
Psi4 1.4: Open-Source Software for High-Throughput Quantum
Chemistry

Daniel G. A. Smith,1 Lori A. Burns,2 Andrew C. Simmonett,3 Robert M. Parrish,2 Matthew C. Schieber,2
Raimondas Galvelis,4 Peter Kraus,5 Holger Kruse,6 Roberto Di Remigio,7 Asem Alenaizan,2 Andrew M. James,8
Susi Lehtola,9 Jonathon P. Misiewicz,10 Maximilian Scheurer,11 Robert A. Shaw,12 Jeffrey B. Schriber,2 Yi Xie,2
Zachary L. Glick,2 Dominic A. Sirianni,2 Joseph Senan O’Brien,2 Jonathan M. Waldrop,13 Ashutosh Kumar,8
Edward G. Hohenstein,14 Benjamin P. Pritchard,1 Bernard R. Brooks,3 Henry F. Schaefer III,10 Alexander Yu.
Sokolov,15 Konrad Patkowski,13 A. Eugene DePrince III,16 Uğur Bozkaya,17 Rollin A. King,18 Francesco A.
Evangelista,19 Justin M. Turney,10 T. Daniel Crawford,8, 1 and C. David Sherrill2, a)
1)Molecular Sciences Software Institute, Blacksburg, Virginia 24061, USA
2)Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry,
School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400,
United States
3)National Institutes of Health – National Heart, Lung and Blood Institute, Laboratory of Computational Biology,
Bethesda, Maryland 20892, United States
4)Acellera Labs, C/Doctor Trueta 183, 08005 Barcelona, Spain
5)School of Molecular and Life Sciences, Curtin University, Kent St., Bentley, Perth,
Western Australia 6102
6)Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno,
Czech Republic
7)Department of Chemistry, Centre for Theoretical and Computational Chemistry, UiT,
The Arctic University of Norway, N-9037 Tromsø, Norway
8)Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
9)Department of Chemistry, University of Helsinki, P.O. Box 55 (A. I. Virtasen aukio 1),
FI-00014 University of Helsinki, Finland
10)Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602,
United States
11)Interdisciplinary Center for Scientific Computing, Heidelberg University, D-69120 Heidelberg,
Germany
12)ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, VIC 3000,
Australia
13)Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849,
United States
14)Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025,
United States
15)Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210,
United States
16)Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390,
United States
17)Department of Chemistry, Hacettepe University, Ankara 06800, Turkey
18)Department of Chemistry, Bethel University, St. Paul, Minnesota 55112, United States
19)Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States

Psi4 is a free and open-source ab initio electronic structure program providing implementations of Hartree–
Fock, density functional theory, many-body perturbation theory, configuration interaction, density cumulant
theory, symmetry-adapted perturbation theory, and coupled-cluster theory. Most of the methods are quite
efficient thanks to density fitting and multi-core parallelism. The program is a hybrid of C++ and Python,
and calculations may be run with very simple text files or using the Python API, facilitating post-processing
and complex workflows; method developers also have access to most of Psi4’s core functionality via Python.
Job specification may be passed using The Molecular Sciences Software Institute (MolSSI) QCSchema data
format, facilitating interoperability. A rewrite of our top-level computation driver, and concomitant adop-
tion of the MolSSI QCArchive Infrastructure project, make the latest version of Psi4 well suited to
distributed computation of large numbers of independent tasks. The project has fostered the development of
independent software components that may be reused in other quantum chemistry programs.

a)Electronic mail: sherrill@gatech.edu

I. INTRODUCTION

The Psi series of programs for quantum chemistry
(QC) has undergone several major rewrites through-
out its history. This is also true of the present ver-

mailto:sherrill@gatech.edu

2

sion, Psi4,1 which bears little resemblance to its pre-
decessor, Psi3. Whereas Psi3 was a research code
aimed at providing a handful of high-accuracy meth-
ods for small molecules, Psi4 aims to be a user-
friendly, general-purpose code suitable for fast, auto-
mated computations on molecules with up to hun-
dreds of atoms. In particular, Psi4 has seen the in-
troduction of efficient multi-core, density-fitted (DF)
algorithms for Hartree–Fock (HF), density functional
theory (DFT), symmetry-adapted perturbation theory
(SAPT),2,3 second- and third-order many-body pertur-
bation theory (MP2, MP3), and coupled-cluster (CC)
theory through perturbative triples [CCSD(T)].4 While
Psi3 was a stand-alone program that carried the assump-
tion that QC computations were the final desired results
and so offered few capabilities to interface with other
program packages, Psi4 is designed to be part of a soft-
ware ecosystem in which quantum results may only be
intermediates in a more complex workflow. In Psi4, inde-
pendent components accomplishing well-defined tasks are
easily connected, and accessibility of key results through
a Python interface has been emphasized.
Although the Psi project was first known as the

berkeley package in the late 1970s, it was later re-
named to reflect its geographical recentering alongside
Henry F. Schaefer III to the University of Georgia. The
code was ported to hardware-independent programming
languages (Fortran and C) and UNIX in 1987 for Psi2;
rewritten in an object-oriented language (C++), con-
verted to free-format user input and flexible format-
ting of scratch files, and released under an open-source
GPL-2.0 license in 1999 for Psi3;5 reorganized around
a programmer-friendly library for easy access to molec-
ular integrals and related quantities, then unified into a
single executable combining C++ for efficient QC ker-
nels with Python for input parsing and for driver code
in 2009 for Psi4;6 and most recently, converted into a
true Python module calling core C++ libraries, reorga-
nized into an ecosystem with narrow data connections
to external projects, opened to public development and
open-source best practices, and relicensed as LGPL-3.0
to facilitate use with a greater variety of computational
molecular sciences (CMS) software in 2017 for Psi4 v1.1.1

These rewrites have addressed challenges particular to
quantum chemistry programs, including: (i) users want
a fully featured program that can perform computations
with the latest techniques; but (ii) QC methods are gen-
erally complex and difficult to implement; even more
challenging, (iii) QC methods have a steep computational
cost, and therefore must be implemented as efficiently as
possible; yet this is a moving target as (iv) hardware
is widely varied (e.g. from laptops to supercomputers)
and frequently changing. We also note an emerging chal-
lenge: (v) thermochemical,7 machine learning,8 force-
field fitting,9 etc. applications can demand large num-
bers (105–108) of QC computations that may form part
of complex workflows.
Psi4 has been designed with these challenges in mind.

For (i)–(iii), we have created a core set of libraries that
are easy to program with and that provide some of the
key functionalities required for modern QC techniques.
These include the LibMints library that provides sim-
ple interfaces to compute one- and two-electron integrals,
the DFHelper library to facilitate the computation and
transformation of 3-index integrals for DF methods, and
a library to build Coulomb and exchange (J and K) ma-
trices in both the conventional and generalized forms that
are needed in HF, DFT, SAPT, and other methods (see
Refs. 1 and 6 and Sec. VB for more details). These li-
braries are also intended to address challenge (iv) above,
as they have been written in a modular fashion so that al-
ternative algorithms may be swapped in and out. For ex-
ample, the LibMints library actually wraps lower-level
integrals codes, and alternative integrals engines may be
used as described in more detail in Sec. VG. Similarly,
the object-oriented JK library is written to allow algo-
rithms adapted for graphics processing units (GPU) or
distributed-parallel computing. Challenge (v) is tackled
by allowing computations via a direct application pro-
gramming interface (API) and by encouraging machine-
readable input and output.
The Psi4NumPy project10 further simplifies challenge

(ii), the implementation of new QC methods in Psi4. By
making the core Psi4 libraries accessible through Python,
it is now considerably easier to create pilot or reference
implementations of new methods, since Python as a high-
level language is easier to write, understand, and main-
tain than C++ code. Indeed, because the libraries them-
selves are written in efficient C++ code, a Python im-
plementation of a new method is often sufficient as the
final implementation as well, except in the cases that re-
quire manipulations of 3- or 4-index quantities that are
not already handled by the efficient core Psi4 libraries.
For reasons of readability, maintainability, and flexibil-
ity, the entire codebase is being migrated towards more
top-level functions in Python.
Although the library design makes it easier for devel-

opers to add new methods into Psi4, we believe an even
more powerful approach is to create a software ecosystem
that facilitates the use of external software components.
Our build system, driver, and distribution system have
been rewritten specifically with this goal in mind, as dis-
cussed in Ref. 1 and Sec. VIII. The Python interface to
Psi4 and the recently introduced ability to communi-
cate via QCSchema further enhance this interoperabil-
ity. Our recent moves to the more permissive LGPL-3.0
license and to fully open development on a public GitHub
site (https://github.com/psi4/psi4) are also meant
to foster this ecosystem.
Our recent infrastructure work since Ref. 1 is mainly

focused on challenge (v), so that QC calculations can
be routinely undertaken in bulk for use in various
data analysis pipelines. As discussed in Sec. IV, Psi4
has reworked its driver layout to simplify nested post-
processing calls and greatly promote parallelism and
archiving. Python within Psi4’s driver sets keywords ac-

https://github.com/psi4/psi4

3

cording to the molecular system and method requested,
allowing straightforward input files. Additionally, Psi4
as a Python module (since v1.1, one can import psi4)
means that codes may easily call Psi4 from Python to
perform computations and receive the desired quanti-
ties directly via Python, either directly through the ap-
plication programming interface (PsiAPI) or through
JavaScript Object Notation (JSON) structured data.
Below, we present an overview of the capabilities of

Psi4 (Sec. II). We then discuss the performance improve-
ments in Psi4’s core QC libraries (Sec. V), the expanding
ecosystem of software components that can use or be used
by Psi4 (Secs. VI and VII), and how the software driver
has been rewritten to collect key quantities into a stan-
dard data format and to allow for parallel computation
of independent tasks (Sec. IV).

II. CAPABILITIES

Psi4 provides a wide variety of electronic structure
methods, either directly or through interfaces to exter-
nal community libraries and plugins. Most of the code
is threaded using OpenMP to run efficiently on multi-
ple cores within a node. The developers regularly use
nodes with about 6-8 cores, so performance is good up to
that number; diminishing returns may be seen for larger
numbers of cores.
Hartree–Fock and Kohn–Sham DFT. Conventional,

integral-direct, Cholesky, and DF algorithms are imple-
mented for self-consistent field (SCF) theory. Thanks
to the interface with the LibXC library (see Sec. VA),
nearly all popular functionals are available. The DF al-
gorithms are particularly efficient, and computations on
hundreds of atoms are routine. Energies and gradients
are available for restricted and unrestricted Hartree–Fock
and Kohn–Sham (RHF, RKS, UHF, UKS), and restricted
open-shell Hartree–Fock (ROHF). RHF and UHF Hes-
sians are available for both conventional and DF algo-
rithms.
Perturbation Theory. Psi4 features Møller–Plesset

perturbation theory up to fourth order. Both conven-
tional and DF implementations are available for MP2,
MP3, and MP2.5,11 including gradients.1,12,13 For very
small molecules, the full configuration interaction (CI)
code can be used14,15 to generate arbitrary-order MPn
and Z-averaged perturbation theory (ZAPTn)16 results.
Electron affinities and ionization potentials can now
be computed through second-order electron-propagator
theory (EP2)17 and the extended Koopmans’ theorem
(EKT).18–20
Coupled-Cluster Theory. Psi4 supports conventional

CC energies up to singles and doubles (CCSD) plus
perturbative triples [i.e., CCSD(T)]4 for any single de-
terminant reference (including RHF, UHF, and ROHF)
and analytic gradients for RHF and UHF references.5
For DF, energies and analytic gradients up to CCSD(T)
are available for RHF references.21–23 Cholesky decom-

position CCSD and CCSD(T) energies21 and conven-
tional CC224 and CC325 energies are also available. To
lower the computational cost of CC computations, Psi4
supports26 approximations based on frozen natural or-
bitals (FNO)27–30 that may be used to truncate the vir-
tual space. Excited-state properties in Psi4 are sup-
ported with equation-of-motion CCSD31,32 and the CC2
and CC3 approximations.33 Linear-response properties,
such as optical rotation,34 are also available. Psi4 also
supports additional CC methods through interfaces to
the CCT3 (See Sec. VIC 6) and MRCC programs.35

Orbital-Optimized Correlation Methods. CC and
Møller–Plesset perturbation methods are generally de-
rived and implemented using the (pseudo)canonical
Hartree–Fock orbitals. Choosing to instead use or-
bitals that minimize the energy of the targeted post-HF
wavefunction has numerous advantages, including sim-
pler analytic gradient expressions and improved accu-
racy in some cases. Psi4 supports a range of orbital-
optimized methods, including MP2,36 MP3,37 MP2.5,38
and linearized coupled-cluster doubles (LCCD).39 DF en-
ergies and analytic gradients are available for all of these
methods.40–43

Symmetry-Adapted Perturbation Theory. Psi4 fea-
tures wavefunction-based SAPT through third-order to
compute intermolecular interaction energies (IE), and
leverages efficient, modern DF algorithms.44–48 Psi4 also
offers the ability to compute the zeroth-order SAPT
(SAPT0) IE between open-shell molecules with either
UHF or ROHF reference wavefunctions.49–51 In addi-
tion to conventional SAPT truncations, Psi4 also fea-
tures the atomic52 and functional-group53 partitions of
SAPT0 (ASAPT0 and F-SAPT0, respectively), which
partition SAPT0 IE and components into contributions
from pairwise atomic or functional group contacts. Fur-
thermore, Psi4 also offers the intramolecular formulation
of SAPT0 (ISAPT0),54 which can quantify the interac-
tion between fragments of the same molecule as opposed
to only separate molecules. The extensive use of core
library functions for DF Coulomb and exchange matrix
builds and integral transformations (see Section VB) has
greatly accelerated the entire SAPT module in Psi4, with
all SAPT0-level methods routinely deployable to systems
of nearly 300 atoms (∼3500 basis functions); see also
Secs. VC–VF for new SAPT functionality.
Configuration Interaction. Psi4 provides configura-

tion interaction singles and doubles (CISD), quadratic
CISD (QCISD),55 and QCISD with perturbative triples
[QCISD(T)]55 for RHF references. It also provides an
implementation56 of full configuration interaction (FCI)
and the restricted active space configuration interaction
(RASCI) approach.57

Multi-reference Methods. Psi4 provides conven-
tional and DF implementations of complete-active-space
SCF (CASSCF)58,59 and restricted-active-space SCF
(RASSCF).60 Through the CheMPS2 code, density-
matrix renormalization group (DMRG)61,62 based
CASSCF63 and CASSCF plus second-order perturba-

4

tion theory (CASPT2)64 are available. The state-specific
multireference CC method of Mukherjee and cowork-
ers (Mk-MRCC) is implemented in Psi4 with singles,
doubles, and perturbative triples.65 A complementary
second-order perturbation theory based on the same for-
malism (Mk-MRPT2) also exists.66 Psi4 can perform
multireference CC calculations through an interface to
the MRCC program of Kállay and coworkers,35,67 where
high-order excitations (up to sextuples) as well as pertur-
bative methods are supported. Additional methods for
strong correlation are available through the Forte68–70
and v2rdm_casscf71 (See Sec. VIC 5) plugins.

Density Cumulant Theory. Psi4 offers the reference
implementation of Density Cumulant Theory (DCT),
which describes electron correlation using the cumulant
of the two-electron reduced density matrix (RDM) in-
stead of a many-electron wave-function.72 Psi4 includes
an implementation73 of the original DCT formulation,72
a version with an improved description of the one-particle
density matrix (DC-12),74 their orbital-optimized vari-
ants (ODC-06 and ODC-12),75 and more sophisticated
versions that include N -representability conditions and
three-particle correlation effects [ODC-13 and ODC-
13(λ3)].76 In particular, ODC-12 maintains CCSD scal-
ing but is much more tolerant of open-shell character
and mild static correlation.77,78 Analytic gradients are
available for DC-06, ODC-06, ODC-12, and ODC-13
methods.75,76,79

Relativistic Corrections. Psi4 can perform electronic
structure computations with scalar relativistic correc-
tions either by calling the external DKH library for
up to fourth-order Douglas-Kroll-Hess (DKH)80,81 or by
utilizing the exact-two-component (X2C)82–92 approach
to supplement the one-electron Hamiltonian of a non-
relativistic theory for relativistic effects. At present, only
the point nuclear model is supported.

Automated Composite and Many-Body Computations.
Psi4 provides a simple and powerful user interface to au-
tomate multi-component computations, including focal-
point93–95 approximations, complete-basis-set (CBS) ex-
trapolation, basis set superposition corrections (coun-
terpoise (CP), no-counterpoise (noCP), and Valiron–
Mayer functional counterpoise (VMFC)),96–98 and many-
body expansion (MBE) treatments of molecular clus-
ters. These capabilities can all be combined to obtain
energies, gradients, or Hessians, as discussed below in
Sec. IV. For example, one can perform an optimization
of a molecular cluster using focal-point gradients com-
bining MP2/CBS estimates with CCSD(T) corrections
computed in a smaller basis set, with counterpoise cor-
rections. The MBE code allows for different levels of
theory for different terms in the expansion (monomers,
dimers, trimers, etc.) and also supports electrostatic em-
bedding with point charges.

III. PSIAPI

Introduced in v1.1,1 the Psi4 API (PsiAPI) enables
deployment within custom Python workflows for a va-
riety of applications, including quantum computing and
machine learning, by making Psi4 a Python module (i.e.,
import psi4). Using Psi4 in this manner is no more dif-
ficult than writing a standard Psi4 input file, as shown
in the middle and left panels of Fig. 1, respectively. The
true power of PsiAPI lies in the user’s access to Psi4’s
core C++ libraries and data structures directly within
the Python layer. PsiAPI thereby can be used to, e.g.,
combine highly optimized computational kernels for con-
structing Coulomb and exchange matrices from HF the-
ory with syntactically intuitive and verbose Python array
manipulation and linear algebra libraries like NumPy.99
An example of PsiAPI for rapid prototyping is given in
Sec. V I 1.

A. Psi4NumPy

Among the most well-developed examples of the ad-
vantages afforded by the direct Python-based PsiAPI is
the Psi4NumPy project,10 whose goal is to provide three
services to the CMS community at large: (i) to furnish
reference implementations of computational chemistry
methods for the purpose of validation and reproducibil-
ity, (ii) to lower the barrier between theory and imple-
mentation by offering a framework for rapid prototyping
where new methods could be easily developed, and (iii) to
provide educational materials which introduce new prac-
titioners to the myriad of practical considerations rele-
vant to the implementation of quantum chemical meth-
ods. Psi4NumPy accomplishes these goals through its
publicly available and open-source GitHub repository,100
containing both reference implementations and interac-
tive tutorials for many of the most common quantum
chemical methods, such as HF, Møller–Plesset perturba-
tion theory, CC, CI, and SAPT. Furthermore, since its
publication in 2018, 17 separate projects to date have
leveraged the Psi4NumPy framework to facilitate their
development of novel quantum chemical methods.101–117
Finally, Psi4NumPy is a thoroughly community-driven
project; interested readers are highly encouraged to visit
the repository100 for the latest version of Psi4NumPy
and to participate in “pull request” code review, issue
tracking, or by contributing code to the project itself.

B. Jupyter Notebooks

Inspired by notebook interfaces to proprietary com-
puter algebra systems (e.g., Mathematica and Maple),
a Jupyter notebook is an open-source web application
that allows users to create and share documents con-
taining executable code, equations, visualizations, and
text.118 Jupyter notebooks are designed to support all

5

FIG. 1. Input modes for Psi4. A coupled-cluster calculation is run equivalently through its preprocessed text input language
(PSIthon; left), through the Python API (PsiAPI; middle), and through structured JSON input (QCSchema; right).

stages of scientific computing, from the exploration of
data to the creation of a detailed record for publishing.
Leveraging Psi4 within this interface, therefore, provides
interactive access to Psi4’s data structures and function-
ality. Visualization and analysis of properties such as ge-
ometry and orbitals can be facilitated with tools available
within The Molecular Sciences Software Institute’s119
(MolSSI) QCArchive120,121 project. Additionally, the
unique combination of executable code cells, equations,
and text makes Jupyter notebooks the perfect environ-
ment for the development and deployment of interactive
educational materials, as illustrated by the Psi4NumPy
and Psi4Education122 projects, or for living supple-
mentary materials that allow readers to reproduce the
data analysis.123,124

IV. TASK-BASED DISTRIBUTED DRIVER

The recursive driver introduced in 2016 for Psi4
v1.0 to reorganize the outermost user-facing func-
tions into a declarative interface has been refac-
tored for Psi4 v1.4 into the distributed driver which
emphasizes high-throughput readiness and discretized
communication through schema. In the earlier ap-
proach, the user employed one of a few driver func-
tions [energy(), gradient(), optimize(), hessian(),
frequency()], and everything else was handled either
by the driver behind the scenes (e.g., selecting ana-
lytic or finite-difference (FD) derivatives) or through
keywords (e.g., "mp2/cc-pv[t,q]z", bsse_type="cp",
dertype="energy"). When a user requested a compos-
ite computation that requires many individual computa-
tions (for example, a gradient calculation of a basis-set
extrapolated method on a dimer with counterpoise cor-
rection), internal logic directed this into a handler func-
tion (one each for many-body expansion, finite difference
derivatives, and composite methods like basis-set extrap-
olations and focal-point approximations) which broke the
calculation into parts; then each part re-entered the orig-

inal function, where it could be directed to the next ap-
plicable handler (hence, a “recursive driver”). At last,
the handlers called the function on an analytic task on
a single chemical system, at which point actual QC code
would be launched. However, the code to implement
this functionality was complex and not easily extend-
able to the nested parallelism (among many-body, finite-
difference, and composite) to which these computations
are naturally suited. Because of these limitations, the
internal structure of the driver has been reorganized so
that all necessary QC input representations are formed
before any calculations are run.
The motivation for the driver refactorization has been

the shift toward task-based computing and particularly
integration with the MolSSI QCArchive120,121 project
to run, store, and analyze QC computations at scale. The
QCArchive software stack, collectively QCArchive
Infrastructure, consists of several building blocks:
QCSchema125 for JSON representations of QC objects,
job input, and job output; QCElemental126 for Python
models (constructors and helper functions) for QC-
Schema as well as fundamental physical constants and
periodic table data; QCEngine127 for compute configu-
ration (e.g., memory, nodes) and QCSchema adaptors
for QC programs; andQCFractal128 for batch compute
setup, compute management, storage, and query.
Psi4 v1.1 introduced a psi4 --json inputmode that

took in a data structure of molecular coordinates, driver,
method, and keywords strings and returned a JSON
structure with the requested driver quantity (energy, gra-
dient, or Hessian), a success boolean, QCVariables (a
map of tightly defined strings such as CCSD CORRELATION
ENERGY or HF DIPOLE to float or array quantities), and
string output. Since then, QC community input un-
der MolSSI guidance has reshaped that early JSON
into the current QCSchema AtomicInput model capa-
ble of representing most non-composite computations.
(“Atomic” here refers not to atom vs. molecule but to
single energy/derivative on a single molecule vs. multi-
stage computations.) Psi4 v1.4 is fully capable of be-

6

ing directed by and emitting the MolSSI QCSchema
v1 (see figure 1, right) via psi4 --schema input or
psi4.run_qcschema(input), where input is a Python
dictionary, JSON text, or binaryMessagePacked struc-
ture ofNumPy arrays and other fields. Since Psi4 speaks
QCSchema natively, its adaptor in QCEngine is light,
consisting mostly of adaptations for older versions of Psi4
and of schema hotfixes. Several other QC packages with-
out QCSchema input/ouput (I/O) have more exten-
sive QCEngine adaptors that construct input files from
AtomicInput and parse output files into AtomicResult
(discussed below). The distributed driver is designed to
communicate through QCSchema and QCEngine so
that the driver is independent of the community adop-
tion of QCSchema.
The AtomicInput data structure includes molecule,

driver function name, method and basis set (together,
“model”), and keyword dictionary, while the output data
structure AtomicResult additionally includes the pri-
mary return scalar or array, any applicable of a fixed
set of QCSchema properties, as well as Psi4 spe-
cialties like QCVariables. Importantly, the customary
output file is included in the returned schema from
a Psi4 computation. The driver has been revamped
to use the AtomicInput and AtomicResult structures
as the communication unit. In order for the above-
mentioned handler procedures (now “Computer” ob-
jects) of the Psi4 driver to communicate, specialized
schemas that are supersets of AtomicResult have been
developed. New fields have been introduced, includ-
ing bsse_type and max_nbody for ManyBodyComputer;
stencil_size (the number of points in the finite dif-
ference approximation) and displacement_space for
FiniteDifferenceComputer; scheme and stage for
CompositeComputer; and degeneracy and theta_vib
for the vibrational procedure. These contents are being
optimized for practical use in Psi4 and have been or will
be submitted to MolSSI QCSchema and QCElemen-
tal for community input and review. A recently official
schema already implemented in Psi4 is for wavefunc-
tion data and encodes orbital coefficients, occupations,
and other information in standard CCA format.129 This
new schema is supported by native Psi4 infrastructure to
permit serialization and deserialization of Psi4’s internal
Wavefunction class that contains more fields than the
schema stores. Although not yet used for communication,
Psi4 can also emit BasisSet schema. The layered proce-
dures of the distributed driver involve sums of potentially
up to thousands of schema-encoded results and are thus
susceptible to numerical noise that a pure-binary data ex-
change would avoid. Nominally, JSON does not serialize
NumPy arrays or binary floats. However, the QCEle-
mental/QCSchema models support extended serializa-
tion throughMessagePack130 so that NumPy arrays99
can be transparently and losslessly moved through the
distributed driver.
The task-oriented strategy for the distributed driver is

illustrated in figure 2. The user interface with the cus-

tomary driver functions, figure 2(a), remains unchanged.
If a single analytic computation is requested, it pro-
ceeds directly into the core QC code of Psi4 (leftmost
arrow), but if any of the handlers are requested, the
driver diverts into successively running the “planning”
function of each prescribed procedure (figure 2(b) with
details in (z)) until a pool of analytic single-method,
single-molecule jobs in QCSchema AtomicInput for-
mat is accumulated. Although these could be run in-
ternally through the API counterpart of psi4 --schema
(figure 2(c.i)), Psi4 executes through QCEngine so that
other programs can be executed in place of Psi4 if de-
sired (figure 2(c.ii)). An additional strategic benefit of
running through QCEngine is that the job pool can
be run through QCFractal (figure 2(c.iv)), allowing
simultaneous execution of all jobs on a cluster or tak-
ing advantage of milder parallellism on a laptop, just by
turning on the interface (∼5 additional Python lines).
The database storage and QCSchema indexing inher-
ent to QCFractal means that individual jobs are ac-
cessible after completion; if execution is interrupted and
restarted, completed tasks are recognized, resulting in
effectively free coarse-grained checkpointing. Alterna-
tively, for the mild boost of single-node parallelism with-
out the need to launch a QCFractal database, one
can run in “snowflake” mode (figure 2(c.iii)) which em-
ploys all of QCFractal’s job orchestration, indexing,
and querying technology, except the internal database
vanishes in the end. The use of these modes in input is
shown in figure 3. When all jobs in the pool are complete
(all QCSchema AtomicResult are present), the “assem-
ble” functions of each procedure are run in reverse or-
der of invocation (figure 2(d) with details in figure 2(z)).
That is, model chemistry energies are combined into com-
posite energies by the CompositeComputer, then com-
posite energies at different displacements are combined
into a gradient by the FiniteDifferenceComputer, then
gradients for different molecular subsystems and basis
sets are combined into a counterpoise-corrected gradient
by the ManyBodyComputer, and finally, the desired En-
ergy, Gradient, or Hessian is returned, figure 2(e). The
schema returned by driver execution has the same appar-
ent (outermost) structure as a simple AtomicResult with
a molecule, return result, properties, and provenance, so
it is ready to use by other software expecting a gradi-
ent (like a geometry optimizer). However, each proce-
dure layer returns its own metadata and the contribut-
ing QC jobs in a specialized schema, which is presently
informal, so that the final returned JSON document is
self-contained. Ensuring maintainability by merging code
routes was given high priority in the distributed driver
redesign: parallel and serial executions take the same
routes, intra-project (API) and inter-project communica-
tions use the same QCSchema medium, and (in a future
revision) a generic QC driver calling Psi4 can proceed
through QCSchema.

7

 def energy(method): def gradient(method): def hessian(method):

 class FiniteDifferenceComputer ():
Displace molecule according to stencil.
Reference molecule & method unchanged.

Assemble derivative results from displacements.

for disp in displacements: return qcschema
····· ····· ·

·
·
·

 class CompositeComputer ():
Separate method into method, basis, & extrapolations.
molecule unchanged.

Assemble extrapolations & total results from modelchems.

MP2 TOTAL ENERGY/cc-pVTZ
MP2 TOTAL ENERGY/cc-pVQZ

mp2/cc-pv[tq]z

for mc in modelchems: return qcschema

 class ManyBodyComputer ():
Separate molecule into subsystems. CP, noCP, VMFC basis.
method unchanged.

Assemble n-body & interaction results from fragments.

for frag in fragments: return qcschema

 class AtomicComputer ():
molecule & method unchanged. return qcschema

Return analytic energy, gradient, or Hessian.

Atom

FD

Atom

MBE

Atom

FD

MBE

CBS

Atom

MBE

CBS

Atom

FD

CBS

Atom

FD

MBE

CBS

Atom

PLAN

ASM

PLAN

ASM

PLAN

ASM

PLAN

ASM

PSI4
C++/PYTHON LIBRARY

QCEngine
PYTHON LIBRARY

QCSchema:
AtomicInput

I

E G H

Atom

QCFractal
PYTHON LIBRARY

·

(a)

QCSchema:
AtomicResult

IO

(c.i) (c.ii) (c.iii) (c.iv)

(z)

(d)

continuous,
distributed

queued,
distributed,
recoverable

continuous,
serial

unused

PO
O
L

PO
O
L

(b)

(e)
············ ············ ············ ············ ············ ············ ············ ············ ············ ············ ············ ············ ············ ············ ············· · ······· ··· ··· ··· ··· ···

QCSchema

QCSchema

QCSchema

QCSchema

FIG. 2. Structure of the distributed driver: consult the final paragraph of Sec. IV for details. Briefly, a user request (a) for
a multi-molecule, multi-model-chemistry, or non-analytic derivative passes into planning functions (b; defined in procedure
tiles (z)) that generate a pool of QCSchema for single-molecule, single-model-chemistry, analytic derivative inputs. These can
run in several modes (c), depending on desired parallelism and recoverability. Completed QCSchema pass through assembly
functions (d; defined in procedure tiles (z) and denoted “ASM”) that reconstitute (e) into the requested Energy (“E”), Gradient
(“G”), or Hessian (“H”).

V. NEW FEATURES AND PERFORMANCE
IMPROVEMENTS

A. DFT

The DFT module now uses LibXC131 to evaluate the
exchange-correlation terms. Psi4 thus has access to
400+ functionals, of which ∼100 are routinely tested
against other implementations. Modern functionals, such
as ωB97M-V132 and the SCAN family,133 are now avail-
able. Support for hybrid LDA functionals like LDA0,
pending their release in a stable version of LibXC,
is also implemented. The new functional interface is
Python-dictionary-based and uses LibXC-provided pa-
rameters where possible. Additional capabilities for
dispersion-inclusive, tuned range-separated, and double-
hybrid functionals are defined atop LibXC fundamentals.
The interface also allows users to easily specify custom
functionals, with tests and examples provided in the doc-
umentation.
The DFT module in Psi4 v1.4 is significantly faster

than the one in Psi4 v1.1, both in single-threaded and
multi-threaded use cases. Recent versions are com-
pared in figure 4, showing the speed improvements for
the adenine·thymine (A·T) stacked dimer from the S22
database.135 With ωB97X-D/def2-SVPD (figure 4, up-

per), this test case corresponds to 234 and 240 basis
functions for each monomer and 474 for the dimer, while
the problem size is approximately doubled in B3LYP-
D3(BJ)/def2-TZVPD (figure 4, lower).
Much of the speed improvement is due to improved

handling of the DFT grids. Collocation matrices between
basis functions and the DFT grid are now formed by an
optimized library (Gau2Grid; Sec. VIB 3) and are au-
tomatically cached if sufficient memory is available, thus
removing the need for their re-computation in every it-
eration. The whole module, including the generation of
quadrature grids and collocation matrices, is now effi-
ciently parallelized. The overall speedup between v1.1
and v1.4 is 1.9× on a single core. Notable speedups
are obtained for range-separated functionals (e.g., the
ωB97X-D functional, see figure 4, upper), as the MemD-
FJK algorithm is now implemented for this class of meth-
ods (see Sec. VB).
As of Psi4 v1.4, grid screening based on exchange-

correlation weights is applied with a conservative default
cutoff of 10−15. Grid pruning schemes are also imple-
mented, the default robust scheme removing ∼30% of
the grid points. Grid pruning on its own is responsible
for a 1.3× single-core speedup in the case of A·T dimer
with B3LYP-D3(BJ)/def2-TZVPD. However, a loss of
accuracy can be expected in the pruning of smaller grids

8

FIG. 3. Input file illustrating a CBS and many-body
gradient run through the distributed driver in contin-
uous mode (white-background lines; figure 2(c.ii)), dis-
tributed mode with FractalSnowflake (figure 2(c.iii); ad-
ditional blue-background lines), and distributed mode with
the full storage and queuing power of QCFractal (fig-
ure 2(c.iv); additional red-background lines). The lower
example is “free” when using QCFractal since the com-
ponents required for BSSE corrections have already been
computed during the upper VMFC. While this example ex-
poses the returned QCSchema AtomicResult, the tradi-
tional syntax of grad = psi4.gradient("HF/cc-pV[DT]Z",
bsse_type="vmfc") runs in mode (c.ii) and is identical to
the upper example.

(<0.1 kcal mol−1 for IE in the A24 database136).

B. MemDFJK Algorithm

The SCF Coulomb (J) and exchange (K) builds are
the cornerstone of all SCF-level operations in Psi4,
such as SCF iterations, MP2 gradients, SAPT induction
terms, SCF response, time-dependent DFT (TDDFT)
and more. Over the past decade, the raw floating point
operations per second (FLOPS) ability of modern cen-
tral processing units (CPU) has grown much faster than

FIG. 4. Wall-time comparison for interaction energy of
adenine·thymine stacked dimer from the S22 database with
various versions of Psi4 using 1 (darker green) to 16 (brown)
threads, in multiples of 2.134 Psi4 v1.4 data obtained with
robust grid pruning algorithm.

the speed of memory I/O, which can lead to memory I/O
rather than raw FLOPS limiting operations. A large data
copy quickly became the bottleneck of the Psi4 v1.1 JK
algorithm, especially when running on many concurrent
cores.
Examining the canonical K equations with DF shows

the following (using the Einstein summation convention):

Dλσ = CiσCiλ, (1)
ζPνi = (P |νλ)Ciλ, (2)

K[Dλσ]µν = ζPµiζPνi, (3)

where i is an occupied index, P is the index of the auxil-
iary basis function, and µ, ν, λ, and σ are atomic orbital
(AO) indices. The C, D, K, and (P |νλ) tensors are
the SCF orbitals matrix, density matrix, exchange ma-
trix, and 3-index integral tensor, respectively. Holding
the (P |νλ) quantity in a tensor TPνλ offers the benefit
of a straightforward optimized matrix-matrix operation
in Eq. 2. However, this neglects the symmetricity and
sparsity of the three-index integrals (P |νλ). Accounting
for both of these properties leads to the previously stored
form of TPνλν where the λ index was represented sparsely
for each Pν pair by removing all duplicate or zero val-

9

ues; the sparsity of the index λ depends on the value of
ν, hence the notation λν . This form provides a highly
compact representation of the (P |νλ) tensor; however,
the matrix-matrix operation to form ζPνi in Eq. 2 re-
quires unpacking to a dense form, causing the previously
mentioned data bottleneck.
To overcome this issue, the new J and K builds in

Psi4 hold the (P |νλ) quantity in a TνPλν representation,
where there is a unique mapping for the Pλ indices for
each ν index. While full sparsity can also be represented
in this form, the symmetry of the AOs is lost, leading
to this quantity being twice as large in memory or disk.
This form requires the Ciλν matrix to be packed for every
ν index for optimal matrix-matrix operations in Eq. 2.
While both the TPνλν and TνPλν forms require packing
or unpacking of tensors, the former requires QN2 oper-
ations while the latter requires N2o operations where Q
is the size of the auxiliary index, N the number of basis
functions, and o the size of the occupied index. In prac-
tice o ≪ Q, often resulting in 15× less data movement,
and generally all but removing the bottleneck.
This small data organization change combined with

vectorization and parallelization improvements has led
to performance increases, especially for a high number of
cores and when the system is very sparse, with the draw-
back of doubling the memory footprint. For a system
of two stacked benzenes in the cc-pVDZ basis set (228
basis functions), the new JK algorithm is 2.6, 3.6, 3.7,
and 4.3× faster than the old algorithm for 1, 8, 16, and
32 threads, respectively. For a more extensive system of
twenty stacked benzenes with cc-pVDZ (2280 basis func-
tions), the respective speedups are 1.5, 1.7, 2.1, 2.2×.
Psi4 automatically detects which algorithm to use based
on the amount of available memory.

C. Additive Dispersion Models

Psi4 specializes in providing convenient access to
methods with additive dispersion corrections. Several
have long been available, like Grimme’s three-component
corrections to mean-field methods, HF-3c137 and PBE-
3c138 (external via dftd3139 and gCP140 executables),
and the simpler pairwise additive schemes -D2141 (in-
ternal code) and -D3142,143 (external via dftd3 ex-
ecutable). Now also available are a similar correc-
tion to perturbation theory, MP2-D144 (external via
mp2d145 executable), and a non-local correction to
DFT through the VV10 functional, DFT-NL146 (internal
code). These are called simply as gradient("mp2-d") or
energy("b3lyp-nl"). See Table I for details of external
software.
Psi4 v1.4 uses the -D3 correction in a new method,

SAPT0-D. While SAPT0 has long been applicable to
systems with upwards of 300 non-hydrogen atoms by
leveraging optimized DF routines for both JK builds
and MP2-like E

(20)
disp and E

(20)
exch−disp terms, it is lim-

ited by the O(N5) scaling of the second-order disper-

sion (N proportional to system size). By refitting the
-D3 damping parameters against a training set of 6111
CCSD(T)/CBS IE and using the result in place of the an-
alytic SAPT0 dispersion component, SAPT0-D atO(N4)
scaling achieves a 2.5× speedup for systems with about
300 atoms (increasing for larger systems), while removing
the worst outliers and achieving the same error statistics
as full SAPT0 when evaluated on 8100 IE of bimolecular
complexes.147
The SAPT0-D approach is also applicable to the

functional group partition of SAPT.53 The resulting F-
SAPT0-D has been applied to understand the differential
binding of the β1-adrenoreceptor (β1AR) (figure 5) in its
active (G-protein coupled) versus inactive (uncoupled)
forms to the partial agonist salbutamol. While exper-
imentally determined ∆∆Gbind was previously justified
with respect to changes in binding site geometry upon
β1AR activation,148 F-SAPT0-D quantifies the contribu-
tion of each functional group contact, revealing that dif-
ferential binding is due in large part to cooperativity of
distant amino acid residues and peptide bonds, rather
than only local contacts.

D. SAPT(DFT)

Psi4 now provides SAPT(DFT),149 also called DFT-
SAPT,150 which approximately accounts for the in-
tramolecular electron correlation effects that are missed
in SAPT0 by including correlation-like effects found in
DFT. The Hartree–Fock orbitals are replaced with Kohn–
Sham orbitals,151 and induction terms are solved using
the coupled-perturbed Kohn–Sham equations. The long-
range behavior that is important for dispersion interac-
tions is known to be problematic for generalized gra-
dient approximation (GGA) functionals, and in DFT-
SAPT this is corrected by gradient-regulated asymptotic
correction (GRAC)152 in obtaining the Kohn–Sham or-
bitals. Dispersion energies are obtained by solving for
the TDDFT propagator of each monomer and integrat-
ing the product of the propagators over the frequency
domain.153,154 In Psi4 1.4 we have improved the TDDFT
dispersion capabilities to allow hybrid kernels in the
TDDFT equations,155 which can significantly improve
accuracy when hybrid functionals are used to determine
the orbitals.150,156

E. SAPT0 Without the Single-Exchange Approximation

The SAPT module in Psi4 now has an option to
compute the second-order SAPT0 exchange corrections
E
(20)
exch−ind,resp and E

(20)
exch−disp without the use of the com-

mon S2 approximation, that is, using the complete an-
tisymmetrizer in the expressions instead of its approxi-
mation by intermolecular exchanges of a single electron
pair. The working equations for the non-approximate
second-order corrections were derived and implemented

10

F-SAPT–D

β1AR-Salbutamol (459 atoms) Order-2 Partitioned ∆∆Eint
FIG. 5. F-SAPT0-D3M(0)/jun-cc-pVDZ analysis of 459 atoms (5,163 orbital and 22,961 auxiliary basis functions) from β1AR–
salbutamol co-crystal (PDB: 6H7M). (left) Geometry of ligand (wide sticks) and residues within 7Å (thin sticks). (right)
Order-2 F-SAPT difference analysis of active vs. inactive complex, with functional groups colored by contribution to ∆∆Eint

(red: more attractive in activated state; blue: more attractive in inactive state; color saturation at ±10 kcal mol−1).

for the first time in Refs. 157 and 158 in the molecular-
orbital (MO) form prevalent in the classic SAPT develop-
ments. We have recast the nonapproximate formulas for
E
(20)
exch−ind,resp and E

(20)
exch−disp of Refs. 157,158 into the AO

form and implemented them efficiently in Psi4 with DF.
As these AO-based expressions have not been published
before, we present them together with an outline of their
derivation in the Supplementary Material. Thanks to
this new development, the entire SAPT0 level of theory
(but not higher levels such as second-order, SAPT2) is
now available in Psi4 without the single-exchange ap-
proximation. Preliminary numerical tests show157–159

that the replacement of E(20)
exch−disp(S

2) by its nonapproxi-
mated counterpart introduces inconsequential changes to
the SAPT0 interaction potentials at short intermolecular
separations. In contrast, the full E(20)

exch−ind,resp values of-

ten deviate significantly from E
(20)
exch−ind,resp(S

2) at short
range, especially for interactions involving ions.160 At the
usual SAPT0 level (as defined e.g. in Ref. 161), this differ-
ence between E(20)

exch−ind,resp and E
(20)
exch−ind,resp(S

2) cancels

out when the δE
(2)
HF term that approximates the higher-

order induction and exchange induction effects from a su-
permolecular HF calculation is taken into account. How-
ever, the removal of the S2 approximation from second-
order SAPT0 will significantly affect SAPT results com-
puted without the δE

(2)
HF correction.

F. SF-SAPT

An open-shell SAPT feature that is currently unique
to Psi4 is the ability to compute the leading exchange
term, E(10)

exch(S
2), for an arbitrary spin state of the in-

teracting complex, not just its highest spin state. This

spin-flip SAPT (SF-SAPT) method was introduced in
Ref. 162 and so far applies to the interaction between
two open-shell systems described by their ROHF de-
terminants. Such an interaction leads to a bundle of
asymptotically degenerate states of the interacting com-
plex, characterized by different values of the spin quan-
tum number S. These states share the same values of
all electrostatic, induction, and dispersion energies, and
the splitting between them arises entirely out of elec-
tron exchange. In such a case, the SF-SAPT approach
implemented in Psi4 can provide an inexpensive (cost
is similar to standard E

(10)
exch(S

2)) and qualitatively cor-
rect first-order estimate of the splittings between different
spin states of the complex. In addition, all terms can be
computed using standard SCF JK quantities and have
been implemented within Psi4 in a Psi4NumPy formal-
ism, as the best performance can be achieved without
any additional compiled code.

G. Libint2 and Simint

The Libint package163 has been the default engine for
two-electron integrals since the development of Psi3 two
decades ago. Allowing arbitrary levels of angular momen-
tum and numerous integral kernels, Libint has proven a
reliable tool for generating the integrals that are cen-
tral to QC. However, modern CPUs increasingly derive
their power from a combination of multi-core and single
instruction, multiple data (SIMD) technologies, rather
than the regular strides in clock speed that were real-
ized around the time of Psi3’s development. While Psi4
has exploited multi-core technologies for some time via
OpenMP, its SIMD capabilities were previously limited
to the linear algebra libraries used to power SCF and
post-HF methods. In Psi4 v1.4, the Libint package has

11

been superseded by Libint2,164 which partially exploits
SIMD capabilities by vectorizing the work needed for a
given shell quartet, making it better suited for modern
computer architectures. Libint2 permits additional inte-
gral kernels, including the Yukawa- and Slater-type gemi-
nal factors, which expand the range of DFT and explicitly
correlated methods that may be implemented. Libint2
is also preferable from a software sustainability perspec-
tive as it is actively maintained and developed, unlike the
original Libint.
Although Libint2 is now the default integrals engine,

Psi4 is written to allow the use of alternative integrals
packages, and an interface to Simint165,166 is also pro-
vided. Simint was designed from the beginning with
SIMD parallelism in mind. By reordering shell pairs to be
grouped by common angular momentum classes, Simint
achieves a compelling level of vectorization on the latest
AVX512 chipsets. The Psi4 integrals interface has been
generalized to allow the shell pairs to be given in arbi-
trary order and to account for the possibility of batching
among them, thus allowing Simint to take full advantage
of its approach to vectorization.

H. SCF Guesses

The reliability of the atomic solver used for the su-
perposition of atomic densities167,168 (SAD) initial guess
has been greatly improved in Psi4, and the SAD guess
has been made the default also for open-shell and re-
stricted open-shell calculations, resulting in significantly
faster convergence, especially for systems containing
heavy atoms such as transition metal complexes. Al-
though powerful in many cases, the SAD guess does
not yield molecular orbitals, and it may thereby be
harder to build a guess with the wanted symmetry. The
traditional alternatives to SAD that do yield molecu-
lar orbitals, the core orbital guess or the generalized
Wolfsberg–Helmholz169 modification thereof, fail to ac-
count for electronic screening effects whose importance
increases rapidly with increasing nuclear charge, resulting
in horrible performance.170 However, guesses that both
account for electronic screening and yield guess orbitals
have recently been described in Ref. 170 and are now im-
plemented in Psi4: an extended Hückel guess employing
the atomic orbitals and orbital energies from the SAD
solver, the SAD natural orbitals (SADNO) guess, and
the superposition of atomic potentials (SAP) guess that
constructs a guess Fock matrix from a sum of atomic
effective potentials computed at the complete basis set
limit.171,172 With the improvements to SAD and the in-
troduction of the three novel guesses, Psi4 can be applied
even to more challenging open-shell and transition metal
systems. Calculations are now possible even in overcom-
plete basis sets, as redundant basis functions are removed
automatically by default in Psi4 via the pivoted Cholesky
decomposition procedure.173,174

I. TDDFT

We have recently added time-dependent DFT capa-
bilities using either the full TDDFT equations (also
known as the random-phase approximation, RPA) or
the Tamm–Dancoff approximation (TDA).175 The former
yields a generalized eigenvalue problem, and our solver
leverages the Hamiltonian structure of the equations to
ensure robust convergence.176 The latter corresponds to
a Hermitian eigenvalue problem, and we employ a David-
son solver.177 The excitation energies and vectors are ob-
tained from the following generalized eigenvalue problem,
also known as the response eigenvalue problem:

!
A B
B∗ A∗

"!
Xn

Yn

"
= ωn

!
1 0
0 −1

"!
Xn

Yn

"
. (4)

The excitation eigenvectors, (Xn,Yn)
T , provide infor-

mation on the nature of the transitions and can be used
to form spectroscopic observables, such as oscillator and
rotatory strengths. The A and B matrices appearing
on the left-hand side are the blocks of the molecular
electronic Hessian178 whose dimensionality is (ov)2, with
o and v the number of occupied and virtual MOs, re-
spectively. Due to this large dimensionality, rather than
form A and B explicitly, one instead uses subspace it-
eration methods to extract the first few roots. In such
methods, the solutions are expanded in a subspace of
trial vectors bi, and the most compute- and memory-
intensive operations are the formation and storage of the
matrix-vector products (A+B)bi and (A−B)bi. These
matrix-vector products are equivalent to building gener-
alized Fock matrices; the efficient JK-build infrastructure
of Psi4 (Sec. VB) can thus be immediately put to use
also for the calculation of TDDFT excitation energies.
In fact, construction of these product vectors is the only
part written in C++. All other components, including
the subspace iteration techniques, are written in Python
for easy readability and maintainability. Following our
design philosophy, we have written the required subspace
solvers for the response eigenvalue problems in a generic
way, so that they may be reused for future features.

1. Example of Rapid Prototyping

To illustrate the use of Psi4 and Psi4NumPy
to rapidly implement new features, figure 6 shows
an easy oscillator strength implementation at the
Python layer. Excitations are obtained by calling the
tdscf_excitations() function, and dipole moment in-
tegrals are calculated trivially in four lines of code by
accessing the occupied and virtual parts of the SCF coef-
ficient matrix and the dipole moment integrals from Lib-
Mints. The oscillator strengths are then computed from
the MO basis electric dipole moment integrals 〈φa|µ̂|φi〉

12

and the right excitation vectors Xn +Yn:

f =
2

3
ωn

#

u=x,y,z

occ#

i

vir#

a

|(Xn +Yn)ia〈φa|µ̂u|φi〉|2. (5)

Fig. 7 shows an example UV-Vis spectrum using these
oscillator strengths, as fitted by applying a Gaussian-
shaped broadening to the computed excitation energies.
We are also working on the implementation of gauge-
including atomic orbitals (London orbitals) to enable
magnetic response evaluations needed to calculate prop-
erties like optical rotation, electronic circular dichroism,
etc.

VI. SOFTWARE ECOSYSTEM

Like all QC packages, Psi4 strives to continuously ex-
pand its capabilities to advance research both in meth-
ods development and applications. New methods are in-
troduced frequently in electronic structure theory, and
it would be a challenge to implement all the latest ad-
vances. The Psi4 team prefers to encourage the devel-
opment of reusable libraries, so that new methods need
only be implemented once (by the experts), and can then
be adopted by any QC code with merely a short, custom
interface. This ecosystem-building approach has the ad-
vantages of (i) not binding a community library’s use to a
single software package, (ii) encouraging smaller software
projects that are more modular in function and owner-
ship and more localized in (funding) credit, (iii) facili-
tating the propagation of new features and bug fixes by
using a generic interface rather than embedding a code
snapshot. Since v1.1, Psi4 has added new projects to its
ecosystem, contributed back to existing projects, and dis-
gorged some of its own code into projects that are more
tightly defined. Discussed below are a selection of illus-
trative or newly interfaced projects. The full ecosystem
of external, connected software is collected into Table I,
code used by Psi4 (upstream packages), and Table II,
code that uses Psi4 (downstream packages).

A. Sustainability through community libraries

The introduction of Libint2 and LibXC not only pro-
vides new features (see Secs. VG and VA, respectively),
but also results in substantial simplifications to the code
base. The previous version of Libint only provided the
recursion routines, relying on the calling program to pro-
vide the fundamental s-type integrals used as the start-
ing point. There were also restrictions on the angular
momentum ordering among the four centers, requiring
bookkeeping to apply permutations to the resulting in-
tegrals in the case where reorderings were necessary to
satisfy these requirements. Furthermore, Libint1 pro-
vided only the minimal number of integral derivatives
required by translational invariance,239,240 requiring the

calling code to compute the missing terms by applica-
tion of the relationships. The combination of applying
permutations and translational invariance amounted to
over 3000 lines of code in previous Psi4 versions, primar-
ily due to the complexity introduced by second deriva-
tive integrals. In Libint2, the fundamental integrals are
provided and the translational invariance is applied au-
tomatically for derivatives, and the shells can be fed in
in any order of the angular momenta. With these tasks
outsourced to Libint2, the latest Psi4 codebase is sig-
nificantly cleaner and more maintainable.
With the transition to the LibXC131 library for DFT

calculations, in accordance with the modular develop-
ment model, Psi4 gains continuous fixes and new fea-
tures, which is especially important as none of the
primary Psi4 development groups specialize in DFT.
Thanks to LibXC, Psi4 now supports over 400 func-
tionals of various rungs. Final DFT compositions suit-
able for energy() are now defined by LibXC and are
directly subsumed into Psi4’s functional list, making for
more maintainable code. In cooperation with LibXC up-
stream, the Psi4 authors have contributed an alternate
CMake build system and a Python API, PylibXC, to
LibXC, and also provided help in porting to Windows.

B. Launching community libraries

1. QCElemental

When the needs of ongoing research projects out-
grew LibMints’s C++ parsing of molecule specifica-
tion strings, a redesign was implemented in Python and
transferred to QCElemental to serve as the backend
to QCSchema Molecule validation. The resulting code
is easily extensible, mirrors the schema (though with ad-
ditional fields to accomodate Psi4’s Z-Matrix and de-
ferred geometry finalization features), and accepts and
returns dictionary, schema, array, or string-based rep-
resentations. Additionally, it performs strong physics-
based validation and defaulting for masses, mass num-
bers, total and fragment charges and multiplicities, and
basis function ghosting, saving considerable validation
code in Psi4 as a QCElemental client.
QCElemental additionally provides a light Python

interface over NIST CODATA and periodic table data
and other “look-up” quantities like van der Waals and co-
valent radii. By switching toQCElemental API calls in
Psi4’s Python code and using its header-writing utilities
for C++ code, readability has improved, and datasets
are easier to update.

2. QCEngine

Psi4 has long supplemented its internal empirical dis-
persion capabilities (Sec. VC) with external projects,
namely dftd3 and MP2D executables. These were run

13

FIG. 6. Example Python implementation of TDDFT oscillator strengths

import numpy as np
import psi4

Import TDDFT solvers module
from psi4.driver.procrouting.response.scf_response import tdscf_excitations

psi4.set_output_file("tddft.out")
set molecule "mol" here

psi4.set_options({"save_jk": True})
e, wfn = psi4.energy("B3LYP/aug-cc-pvdz", return_wfn=True, molecule=mol)

Dipole moment integrals
mints = psi4.core.MintsHelper(wfn.basisset())
C_L = wfn.Ca_subset("SO", "OCC")
C_R = wfn.Ca_subset("SO", "VIR")
dipole = [psi4.core.triplet(C_L, x, C_R, True, False, False) for x in mints.so_dipole()]

Compute 10 roots per irrep using full TDDFT
rpa = tdscf_excitations(wfn, states_per_irrep=[10], r_tol=1e-3)
Now compute oscillator strengths
spectrum_rpa = []
for omega, (XpY, _), _ in rpa:

edtm = np.array([XpY.vector_dot(u) for u in dipole])
f = 2/3 * omega * np.sum(edtm**2)
spectrum_rpa.append((omega, f))

(6)

TABLE I. Quantum chemistry software that Psi4 can use (upstream interaction).

Softwarea Group Added License Language Comm.b Citec Capability
Upstream Required C-link
Libint1 Valeev v1.0d LGPL-3.0 C C API 163 – two-electron and properties integrals
Libint2 Valeev v1.4 LGPL-3.0 C++ C++ API 164 – two-electron and properties integrals
LibXC Marques v1.2 MPL-2.0 C C API 179 131 definitions, compositions of density functionals
gau2grid Smith v1.2 BSD-3-Cl C/Py C API 180 – Gaussian collocation grids for DFT
Upstream Required Py-link
QCElemental MolSSI v1.3 BSD-3-Cl Py Py API 126 121 physical constants and molecule parsing
QCEngine MolSSI v1.4 BSD-3-Cl Py Py API 127 121 QC schema runner with dispersion & opt engines
Upstream Optional C-link
dkh Reiher v1.0 LGPL-3.0 Fortran C API 181 80,81 relativistic corrections
libefp Slipchenko v1.0e BSD-2-Cl C C API 182 183 fragment potentials
gdma Stone v1.0 GPL-2.0 Fortran C API 184 185 multipole analysis
CheMPS2 Wouters v1.0 GPL-2.0 C++ C++ API 186 187,188 DMRG and multiref. PT2 methods
PCMSolver Frediani v1.0 LGPL-3.0 C++/Fortran C++ API 189 190 polarizable continuum / implicit solvent modeling
erd QTP v1.0d GPL-2.0 Fortran C API 191 192 two-electron integrals
simint Chow v1.1 BSD-3-Cl C C API 193 165 vectorized two-electron integrals
ambit Schaefer v1.2 LGPL-3.0 C++/Py C++ API 194 – tensor manipulations
Upstream Optional Py-link or exe
dftd3 Grimme v1.0 GPL-1.0 Fortran QCSchema 139 142,143 empirical dispersion for HF & DFT
MRCC Kallay v1.0 pty C++/Fortran text file – 35 arbitrary order CC & CI
gCP Grimme v1.1 GPL-1.0 Fortran Py intf./CLI 140 137,138 small-basis corrections
PylibEFP Sherrill v1.3 BSD-3-Cl C++/Py Py API 195 – Python API for libefp
MP2D Beran v1.4 MIT C++ QCSchema 145 144 empirical dispersion for MP2
cppe Dreuw v1.4 LGPL-3.0 C++/Py Py API 196 197 polarizable embedding / explicit solvent modeling
adcc Dreuw v1.4 GPL-3.0+pty C++/Py Py API 198 113 algebraic-diagrammatic construction methods

a Binary distributions available from Anaconda Cloud for all projects except for MRCC. For the channel in conda install <project>
-c <channel>, use psi4 except for adcc from adcc and gau2grid, QCElemental, and QCEngine from conda-forge, the
community packaging channel.

b Means by which Psi4 communicates with project.
c First reference is software repository. Second is theory or software in literature.
d No longer used. Libint1 last supported before v1.4. erd last supported before v1.2.
e Since v1.3, libefp called through PylibEFP.

14

TABLE II. Chemistry software that can use Psi4 (downstream interaction).

Softwarea Group V.b License Language Comm.c Cited Psi4 Provides
Downstream Optional C-link, plugins
v2rdm_casscf DePrince v1.0 GPL-2.0 C++/Fortran C++ API 71 199 backend for variational 2-RDM-driven CASSCF
Forte Evangelista v1.0 LGPL-3.0 C++/Py C++ API 70 68,69 backend for multiref. many-body mtds & sel. CI
CCT3 Piecuch v1.1 LGPL-3.0 Fortran C++ API 200 201,202 backend for actv-sp CCSDt, CC(t;3), CR-CC(2,3)
gpu_dfcc DePrince v1.2 GPL-2.0 C++/Cuda C++ API 203 204 backend for GPU-accelerated DF-CCSD & (T)
Downstream Optional Py-link or exe
WebMO Polik v1.0 pty Java/Perl PSIthon – 205 QC engine for GUI/web server
Molden Schaftenaar v1.0 pty Fortran Molden file 206 207 orbitals for orbital/density visualization
JANPA Bulavin v1.0 BSD-4-Cl Java Molden file 208 209 orbitals for natural population analysis (NPA)
Psi4NumPy Smith v1.1 BSD-3-Cl Py PsiAPI 100 10 QC essentials for rapid prototyping and QC edu.
Psi4Education McDonald v1.1 BSD-3-Cl Py PsiAPI 210 122 QC engine for instructional labs
PsiOMM Sherrill v1.1 BSD-3-Cl Py PsiAPI 211 – self for interface btwn Psi4 and OpenMM
htmd/parameterize Acellera v1.1 pty Py PSIthon 212 213,214 QC engine for force-field parametrization for MD
GPUGrid De Fabritiis v1.1 pty Py PSIthon 215 216 QC torsion scans for MD-at-home
pyREX Derricotte v1.1 BSD-3-Cl Py PsiAPI 217 – engine for reaction coordinate analysis
sns-mp2 D. E. Shaw v1.2 BSD-2-Cl Py PsiAPI 218 219 backend for spin-network-scaled MP2 method
resp Sherrill v1.2 BSD-3-Cl Py PsiAPI 220 115 ESP for restrained ESP (RESP) fitting
QCEngine MolSSI v1.2 BSD-3-Cl Py QCSchema 127 121 QC engine for QC schema runner
QISkit-Aqua IBM v1.2 Apache-2.0 Py PSIthon 221 – engine for quantum computing algorithms
MS Quantum Microsoft v1.2 MIT C#/Q# PsiAPI 222 – engine for quantum computing algorithms
Orion OpenEye v1.2 pty Go/Py PsiAPI – – QC engine for drug-design workflow
CrystaLattE Sherrill v1.2 LGPL-3.0 Py PSIthon 223 224 QC and MBE engine for crystal lattice energies
OpenFermion Google v1.3 Apache-2.0 Py PSIthon 225 226 engine for quantum computing algorithms
OpenFermion-Psi4 Google v1.3 LGPL-3.0 Py PSIthon 227 226 self for interface btwn Psi4 and OpenFermion
QCDB Sherrill v1.3 BSD-3-Cl Py QCSchema 228 – engine for QC common driver
OptKing King v1.3 BSD-3-Cl Py QCSchema 229 – gradients for geometry optimizer
psixas Gryn’ova v1.3 GPL-3.0 Py PsiAPI 230 – backend for X-ray absorption spectra
FockCI Mayhall v1.3 BSD-3-Cl Py PsiAPI 231? 116 CAS engine for Fock-space CI
ASE ASE v1.4 LGPL-2.1 Py PsiAPI 232 233 QC engine for CMS code runner
i-PI Ceriotti v1.4 GPL-3.0 Fortran/Py PsiAPI 234 235 QC gradients for MD runner
MDI MolSSI v1.4 BSD-3-Cl C PsiAPI 236 – QC engine for standardized CMS API
geomeTRIC Wang v1.4e BSD-3-Cl Py QCSchema 237 238 QC gradients for geometry optimizer
QCFractal MolSSI v1.4 BSD-3-Cl Py QCSchema 128 121 QC engine for database and compute manager

a Binary distributions available from Anaconda Cloud for some projects. For the channel in conda install <project> -c <channel>,
use psi4 for v2rdm_casscf, gpu_dfcc, sns-mp2, resp, OpenFermion, and OpenFermion-Psi4; acellera for
htmd/parameterize; and conda-forge, the community packaging channel, for QCEngine, ASE, MDI, geomeTRIC, and
QCFractal.

b Earliest version of Psi4 with which software works.
c Apart from compiled plugins that interact directly with Psi4’s C++ layer, downstream projects use established file formats like
Molden or one of the three input modes of figure 1.

d First reference is software repository. Second is theory or software in literature.
e GeomeTRIC has called Psi4 through PSIthon since v1.0. QCEngine has driven geomeTRIC to drive Psi4 through QCSchema since
v1.3. Psi4 can itself call geomeTRIC through QCSchema since v1.4.

15

Wavelength (nm)

In
te
ns
ity
 (a
rb
. u
ni
ts
)

250 350 400 450300

RPA

TDA

FIG. 7. UV-Vis spectrum of rhodamine 6G at the PBE0/aug-
pcseg-2 level of theory. The spectra computed using
full TDDFT (RPA) and the Tamm–Dancoff approximation
(TDA) are reported in blue and orange, respectively.

via a Python interface that additionally stores fitting and
damping parameters at the per functional level, so that
the programs are used solely for compute and not for
internal parameters. Since operation is independent of
Psi4, the Python interfaces have been adapted to QC-
Schema and moved to the QCEngine repository where
they can be of broader use.

3. Gau2Grid

Improvements to the Psi4 DFT code highlighted a bot-
tleneck at the computation of the collocation matrix be-
tween basis functions and the DFT grid. It was found
that the simple loops existing in Psi4 did not vector-
ize well and exhibited poor cache performance. Much in
the same way that modern two-electron libraries work,
Gau2Grid180 begins with a template engine to assist in
writing unrolled C loops for arbitrary angular momen-
tum and up to third-order derivatives. This template
engine also allows multiple performance strategies to be
employed and adjusted during code generation, depend-
ing on the angular momentum, derivative level of the re-
quested matrix, and the hardware targeted. Gau2Grid
also has a Python interface to allow usage in Python pro-
grams that need fast collocation matrices.

4. PylibEFP

In the course of shifting control of SCF iterations from
C++ to Python, it became clear that the effective frag-
ment potential241,242 (EFP) capabilities through Kali-
man and Slipchenko’s libefp library183 would be con-
venient in Python. Since libefp provides a C interface,
a separate project of essentially two files, PylibEFP,195

wraps it into an importable Python module. PylibEFP
includes a full test suite, convenient EFP input pars-
ing, and an interface amenable to schema communica-
tion (a QCEngine adaptor is in progress). Psi4 em-
ploys PylibEFP for EFP/EFP energies and gradients
and EFP/SCF energies.

C. Selected new features from community libraries

1. adcc

ADC-connect (adcc),113 a hybrid Python/C++
toolkit for excited-state calculations based on the
algebraic-diagrammatic construction scheme for the po-
larization propagator (ADC),243–245 equips Psi4 with
ADC methods (in-memory only) up to third order in
perturbation theory. Expensive tensor operations use
efficient C++ code, while the entire workflow is con-
trolled by Python. Psi4 and adcc can connect in
two ways. First, Psi4 can be the main driver; here,
method keywords are given through the Psi4 input file
and adcc is called in the background. Second, the Psi4
Wavefunction object from a SCF can be passed to adcc
directly in user code; here, there is more flexibility for
complex workflows or for usage in a Jupyter notebook.

2. SNS-MP2

McGibbon and coworkers219 applied a neural network
trained on HF and MP2 IE and SAPT0 terms to pre-
dict system-specific scaling factors for MP2 same- and
opposite-spin correlation energies to define the spin-
network-scaled, SNS-MP2, method. This has been made
available in a Psi4 pure-Python plugin218 so that users
can call energy("sns-mp2"), which manages several QC
calculations and the model prediction in the background,
then returns an IE likely significantly more accurate
than conventional MP2.219 By using Psi4’s export of
wavefunction-level arrays to Python, the developers were
able to speed up calculations through custom density ma-
trix manipulations of basis projection, fragment stacking,
and fragment ghosting.

3. CPPE

Psi4 now supports the polarizable embedding (PE)
model246,247 through the cppe library.197 In the PE
model, interactions with the environment are represented
by a multi-center multipole expansion for electrostatics,
and polarization is modeled through dipole polarizabili-
ties usually located at the expansion points. The inter-
face to the cppe library is entirely written in Python and
supports a fully self-consistent description of polarization
for all SCF methods inside Psi4. In the future, PE will
also be integrated in a fully self-consistent manner for

16

molecular property calculations and TDDFT. Integra-
tion of cppe motivated efficiency improvements to the
electric field integrals and multipole potential integrals,
which also benefit the related EFP method.

4. geomeTRIC

Wang and Song237,238 developed a robust geometry op-
timization procedure to explicitly handle multiple non-
covalently bound fragments using a translation-rotation-
internal coordinate (TRIC) system. Their standalone ge-
ometry optimizer, geomeTRIC, supports multiple QC
packages including Psi4 through a command-line inter-
face. QCEngine offers a geomeTRIC procedure, al-
lowing Psi4 and others to use the new optimizer with
a Python interface. The latest Psi4 release adds native
geomeTRIC support, allowing users to specify the ge-
ometry optimizer within an input, e.g., optimize(...,
engine="geometric").

5. v2rdm_casscf

Psi4 can perform large-scale approximate CASSCF
computations through the v2rdm_casscf plugin,71 which
describes the electronic structure of the active space us-
ing the variational two-electron RDM approach.199,248,249
Version 0.9 of v2rdm_casscf can perform approximate
CASSCF calculations involving active spaces as large as
50 electrons in 50 orbitals199 and is compatible with
both conventional four-center electron repulsion inte-
grals (ERI) and DF/Cholesky decomposition approxi-
mations. Active-space specification in v2rdm_casscf
is consistent with other active-space methods in Psi4,
and users can write RDMs to disk in standard for-
mats (e.g., FCIDUMP) for post-processing or for post-
CASSCF methods. Geometry optimizations using ana-
lytic energy gradients can also be performed (with four-
center ERIs).250 While most use cases of v2rdm_casscf
involve calls to Psi4’s energy() or gradient() func-
tions, key components of the plugin such as RDMs are
also accessible directly through Python.

6. CCT3

The CCT3 plugin200 to Psi4 is capable of executing a
number of closed- and open-shell CC calculations with up
to triply excited (T3) clusters. Among them is the active-
space CC approach abbreviated as CCSDt,251–254 which
approximates full CCSDT by selecting the dominant T3
amplitudes via active orbitals, and the CC(t;3) method,
which corrects the CCSDt energies for the remaining,
predominantly dynamical, triple excitations that have
not been captured by CCSDt.201,202 The CC(t;3) ap-
proach belongs to a larger family of methods that rely

on the generalized form of biorthogonal moment expan-
sions defining the CC(P ;Q) formalism.201,202
The CCSDt method alone is already advantageous,

since it can reproduce electronic energies of near-CCSDT
quality at a small fraction of the computational cost
while accurately describing select multireference situa-
tions, such as single bond breaking. CC(t;3) improves
on the CCSDt energetics even further, being practically
as accurate as full CCSDT for both relative and to-
tal electronic energies at essentially the same cost as
CCSDt. CCSDt and CC(t;3) converge systematically to-
wards CCSDT as the active space is increased.
The CCT3 plugin can also be used to run CCSD and

completely renormalized (CR) CR-CC(2,3) calculations.
This can be done by making the active orbital set (defined
by the user in the input) empty, since in this case CCSDt
= CCSD and CC(t;3) = CR-CC(2,3). We recall that
CR-CC(2,3) is a completely renormalized triples correc-
tion to CCSD, which improves the results obtained with
the conventional CCSD(T) approach without resorting
to any multireference concepts and being at most twice
as expensive as CCSD(T).255–257

VII. DOWNSTREAM ECOSYSTEM

A. Computational Molecular Science Drivers

In addition to the closely associated ecosystem of the
previous section, Psi4 is robust and simple enough that
projects can develop interfaces that use it as a “black
box”, such programs are considered part of the down-
stream ecosystem. Of these, the one exposing the most
Psi4 capabilities is the QCArchive Infrastructure
project QCEngine, which can drive almost any single-
command computation (e.g., gradient or complete basis
set extrapolation, in contrast to a structure optimiza-
tion followed by a frequency calculation) through the
QCSchema specification. By launching Psi4 through
QCFractal, the QCArchive database has stored 18M
computations over the past year and is growing rapidly.
A recent addition is the interface to the Atomic Sim-
ulation Environment232,233 (ASE) through which ener-
gies and gradients are accessible as a Calculator. All
Psi4 capabilities are available in ASE by using the in-
built psi4 module in PsiAPI. Another MolSSI project,
the MolSSI Driver Interface236 (MDI), devised as a light
communication layer to facilitate complex QM/MM and
machine learning workflows, has a Psi4 interface cov-
ering energies and gradients of HF and DFT methods.
Finally, the i-PI universal force engine driver234,235 has
a Psi4 interface covering gradients of most methods.

B. Quantum Computing

Psi4 is also used in several quantum computing pack-
ages to provide orbitals, correlated densities, and molec-

17

ular integrals. Its flexible open-source license (LGPL)
and Python API are factors that have favored its adop-
tion in this area. For example, Psi4 is interfaced to
the open-source quantum computing electronic structure
package OpenFermion225,226 via the OpenFermion-
Psi4 plugin.227 The QISkit Aqua suite of algorithms
for quantum computing developed by IBM221 is also in-
terfaced to Psi4 via input file. The Microsoft Quan-
tum Development Kit222 is another open-source project
that takes advantage of Psi4’s Python interface to gen-
erate molecular integrals and then transform them in the
Broombridge format, a YAML-based quantum chemistry
schema.

C. Aiding Force-Field Development for Pharmaceutical
Infrastructure

Many classical simulation methods have been devel-
oped with the aid of Psi4. As an illustrative exam-
ple, torsion scans have been performed9 using Open-
Eye’s Orion platform to provide a first principles eval-
uation of conformational preferences in crystals, and
related methodology is used by the Open Force Field
consortium258 to parameterize force fields within the
QCArchive framework. Psi4 has also found use in
the development of nascent polarizable, anisotropic force
fields by providing the distributed multipoles and MP2
electrostatic potentials (ESP) needed to parameterize the
AMOEBA force field.259 Moreover, the efficient SAPT
code has been used in many recent developments in ad-
vanced force fields,260 including the emerging successors
to AMOEBA.261,262 In collaboration with Bristol-Myers
Squibb, we performed nearly 10,000 SAPT0 computa-
tions with Psi4 to train a pilot machine-learning model of
hydrogen-bonding interactions,8 and a much larger num-
ber is being computed for a follow-up study.
The restrained electostatic potential (RESP) model263

is a popular scheme for computing atomic charges for
use in force field computations. A Python imple-
mentation was initially contributed to the Psi4NumPy
project, and later an independent open-source package
was developed,115,220 both of which employ Psi4 for
the quantum electrostatic potential. The package sup-
ports the standard two-stage fitting procedure and multi-
conformational fitting and also allows easy specification
of complex charge constraints.

VIII. DEVELOPMENT AND DISTRIBUTION

A choose-your-own-adventure guide to obtaining Psi4
is available at http://psicode.org/downloads. Here,
users and developers can select their operating system
(Linux, Windows, Mac), Python version, then choose be-
tween downloading standalone installers for production-
quality binaries, using the conda264 package manager,
and building the software from source. While standalone

installers are only provided for stable releases, the source
and conda installations also support the development
branch. A new and substantial access improvement has
been the porting of Psi4 to native Windows by one of
the authors (R. G.) for the Acellera company (previ-
ously it was only available via Windows Subsystem for
Linux, WSL) for GPUGrid, a distributed computing
infrastructure for biomedical research.215 This involved
separate ports of the required dependency projects and
introduction of Windows continuous integration to con-
serve compatibility during the course of largely Linux-
based development. The resulting uniform access to Psi4
in a classroom setting has been especially valuable for the
Psi4Education project.
The cultivation of an ecosystem around Psi4 led to

changes in the build system (Sec. 3 of Ref. 1), notably the
maintain-in-pieces build-as-a-whole scheme where up-
stream and downstream dependencies remain in their
own development repositories and are connected to Psi4
through a single-file footprint in the CMake build sys-
tem. Through a “superbuild” setup, Psi4 and ecosys-
tem projects can be flexibly built together upon a single
command and use either pre-built packages or build de-
pendencies from source. For distribution, we rely upon
Anaconda Python (and its associated package manager,
conda), which specializes in cross-platform building and
management of Python/C++/Fortran software for the
scientific community. Conda packages for Linux and Mac
of Psi4 and its dependencies (such that conda install
psi4 -c psi4 yields a working installation) were in place
by v1.1, when 11 packages were built for the psi4 chan-
nel.
Since the v1.1 era, Psi4 developers have focused on

modernization and compatibility. With the release of
conda-build265 v3 in late 2017 supporting enhanced
build recipe language and built-in sysroots, Psi4 has
upgraded to use the same compilers as the founda-
tional Anaconda defaults and community conda-forge
channels. A substantial improvement is that with the
widespread availability of the Intel Math Kernel Library
(MKL) through conda, Psi4 now uses the same libraries
(mkl_rt) as those in packages like NumPy, rather than
statically linking LAPACK, thereby eliminating a sub-
tle source of import errors and numerical discrepancies.
After these improvements, Psi4 today may be installed
without fuss or incompatibility with other complex pack-
ages like Jupyter, OpenMM, and RDKit. While
maintaining compatibility with defaults and conda-forge
channels, Psi4 packages additionally build with Intel
compilers and use flags that simultaneously generate op-
timized code for several architectures so that the same
binary can run on old instruction sets like SSE2 but also
run in an optimal fashion on AVX2 and AVX512. In
keeping with our ecosystem philosophy, Psi4 will help
a project with conda distribution on their own chan-
nel or ours or the community channel, or leave them
alone, whichever level of involvement the developers pre-
fer. We presently manage 23 packages. Since distribut-

http://psicode.org/downloads

18

ing through conda, Psi4 has accumulated 68k package
manager and 93k installer downloads.
With a reliable distribution system for production-

quality binaries to users, Psi4 can allow fairly modern
code standards for developers, including C++14 syntax,
Python 3.6+, and OpenMP 3+. By streamlining the
build, Psi4 can be compiled and tested within time lim-
its on Linux and Windows with multiple compilers. By
performing this continuous integration testing on cloud
services, developers receive quality control feedback on
their proposed code changes. These include: through
testing, rough assurance that changes do not break exist-
ing functionality; through coverage analysis, confidence
that changes are being tested and a notice of testing gaps;
through static analysis, alerts that changes have incorrect
syntax, type mismatches, and more. The last reflects the
advantages of using standard CMake build tools: the
static analysis tool correctly guesses how to build the
Psi4 source purely by examining build-language files in
the repository.

IX. LIMITATIONS

Psi4’s current focus on high-throughput quantum
chemistry on conventional hardware has limited devel-
opment of distributed parallel multi-node computing
capabilities except for independent tasks managed by
QCFractal as described in Sec. IV. GPU support is
also limited beyond the gpu_dfcc module;203,204 how-
ever, due to the plugin structure of Psi4, interfacing a
GPU-based Coulomb (J) and exchange (K) code would
enhance the majority of Psi4’s capabilities, and Psi4 is
in discussions to integrate such a plugin. Several other
features have been requested by users such as advanced
algorithms for transition state searching, implicit solvent
gradients, and additional implicit solvent methods. Be-
yond the above capability weaknesses, a primary down-
side of open-source code is that there is no dedicated user
support. While help can be found through a user forum
at http://forum.psicode.org, a Slack workspace, and
GitHub Issues, this support always comes from volun-
teers, and while questions are answered in the majority
of cases, this is not guaranteed. On the other hand, the
open-source software model empowers do-it-yourself fixes
and extensions for power users and developers.

X. CONCLUSIONS

Psi4 is a freely available, open-source quantum chem-
istry (QC) project with a broad feature set and support
for multi-core parallelism. The density-fitted MP2 and
frozen natural orbital CCSD(T) codes are particularly
efficient, even in comparison with commercial QC pro-
grams. Psi4 provides a number of uncommon features,
including orbital-optimized electron correlation methods,
density cumulant theory, and numerous intermolecular

interaction methods in the symmetry-adapted perturba-
tion theory family. With several input modes — text
file, powerful Python application programming interface,
and structured data — we can serve QC to traditional
users, power users, developers, and database backends.
The rewrite of our driver to work with task lists and
integration with the MolSSI QCArchive Infrastruc-
ture project make Psi4 uniquely positioned for high-
throughput QC.
Our development efforts and capabilities have been

tremendously boosted by the “inversion” of Psi4 into a
Python module at v1.1. We are able to rely more heavily
on Python for driver logic, simplifying export of struc-
tured data and transition to the new distributed driver.
The hybrid C++/Python programming strategy has also
greatly aided development in the multiconfigurational
SCF (MCSCF) and SAPTmodules. We are able to trans-
parently convert between NumPy and Psi4 linear alge-
bra structures and fully access performance-critical C++
classes, facilitating rapid prototyping of novel SAPT and
orbital-optimized MPn methods. We are able to load
into Python scripts and connect easily with other CMS
software like OpenMM and ASE.
Finally, we have fostered a QC software ecosystem

meant to benefit the electronic structure software com-
munity beyond Psi4. Our adoption of the MolSSI QC-
Schema should facilitate interoperability efforts, and our
switch to a more permissive LGPL-3.0 license should aid
developers and users who wish to deploy Psi4 as part of
a larger toolchain or in cloud computing environments.
We sincerely hope that the uptick in reusable software el-
ements will continue in the future, so that new methods
may be adopted quickly by many QC packages simply
by interfacing a common implementation that is contin-
uously updated, rather than developing redundant im-
plementations in every code.

Data Availability

Data sharing is not applicable to this article as no new
data were created or analyzed in this study.

Supplementary Material

See the supplementary material for working equations
for second-order SAPT0 without the single-exchange
(S2) approximation using an atomic orbital formulation
with density fitting.

ACKNOWLEDGMENTS

We are grateful to the contributors of all earlier ver-
sions of the Psi program, as well as to all the develop-
ers of external libraries, plugins, and interfacing projects.

http://forum.psicode.org

19

We thank Professor Piotr Piecuch for providing text de-
scribing the CCT3 plugin. Several of the co-authors
have been supported in their development of Psi4 and
affiliated projects by the U.S. National Science Founda-
tion through grants CHE-1351978, ACI-1449723, CHE-
1566192, ACI-1609842, CHE-1661604, CHE-1554354,
ACI-1547580, and CHE-1900420; by the U.S. Depart-
ment of Energy through grants DE-SC0018412, DE-
SC0016004, and the Office of Basic Energy Sciences Com-
putational Chemical Sciences (CCS) Research Program
grant AL-18-380-057; and by the Exascale Computing
Project grant 17-SC-20-SC, a collaborative effort of the
U.S. Department of Energy Office of Science and the
National Nuclear Security Administration. U. B. ac-
knowledges support from the Scientific and Technolog-
ical Research Council of Turkey (Grants No. TUBITAK-
114Z786, TUBITAK-116Z506, and TUBITAK-118Z916)
and the European Cooperation in Science and Tech-
nology (Grant No. CM1405). The work at the Na-
tional Institutes of Health was supported by the intra-
mural research program of the National Heart, Lung,
and Blood Institute. T. D. C. and The Molecu-
lar Sciences Software Institute acknowledge the Ad-
vanced Research Computing at Virginia Tech for pro-
viding computational resources and technical support.
H. K. is supported by the SYMBIT project (reg. num-
ber: CZ.02.1.01/0.0/0.0/15_003/0000477) financed by
the ERDF. S. L. has been supported by the Academy
of Finland (Suomen Akatemia) through project number
311149. R. D. R. acknowledges partial support by the
Research Council of Norway through its Centres of Ex-
cellence scheme, project number 262695 and through its
Mobility Grant scheme, project number 261873. P. K.
acknowledges support of the Forrest Research Founda-
tion and the Pawsey Supercomputing Centre with fund-
ing from the Australian Government and the Government
of Western Australia. D. G. A. S. also acknowledges the
Open Force Field Consortium and Initiative for financial
and scientific support.

1R. M. Parrish, L. A. Burns, D. G. A. Smith, A. C. Simmon-
ett, A. E. DePrince III, E. G. Hohenstein, U. Bozkaya, A. Y.
Sokolov, R. Di Remigio, R. M. Richard, J. F. Gonthier, A. M.
James, H. R. McAlexander, A. Kumar, M. Saitow, X. Wang,
B. P. Pritchard, P. Verma, H. F. Schaefer III, K. Patkowski,
R. A. King, E. F. Valeev, F. A. Evangelista, J. M. Turney, T. D.
Crawford, and C. D. Sherrill, J. Chem. Theory Comput. 13,
3185 (2017).

2B. Jeziorski, R. Moszynski, and K. Szalewicz, Chem. Rev. 94,
1887 (1994).

3K. Szalewicz, WIREs Comput. Mol. Sci. 2, 254 (2012).
4K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-
Gordon, Chem. Phys. Lett. 157, 479 (1989).

5T. D. Crawford, C. D. Sherrill, E. F. Valeev, J. T. Fermann,
R. A. King, M. L. Leininger, S. T. Brown, C. L. Janssen, E. T.
Seidl, J. P. Kenny, and W. D. Allen, J. Comput. Chem. 28,
1610 (2007).

6J. M. Turney, A. C. Simmonett, R. M. Parrish, E. G. Hohen-
stein, F. A. Evangelista, J. T. Fermann, B. J. Mintz, L. A.
Burns, J. J. Wilke, M. L. Abrams, N. J. Russ, M. L. Leininger,
C. L. Janssen, E. T. Seidl, W. D. Allen, H. F. Schaefer III, R. A.
King, E. F. Valeev, C. D. Sherrill, and T. D. Crawford, WIREs
Comput. Mol. Sci. 2, 556 (2012).

7J. H. Thorpe, C. A. Lopez, T. L. Nguyen, J. H. Baraban, D. H.
Bross, B. Ruscic, and J. F. Stanton, J. Chem. Phys. 150, 224102
(2019).

8D. P. Metcalf, A. Koutsoukas, S. A. Spronk, B. L. Claus, D. A.
Loughney, S. R. Johnson, D. L. Cheney, and C. D. Sherrill, J.
Chem. Phys. 152, 074103 (2020).

9B. K. Rai, V. Sresht, Q. Yang, R. Unwalla, M. Tu, A. M. Math-
iowetz, and G. A. Bakken, J. Chem. Inf. Model. 59, 4195 (2019).

10D. G. A. Smith, L. A. Burns, D. A. Sirianni, D. R. Nascimento,
A. Kumar, A. M. James, J. B. Schriber, T. Zhang, B. Zhang,
A. S. Abbott, E. J. Berquist, M. H. Lechner, L. A. Cunha,
A. G. Heide, J. M. Waldrop, T. Y. Takeshita, A. Alenaizan,
D. Neuhauser, R. A. King, A. C. Simmonett, J. M. Turney,
H. F. Schaefer III, F. A. Evangelista, A. E. DePrince III, T. D.
Crawford, K. Patkowski, and C. D. Sherrill, J. Chem. Theory
Comput. 14, 3504 (2018).

11M. Pitoňák, P. Neogrády, J. Černý, S. Grimme, and P. Hobza,
ChemPhysChem 10, 282 (2009).

12U. Bozkaya and C. D. Sherrill, J. Chem. Phys. 141, 204105
(2014).

13U. Bozkaya, J. Chem. Phys. 141, 124108 (2014).
14M. L. Leininger, W. D. Allen, H. F. Schaefer III, and C. D.
Sherrill, J. Chem. Phys. 112, 9213 (2000).

15S. E. Wheeler, W. D. Allen, and H. F. Schaefer III, J. Chem.
Phys. 128, 074107 (2008).

16T. J. Lee and D. Jayatilaka, Chem. Phys. Lett. 201, 1 (1993).
17A. Szabo and N. S. Ostlund, Modern Quantum Chemistry: In-
troduction to Advanced Electronic Structure Theory (McGraw-
Hill, New York, 1989).

18U. Bozkaya, J. Chem. Phys. 139, 154105 (2013).
19U. Bozkaya, J. Chem. Theory Comput. 10, 2041 (2014).
20U. Bozkaya and A. Ünal, J. Phys. Chem. A 122, 4375 (2018).
21A. E. DePrince III and C. D. Sherrill, J. Chem. Theory Comput.
9, 2687 (2013).

22U. Bozkaya and C. D. Sherrill, J. Chem. Phys. 144, 174103
(2016).

23U. Bozkaya and C. D. Sherrill, J. Chem. Phys. 147, 044104
(2017).

24O. Christiansen, H. Koch, and P. Jørgensen, Chem. Phys. Lett.
243, 409 (1995).

25H. Koch, O. Christiansen, P. Jørgensen, A. M. Sanchez de
Merás, and T. Helgaker, J. Chem. Phys. 106, 1808 (1997).

26A. E. DePrince III and C. D. Sherrill, J. Chem. Theory Comput.
9, 293 (2013).

27C. Sosa, J. Geersten, G. W. Trucks, R. J. Barlett, and J. A.
Franz, Chem. Phys. Lett. 159, 148 (1989).

http://dx.doi.org/10.1021/acs.jctc.7b00174
http://dx.doi.org/10.1021/cr00031a008
http://dx.doi.org/10.1002/wcms.86
http://dx.doi.org/10.1002/jcc.20573
http://dx.doi.org/10.1002/wcms.93
http://dx.doi.org/10.1063/1.5095937
http://dx.doi.org/10.1063/1.5142636
http://dx.doi.org/10.1021/acs.jcim.9b00373
http://dx.doi.org/10.1021/acs.jctc.8b00286
http://dx.doi.org/10.1002/cphc.200800718
http://dx.doi.org/10.1063/1.4902226
http://dx.doi.org/10.1063/1.4896235
http://dx.doi.org/10.1063/1.481764
http://dx.doi.org/10.1063/1.2828523
http://dx.doi.org/10.1016/0009-2614(93)85024-I
http://dx.doi.org/10.1063/1.4825041
http://dx.doi.org/10.1021/ct500186
http://dx.doi.org/10.1021/acs.jpca.8b01851
http://dx.doi.org/10.1021/ct400250u
http://dx.doi.org/10.1063/1.4948318
http://dx.doi.org/10.1063/1.4994918
http://dx.doi.org/10.1016/0009-2614(95)00841-Q
http://dx.doi.org/10.1063/1.473322
http://dx.doi.org/10.1021/ct300780u
http://dx.doi.org/10.1016/0009-2614(89)87399-3

20

28W. Klopper, J. Noga, H. Koch, and T. Helgaker, Theor. Chem.
Acc. 97, 164 (1997).

29A. G. Taube and R. J. Bartlett, Collect. Czech. Chem. Commun.
70, 837 (2005).

30A. Landau, K. Khistyaev, S. Dolgikh, and A. I. Krylov, J.
Chem. Phys. 132, 014109 (2010).

31J. Geertsen, M. Rittby, and R. J. Bartlett, Chem. Phys. Lett.
164, 57 (1989).

32J. F. Stanton and R. J. Bartlett, J. Chem. Phys. 98, 7029 (1993).
33C. E. Smith, R. A. King, and T. D. Crawford, J. Chem. Phys.
122, 054110 (2005).

34T. D. Crawford and P. J. Stephens, J. Phys. Chem. A 112, 1339
(2008).

35M. Kállay, P. R. Nagy, D. Mester, Z. Rolik, G. Samu, J. Csontos,
J. Csóka, P. B. Szabó, L. Gyevi-Nagy, B. Hégely, I. Ladjánszki,
L. Szegedy, B. Ladóczki, K. Petrov, M. Farkas, P. D. Mezei,
and Á. Ganyecz, J. Chem. Phys. 152, 074107 (2020).

36U. Bozkaya, J. M. Turney, Y. Yamaguchi, H. F. Schaefer III,
and C. D. Sherrill, J. Chem. Phys. 135, 104103 (2011).

37U. Bozkaya, J. Chem. Phys. 135, 224103 (2011).
38U. Bozkaya and C. D. Sherrill, J. Chem. Phys. 138, 184103
(2013).

39U. Bozkaya and C. D. Sherrill, J. Chem. Phys. 139, 054104
(2013).

40U. Bozkaya, J. Chem. Theory Comput. 10, 2371 (2014).
41U. Bozkaya, J. Chem. Theory Comput. 12, 1179 (2016).
42U. Bozkaya, Phys. Chem. Chem. Phys. 18, 11362 (2016).
43U. Bozkaya and C. D. Sherrill, J. Comput. Chem. 39, 351
(2018).

44E. G. Hohenstein and C. D. Sherrill, J. Chem. Phys. 132, 184111
(2010).

45E. G. Hohenstein, R. M. Parrish, C. D. Sherrill, J. M. Turney,
and H. F. Schaefer III, J. Chem. Phys. 135, 174107 (2011).

46E. G. Hohenstein and C. D. Sherrill, J. Chem. Phys. 133, 014101
(2010).

47E. G. Hohenstein and C. D. Sherrill, J. Chem. Phys. 133, 104107
(2010).

48R. M. Parrish, E. G. Hohenstein, and C. D. Sherrill, J. Chem.
Phys. 139, 174102 (2013).

49J. F. Gonthier and C. D. Sherrill, J. Chem. Phys. 145, 134106
(2016).

50M. Hapka, P. S. Żuchowski, M. M. Szczęśniak, and
G. Chałasiński, J. Chem. Phys. 137, 164104 (2012).

51P. S. Żuchowski, R. Podeszwa, R. Moszyński, B. Jeziorski, and
K. Szalewicz, J. Chem. Phys. 129, 084101 (2008).

52R. M. Parrish and C. D. Sherrill, J. Chem. Phys. 141, 044115
(2014).

53R. M. Parrish, T. M. Parker, and C. D. Sherrill, J. Chem.
Theory Comput. 10, 4417 (2014).

54R. M. Parrish, J. F. Gonthier, C. Corminboeuf, and C. D.
Sherrill, J. Chem. Phys. 143, 051103 (2015).

55J. A. Pople, M. Head-Gordon, and K. Raghavachari, J. Chem.
Phys. 87, 5968 (1987).

56C. D. Sherrill and H. F. Schaefer III, in Advances in Quantum
Chemistry, Vol. 34, edited by P.-O. Löwdin (Academic Press,
New York, 1999) pp. 143–269.

57J. Olsen, B. O. Roos, P. Jørgensen, and H. J. Aa. Jensen, J.
Chem. Phys. 89, 2185 (1988).

58B. O. Roos, P. R. Taylor, and P. E. M. Siegbahn, Chem. Phys.
48, 157 (1980).

59K. Ruedenberg, M. W. Schmidt, M. M. Gilbert, and S. T.
Elbert, Chem. Phys. 71, 41 (1982).

60P.-Å. Malmqvist, A. Rendell, and B. O. Roos, J. Phys. Chem.
94, 5477 (1990).

61S. R. White and R. L. Martin, J. Chem. Phys. 110, 4127 (1999).
62G. K. L. Chan and M. Head-Gordon, J. Chem. Phys. 116, 4462
(2002).

63S. Wouters, T. Bogaerts, P. V. der Voort, V. V. Speybroeck,
and D. Van Neck, J. Chem. Phys. 140, 241103 (2014).

64S. Wouters, V. V. Speybroeck, and D. Van Neck, J. Chem.
Phys. 145, 054120 (2016).

65F. A. Evangelista, E. Prochnow, J. Gauss, and H. F. Schaefer
III, J. Chem. Phys. 132, 074107 (2010).

66F. A. Evangelista, A. C. Simmonett, H. F. Schaefer III,
D. Mukherjee, and W. D. Allen, Phys. Chem. Chem. Phys.
11, 4728 (2009).

67M. Kállay, Z. Rolik, J. Csontos, I. Ladjánski, L. Szegedy,
B. Ladóczki, G. Samu, K. Petrov, M. Farkas, P. Nagy,
D. Mester, and B. Hégely, “MRCC, a quantum chemical pro-
gram suite. see: http://www.mrcc.hu.”.

68J. B. Schriber, K. P. Hannon, C. Li, and F. A. Evangelista, J.
Chem. Theory Comput. 14, 6295 (2018).

69C. Li and F. A. Evangelista, Ann. Rev. Phys. Chem. 70, 245
(2019).

70J. B. Schriber, K. Hannon, York, T. Zhang, and F. A.
Evangelista, Forte: a suite of quantum chemistry methods
for strongly correlated electrons. For the current version, see
https://github.com/evangelistalab/forte (accessed January
2020).

71J. Fosso-Tande and A. E. DePrince III, v2rdm_casscf: a
variational 2-RDM-driven CASSCF plugin to Psi4. For the
current version, see https://github.com/edeprince3/v2rdm_
casscf (accessed January 2020).

72W. Kutzelnigg, J. Chem. Phys. 125, 171101 (2006).
73A. C. Simmonett, J. J. Wilke, H. F. Schaefer III, andW. Kutzel-
nigg, J. Chem. Phys. 133, 174122 (2010).

74A. Y. Sokolov, A. C. Simmonett, and H. F. Schaefer III, J.
Chem. Phys. 138, 024107 (2013).

75A. Y. Sokolov and H. F. Schaefer III, J. Chem. Phys. 139,
204110 (2013).

76A. Y. Sokolov, H. F. Schaefer III, and W. Kutzelnigg, J. Chem.
Phys. 141, 074111 (2014).

77A. V. Copan, A. Y. Sokolov, and H. F. Schaefer III, J. Chem.
Theory Comput. 10, 2389 (2014).

78J. W. Mullinax, A. Y. Sokolov, and H. F. Schaefer III, J. Chem.
Theory Comput. 11, 2487 (2015).

79A. Y. Sokolov, J. J. Wilke, A. C. Simmonett, and H. F. Schaefer
III, J. Chem. Phys. 137, 054105 (2012).

80A. Wolf, M. Reiher, and B. A. Hess, J. Chem. Phys. 117, 9215
(2002).

81M. Reiher and A. Wolf, J. Chem. Phys. 121, 10945 (2004).
82K. G. Dyall, J. Chem. Phys. 106, 9618 (1997).
83K. G. Dyall, J. Chem. Phys. 115, 9136 (2001).
84W. Kutzelnigg, Chem. Phys. 225, 203 (1997).
85W. Kutzelnigg and W. Liu, J. Chem. Phys. 123, 241102 (2005).
86W. Kutzelnigg and W. Liu, Mol. Phys. 104, 2225 (2006).
87W. Liu and W. Kutzelnigg, J. Chem. Phys. 126, 114107 (2007).
88W. Liu and D. Peng, J. Chem. Phys. 131, 031104 (2009).
89M. Iliaš and T. Saue, J. Chem. Phys. 126, 064102 (2007).
90W. Zou, M. Filatov, and D. Cremer, J. Chem. Phys. 134,
244117 (2011).

91L. Cheng and J. Gauss, J. Chem. Phys. 135, 084114 (2011).
92P. Verma, W. D. Derricotte, and F. A. Evangelista, J. Chem.
Theory Comput. 12, 144 (2016).

93A. L. L. East and W. D. Allen, J. Chem. Phys. 99, 4638 (1993).
94A. G. Császár, W. D. Allen, and H. F. Schaefer III, J. Chem.
Phys. 108, 9751 (1998).

95P. Kraus and I. Frank, Int. J. Quantum Chem. 119, e25953
(2019).

96S. F. Boys and F. Bernardi, Mol. Phys. 19, 553 (1970).
97B. H. Wells and S. Wilson, Chemical physics letters 101, 429
(1983).

98P. Valiron and I. Mayer, Chem. Phys. Lett. 275, 46 (1997).
99S. van der Walt, S. C. Colbert, and G. Varoquaux, Computing
in Science Engineering 13, 22 (2011).

100D. G. A. Smith, Psi4NumPy: combining Psi4 and NumPy for
education and development. For the current version, see https:
//github.com/psi4/psi4numpy (accessed January 2020).

http://dx.doi.org/10.1063/1.3276630
http://dx.doi.org/10.1016/0009-2614(89)85202-9
http://dx.doi.org/10.1063/1.1835953
http://dx.doi.org/10.1021/jp0774488
http://dx.doi.org/10.1063/1.5142048
http://dx.doi.org/10.1063/1.3631129
http://dx.doi.org/10.1063/1.3665134
http://dx.doi.org/10.1063/1.4803662
http://dx.doi.org/10.1063/1.4816628
http://dx.doi.org/10.1021/ct500231c
http://dx.doi.org/10.1021/acs.jctc.5b01128
http://dx.doi.org/10.1039/c6cp00164e
http://dx.doi.org/10.1002/jcc.25122
http://dx.doi.org/10.1063/1.3426316
http://dx.doi.org/10.1063/1.3656681
http://dx.doi.org/10.1063/1.3451077
http://dx.doi.org/10.1063/1.3479400
http://dx.doi.org/http://dx.doi.org/10.1063/1.4826520
http://dx.doi.org/10.1063/1.4963385
http://dx.doi.org/10.1063/1.4758455
http://dx.doi.org/http://dx.doi.org/10.1063/1.4889855
http://dx.doi.org/10.1021/ct500724p
http://dx.doi.org/http://dx.doi.org/10.1063/1.4927575
http://dx.doi.org/10.1063/1.1449459
http://dx.doi.org/10.1063/1.4885815
http://dx.doi.org/10.1063/1.4959817
http://dx.doi.org/10.1063/1.3305335
http://dx.doi.org/10.1039/b822910d
http://www.mrcc.hu
http://dx.doi.org/10.1021/acs.jctc.8b00877
http://dx.doi.org/10.1146/annurev-physchem-042018-052416
https://github.com/evangelistalab/forte
https://github.com/edeprince3/v2rdm_casscf
http://dx.doi.org/10.1063/1.1515314
http://dx.doi.org/10.1063/1.1818681
http://dx.doi.org/10.1002/qua.25953
http://dx.doi.org/10.1016/S0009-2614(97)00689-1
http://dx.doi.org/10.1109/MCSE.2011.37
https://github.com/psi4/psi4numpy

21

101O. J. Backhouse, M. Nusspickel, and G. H. Booth, J. Chem.
Theory Comput. 16, 1090 (2020).

102H. R. Grimsley, S. E. Economou, E. Barnes, and N. J. Mayhall,
Nat. Commun. , 3007 (2019).

103M. Kodrycka, C. Holzer, W. Klopper, and K. Patkowski, J.
Chem. Theory Comput. 15, 5965 (2019).

104D. Claudino and N. J. Mayhall, J. Chem. Theory Comput. 15,
6085 (2019).

105W. D. Derricotte, J. Phys. Chem. A 123, 7881 (2019).
106T. Zhang, C. Li, and F. A. Evangelista, J. Chem. Theory Com-

put. 15, 4399 (2019).
107J. M. Waldrop and K. Patkowski, J. Chem. Phys. 150, 074109

(2019).
108J. A. Rackers and J. W. Ponder, J. Chem. Phys. 150, 084104

(2019).
109H. E. Sauceda, S. Chmiela, I. Poltavsky, K.-R. Müller, and

A. Tkatchenko, J. Chem. Phys. 150, 114102 (2019).
110J. T. Margraf, C. Kunkel, and K. Reuter, J. Chem. Phys. 150,

244116 (2019).
111T. D. Crawford, A. Kumar, A. P. Bazanté, and R. Di Remigio,

WIREs Comput. Mol. Sci. 9, e1406 (2019).
112C. Zanchi, G. Longhi, S. Abbate, G. Pellegrini, P. Biagioni, and

M. Tommasini, Applied Sciences 9, 4691 (2019).
113M. F. Herbst, M. Scheurer, T. Fransson, D. R. Rehn, and

A. Dreuw, WIREs Comput. Mol. Sci. , e1462 (2020).
114Z. Rinkevicius, X. Li, O. Vahtras, K. Ahmadzadeh, M. Brand,

M. Ringholm, N. H. List, M. Scheurer, M. Scott, A. Dreuw, and
P. Norman, WIREs Comput. Mol. Sci. , e1457 (2019).

115A. Alenaizan, L. A. Burns, and C. D. Sherrill, Int. J. Quantum
Chem. 120, e26035 (2020).

116S. E. Houck and N. J. Mayhall, J. Chem. Theory Comput. 15,
2278 (2019).

117J. Townsend and K. D. Vogiatzis, J. Phys. Chem. Lett. 10, 4129
(2019).

118T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bus-
sonnier, J. Frederic, K. Kelley, J. Hamrick, J. Grout, S. Corlay,
P. Ivanov, D. Avila, S. Abdalla, and C. Willing, in Positioning
and Power in Academic Publishing: Players, Agents and Agen-
das, edited by F. Loizides and B. Schmidt (IOS Press, 2016) pp.
87 – 90.

119A. Krylov, T. L. Windus, T. Barnes, E. Marin-Rimoldi, J. A.
Nash, B. Pritchard, D. G. A. Smith, D. Altarawy, P. Saxe,
C. Clementi, T. D. Crawford, R. J. Harrison, S. Jha, V. S.
Pande, and T. Head-Gordon, J. Chem. Phys. 149, 180901
(2018).

120D. G. A. Smith, L. A. Burns, D. Altarawy, L. Naden, and
M. Welborn, QCArchive: A central source to compile, ag-
gregate, query, and share quantum chemistry data. https:
//qcarchive.molssi.org (accessed January 2020). ().

121D. G. A. Smith, D. Altarawy, L. A. Burns, M. Welborn, L. N.
Naden, L. Ward, and S. Ellis, WIREs Comput. Mol. Sci. , in
review (2020).

122R. C. Fortenberry, A. R. McDonald, T. D. Shepherd,
M. Kennedy, and C. D. Sherrill, in The Promise of Chemical
Education: Addressing our Students’ Needs, Vol. 1193, edited
by K. Daus and R. Rigsby (American Chemical Society, Wash-
ington, D.C., 2015) pp. 85–98.

123D. A. Sirianni, A. Alenaizan, D. L. Cheney, and C. D. Sherrill,
J. Chem. Theory Comput. 14, 3004 (2018).

124L. A. Burns, J. C. Faver, Z. Zheng, M. S. Marshall, D. G. A.
Smith, K. Vanommeslaeghe, A. D. MacKerell, K. M. Merz, and
C. D. Sherrill, J. Chem. Phys. 147, 161727 (2017).

125D. G. A. Smith, B. de Jong, L. A. Burns, G. Hutchison, and
M. D. Hanwell, QCSchema: a schema for quantum chem-
istry. For the current version, see https://github.com/MolSSI/
QCSchema (accessed January 2020). ().

126D. G. A. Smith, L. A. Burns, L. Naden, and M. Wel-
born, QCElemental: periodic table, physical constants, and
molecule parsing for quantum chemistry. For the current ver-
sion, see https://github.com/MolSSI/QCElemental (accessed

January 2020). ().
127D. G. A. Smith, S. Lee, L. A. Burns, and M. Welborn,

QCEngine: quantum chemistry program executor and IO
standardizer (QCSchema). For the current version, see https:
//github.com/MolSSI/QCEngine (accessed January 2020). ().

128D. G. A. Smith, M. Welborn, D. Altarawy, and L. Naden,
QCFractal: a distributed compute and database platform
for quantum chemistry. For the current version, see https:
//github.com/MolSSI/QCFractal (accessed January 2020). ().

129J. P. Kenny, C. L. Janssen, E. F. Valeev, and T. L. Windus, J.
Comput. Chem. 29, 562 (2008).

130I. Naoki, MessagePack-Python: MessagePack serializer im-
plementation for Python. For the current version, see https://
github.com/msgpack/msgpack-python (accessed January 2020).
For the originating project, see https://msgpack.org/.

131S. Lehtola, C. Steigemann, M. J. Oliveira, and M. A. Marques,
SoftwareX 7, 1 (2018).

132N. Mardirossian and M. Head-Gordon, J. Chem. Phys. 144,
214110 (2016).

133J. Sun, A. Ruzsinszky, and J. P. Perdew, Phys. Rev. Lett. 115,
036402 (2015).

134Due to a memory estimation error (since corrected), part of
the v1.3.2 B3LYP computation uses the less-efficient Disk_DF
algorithm for SCF, even though the job fits in memory, hence
the non-monotonic decrease in timings with respect to releases.
Figures like this are now routinely constructed before releases
to prevent similar regressions in the future.

135P. Jurečka, J. Šponer, J. Černý, and P. Hobza, Phys. Chem.
Chem. Phys. 8, 1985 (2006).

136J. Řezáč and P. Hobza, J. Chem. Theory Comput. 9, 2151
(2013).

137R. Sure and S. Grimme, J. Comput. Chem. 34, 1672 (2013).
138S. Grimme, J. G. Brandenburg, C. Bannwarth, and A. Hansen,

J. Chem. Phys. 143, 054107 (2015).
139S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, dftd3: dis-

persion correction for DFT, Hartree–Fock, and semi-empirical
quantum chemical methods. For the current version, see
https://github.com/loriab/dftd3 (accessed January 2020).
For the originating project, see https://www.chemie.uni-bonn.
de/pctc/mulliken-center/software/dft-d3.

140H. Kruse and S. Grimme, gCP: geometrical counterpoise cor-
rection for DFT and Hartree–Fock quantum chemical methods.
For the current version, see https://www.chemie.uni-bonn.de/
pctc/mulliken-center/software/gcp/gcp (accessed January
2020).

141S. Grimme, J. Comput. Chem. 27, 1787 (2006).
142S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys.

132, 154104 (2010).
143D. G. A. Smith, L. A. Burns, K. Patkowski, and C. D. Sherrill,

J. Phys. Chem. Lett. 7, 2197 (2016).
144J. Řezáč, C. Greenwell, and G. J. O. Beran, J. Chem. Theory

Comput. 14, 4711 (2018).
145C. Greenwell, MP2D: a program for calculating the MP2D dis-

persion energy. For the current version, see https://github.
com/Chandemonium/MP2D (accessed January 2020).

146W. Hujo and S. Grimme, J. Chem. Theory Comput. 7, 3866
(2011).

147D. A. Sirianni, D. G. A. Smith, L. A. Burns, D. F. Sitkoff,
D. L. Cheney, and C. D. Sherrill, “Optimized Damping Parame-
ters for Empirical Dispersion Corrections to Symmetry-Adapted
Perturbation Theory,” in preparation.

148T. Warne, P. C. Edwards, A. S. Doré, A. G. W. Leslie, and
C. G. Tate, Science 364, 775 (2019).

149A. J. Misquitta, R. Podeszwa, B. Jeziorski, and K. Szalewicz,
J. Chem. Phys. 123, 214103 (2005).

150A. Heßelmann, G. Jansen, and M. Schütz, J. Chem. Phys. 122,
014103 (2005).

151H. L. Williams and C. F. Chabalowski, J. Phys. Chem. A 105,
646 (2001).

http://dx.doi.org/10.1021/acs.jctc.9b01182
http://dx.doi.org/10.1038/s41467-019-10988-2
http://dx.doi.org/10.1021/acs.jctc.9b00547
http://dx.doi.org/10.1021/acs.jctc.9b00682
http://dx.doi.org/10.1021/acs.jpca.9b06865
http://dx.doi.org/10.1021/acs.jctc.9b00353
http://dx.doi.org/10.1063/1.5086079
http://dx.doi.org/10.1063/1.5081060
http://dx.doi.org/10.1063/1.5078687
http://dx.doi.org/10.1063/1.5094788
http://dx.doi.org/10.1002/wcms.1406
http://dx.doi.org/10.3390/app9214691
http://dx.doi.org/10.1002/wcms.1462
http://dx.doi.org/10.1002/wcms.1457
http://dx.doi.org/10.1002/qua.26035
http://dx.doi.org/10.1021/acs.jctc.8b01268
http://dx.doi.org/10.1021/acs.jpclett.9b01442
http://dx.doi.org/10.1063/1.5052551
https://qcarchive.molssi.org
http://dx.doi.org/10.1021/bk-2015-1193.ch007
http://dx.doi.org/10.1021/acs.jctc.8b00114
http://dx.doi.org/10.1063/1.5001028
https://github.com/MolSSI/QCSchema
https://github.com/MolSSI/QCElemental
https://github.com/MolSSI/QCEngine
https://github.com/MolSSI/QCFractal
http://dx.doi.org/10.1002/jcc.20815
https://github.com/msgpack/msgpack-python
https://msgpack.org/
http://dx.doi.org/https://doi.org/10.1016/j.softx.2017.11.002
http://dx.doi.org/10.1063/1.4952647
http://dx.doi.org/10.1103/PhysRevLett.115.036402
http://dx.doi.org/10.1039/B600027D
http://dx.doi.org/10.1021/ct400057w
http://dx.doi.org/10.1002/jcc.23317
http://dx.doi.org/10.1063/1.4927476
https://github.com/loriab/dftd3
https://www.chemie.uni-bonn.de/pctc/mulliken-center/software/dft-d3
https://www.chemie.uni-bonn.de/pctc/mulliken-center/software/gcp/gcp
http://dx.doi.org/10.1063/1.3382344
http://dx.doi.org/10.1021/acs.jpclett.6b00780
http://dx.doi.org/10.1021/acs.jctc.8b00548
https://github.com/Chandemonium/MP2D
http://dx.doi.org/10.1021/ct200644w
http://dx.doi.org/10.1126/science.aau5595
http://dx.doi.org/10.1063/1.2135288
http://dx.doi.org/10.1021/jp003883p

22

152M. Grüning, O. V. Gritsenko, S. J. A. van Gisbergen, and E. J.
Baerends, J. Chem. Phys. 114, 652 (2001).

153A. Hesselmann and G. Jansen, Chem. Phys. Lett. 367, 778
(2003).

154R. Podeszwa, R. Bukowski, and K. Szalewicz, J. Chem. Theory
Comput. 2, 400 (2006).

155R. Bukowski, R. Podeszwa, and K. Szalewicz, Chem. Phys.
Lett. 414, 111 (2005).

156G. Jansen, WIREs Comput. Mol. Sci. 4, 127 (2014).
157R. Schäffer and G. Jansen, Theor. Chem. Acc. 131, 1235 (2012).
158R. Schäffer and G. Jansen, Mol. Phys. 111, 2570 (2013).
159K. Patkowski, WIREs Comput. Mol. Sci. , e1452 (2020).
160K. U. Lao, R. Schäffer, G. Jansen, and J. M. Herbert, J. Chem.

Theory Comput. 11, 2473 (2015).
161T. M. Parker, L. A. Burns, R. M. Parrish, A. G. Ryno, and

C. D. Sherrill, J. Chem. Phys. 140, 094106 (2014).
162K. Patkowski, P. S. Żuchowski, and D. G. A. Smith, J. Chem.

Phys. 148, 164110 (2018).
163E. F. Valeev and J. T. Fermann, Libint: a library for the evalu-

ation of molecular integrals of many-body operators over Gaus-
sian functions, For the current version, see https://github.
com/evaleev/libint/tree/v1 (accessed January 2020).

164E. F. Valeev, Libint: a library for the evaluation of molecular
integrals of many-body operators over Gaussian functions, For
the current version, see https://github.com/evaleev/libint
(accessed January 2020). For the originating project, see http:
//libint.valeyev.net/.

165B. P. Pritchard and E. Chow, J. Comp. Chem. 37, 2537 (2016).
166H. Huang and E. Chow, in SC18: The International Confer-

ence for High Performance Computing, Networking, Storage
and Analysis (IEEE Press, 2018) pp. 1–14.

167J. Almlöf, K. Faegri Jr., and K. Korsell, J. Comput. Chem. 3,
385 (1982).

168J. H. Van Lenthe, R. Zwaans, H. J. J. Van Dam, and M. F.
Guest, J. Comput. Chem. 27, 926 (2006).

169M. Wolfsberg and L. Helmholz, J. Chem. Phys. 20, 837 (1952).
170S. Lehtola, J. Chem. Theory Comput. 15, 1593 (2019).
171S. Lehtola, Int. J. Quantum Chem. 119, e25945 (2019).
172S. Lehtola, Phys. Rev. A 101, 012516 (2020).
173S. Lehtola, J. Chem. Phys. 151, 241102 (2019).
174S. Lehtola, Phys. Rev. A 101, 032504 (2020).
175A. Dreuw and M. Head-Gordon, Chem. Rev. 105, 4009 (2005).
176R. E. Stratmann, G. E. Scuseria, and M. J. Frisch, J. Chem.

Phys. 109, 8218 (1998).
177E. R. Davidson, J. Comp. Phys. 17, 87 (1975).
178P. Norman, K. Ruud, and T. Saue, Principles and Practices

of Molecular Properties: Theory, Modeling, and Simulations
(John Wiley & Sons, 2018).

179M. Marques, S. Lehtola, M. Oliveira, X. Andrade, and
D. Strubbe, LibXC: a library of exchange-correlation function-
als for density-functional theory. For the current version, see
https://gitlab.com/libxc/libxc (accessed January 2020). ().

180D. G. A. Smith, L. A. Burns, and A. C. Simmonett, gau2grid:
fast computation of a gaussian and its derivative on a grid.
For the current version, see https://github.com/dgasmith/
gau2grid (accessed January 2020).

181A. Wolf, M. Reiher, and B. A. Hess, dkh: Wolf, Reiher, and
Hess’s Douglas-Kroll-Hess relativistic correction. For the current
version, see https://github.com/psi4/dkh (accessed January
2020). For originating project, see http://www.reiher.ethz.
ch/software/dkh-x2c.html.

182I. Kaliman, libefp: parallel implementation of the effective
fragment potential method. For the current version, see https:
//github.com/ilyak/libefp (accessed January 2020).

183I. A. Kaliman and L. V. Slipchenko, J. Comput. Chem. 34, 2284
(2013).

184A. J. Stone, GDMA: a program to perform distributed multi-
pole analysis. For the current version, see https://github.com/
psi4/gdma (accessed January 2020). For originating project, see
http://www-stone.ch.cam.ac.uk/programs.html.

185A. J. Stone, J. Chem. Theory Comput. 1, 1128 (2005).
186S. Wouters, CheMPS2: a spin-adapted implementation of

DMRG for ab initio quantum chemistry. For the current ver-
sion, see https://github.com/SebWouters/CheMPS2 (accessed
January 2020).

187S. Wouters, W. Poelmans, P. W. Ayers, and D. Van Neck,
Comput. Phys. Commun. 185, 1501 (2014).

188S. Wouters and D. Van Neck, Eur. Phys. J. D 68, 272 (2014).
189R. D. Remigio and L. Frediani, PCMSolver: an API for

the polarizable continuum model. For the current version, see
https://github.com/PCMSolver/pcmsolver (accessed January
2020).

190R. Di Remigio, K. Mozgawa, H. Cao, V. Weijo, and L. Frediani,
J. Chem. Phys. 144, 124103 (2016).

191N. Flocke and V. Lotrich, erd: ACESIII electron repulsion
integrals. For the current version, see https://github.com/
psi4/erd (accessed January 2020). For originating project, see
http://www.qtp.ufl.edu/Aces/.

192N. Flocke and V. Lotrich, J. Comput. Chem. 29, 2722 (2008).
193B. P. Pritchard and E. Chow, simint: a code generator for vec-

torized integrals. For the current version, see https://github.
com/simint-chem/simint-generator (accessed January 2020).

194J. M. Turney, ambit: a C++ library for the implementation of
tensor product calculations through a clean, concise user inter-
face. For the current version, see https://github.com/jturney/
ambit (accessed January 2020).

195L. A. Burns, PylibEFP: a python wrapper to libefp library for
effective fragment potentials. For the current version, see https:
//github.com/loriab/pylibefp (accessed January 2020).

196M. Scheurer, cppe: C++ and Python library for polarizable
embedding. For the current version, see https://github.com/
maxscheurer/cppe (accessed January 2020).

197M. Scheurer, P. Reinholdt, E. R. Kjellgren, J. M. H. Olsen,
A. Dreuw, and J. Kongsted, J. Chem. Theory Comput. 15,
6154 (2019).

198M. F. Herbst and M. Scheurer, adcc: Seamlessly connect your
program to ADC. For the current version, see https://github.
com/adc-connect/adcc (accessed January 2020).

199J. Fosso-Tande, T.-S. Nguyen, G. Gidofalvi, and A. E. DePrince
III, J. Chem. Theory Comput. 12, 2260 (2016).

200J. E. Deustua, J. Shen, and P. Piecuch, CCT3: a Psi4 plugin
which performs active-space coupled-cluster CCSDt calculations
and which can determine noniterative corrections to CCSDt
defining the CC(t;3) approach. For the current version, see
https://github.com/piecuch-group/psi4_cct3 (accessed Jan-
uary 2020).

201J. Shen and P. Piecuch, Chem. Phys. 401, 180 (2012).
202J. Shen and P. Piecuch, J. Chem. Phys. 136, 144104 (2012).
203A. E. DePrince III, gpu_dfcc: GPU-accelerated coupled clus-

ter with density fitting. For the current version, see https:
//github.com/edeprince3/gpu_dfcc (accessed January 2020).

204A. E. DePrince III, M. R. Kennedy, B. G. Sumpter, and C. D.
Sherrill, Mol. Phys. 112, 844 (2014).

205Schmidt, J. R.; Polik, W. F. WebMO 17, WebMO, LLC: Hol-
land, MI, 2016. http://www.webmo.net.

206G. Schaftenaar and J. H. Noordik, Molden: a pre- and
post-processing program for molecular and electronic struc-
tures. For the current version, see ftp://ftp.cmbi.umcn.nl/
pub/molgraph/molden (accessed January 2020).

207G. Schaftenaar and J. H. Noordik, J. Comput. Aided Mol. Des.
14, 123 (2000).

208T. Y. Nikolaienko, JANPA: A Cross-platform open-source im-
plementation of NPA and other electronic structure analysis
methods with Java. For the current version, see http://janpa.
sourceforge.net (accessed January 2020).

209T. Y. Nikolaienko, L. A. Bulavin, and D. M. Hovorun, Comput.
Theor. Chem. 1050, 15 (2014).

210A. Ringer McDonald, D. B. Magers, F. Heidar-Zadeh, T. Shep-
herd, and V. H. Chavez, Psi4Education: teaching chemistry
through computation. For the current version, see https://

http://dx.doi.org/10.1063/1.1327260
http://dx.doi.org/10.1016/S0009-2614(02)01796-7
http://dx.doi.org/10.1021/ct050304h
http://dx.doi.org/10.1016/j.cplett.2005.08.048
http://dx.doi.org/10.1002/wcms.1164
http://dx.doi.org/10.1007/s00214-012-1235-6
http://dx.doi.org/10.1080/00268976.2013.827253
http://dx.doi.org/10.1002/wcms.1452
http://dx.doi.org/10.1021/ct5010593
http://dx.doi.org/10.1063/1.4867135
http://dx.doi.org/10.1063/1.5021891
https://github.com/evaleev/libint/tree/v1
https://github.com/evaleev/libint
http://libint.valeyev.net/
http://dx.doi.org/10.1002/jcc.24483
http://dx.doi.org/https://doi.org/10.1109/SC.2018.00044
http://dx.doi.org/10.1002/jcc.540030314
http://dx.doi.org/10.1002/jcc.20393
http://dx.doi.org/10.1063/1.1700580
http://dx.doi.org/10.1021/acs.jctc.8b01089
http://dx.doi.org/10.1002/qua.25945
http://dx.doi.org/10.1103/PhysRevA.101.012516
http://dx.doi.org/10.1063/1.5139948
http://dx.doi.org/10.1103/PhysRevA.101.032504
http://dx.doi.org/10.1021/cr0505627
http://dx.doi.org/10.1063/1.477483
http://dx.doi.org/10.1016/0021-9991(75)90065-0
http://dx.doi.org/10.1002/9781118794821
https://gitlab.com/libxc/libxc
https://github.com/dgasmith/gau2grid
https://github.com/psi4/dkh
http://www.reiher.ethz.ch/software/dkh-x2c.html
https://github.com/ilyak/libefp
http://dx.doi.org/10.1002/jcc.23375
https://github.com/psi4/gdma
http://www-stone.ch.cam.ac.uk/programs.html
http://dx.doi.org/10.1021/ct050190+
https://github.com/SebWouters/CheMPS2
http://dx.doi.org/10.1016/j.cpc.2014.01.019
http://dx.doi.org/10.1140/epjd/e2014-50500-1
https://github.com/PCMSolver/pcmsolver
http://dx.doi.org/10.1063/1.4943782
https://github.com/psi4/erd
http://www.qtp.ufl.edu/Aces/
http://dx.doi.org/10.1002/jcc.21018
https://github.com/simint-chem/simint-generator
https://github.com/jturney/ambit
https://github.com/loriab/pylibefp
https://github.com/maxscheurer/cppe
http://dx.doi.org/10.1021/acs.jctc.9b00758
https://github.com/adc-connect/adcc
http://dx.doi.org/10.1021/acs.jctc.6b00190
https://github.com/piecuch-group/psi4_cct3
http://dx.doi.org/10.1016/j.chemphys.2011.11.033
http://dx.doi.org/10.1063/1.3700802
https://github.com/edeprince3/gpu_dfcc
http://dx.doi.org/10.1080/00268976.2013.874599
http://www.webmo.net
ftp://ftp.cmbi.umcn.nl/pub/molgraph/molden
http://dx.doi.org/10.1023/A:1008193805436
http://janpa.sourceforge.net
http://dx.doi.org/10.1016/j.comptc.2014.10.002

23

github.com/Psi4Education/psi4education (accessed January
2020).

211M. Zott, PsiOMM: an interface between Psi4 and OpenMM.
For the current version, see https://github.com/mzott/
Psi4-OpenMM-Interface (accessed January 2020).

212S. Doerr, J. M. Damas, and R. Galvelis, HTMD: Programming
Environment for Molecular Discovery. For the current version,
see https://github.com/Acellera/htmd and https://github.
com/Acellera/parameterize (accessed January 2020).

213S. Doerr, M. J. Harvey, F. Noé, and G. D. Fabritiis, J. Chem.
Theory Comput. 12, 1845 (2016).

214R. Galvelis, S. Doerr, J. M. Damas, M. J. Harvey, and
G. De Fabritiis, J. Chem. Inf. Model. 59, 3485 (2019).

215I. Buch, M. J. Harvey, T. Giorgino, D. P. Anderson,
and G. De Fabritiis, GPUGRID: volunteer computing for
biomedicine. For the current version, see http://gpugrid.net/
(accessed January 2020).

216I. Buch, M. J. Harvey, T. Giorgino, D. P. Anderson, and
G. De Fabritiis, J. Chem. Inf. Model. 50, 397 (2010).

217W. Derricotte, pyREX: a Reaction Energy eXtension for ab
initio quantum chemistry. For the current version, see https:
//github.com/WDerricotte/pyrex (accessed January 2020).

218R. T. McGibbon, sns-mp2: spin-network-scaled MP2. For
the current version, see https://github.com/DEShawResearch/
sns-mp2 (accessed January 2020).

219R. T. McGibbon, A. G. Taube, A. G. Donchev, K. Siva,
F. Hernández, C. Hargus, K.-H. Law, J. L. Klepeis, and D. E.
Shaw, J. Chem. Phys. 147, 161725 (2017).

220A. Alenaizan, resp: a restrained electrostatic potential (RESP)
plugin to Psi4. For the current version, see https://github.
com/cdsgroup/resp (accessed January 2020).

221M. Marques, S. Hu, R. Chen, and S. Wood, QISkit-Aqua:
quantum algorithms & applications in Python. For the cur-
rent version, see https://github.com/Qiskit/qiskit-aqua (ac-
cessed January 2020). ().

222C. Granade and A. Paz, Quantum: Microsoft Quantum De-
velopment Kit Samples. For the current version, see https:
//github.com/microsoft/Quantum (accessed January 2020).

223C. H. Borca, CrystaLattE: automating the calculation of crys-
tal lattice energies. For the current version, see https://github.
com/carlosborca/CrystaLattE (accessed January 2020).

224C. H. Borca, B. W. Bakr, L. A. Burns, and C. D. Sherrill, J.
Chem. Phys. 151, 144103 (2019).

225R. Babbush, OpenFermion: OpenFermion plugin to inter-
face with the electronic structure package Psi4. For the current
version, see https://github.com/quantumlib/OpenFermion (ac-
cessed January 2020).

226J. R. McClean, K. J. Sung, I. D. Kivlichan, Y. Cao, C. Dai, E. S.
Fried, C. Gidney, B. Gimby, P. Gokhale, T. Häner, T. Hardikar,
V. Havlíc̆ek, O. Higgott, C. Huang, J. Izaac, Z. Jiang, X. Liu,
S. McArdle, M. Neeley, T. O’Brien, B. O’Gorman, I. Ozfidan,
M. D. Radin, J. Romero, N. Rubin, N. P. D. Sawaya, K. Se-
tia, S. Sim, D. S. Steiger, M. Steudtner, Q. Sun, W. Sun,
D. Wang, F. Zhang, and R. Babbush, “OpenFermion: The
electronic structure package for quantum computers,” (2017),
arXiv:1710.07629 [quant-ph].

227K. J. Sung and R. Babbush,OpenFermion-Psi4: the electronic
structure package for quantum computers. For the current ver-
sion, see https://github.com/quantumlib/OpenFermion-Psi4
(accessed January 2020).

228L. A. Burns, A. Lolinco, and Z. Glick, QCDB: quantum chem-
istry common driver and databases. For the current version, see
https://github.com/qcdb/qcdb (accessed January 2020).

229A. Heide and R. A. King, OptKing: a Python version of the
Psi4 geometry optimizer. For the current version, see https:
//github.com/psi-rking/optking (accessed January 2020).

230C. Ehlert, PSIXAS: a Psi4 plugin for X-ray absorption spec-
tra (XPS, NEXAFS, PP-NEXAFS). For the current version,
see https://github.com/Masterluke87/psixas (accessed Jan-
uary 2020).

231S. Houck and N. Mayhall, FockCI: a quick Psi4 implementa-
tion of SF-IP/EA. For the current version, see https://github.
com/shannonhouck/psi4fockci (accessed January 2020).

232A. H. Larsen and J. J. Mortensen, ASE: Atomic Simulation
Environment: A Python library for working with atoms. For
the current version, see https://gitlab.com/ase/ase (accessed
January 2020).

233A. H. Larsen, J. J. Mortensen, J. Blomqvist, I. E. Castelli,
R. Christensen, M. Dułak, J. Friis, M. N. Groves, B. Ham-
mer, C. Hargus, E. D. Hermes, P. C. Jennings, P. B. Jensen,
J. Kermode, J. R. Kitchin, E. L. Kolsbjerg, J. Kubal, K. Kaas-
bjerg, S. Lysgaard, J. B. Maronsson, T. Maxson, T. Olsen,
L. Pastewka, A. Peterson, C. Rostgaard, J. Schiøtz, O. Schütt,
M. Strange, K. S. Thygesen, T. Vegge, L. Vilhelmsen, M. Wal-
ter, Z. Zeng, and K. W. Jacobsen, J. Phys.: Condens. Matter
29, 273002 (2017).

234M. Ceriotti, B. Hirshberg, and V. Kapil, i-PI: a universal force
engine. For the current version, see https://github.com/i-pi/
i-pi (accessed January 2020).

235V. Kapil, M. Rossi, O. Marsalek, R. Petraglia, Y. Litman,
T. Spura, B. Cheng, A. Cuzzocrea, R. H. Meißner, D. M.
Wilkins, B. A. Helfrecht, P. Juda, S. P. Bienvenue, W. Fang,
J. Kessler, I. Poltavsky, S. Vandenbrande, J. Wieme, C. Cormin-
boeuf, T. D. Kühne, D. E. Manolopoulos, T. E. Markland, J. O.
Richardson, A. Tkatchenko, G. A. Tribello, V. V. Speybroeck,
and M. Ceriotti, Comp. Phys. Commun. 236, 214 (2019).

236T. A. Barnes, MDI: a library that enables code interoperabil-
ity via the MolSSI Driver Interface. For the current version,
see https://github.com/MolSSI/MDI_Library (accessed Jan-
uary 2020). Also, https://doi.org/10.5281/zenodo.3659285.

237L.-P. Wang, D. G. A. Smith, and Y. Qiu, geomeTRIC: a geom-
etry optimization code that includes the TRIC coordinate sys-
tem. For the current version, see https://github.com/leeping/
geomeTRIC (accessed January 2020).

238L.-P. Wang and C. Song, J. Chem. Phys. 144, 214108 (2016).
239A. Banerjee, J. O. Jensen, and J. Simons, J. Chem. Phys. 82,

4566 (1985).
240J. O. Jensen, , A. Banerjee, and J. Simons, Chem. Phys. 102,

45 (1986).
241M. S. Gordon, M. A. Freitag, P. Bandyopadhyay, J. H. Jensen,

V. Kairys, and W. J. Stevens, J. Phys. Chem. A 105, 293
(2001).

242D. Ghosh, D. Kosenkov, V. Vanovschi, C. F. Williams, J. M.
Herbert, M. S. Gordon, M. W. Schmidt, L. V. Slipchenko, and
A. I. Krylov, J. Phys. Chem. A 114, 12739 (2010).

243J. Schirmer, Phys. Rev. A 26, 2395 (1982).
244A. B. Trofimov, I. L. Krivdina, J. Weller, and J. Schirmer,

Chem. Phys. 329, 1 (2006).
245A. Dreuw and M. Wormit, WIREs Comput. Mol. Sci. 5, 82

(2015).
246J. M. Olsen, K. Aidas, and J. Kongsted, J. Chem. Theory

Comput. 6, 3721 (2010).
247J. M. H. Olsen and J. Kongsted, Chapter 3 - Molecular Proper-

ties through Polarizable Embedding , edited by J. R. Sabin and
E. Brändas, Advances in Quantum Chemistry, Vol. 61 (Aca-
demic Press, 2011) pp. 107 – 143.

248D. A. Mazziotti, Phys. Rev. A 65, 062511 (2002).
249G. Gidofalvi and D. A. Mazziotti, J. Chem. Phys. 129, 134108

(2008).
250E. Maradzike, G. Gidofalvi, J. M. Turney, H. F. Schaefer III,

and A. E. DePrince III, J. Chem. Theory Comput. 13, 4113
(2017).

251P. Piecuch, Mol. Phys. 108, 2987 (2010).
252N. Oliphant and L. Adamowicz, J. Chem. Phys. 96, 3739 (1992).
253P. Piecuch, N. Oliphant, and L. Adamowicz, J. Chem. Phys.

99, 1875 (1993).
254P. Piecuch, S. A. Kucharski, and R. J. Bartlett, J. Chem. Phys.

110, 6103 (1999).
255P. Piecuch and M. Wloch, J. Chem. Phys. 123, 224105 (2005).

https://github.com/Psi4Education/psi4education
https://github.com/mzott/Psi4-OpenMM-Interface
https://github.com/Acellera/htmd
https://github.com/Acellera/parameterize
http://dx.doi.org/10.1021/acs.jctc.6b00049
http://dx.doi.org/10.1021/acs.jcim.9b00439
http://gpugrid.net/
http://dx.doi.org/10.1021/ci900455r
https://github.com/WDerricotte/pyrex
https://github.com/DEShawResearch/sns-mp2
http://dx.doi.org/10.1063/1.4986081
https://github.com/cdsgroup/resp
https://github.com/Qiskit/qiskit-aqua
https://github.com/microsoft/Quantum
https://github.com/carlosborca/CrystaLattE
http://dx.doi.org/10.1063/1.5120520
https://github.com/quantumlib/OpenFermion
http://arxiv.org/abs/1710.07629
https://github.com/quantumlib/OpenFermion-Psi4
https://github.com/qcdb/qcdb
https://github.com/psi-rking/optking
https://github.com/Masterluke87/psixas
https://github.com/shannonhouck/psi4fockci
https://gitlab.com/ase/ase
http://stacks.iop.org/0953-8984/29/i=27/a=273002
https://github.com/i-pi/i-pi
http://dx.doi.org/https://doi.org/10.1016/j.cpc.2018.09.020
https://github.com/MolSSI/MDI_Library
https://doi.org/10.5281/zenodo.3659285
https://github.com/leeping/geomeTRIC
http://dx.doi.org/10.1063/1.4952956
http://dx.doi.org/https://doi.org/10.1063/1.448713
http://dx.doi.org/https://doi.org/10.1016/0301-0104(86)85116-3
http://dx.doi.org/10.1021/jp002747h
http://dx.doi.org/10.1021/jp107557p
http://dx.doi.org/10.1103/PhysRevA.26.2395
http://dx.doi.org/10.1016/j.chemphys.2006.07.015
http://dx.doi.org/10.1002/wcms.1206
http://dx.doi.org/https://doi.org/10.1016/B978-0-12-386013-2.00003-6
http://dx.doi.org/10.1103/PhysRevA.65.062511
http://dx.doi.org/10.1063/1.2983652
http://dx.doi.org/10.1021/acs.jctc.7b00366
http://dx.doi.org/10.1080/00268976.2010.522608
http://dx.doi.org/10.1063/1.461878
http://dx.doi.org/10.1063/1.466179
http://dx.doi.org/10.1063/1.2137318

24

256P. Piecuch, M. Wloch, J. R. Gour, and A. Kinal, Chem. Phys.
Lett. 418, 467 (2006).

257M. Wloch, J. R. Gour, and P. Piecuch, J. Phys. Chem. A 111,
11359 (2007).

258OpenForceField https://openforcefield.org.
259J. C. Wu, G. Chattree, and P. Ren, Theor. Chem. Acc. 131,

1138 (2012).
260J. G. McDaniel and J. Schmidt, Annu. Rev. Phys. Chem. 67,

467 (2016).
261J. A. Rackers, C. Liu, P. Ren, and J. W. Ponder, J. Chem.

Phys. 149, 084115 (2019).

262C. Liu, J.-P. Piquemal, and P. Ren, J. Chem. Theory Comput.
15, 4122 (2019).

263C. I. Bayly, P. Cieplak, W. D. Cornell, and P. A. Kollman, J.
Phys. Chem. 97, 10269 (1993).

264K. Franz, I. Schnell, A. Meurer, and M. Sarahan, conda:
OS-agnostic, system-level binary package manager and ecosys-
tem. For the current version, see https://github.com/conda/
conda (accessed January 2020). For documentation, see https:
//conda.io/en/latest/.

265M. Sarahan, A. Meurer, R. Donnelly, and I. Schnell, conda-
build: commands and tools for building conda packages. For the
current version, see https://github.com/conda/conda-build
(accessed January 2020).

http://dx.doi.org/10.1016/j.cplett.2005.10.116
http://dx.doi.org/10.1021/jp072535l
https://openforcefield.org
http://dx.doi.org/10.1007/s00214-012-1138-6
http://dx.doi.org/10.1146/annurev-physchem-040215-112047
http://dx.doi.org/https://doi.org/10.1063/1.5030434
http://dx.doi.org/10.1021/acs.jctc.9b00261
https://github.com/conda/conda
https://conda.io/en/latest/
https://github.com/conda/conda-build

