency of the system was 250, 000 Hz.

4.2. MPE and structural damage identification results

The free response of a point of the damaged cantilever beam caused by an impact was measured to estimate its natural fre-

quencies. Based on the auto-power spectrum of the measured free response in Fig. 11, the first five identified natural frequencies

of the beam were estimated, as listed in Table 2. Free response shapes of the beam under two forms of excitations measured by

the CSLDV system with different scan frequencies were used to estimate its modal damping ratios and mode shapes. One form

of excitation is an initial non-zero bending deformation of the beam along its length under a transverse concentrated force at its
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Fig. 13. Estimated mode shapes of the damaged cantilever beam associated with its (a) first, (b) second, (c) third, (d) fourth and (e) fifth modes and those from polynomial

fits with properly determined orders. Locations of damage ends are indicated by dotted lines.

free end, with the initial velocity of the beam being zero. The other form is an impact on the beam with zero initial conditions

with the impact point on the damaged side of the beam. Free response shapes associated with the first five modes of the beam

are shown in Fig. 12 and their corresponding forms of excitations and scan frequencies are listed in Table 3. Note that different

scan frequencies were used for different modes. The reason is that the higher the scan frequency the lower the signal-to-noise

ratio of estimated mode shapes due to speckle noise, which is a type of measurement noise in CSLDV measurements. Since

curvature mode shapes are sensitive to measurement noise in mode shapes, a low scan frequency is desired. However, the pro-

posed MPE method requires that free-response shapes of a mode of at least two half-scan periods be measured, and the scan

frequency needs to be high enough to satisfy this requirement.
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Fig. 14. Curvature mode shapes of the damaged cantilever beam with its (a) first, (b) second, (c) third, (d) fourth and (e) fifth modes and those from polynomial fits with

properly determined orders. Locations of damage ends are indicated by dotted lines.

With use of the MPE method, modal damping ratios and mode shapes associated with the first five modes of the damaged

cantilever beam were estimated using the measured free response shapes in their first three half-scan periods. The estimated

modal damping ratios are listed in Table 2 and the estimated mode shapes of the five modes are shown in Fig. 13. Mode shapes

corresponding to the associated undamaged cantilever beam are obtained from polynomials that fit the mode shapes of the

damaged beam with properly determined orders, as shown in Fig. 13. The orders for the first through fifth modes are determined

to be 4, 4, 5, 7 and 9, respectively. Curvature mode shapes corresponding to the first five mode shapes and those from the

polynomial fits are shown in Fig. 14. CDIs associated with the first through fifth modes of the damaged beam are shown in

Fig. 15(a)–(e), respectively. The structural damage can be clearly identified in neighborhoods with consistently large values of

the CDIs. However, relatively high values can be observed in CDIs associated with the third and fifth modes outside the damage

region, possibly due to speckle noise that was caused by continuously sweeping the laser spot of the CSLDV system. False

15



Y.F. Xu et al. Journal of Sound and Vibration 485 (2020) 115536

Fig. 15. CDIs of the damaged cantilever beam associated with its (a) first, (b) second, (c) third, (d) fourth and (e) fifth modes; (f) the auxiliary CDI associated with the CDIs

in (a) through (e). Locations of damage ends are indicated by dotted lines.

damage identification results could have been obtained if CDIs of only one of the two modes were available. Based on the CDIs

corresponding to the five mode shapes, the auxiliary CDI is shown in Fig. 15(f), which can assist accurate identification of the

damage in the region with high auxiliary CDI values, and the false damage identification results were excluded.

5. Conclusions

Derivation of free response shapes of a linear, time-invariant, viscously damped structure is shown. The only current appli-

cation of free response shapes is structural damage identification and they cannot be used for model validation and updating. A

new MPE method using free response measured by a CSLDV system is proposed to estimate modal parameters, including natu-

ral frequencies, modal damping ratios, and mode shapes based on the concept of free response shapes. A critical assumption of
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the method is that all damped natural frequencies of the structure are well separated. Natural frequencies can be estimated by

measuring free response of fixed points on the structure. A free response shape associated with an elastic mode corresponds to

the mode shape associated with the same mode. The amplitude of the free response shape exponentially decays with a decay

rate that is directly related to the modal damping ratio and natural frequency of the mode. When the decay is compensated with

an accurately estimated decay rate, the mode shape of the mode can be automatically obtained as a result. In the proposed MPE

method, the modal damping ratio and mode shape associated with an elastic mode can be simultaneously estimated by solving

an optimization problem. Free response shapes of one elastic mode in at least two half-scan periods are needed to estimate its

modal damping ratio and mode shape. A half-scan period starts when the laser spot of the CSLDV system arrives at one end of

a scan path and ends when the laser spot arrives at the other end of the scan path. Using relatively low scanning frequencies

can yield mode shapes of high qualities. A baseline-free method is applied to identify structural damage using mode shapes

estimated by the MPE method. In the numerical investigation, the proposed MPE method is applied to estimate modal param-

eters of a viscously damped damaged beam using its free response measured by a simulated CSLDV system. Estimated modal

parameters compare well with their theoretical ones and the damage can be accurately identified using the auxiliary curvature

damage index. In the experimental investigation, modal parameters of a damaged cantilever beam were estimated using the

proposed MPE method and its damage could be accurately identified using the auxiliary curvature damage index. The proposed

MPE method can be extended to structures under random excitation.
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Appendix A. Short-time Fourier transform

The short-time Fourier transform of z̃, denoted by Ṽw (t, f ), can be expressed by

Ṽw (t, 𝜔) = ∫
∞

−∞
z̃ (𝜏) g∗

s (𝜏 − t) e−j𝜔𝜏d𝜏 (A.1)

where gs is a window function with a scale s, the superscript ∗ denotes complex conjugation, and j =
√
−1. The scale s determines

the width of gs in the time domain, which should be smaller than that of a half-scan period. When Ṽw at the i-th natural

frequency of the structure becomes almost zero at an instant ti,0, the amplitude of ỹi is considered to be zero. Note that in

Eq. (A.1), Ṽw (t, 𝜔) is visualized by use of a spectrogram whose intensity denotes the power spectral density associated with

Ṽw (t, 𝜔); gs is a Hamming function that can be expressed by

gs (t) =

{
0.54 − 0.46 cos

(
2𝜋t

s

)
, 0 ≤ t ≤ s

0, otherwise
(A.2)
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