

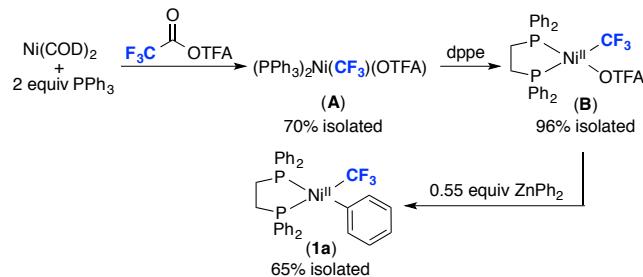
Oxidatively Induced Aryl-CF₃ Coupling at Diphosphine Nickel Complexes

James R. Bour,[†] Pronay Roy,[†] Allan J. Canty,[‡] Jeff W. Kampf, and Melanie S. Sanford^{*†}

[†]Department of Chemistry, University of Michigan, 930 N University Ave, Ann Arbor, MI 48109, USA

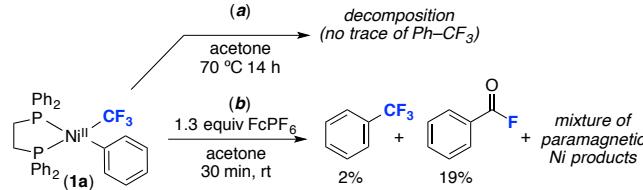
[‡] School of Natural Sciences-Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia

Supporting Information Placeholder


ABSTRACT: This communication describes the synthesis of a series of diphosphine $\text{Ni}^{\text{II}}(\text{Ph})(\text{CF}_3)$ complexes and studies of their reactivity towards oxidatively induced $\text{Ph}-\text{CF}_3$ bond-forming reductive elimination. Treatment of these complexes with the one-electron outer-sphere oxidant ferrocenium hexafluorophosphate (FcPF_6) affords benzotrifluoride, but the yield varies dramatically as a function of diphosphine ligand. Diphosphines with bite angles of less than 92° afforded <10% yield of PhCF_3 . In contrast, those with bite angles between 95° and 102° formed PhCF_3 in yields ranging from 62 to 77%.

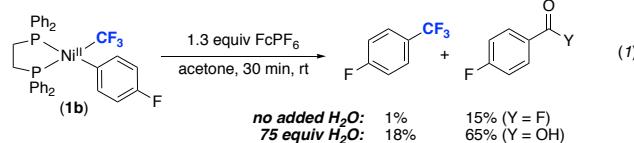
Trifluoromethyl substituents have emerged as increasingly important moieties in pharmaceutical and agricultural chemistry.¹ As such, there has been substantial interest in the development of metal-mediated/catalyzed cross-coupling methods for the introduction of CF₃ groups onto (hetero)aromatic rings.² In many of these transformations, aryl-CF₃ bond-forming reductive elimination has been identified as a kinetic bottleneck. Stoichiometric organometallic studies are frequently used to identify metal/ligand combinations and reaction conditions that facilitate this challenging step of the catalytic cycle.³⁻⁷ Despite significant efforts in this area, metal complexes that participate in high yielding aryl-CF₃ bond-forming processes remain relatively rare.³⁻⁷

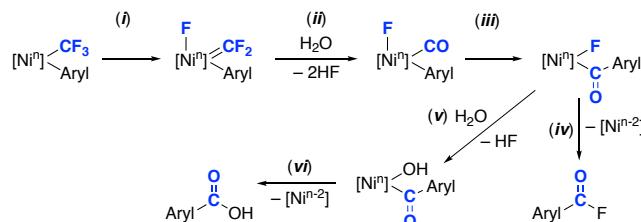
Recent work from our group has explored aryl- CF_3 coupling at isolable high valent nickel centers. For instance, we have shown that the tris(pyrazolyl)borate (Tp) complexes $\text{TpNi}^{\text{IV}}(\text{CF}_3)_2(\text{Ph})^6$ and $\text{TpNi}^{\text{III}}(\text{CF}_3)(\text{Ph})^7$ undergo $\text{Ph}-\text{CF}_3$ bond-forming reductive elimination under mild conditions. Similarly, van der Vlugt and Klein have recently demonstrated oxidatively induced aryl- CF_3 coupling from a Ni^{II} pincer complex.⁸ However, this promising reactivity has not yet been translated to Ni catalysis, largely due to limitations associated with the Tp/pincer ligand scaffolds. While these tridentate ligands are well suited for obtaining isolable high-valent Ni complexes, they limit the open coordination sites available for other steps of most catalytic cycles. Thus, a key objective is to translate these promising examples of high valent Ni-mediated aryl- CF_3 coupling to complexes bearing more catalytically relevant ligands.


In this communication, we demonstrate that the treatment of Ni^{II} diphosphine (P₂P) complexes of general structure (P₂P)Ni^{II}(CF₃)(aryl) with ferrocenium hexafluorophosphate (FcPF₆) leads to aryl-CF₃ coupling at room temperature. A competing unproductive decomposition pathway is identified and mitigated. Furthermore, ligand effects are systematically explored. These studies show that phosphines with bite angles between 95° and 102° afford the highest yields in this transformation.

We initially targeted (dppe)Ni(CF₃)(Ph) (**1a**, dppe = 1,2-bis(diphenylphosphinoethane) due to the widespread use of dppe as a ligand in nickel cross-coupling catalysis.⁹ Complex **1a** was synthesized via the route outlined in Scheme 1. The CF₃ ligand was installed by oxidative addition of trifluoroacetic anhydride to *in situ*-generated Ni⁰(PPh₃)₂. Carbonyl deinsertion afforded intermediate **A**,¹⁰ which underwent ligand substitution with dppe to afford **B**. Finally, transmetalation between **B** and 0.55 equiv of ZnPh₂ afforded **1a** in 65% isolated yield.¹¹ Filtration of a THF solution of **1a** through a plug of basic alumina proved critical to remove Lewis acidic Zn^{II} by-products that can impact the reactivity of this complex. Following recrystallization from THF/pentane, compound **1a** was characterized by ¹H, ¹³C, ¹⁹F, and ³¹P NMR spectroscopy, HRMS, and single crystal X-ray diffraction (*vide infra*).

Scheme 1. Synthetic route to complex **1a**

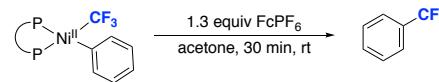

We first evaluated the reactivity of this Ni^{II} complex towards direct $\text{Ph}-\text{CF}_3$ coupling (Scheme 2a). Heating a solution of **1a** in acetone at 70 °C for 14 h resulted in no detectable formation of benzotrifluoride. Instead, **1a** decomposed to generate a complex mixture of paramagnetic products. Importantly, similar observations have been made independently by Vicic¹² and Grushin¹³ in studies of other $(\text{P}-\text{P})\text{Ni}^{\text{II}}(\text{aryl})(\text{CF}_3)$ complexes [$\text{P}-\text{P} = 1,2\text{-bis}(\text{diisopropylphosphino})\text{ethane}$ and $4,5\text{-bis}(\text{diisopropylphosphino})\text{-9,9-dimethyl xanthene}$, respectively].


Scheme 2. (a) Thermolysis of Ni^{II} complex **1a** (no Ph–CF₃ coupling). (b) Oxidatively induced Ph–CF₃ coupling from **1a**.

Based on our work with the Ni^{III} model complex TpNi^{III}(CF₃)(Ph), we hypothesized that the one-electron oxidation of **1a** would induce Ph–CF₃ coupling. To guide the selection of an appropriate oxidant, cyclic voltammetry (CV) of **1a** was conducted

in 0.1 M NBu_4PF_6 in MeCN at a scan rate of 100 mV/s. The CV of **1a** under these conditions shows an irreversible oxidation wave with an onset potential of $\sim +0.1$ V and a peak potential of $+0.56$ V vs. Fc/Fc^+ (Figure S10a). These results suggest that ferrocenium hexafluorophosphate (FcPF_6) should be a suitable oxidant in this system. Indeed, the treatment of **1a** with 1.3 equiv of FcPF_6 resulted in complete consumption of the Ni^{II} starting material within 30 min at room temperature.¹⁴ Analysis of the crude reaction mixture by ^{19}F NMR spectroscopy revealed the formation of $\text{Ph}-\text{CF}_3$ (2% yield) and PhC(O)F (19% yield), along with a mixture of paramagnetic Ni by-products (Scheme 2b). Attempts to isolate/characterize Ni species from this transformation or to improve the yield of $\text{Ph}-\text{CF}_3$ by varying the solvent or temperature proved unsuccessful. Analogous results were obtained with the 4-fluorophenyl analogue **1b**, which reacted with FcPF_6 to afford 1% yield of *p*-FC₆H₄CF₃ and 15% yield of the corresponding acid fluoride (eq. 1).

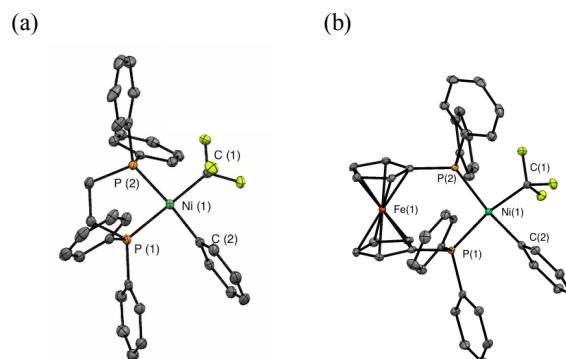
Based on literature precedent with closely related (dppe)Pd^{II}(aryl)(CF₃) complexes,^{3d,15} we hypothesize that PhCOF is formed via an initial α -fluoride elimination from **1a/b** (Scheme 3, step i). Subsequent reaction of the transient difluorocarbene intermediate with adventitious water would generate a Ni–carbonyl species (step ii), which can then undergo 1,1-migratory insertion (step iii) and reductive elimination to release the acid fluoride (step iv). If this mechanism were operating, the addition of excess H_2O should accelerate the hydrolysis reaction (step ii) and also promote carboxylic acid formation via steps v and vi in Scheme 3. To test this proposal, we added 75 equiv of H_2O to the reaction of **1b** with FcPF_6 . Under these conditions, 4-fluorobenzoic acid was formed in 65% yield, consistent with the pathway outlined in Scheme 3.¹⁶


Scheme 3. Proposed pathway to acid fluoride and carboxylic acid products.

We hypothesized that the relative rates of undesired α -fluoride elimination versus the targeted aryl–CF₃ coupling could be modulated by changing the phosphine ligand. Previous studies of reductive elimination reactions from group 10 metal centers have shown that increasing the bite angle of the diphosphine is an effective strategy for accelerating C(sp²)–X coupling.¹⁷ As such, we next evaluated a series of (P–P)Ni^{II}(Ph)(CF₃) complexes, where P–P = diphosphine ligands with varied bite angles. The dppbz (**2**, 1,2-bis(diphenylphosphino)benzene, dppp (**3**, 1,3-bis(diphenylphosphino)propane, dppb (**4**, 1,4-bis(diphenylphosphino)butane), diop (**5**, 2,3-O-isopropylidene-2,3-dihydroxy-1,4-bis(diphenylphosphino)butane), dppf (**6**, 1,1'-bis(diphenyl phosphino)ferrocene, and xantphos (**7**, 4,5-bis(diphenylphosphino)-9,9-dimethyl xanthene) complexes were all synthesized using the procedure outlined in Scheme 1. ^{31}P and ^{19}F NMR spectroscopic analyses of **2–7** show that all but **7** adopt a *cis* geometry in solution.¹⁸

We next examined the reactions of **2–7** with FcPF_6 . The dppbz complex **2** did not undergo productive Ph–CF₃ coupling upon treatment with FcPF_6 . In contrast, complexes with larger bite angle phosphines (**3–7**) all reacted with FcPF_6 to afford PhCF₃ in yields ranging from 3% (for **7**) to 77% (for **6**).^{19,20,21} As summarized in

Table 1, ligands with bite angles between 95–102° appear to be optimal for this reaction. In contrast, modest coupling yields are observed for diphosphines with smaller bite angles (between 86° and 92°). Finally, as expected, the *trans* configuration of the xantphos complex **7** results in a low yield of PhCF₃.


Table 1. Oxidatively induced Ph–CF₃ coupling as a function of phosphine ligand.^a

com- pound	ligand	calculated bite angle ^b	yield Ph- CF ₃ ^a
2	dppbz	86.0°	<1% ^c
1a	dppe	87.7° (86.8°)	2%
3	dppp	91.9°	7%
4	dppb	95.3°	75% ^d
5	diop	102°	62%
6	dppf	100.6° (100.2°)	77%
7	xantphos	trans	3%

^aYields determined by ^{19}F NMR spectroscopy relative to 4,4'-difluorobiphenyl. ^bBite angles determined by DFT (see Supporting Information, p. S31–S43). Experimental bite angles from X-ray crystal structures are shown in parentheses. ^cReaction performed in 2:5 benzene:acetone due to the low solubility of **2** in acetone. ^dDue to the low stability of **4**, this complex was generated and then reacted with FcPF_6 *in situ*.

A final set of studies focused on a detailed comparison of complex **1a** (which affords <5% yield in the oxidatively induced PhCF₃ coupling) with complex **6** (which affords the highest yield of 77%). First, X-ray crystal structures of both **1a** and **6** were obtained, and the respective ORTEP diagrams are shown in Figure 1. These structures reflect the anticipated increase in phosphine bite angle upon moving from dppe (86.8°) to dppf (100.2°). This is accompanied by an increase in the acuteness of the C(1)–Ni–C(2) angle from 89.6° in **1a** to 83.2° in **6**. Literature studies have shown that this angle has a major impact on the rates of other reductive elimination reactions.¹⁷ With the larger bite angle phosphine, both the Ni–CF₃ and Ni–P bond distances are significantly longer (by ~ 0.03 and ~ 0.05 Å, respectively), likely reflecting increased steric congestion at the Ni center with dppf relative to dppe.²² In contrast, the Ni–Ph bond distance is identical in the two complexes (Ni–C(1) = 1.918 Å).

Figure 1. (a) ORTEP diagram of **1a**. Thermal ellipsoids are drawn at 50% probability. Hydrogen atoms and solvent molecules omitted for clarity. Selected bond lengths C(1)–Ni 1.930(2), C(2)–Ni 1.918(2), P(1)–Ni 2.1633(6), P(2)–Ni 2.1963(6) and angles C(1)–Ni–C(2) 89.6. (b) ORTEP diagram of **6**. Thermal ellipsoids are drawn at 50% probability. Hydrogen atoms and solvent molecules omitted for clarity. Selected bond lengths C(1)–Ni 1.963(3), C(2)–

Ni 1.918(3), P(1)–Ni 2.2192(7), P(2)–Ni 2.243(7) and angles C(1)–Ni–C(2) 83.2.

The electronic properties of **1–6** can also be compared. As shown in Table 2, the CO stretching frequencies of the zero-valent dicarbonyl complexes (P~P)Ni(CO)₂ show no clear trends with respect to the yield of PhCF₃ from the analogous (P~P)Ni(CF₃)(Ph) species.²³ For example, the dicarbonyl analogs of compounds **2**, **3**, and **4** have nearly identical CO stretching frequencies, but only **4** affords high yield of PhCF₃ upon treatment with FePF₆. In addition, cyclic voltammetry (CV) was conducted with compounds **1** and **6** in 0.1 M NBu₄PF₆ in MeCN at a scan rate of 100 mV/s.²⁴ Both CVs show irreversible oxidation waves, with nearly identical onset potentials (at $\sim +0.1$ V) and similar peak potentials ($+0.56$ V for **1a** and $+0.35$ V for **6**). Furthermore, DFT calculations²⁵ on **6⁺**, the product of single electron oxidation of **6**, show that the unpaired electron is localized on nickel. This suggests that the redox chemistry occurs at the Ni center rather than at Fe. Taken together, these data strongly suggest that the difference in PhCF₃ yield between these complexes results from steric rather than electronic differences between the different diphosphine ligands.

Table 2. Comparison of CO stretching frequencies of [(P~P)Ni(CO)₂] and yields of PhCF₃ coupling from [(P~P)Ni(CF₃)(Ph)].

compound	ligand	$\nu_{\text{sym}}, \nu_{\text{asym}} (\text{cm}^{-1})$ ²³	yield Ph-CF ₃ ^c
1	dppbz	2007, 1952 ^a	<1% ^c
2	dppe	2004, 1945 ^a	2%
3	dppp	2000, 1941 ^a	7%
4	dppb	2002, 1944 ^a	75% ^d
6	dppf	2001, 1939 ^b	77%

^a IR spectrum collected in benzene. ^b IR spectrum collected in CH₂Cl₂. ^c ¹⁹F NMR yield from standard conditions.

In summary, this work shows that (P~P)Ni^{II}(CF₃)(Ph) complexes react with FePF₆ to afford Ph–CF₃ coupling under mild conditions. α -Fluoride elimination from the Ni–CF₃ complex is a competing side reaction in these systems. The highest yields are obtained with P~P ligands that have bite angles close to 100°, such as dppf, diop, and dppb. The ligand effects elucidated herein could ultimately inform the development of Ni^{V/III}-catalyzed trifluoromethylation reactions.

ASSOCIATED CONTENT

Supporting Information. Experimental and spectral details for all new compounds and all reactions reported. This material is available free of charge via the Internet at <http://pubs.acs.org>.

AUTHOR INFORMATION

Corresponding Author

mssanfor@umich.edu

Notes

The authors declare no competing financial interests.

ACKNOWLEDGMENT

This work was supported by the National Science Foundation grant CHE-1664961 and the Australian Research Council. JRB acknowledges the National Science Foundation for a Graduate Fellowship. Dr. Ansis Maleckis is also acknowledged for valuable guidance and helpful discussions. X-ray instrumentation was funded by the National Science Foundation grant CHE-0840456.

(1) Müller, K.; Faeh, C.; Diederich, F. Fluorine in pharmaceuticals: looking beyond intuition. *Science* **2007**, *317*, 1881–1886. (b) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Fluorine in medicinal chemistry. *Chem. Soc. Rev.* **2008**, *37*, 320–330. (c) Haghmann, W. K. The many roles for fluorine in medicinal chemistry. *J. Med. Chem.* **2008**, *51*, 4359–4369. (d) Wang, J.; Sanchez-Rosello, M.; Acena, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Fluorine in pharmaceutical industry: fluorine-containing drugs introduced to the market in the last decade (2001–2011). *Chem. Rev.* **2014**, *114*, 2432–2506.

(2) (a) Ritter, T. Catalysis: fluorination made easier. *Nature* **2010**, *466*, 447–448. (b) Lundgren, R. J.; Stradiotto, M. Transition-metal-catalyzed trifluoromethylation of aryl halides. *Angew. Chem. Int. Ed.* **2010**, *49*, 9322–9324. (c) Furuya, T.; Kamlet, A. S.; Ritter, T. Catalysis for fluorination and trifluoromethylation. *Nature* **2011**, *473*, 470–477. (d) Tomashenko, O. A.; Grushin, V. V. Aromatic trifluoromethylation with metal complexes. *Chem. Rev.* **2011**, *111*, 4475–4521. (e) Chen, P.; Liu, G. Recent advances in transition-metal-catalyzed trifluoromethylation and related transformations. *Synthesis* **2013**, *45*, 2919–2939. (f) Landelle, G.; Panossian, A.; Pazenok, S.; Vors, J.-P.; Leroux, F. R. Recent advances in transition metal-catalyzed Csp²-monofluoro-, difluoro-, perfluoromethylation and trifluoromethylthiolation. *Beilstein J. Org. Chem.* **2013**, *9*, 2476–2536. (g) Zhu, W.; Wang, J.; Wang, S.; Gu, Z.; Aceña, J. L.; Izawa, K.; Liu, H.; Soloshonok, V. A. Recent advances in the trifluoromethylation methodology and new CF₃-containing drugs. *J. Fluorine Chem.* **2014**, *167*, 37–54. (h) Alonso, C.; Martínez de Marigorta, E.; Rubiales, G.; Palacios, F. Carbon trifluoromethylation reactions of hydrocarbon derivatives and heteroarenes. *Chem. Rev.* **2015**, *115*, 1847–1935.

(3) (a) Grushin, V. V.; Marshall, W. J. Facile Ar-CF₃ bond formation at Pd. Strikingly different outcomes of reductive elimination from [(Ph₃P)₂Pd(CF₃)Ph] and [(Xantphos)Pd(CF₃)Ph]. *J. Am. Chem. Soc.* **2006**, *128*, 12644–12645. (b) Cho, E. J.; Senecal, T. D.; Kinzel, T.; Zhang, Y.; Watson, D. A.; Buchwald, S. L. The palladium-catalyzed trifluoromethylation of aryl chlorides. *Science* **2010**, *328*, 1679–1681. (c) Nielsen, M. C.; Bonney, K. J.; Schoenebeck, F. Computational ligand design for the reductive elimination of ArCF₃ from a small bite angle Pd^{II} complex: remarkable effect of a perfluoroalkyl phosphine. *Angew. Chem. Int. Ed.* **2014**, *53*, 5903–5906. (d) Ferguson, D. M.; Bour, J. R.; Canty, A. J.; Kampf, J. W.; Sanford, M. S. Stoichiometric and catalytic aryl-perfluoroalkyl coupling at tri-tert-butylphosphine palladium(II) complexes. *J. Am. Chem. Soc.* **2017**, *139*, 11662–11665. (e) Ferguson, D. M.; Bour, J. R.; Canty, A. J.; Kampf, J. W.; Sanford, M. S. Aryl-CF₃ coupling from phosphinoferrocene-ligated palladium(II) complexes. *Organometallics* **2019**, *38*, 519–526.

(4) (a) Dubinina, G. G.; Ogikubo, J.; Vicić, D. A. Structure of bis(trifluoromethyl)cuprate and its role in trifluoromethylation reactions. *Organometallics* **2008**, *27*, 6233–6235. (b) Kaplan, P. T.; Lloyd, J. A.; Chin, M. T.; Vicić, D. A. Comparative profiling of well-defined copper catalysts and precatalysts for the trifluoromethylation of aryl iodides. *Beilstein J. Org. Chem.* **2017**, *13*, 2297–2303. (c) Martínez de Salinas, S.; Mudarra, A. L.; Odena, C.; Martínez Belmonte, M.; Benet-Buchholz, J.; Maseras, F.; Perez-Temprano, M. H. Exploring the role of coinage metallates in trifluorometalation: a combined experimental and theoretical study. *Chem. Eur. J.* **2019**, *25*, 9390–9394. (d) Lu, Z.; Liu, H.; Leng, X.; Lan, Y.; Shen, Q. A key intermediate in copper-mediated arene trifluoromethylation, [nBu₄][Cu(Ar)(CF₃)₂]: synthesis, characterization, and C(sp²)-CF₃ reductive elimination. *Angew. Chem. Int. Ed.* **2019**, *131*, 8598–8602.

(5) (a) Winston, M. S.; Wolf, W. J.; Toste, F. D. Photoinitiated oxidative addition of CF_3I to gold(I) and facile aryl- CF_3 reductive elimination. *J. Am. Chem. Soc.* **2014**, *136*, 7777–7782. (b) Winston, M. S.; Wolf, W. J.; Toste, F. D. Halide-dependent mechanisms of reductive elimination from gold(III). *J. Am. Chem. Soc.* **2015**, *137*, 7921–7928.

(6) Bour, J. R.; Camasso, N. M.; Sanford, M. S. Oxidation of Ni(II) to Ni(IV) with aryl electrophiles enables Ni(IV)-mediated Arly- CF_3 coupling. *J. Am. Chem. Soc.* **2015**, *137*, 8034–8037.

(7) Bour, J. R.; Camasso, N. M.; Meucci, E.; Kampf, J. W.; Carty, A. J.; Sanford, M. S. Carbon–carbon bond forming reductive elimination from isolated nickel(III) complexes. *J. Am. Chem. Soc.* **2016**, *138*, 16105–16111.

(8) Jongbloed, L. S.; Vogt, N.; Sandleben, A.; de Bruin, B.; Klein, A.; van der Vlugt, J. I. Nickel-alkyl complexes with a reactive PNC-pincer ligand. *Eur. J. Inorg. Chem.* **2018**, 2408–2418.

(9) (a) Chen, T.-A.; Wu, X.; Rieke, R. D. Regiocontrolled synthesis of poly(3-alkylthiophenes) mediated by Rieke zinc: Their characterization and solid-state properties. *J. Am. Chem. Soc.* **1995**, *117*, 233–244. (b) Kumada, M. Nickel and palladium complex catalyzed cross-coupling reactions of organometallic reagents with organic halides. *Pure Appl. Chem.* **2009**, *52*, 669–679. (c) Lanni, E. L.; McNeil, A. J. Mechanistic studies on $\text{Ni}(\text{dppe})\text{Cl}_2$ -catalyzed chain-growth polymerizations: Evidence for rate-determining reductive elimination. *J. Am. Chem. Soc.* **2009**, *131*, 16573–16579.

(10) Maleckis, A.; Sanford, M. S. Synthesis of fluoroalkyl palladium and nickel complexes via decarbonylation of acylmetal species. *Organometallics* **2014**, *33*, 3831–3839.

(11) An analogous procedure has been used to access $(\text{P}^{\bullet}\text{Bu}_3)\text{Pd}(\text{Aryl})(\text{CF}_3)$ complexes. See ref. 3d.

(12) Dubinin, G. G.; Brennessel, W. W.; Miller, J. L.; Vicic, D. A. Exploring trifluoromethylation reactions at nickel: A structural and reactivity study. *Organometallics* **2008**, *27*, 3933–3938.

(13) Jover, J.; Miloserdov, F. M.; Benet-Buchholz, J.; Grushin, V. V.; Maseras, F. On the feasibility of nickel-catalyzed trifluoromethylation of aryl halides. *Organometallics* **2014**, *33*, 6531–6543.

(14) Complex **1a** is otherwise stable under these conditions in the absence of oxidant.

(15) Grushin, V. V.; Marshall, W. J. Unexpected H_2O induced Ar–X activation with trifluoromethylpalladium(II) aryls. *J. Am. Chem. Soc.* **2006**, *128*, 4632–4641.

(16) Control studies show that **1b** is stable to water over the time course of the experiment in the absence of oxidant. This suggests that α -fluoride elimination occurs after the initial oxidation reaction.

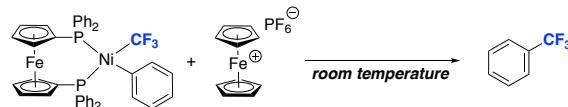
(17) (a) Brown, J. M.; Guiry, P. J. Bite angle dependence of the rate of reductive elimination from diphosphine palladium complexes. *Inorg. Chim. Acta* **1994**, *220*, 249–259. (b) Marcone, J. E.; Moloy, K. G. Kinetic study of reductive elimination from the complexes (diphosphine)Pd(R)(CN). *J. Am. Chem. Soc.* **1998**, *120*, 8527–8528. (c) Zuidema, E.; Van Leeuwen, P. W. M. N.; Bo, C. Reductive elimination of organic molecules from palladium–diphosphine complexes. *Organometallics* **2005**, *24*, 3703–3710.

(18) See p. S49 and S71 for details.

(19) Trifluoromethyl Ni(III) complexes have been previously reported to undergo $\text{Ni}-\text{CF}_3$ homolysis at room temperature see: Zhang, C. P.; Wang, H.; Klein, A.; Biewer, C.; Stirnat, K.; Yamaguchi, Y.; Xu, L.; Gomez-Benitez, V.; Vicic, D. A five-coordinate nickel(II) fluoroalkyl complex as a precursor to a spectroscopically detectable Ni(III) species. *J. Am. Chem. Soc.* **2013**, *135*, 8141–8144. However, radical scavenging experiments with TEMPO are inconsistent with the intermediacy of $\text{F}_3\text{C}^{\bullet}$ in the present system. See Supporting Information for details.

(20) The analogous reaction of $(\text{dppf})\text{Ni}(\text{CF}_3)(4-\text{FC}_6\text{H}_4)$ (**6b**) with FcPF_6 afforded $1-\text{CF}_3-4-\text{F-C}_6\text{H}_4$ in 72% yield, and no $\text{Ph}-\text{CF}_3$ was detected. Furthermore, the addition of 75 equiv of H_2O to this transformation had minimal impact on the yield of $1-\text{CF}_3-4-\text{F-C}_6\text{H}_4$. Collectively, these results show (i) that the Ph groups of the phosphine ligands are not involved in this reaction and (ii) that carbene intermediates are unlikely. See Supporting Information for complete details.

(21) The remaining mass balance is currently unclear. Attempts to characterize the fate of the organic fragments were unsuccessful. Addition of excess LiCl to the crude reaction mixture following oxidation yielded a paramagnetic NMR spectrum consistent with $(\text{dppf})\text{NiCl}_2$ as the primary nickel-containing product. See p. S30 for details.


(22) Clevenger, A. L.; Stolley, R. M.; Staudaher, N. D.; Al, N.; Rheingold, A. L.; Vanderlinden, R. T.; Louie, J. Comprehensive study of the reactions between chelating phosphines and $\text{Ni}(\text{cod})_2$. *Organometallics* **2018**, *37*, 3259.

(23) (a) Schaarschmidt, D.; Kühnhert, J.; Tripke, S.; Alt, H. G.; Görl, C.; Rüffer, T.; Ecorchard, P.; Walfort, B.; Lang, H. Ferrocenyl phosphane nickel carbonyls: Synthesis, solid state structure, and their use as catalysts in the oligomerization of ethylene. *J. Organomet. Chem.* **2010**, *695*, 1541–1549. (b) Neary, M. C.; Quinlivan, P. J.; Parkin, G. Zerovalent nickel compounds supported by 1,2-bis(diphenylphosphino)benzene: Synthesis, structures, and catalytic properties. *Inorg. Chem.* **2018**, *57*, 374–391.

(24) Attempts to characterize **4** and **7** by CV were unsuccessful due to their instability under the CV conditions.

(25) Gaussian 09 was used at the M06 level for geometry optimization with acetone as solvent utilizing the SDD basis set on nickel/iron and the 6-31G(d) basis set for other atoms. See the Supporting Information for full details.

TOC Figure

