Journal of the
American
Statistical

Association

@

Journal of the American Statistical Association

ISSN: 0162-1459 (Print) 1537-274X (Online) Journal homepage: https://www.tandfonline.com/loi/uasa20

Taylor & Francis

Taylor & Francis Group

A Bayesian Approach to Multistate Hidden Markov
Models: Application to Dementia Progression

Jonathan P. Williams, Curtis B. Storlie, Terry M. Therneau, Clifford R. Jack Jr &
Jan Hannig

To cite this article: Jonathan P. Williams, Curtis B. Storlie, Terry M. Therneau, Clifford R. Jack
Jr & Jan Hannig (2020) A Bayesian Approach to Multistate Hidden Markov Models: Application
to Dementia Progression, Journal of the American Statistical Association, 115:529, 16-31, DOI:
10.1080/01621459.2019.1594831

To link to this article: https://doi.org/10.1080/01621459.2019.1594831

A
h View supplementary material &

@ Published online: 21 May 2019.

(&
Submit your article to this journal &

||I| Article views: 1201

A
& View related articles &'

Py

() View Crossmark data &

CrossMark

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=uasa20


https://www.tandfonline.com/action/journalInformation?journalCode=uasa20
https://www.tandfonline.com/loi/uasa20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/01621459.2019.1594831
https://doi.org/10.1080/01621459.2019.1594831
https://www.tandfonline.com/doi/suppl/10.1080/01621459.2019.1594831
https://www.tandfonline.com/doi/suppl/10.1080/01621459.2019.1594831
https://www.tandfonline.com/action/authorSubmission?journalCode=uasa20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uasa20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/01621459.2019.1594831
https://www.tandfonline.com/doi/mlt/10.1080/01621459.2019.1594831
http://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2019.1594831&domain=pdf&date_stamp=2019-03-21
http://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2019.1594831&domain=pdf&date_stamp=2019-03-21

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
2020, VOL. 115, NO. 529, 16-31: Applications and Case Studies
https://doi.org/10.1080/01621459.2019.1594831

Taylor & Francis
Taylor &Francis Group

W) Check for updates

A Bayesian Approach to Multistate Hidden Markov Models: Application to Dementia

Progression

Jonathan P. Williams®®, Curtis B. Storlie®, Terry M. Therneau?, Clifford R. Jack Jr?, and Jan Hannig®

2Mayo Clinic, Rochester, MN; " Department of Statstics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, NC

ABSTRACT

People are living longer than ever before, and with this arises new complications and challenges for
humanity. Among the most pressing of these challenges is of understanding the role of aging in the
development of dementia. This article is motivated by the Mayo Clinic Study of Aging data for 4742 subjects
since 2004, and how it can be used to draw inference on the role of aging in the development of dementia.
We construct a hidden Markov model (HMM) to represent progression of dementia from states associated
with the buildup of amyloid plaque in the brain, and the loss of cortical thickness. A hierarchical Bayesian
approach is taken to estimate the parameters of the HMM with a truly time-inhomogeneous infinitesimal
generator matrix, and response functions of the continuous-valued biomarker measurements are cut-point
agnostic. A Bayesian approach with these features could be useful in many disease progression models.
Additionally, an approach isillustrated for correcting a common bias in delayed enrollment studies, in which
some or all subjects are not observed at baseline. Standard software is incapable of accounting for this
critical feature, so code to perform the estimation of the model described below is made available online.
Code submitted with this article was checked by an Associate Editor for Reproducibility and is available as
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1. Introduction

People are living longer and with this arises new complications
and challenges for humanity. Among the most pressing of these
challenges is of understanding the role of aging in the develop-
ment of dementia. Such is the initiative of the Mayo Clinic Study
of Aging (MCSA), a large prospective study with the goal of
understanding the natural history of dementia and particularly
Alzheimer’s disease.

This article is motivated entirely by the MCSA and how the
resulting data can be used to draw inference on the role of aging
in the development of dementia. The goal is to create a model
of progression to dementia which can accommodate: (1) a wide
variation in age (the dominant variable under consideration),
(2) significant fluctuation in the time between subject visits,
(3) different amount of information available for each subject
(e.g., missing visits and/or clinical data), and (4) subject specific
covariates.

The main contribution of this work is to provide an
innovative statistical analysis of this important and unique
dataset via a continuous-time, discrete-state hidden Markov
model (HMM) estimated within the Bayesian paradigm.
Additionally, we demonstrate the existence of and provide
solutions for various methodological gaps in the analysis of
disease progression for studies like the MCSA. First, we provide
an approach for correcting a common bias in delayed enrollment
studies which has been overlooked in the literature. Second,
we introduce a methodological framework for estimating the

strength and persistence of a separate death rate bias specific
to death rates, which could be present in any study relying on
enrollment of subjects. Our final methodological innovation
is a proposed Bayesian approach to estimating the biomarker
regions most associated with high/low burden states in a
manner that does not require the specification of cut-points.

The term delayed enrollment, here, is used to describe a
study with a given baseline (age 50 in the case of the MCSA)
such that some or all subjects are not observed at baseline. We
demonstrate empirically that the effects of this bias cannot be
ignored, and existing software is not equipped to handle this
feature.

We formalize the discrete-state space exhibited in Figure 1 in
which many of the states are defined by continuous biomarkers.
The previous work of Jack et al. (2016) defined a state space
similar to Figure 1, but in which the high/low burden biomarker
states were defined by practitioner chosen, hard biomarker cut-
points. Hard cut-points for discretizing continuous measure-
ments of biological processes are practically and philosophically
problematic, and have to be chosen more or less arbitrarily.

Moreover, we illustrate a general and effective framework
for fitting a continuous-time, discrete-state HMM within the
Bayesian paradigm, and the infinitesimal generator matrix of
the underlying Markov process is allowed to be truly time-
inhomogeneous (as a function of an individual’s age). Time
must be treated as continuous because, as in much of medical
research, subjects are often observed irregularly in time.
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Our final contribution is that in addition to the effect of
age, the effects of the covariates gender, number of years of
education, and presence of an APOE-¢4 allele on the infinitesi-
mal transition rates are also estimated. The importance of these
variables has been well documented in the medical literature but
their effect on aging has not been studied in this context (i.e.,
how they affect the transition rates between states in Figure 1). In
addition to the new insights these features bring to the medical
community, flexible software to fit the models described below
is provided at https://jonathanpw.github.io/software.html.

Our analysis builds on the work of Jack et al. (2016) with
more sophisticated modeling which allows for deeper insights.
They found that a Markov model of disease progression for
dementia is indeed a natural approach, that almost all rates
are log-linear, and at age 50 nearly everyone is in state A—N—
(i.e.,low Amyloid burden and low cortical thickness loss burden
which is state 1 in Figure 1) but that soon begins to change.

Most implementations of a continuous-time, discrete-state
HMM, including Jack et al. (2016) estimate parameters in a
maximum likelihood fashion. However, as mentioned in Jack
et al. (2016) optimization becomes exceedingly difficult as more
parameters are introduced in the model. Convergence time
for standard methods may become impractical, and analytical
gradient formulas for use in more efficient optimization pro-
cedures can become intractable. Additionally, it is often dif-
ficult/awkward to fit prior information into an optimization-
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{ Thickness | N—}
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{ Thickness | N+ }
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based frequentist approach (e.g., via constrained optimization
or penalty functions which require tuning parameters), and
deriving confidence intervals becomes a challenge. Further, as
the model becomes more complex to better capture reality in
our application, prior information becomes necessary for prac-
tical identifiability of HMM parameters which makes Bayesian
methodology a natural approach. For these reasons, we propose
a hierarchical Bayesian framework with model estimation via
Markov chain Monte Carlo (MCMC). Using MCMC for the
estimation of complicated models requires creative proposal
strategies, but is extremely flexible for a variety of model speci-
fications. Moreover, credible regions become a convenient way
to represent uncertainty.

Accounts of continuous-time, discrete-state HMM are given
by Lange and Minin (2013), Bureau, Shiboski, and Hughes
(2003), Jackson et al. (2003), Titman and Sharples (2008), Jack
et al. (2016), and within a Bayesian framework (Zhao et al.
2016). Further, Satten and Longini (1996) is a very complete
account of how to implement such a model and is recommended
reading for anyone not familiar with the methodology.

More relevant to the present application, the work of Jackson
et al. (2003) uses an HMM to model the state misclassification
error of a disease and includes age as a covariate on the transition
rates. However, they make a very restrictive assumption that
the transition rates are constant between subject observation
times. The work of Jack et al. (2016) is seemingly the first in

Dead
(state 7)

{PIB|A+}
-~ { Thickness |N+} 7 /
{ MMSE | A+Dem }
. { Diagnosis | Dem } !

A+Dem

(state 6)

Figure 1. State space. Emitted response variables are displayed in brackets above the respective hidden state. A+ corresponds to high amyloid burden, and N+ corresponds

to high neurodegenerative burden. States 1-4 are all non-demented.
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the literature to estimate the transition rates as a function of
age, in a truly continuous-time fashion for a multistate model
of dementia, however, Yu et al. (2010) also treated transition
probabilities as a function of age, in a discrete-time fashion.
The organization of the rest of the article is as follows. Sec-
tion 2 describes the MCSA dataset and the HMM method-
ology. An illustration of the death rate bias and the delayed
enrollment bias is then given in Section 3, and a simulation
study is provided in Section 4 which implements our Bayesian
estimation procedure on synthetic data generated to resemble
the MCSA dataset. Finally, a detailed analysis of the MCSA
data is presented in Section 5, accompanied by a discussion and
interpretation of the biological findings. This article also has
accompanying supplementary material containing details of the
computations and further MCSA analysis results.

2. Methodology
2.1. Description of the Mayo Clinic Study of Aging data

The MCSA has enrolled a large age/sex stratified random sample
from Olmsted County, Minnesota. Subjects are followed for-
ward approximately every 15 months, and clinical visits collect
information on major aspects of the disease. The MCSA study
began in 2004, currently has 4742 subjects, and is still ongo-
ing (at the time of this writing) and enrolling new subjects.
Estimates of quantities such as expected time in a given state,
probability of ever entering a given state, or the fraction of the
population that will pass through a high amyloid burden state
on the way to dementia, are all of clinical interest.

It is known in the medical community that amyloid pro-
tein buildup in the brain, and significant neurodegeneration
are strongly associated with dementia. Accordingly, amyloid
buildup, as measured by Pittsburgh compound B (PIB) from
a positron emission tomography (PET) scan, and neurode-
generation, as measured by cortical thickness (thickness) from
magnetic resonance imaging (MRI), are continuous outcomes
measured during the regular clinical visits for approximately
50% of the subjects.

With regard to dementia, high amyloid burden is a notion
which refers to a build-up of amyloid plaques in the brain
significant enough to effect pathways and lead to neurodegener-
ation, but precise measurements of the extent of amyloid protein
would require autopsy (PIB measurements serve as a proxy
for measuring this extent). Likewise, high neurodegeneration
burden refers to a state of loss of neurons and synapses denoted
by atrophy of the cerebral cortex in Alzheimer’s-sensitive areas.

For the (approximately 50% of) subjects who were not cho-
sen to undergo regular brain scans less clinical information is
available. However, the Mini-Mental State Exam (MMSE) is
almost always observed. The MMSE is a questionnaire-based
test administered by a medical professional to assess cognitive
impairment on an integer scale out of 30 points (Xu et al. 2015).
Furthermore, baseline data such as age, sex, clinical and genetic
markers is always recorded in the data.

Finally, at the time of observation all subjects are determined
to be either cognitively unimpaired, or to be demented. This rep-
resents a substantial amount of information for making infer-
ence on the underlying cognitive state of a subject. However,

diagnosing dementia is not an exact science, and so the observed
label is not without error.

2.2. The HMM State Space and Emitted Response Variables

A simplistic formalization of the biology is to theorize a seven-
state model to describe cognitive health in relation to dementia.
Figure 1 illustrates such states and depicts the allowed transi-
tions with directional arrows. A notable feature of the state space
is that an individual must be in a high neurodegeneration bur-
den state (i.e., N+) to develop dementia, but not necessarily in a
high amyloid burden state (i.e., A+). In fact, the transition from
A+N+ (state 4) to A+Dem (state 6) is identified as Alzheimer’s
disease, a particular type of dementia. Isolating this Alzheimer’s
disease transition is not possible using the previous state space
of Jack et al. (2016).

Time must be treated as continuous because patient visit
times are irregular, and the underlying sequence of states
visited for an individual is hidden by uncertainty (even when
PIB/thickness are available, they are only proxies for the true
level of amyloid/neurodegeneration burden). Moreover, the
states of high amyloid burden and neurodegenerative burden are
not precisely defined and are best treated as hidden. It is worth
remarking that amyloid build-up and neurodegeneration each
develop on a continuum, but the time spent in any intermediate
states, not explicitly represented by the state space in Figure 1,
is believed to be relatively short and thus ignorable in these
data.

The PIB and thickness values associated with amyloid
buildup and neurodegeneration, respectively, are used as
emitted response variables (in a traditional HMM sense) to
make inference on an underlying sequence of states visited.
States 2, 4, and 6 which correspond to increased amyloid burden
will emit PIB values from a distribution corresponding to A+,
while states 1, 3, and 5 will emit PIB from the distribution
corresponding to A—, and similarly for neurodegenerative
burden (N+ or N—).

The prior distributions for these response distribution
parameters was chosen to correspond to biomarker values
which are consistent with the medical community’s most up-to-
date understanding of the biology. Using a Gaussian distribution
for thickness and for log(PIB — 1) appears to be quite reasonable,
as there is evidence that the error from the PIB measurements
follows more closely to a constant coefficient of variation
than to a constant variance. Figure 2 displays histograms of
the observed response data along with the respective normal
mixture densities resulting from the posterior mean estimates
from the full HMM described in the coming sections.

The MMSE score serves as an additional emitted response,
and a separate Gaussian emission distribution for each of
the first six states is assumed (deceased subjects do not emit
cognitive test scores). Figure 3 overlays the estimated six-
component normal mixture density function on top of a
histogram of the observed MMSE scores from the study subjects’
visits.

Lastly, a simple misclassification response model is used to
allow for a probability of a dementia diagnosis given the under-
lying state is a dementia state (i.e., states 5 or 6), and given it is
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Figure 2. Observed response data for PIB which is a measure of amyloid buildup from a PET scan, and (cortical) thickness which is associated with neurodegeneration.

Note that the response densities for PIB correspond to the data transformation, log(PIB — 1). The component density estimates correspond to the posterior mean estimates
from Section 5. The blue dashed lines represent the normal mixture density estimates.
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Figure 3. Observed response data for MMSE test scores associated with the six non-
death states in the state space. The component density estimates here correspond
to the posterior mean estimates from Section 5. The blue dashed line represents the
normal mixture density estimate.

not a dementia state. Death is the only state in the state space

which is known without error, and the exact time of death is
known, as well.

2.3. Continuous-Time Transition Probabilities

This section serves to specify the HMM in the context of the
state space illustrated in Figure 1. For r,s € {1,2,3,4,5,6,7}
and h,t > 0, the probability of transitioning from state r

at time A to state s at time h + ¢ is denoted by P,s(h,t) =
P(S(h +t) = s|S(h) = r). Assuming these probabilities are
differentiable functions in # and that the Markov process is time-
homogeneous, it can be shown that they satisfy the Kolmogorov
forward equations (Karlin and Taylor 1981),

P'() = P(HQ, 1)
where Q is called the transition rate matrix, and P(t) is the
matrix with components

Pys(t) := Pps(h = 0,1). )

Note that / can be taken to be 0 in (2) because the probabilities
are assumed for now to be time-homogeneous. The off-diagonal
components of Q are interpreted as the change in transition
probabilities for an infinitesimal amount of time into the future,
that is,

P(S(t) = s/S(0) = r)
; ,

Grs = ltlfg r#s ©)
with diagonal elements g, = — ZS#, Grs-

The forward equations in (1) have the matrix exponential
solution, P(t) = ¢'Q However, as discussed in Section 1, the
transition rates will be expressed as a function of a subject’s age at
the time of transition. That is, Q = Q(t) which violates the time-
homogeneity of the Markov process. A simple work around is
to discretize the effect of age and assume that the transition
rates only change when a subject’s integer age changes. Doing
so implies that subjects’ transition rates, Q, remain constant
between birthdays and yields

P(h, t) = e(HHU=MQUR) | LUk+1]) QU+t =1)
= Lhth Q)

(4)

for |h] # |h+t], where h represents the subject’s current age, ¢
is the time (in years) into the future, and | -] is the floor function.
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Observe that with expression (4) all transition probabilities
can be computed, as long as the components of Q(t) are spec-
ified. As mentioned above, the transition rates will be modeled
as a function of age, gender, presence of an APOE-¢4 allele,
and number of years of education. Specifically, denoting each
of the 13 nonzero transition rates illustrated in Figure 1 by g; for
lel{l,..., 13},

log(q) = ﬂél) + 131(1) -age+ ‘Bg) -male+ ﬂél) -educ+ IBS) -apoe4,

subject consists of a product of matrix exponentials, that is,
apply (4) to get the probability of being in a given state for each
observation time. However, the underlying state sequences are
not observed. Within an HMM, rather, responses emitted from
the underlying process (conditional on the true state of the pro-
cess at a given point in time) are used to inform of the underlying
state. In this application, there are four emitted responses (i)
log(PIB—1), (ii) thickness, (iii) MMSE (see Figures 2 and 3), and
(iv) dementia diagnosis (binary). Denote the observations for

(5)  each of these four responses by Yir = Wikt Yik2 Vik3> Vikal s
where, ,
—q1 =492 — 43 q q2 0 0 0 q3
0 —Q4 — q5 0 q4 0 0 q5
0 0 —q6 — 47 — 948 g6 q7 0 qs
Q= 0 0 0 —q9 — q10 0 g9 quo0 |-
0 0 0 0 —qu1—qi2 qu  q12 (6)
0 0 0 0 0 —q13 413
0 0 0 0 0 0 0

Overall death rates over age 50 are log-linear (see Figure 4)
which makes the log-linear function of age a natural starting
place. This functional form was also argued in Jack et al. (2016)
to be reasonable for all of the rates except the rate from A—N—
(state 1) to A+N— (state 2). They compared a log-linear rate
to that obtained from log-cubic splines. We came to the same
conclusion and accordingly, a cubic spline is used for estimating
only the rate of transition from state 1 — 2, with knots at ages
55, 65, 75, 90, and boundary knots at 50 and 120.

2.4. Likelihood Function
If the states were known for each subject at each observation,

then the contribution to the likelihood function from each
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Figure 4. Annualized natural logarithm of Minnesota overall population death
rates. Solid line corresponds to female and dashed line corresponds to male.

respectively, for the ith subject’s kth clinical visit (observation).
Further, the ith subject has n; clinical visits, and has for each visit
k € {1,...,n;} an (unknown) state s; .

Thus, the likelihood contribution from the ith subject at the
kth visit can be expressed as

7 7
Fi) = D FOipsie) = D Plsik) - f (gl si)s
sik=1 sik=1

where the sum is taken over all possible states (since the true
state sequence is unknown). If a given response y;  ; is missing
(e.g., missing PIB scan), then the missing value is integrated
out of the likelihood (i.e., the response density of the missing
value contributes a product of 1 to the likelihood function).
It is assumed that missing response values are predominantly
missing at random (MAR). While it could be suspected that
missing clinical visits might be associated with deteriorating
mental health, conditional on the underlying state, s;, it is
reasonable to assume that no systematic pattern of missingness
persists. Furthermore, the approximately 50% of subjects chosen
to undergo regular brain imaging were assigned randomly, so a
large portion of missing PIB and thickness values are missing
completely at random (MCAR).

Making the standard assumption that the responses are
conditionally independent given an underlying state sequence
Si1>- - -»>Sin;> and applying the Markov property for the state
sequence gives,

f(}’i,1>~--

7 7 7
DD Plsiy)

sit=1six=1 Siyn;=1

’yi,m) =

ni
x P(sialsi1) - - - P(Sipn;|Sini—1) - l_[f(yi,k|5i,k)
k=1

7
si1) - ZP(Si,2|5i,1)

siz=1

7
D PGsin)f (i,

si1=1

7
X f(y,‘,2|5i,2) s ZP(Si,ni|5i,n,-—1)f(yi,ni|5i,n,-)

Si)ni=1



= moDy - P(ti1, tia — ti1)
X D(i,Z) T P(ti,n,-—l) ti,ni - ti,n;—l)D(i,ni) -1,
(6)

where g is the baseline state probability vector, D) is a
diagonal matrix with diagonal components f(y; ;[six) for each
sik € {1,...,7} in the state space, P(tx—1, tix — tik—1) is the
transition probability matrix given in (4) with t;x denoting the
(continuous) age of subject i at visit k, and 1 is a column vector
of ones. Note that for Equation (6) it is assumed that t;  is equal
to the baseline age of 50 for the MCSA. Relaxing this assumption
along with two other subtle but important features of the MCSA
data must to be addressed, and results in slight modifications
of this likelihood function. These topics will be addressed in
Sections 2.4.1, 3.1, and 3.2.

Next, to complete the specification of the likelihood, the form
of the response density f(y;;) and the baseline state proba-
bility vector o must be specified. It is assumed that the four
responses, yix1 = log(PIB — 1), y;x» = thickness, y;jx3 =
MMSE, and y;x4 = Dementia, are conditionally independent
given state s;; and subject specific covariates. As illustrated in
Figure 2, the transformed PIB measurements are assumed to
be generated according to two normal random variables with
different means. One of the means, say (4, corresponds to the
distribution of transformed PIB measurements for an individual
in a low amyloid burden state, and the other, say 44, corre-
sponds to a high amyloid burden state. Specifically,

FOikalsi) = Nik1lrwa—opin) - (g e135)

+ N@ik1ltatopw) - I epae)  (7)
where I4 is the indicator function which is equal to 1 if A and
0 otherwise. The variance of both Gaussians is assumed to be
equal to aid in identifiability of the two groups. The density

function for thickness and MMSE are defined analogously.
For the thickness response variable,

FOikalsik) = Nig2ln—» owicd) - Ifs, cq1,2))
+ Nik2| UN+> Othick) * I{sl-,ke{3,4,5,6}}’ (8)
and for the MMSE response variable,

f(yi,k,3|si,k) = N()’i,k,3|,U«, Ummse): (9)
with
6
n= Zaj < Iis;=j) + @7 - age + g - male + oy - educ
j=1
+ ajyo - apoe4 + oy - ntests.

The first four covariates are the same as those in Section 2.3, and
“ntests” is the number of times a subject has taken the MMSE
by a given clinical visit. It is observed in the medical practice
that scores on the MMSE may improve as an individual becomes
familiar with the exam, and so the “ntests” covariate is included
to control for this effect.

The probability mass function for misdiagnosis of dementia
is

P(y;kalsik) = Bernoulli(y; k.4po) - Its el1,2,3,4))

+ Bernoulli(1 — y; k4lp1) - I{Si‘k€{5)6}}’ (10)
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where ;x4 = 1 if the subject was diagnosed with dementia,
and y; ;4 = 0 if not. Accordingly, po and p; are misclassification
probabilities, with pg the probability of an incorrect diagnosis of
dementia, and p; the probability of an incorrect non-diagnosis
of dementia.

Finally, the baseline state probability vector is mg =
[70.1> 0,25 70,3, 00,4, 0, 0, 0] where o = P(siy = j) for
j € {1,2,3,4}, for all subjects, i. As the MCSA did not enroll
demented or deceased individuals, subjects would necessarily
have been in states 1-4 at baseline. Accordingly, Zil moj =1,

]
and the last three components of 7y must be zero.

2.4.1. Treating Time of Death as Known Without Error

One feature common to many population-based studies is that
death is observed without error and time of death is known
exactly, so the likelihood must be modified to account for this
more precise information (Satten and Longini 1996). Suppose
that subject i transitions to death at time t; ;. The final term in
the subject’s contribution to the likelihood can be re-expressed
as follows. For a state s;,,—; at time t;,,_1, and ¢ € (0,t;,, —
ti,ni—1)> leta

B(S) = {Si,n,’(ti,n,‘) = 7’ S(ti,n,' - 8) < 7},

where s(t; ,, — &) represents the underlying state of the ith subject
¢ amount of time before #;,,;. Then B := (), B(¢) is the event
that the ith subject dies precisely at time t; ,,. Further,

6

Z P(s(tim, — &)lsin—1(tin—1))

s(t,;,,ife)=1

: P(Si,ng(ti,n,‘) = 7|5(ti,ni - 8))

P(B(&)[sin;—1) =

Thus, dividing both sides by ¢ and taking the limitas ¢ — 0
gives a proportional likelihood function value of

6
> Psin)lsim—1) - Qutty)7(Ltim))

S(ti,ni)zl

(11)

evaluated at the event {Bl|s;,,—1}. The quantity in (11) is inter-
preted as the average probability of being in each of the first six
states the instant prior to death, each weighted by the probability
of transitioning to death at the next instant (given by the instan-
taneous transition rates Qs7(|t,,])). Note that the response
functions are not needed/defined when s;,, = 7 because death
is assumed observed without error.

3. Population-Based Study Challenges for an HMM

The purpose of this section is to demonstrate the existence of
and provide solutions for two critical methodological gaps in
the analysis of disease progression for studies like the MCSA.
After describing these two overlooked sources of bias in the
literature, Section 3.3 serves to demonstrate empirically on a
simple synthetic dataset the impact that ensues when the delayed
enrollment bias is not properly addressed. We argue that the
effects of this bias cannot be ignored, and existing software is
not equipped to handle this feature.
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3.1. The Death Rate Bias

A common feature of many human population based studies
(delayed enrollment or not), is the following death rate bias. In
addition to not representing those members of the population
who would have enrolled if they were not already dead (which
is tied into the delayed enrollment bias), it is often the case
that people are much less likely to enroll in a study if they are
very sick and/or dying. As a result, the death rate for the sub
population of individuals who are most likely to enroll is proba-
bly smaller than the overall population death rate, for at least
the first few years after enrollment into the study. Consistent
with the difference between this healthier sub-population and
the overall population, this phenomenon will lead to a reduced
estimate of the death rate and higher likelihoods of other paths
in the state space. This represents a bias with respect to the true
parameter values of the overall population.

Our proposed approach to correct for the death rate bias is to
explicitly estimate the bias on the non-dementia to death rate.
This can be done in a linear fashion by including two additional
parameters in the log-linear rate Equation (5). The first, say
¢ < 0, will be for estimating the baseline effect of the death rate
bias, and the second, say d > 0, will be for estimating the linear
slope at which the death rate bias vanishes for every integer
year in the study (since the time effect is discretized annually).
That is, Equation (5) for only the non-dementia to death rate
(I € {3,5,8,10}) becomes,

log(q)) = él) + ﬂl(l) -age + ,3;1) - male + ﬁgl) - educ

+ ,Bil) - apoe4 + g(iyears), (12)
where “iyears” is integer years enrolled, and g(iyears) :=
min {c+d-iyears, 0}. The death rate bias term is only allowed to
decrease the non-dementia to death rate. Further, the smallest
root of g is the duration for which the death rate bias persisted
in the study.

The coefficients in Equation (12) become identifiable due
to strong prior information available for the overall population
death rate. We provide evidence that this bias exists in the MCSA
data by appealing to the fact that c and d are both estimated to be
nonzero (see Figure 9), and by demonstrating in Section 4 that
all parameters in Equation (12) can be accurately estimated in a
similar, truth known synthetic data setting.

3.2. The Delayed Enroliment Bias

The delayed enrollment bias occurs in situations in which the
first observation time for the ith subject, t;;, is not necessar-
ily equal to the baseline age of 50 years old (in the case of
the MCSA). In this case, the probability of transitioning from
the (unknown) underlying state at baseline to the (unknown)
underlying state at the first observation must be accounted for
in the likelihood function. That is, the baseline state probability
vector 7 in (6) is replaced with,

m(ti1) = [vi(ti1) > va(tin) > va(tin) > va(tin), 0, 0, 0]/
1

X — (13)
Z}Ll vj(ti1)

where v(t;1)" = m(P(50, t;; — 50). The last three components
are set equal to zero due to the fact that demented and dead
subjects are not enrolled into the study.

If the initial probabilities from baseline to enrollment age
were not conditioned on the underlying states being non-
demented and non-dead, then the transition rates (especially
those to dementia and death) will exhibit strong downward bias
(with respect to the true population parameter values) due to
the fact that neither demented nor dead subjects are enrolled.
We refer to this bias as the delayed enrollment bias, and it will be
illustrated empirically in Section 3.3. Relevant standard software
such as the msm package in R (Jackson 2011) does allow for
specification of a common baseline in a delayed enrollment study
(after manually adding censored observations in the dataset at
baseline), but unfortunately does not offer the ability to perform
conditioning (rescaling) on the initial state probability vector,
asin (13).

3.3. Demonstrating the Effect of a Delayed Enrollment
Bias

The cardiac allograft vasculopathy (CAV) dataset from the
msm package was collected from a study of the progression
of CAV, which is a common cause of death after heart
transplant (Sharples et al. 2003). The state space as described
in Jackson (2011) includes four states labeled “no CAV” (state
1), “mild/moderate CAV” (state 2), “severe CAV” (state 3), and
“death” (state 4), and forward-only transitions are assumed
(patients can only get worse). Observed remissions in the
state of a patient are considered a result of misclassification
error. In the CAV data, baseline is defined as time of heart
transplant. All patients are observed at baseline, and in fact at
baseline all patients are in state 1 because CAV does not develop
immediately.

In this simple dataset, the only response variable is the
observed state at each visit which is assumed to follow a
categorical distribution. In particular, given a patient is in state
1, 2, or 3 there is a nonzero probability of observing an adjacent
state. Additionally, as is the case for the MCSA, death and time of
death are known without error. Formally, given a true state (row)
the response probability mass function takes the form given
in Table 1, where the probabilities p1, p2, p3, and p4 are each
interpreted as the probability a of particular misclassification.
Note that the rows must sum to one.

Time is treated as continuous and discretized annually for the
transition rate matrix. Integer years since heart transplant, and
gender are included as covariates on the transition rates for the
CAV data,

()

h . 1
log(qn) = By + ,31() - iyears + ﬂé) - SeX, (14)
Table 1. Misclassification response function.
Observed state
No CAV Mild Severe Death
No CAV 1—p P1 0 0
Mild p2 1—p2—p3 p3 0
True state Severe 0 P4 1= pa 0
Death 0 0 0 1




where
—q1— 92 q 0 q
Q= 0 4349+ 43 94
0 0 —q5 45
0 0 0 0

To replicate the CAV data in a “known truth” simulation,
first the HMM parameter estimates were obtained using the
msm package on the original CAV data. As suggested in Jackson
(2011), the “BFGS” quasi-Newton optimization algorithm was
specified to estimate the HMM parameters with the “msm”
function. The parameter estimates from the CAV dataset are
then used as the “true” values to generate new datasets.

Important features of the MCSA as distinct from the CAV
data are that not all subjects are in state 1 at baseline, and
virtually none of the subjects are observed at baseline. Thus,
to more closely resemble the MCSA data, each patient in the
simulated CAV data is generated with a baseline state according
to the following distribution,

Sil ‘ No CAV Mild Severe Death
P(si1) | 095 0.04  0.01 0

See the supplementary materials for complete detail on how
synthetic data was generated.

A sample size of 2000 was generated for 100 simulated
datasets. Figure 5 shows estimates of the log-rate intercept
coeflicients from Equation (14) using the posterior mean from
the proposed Bayesian approach, and the MLE obtained via
msm. The boxplots are over the 100 estimates of each parameter
and demonstrate that in a simple idealized setting the Bayesian
and MLE estimates are very similar.

In the synthetic data example above, all patients are observed
at baseline; this is the type of study for which the msm package
was designed. To illustrate the bias that ensues when subjects
are not observed at baseline, the 100 datasets are generated
once more from the same random generator seeds. However,
instead of beginning with the initial observations at baseline
(zero years after heart transplant), the time of initial observation
is generated, with probability 0.75, from a Gaussian distribution
with a mean of 5 integer years and a SD of 1, that is, the initial
observations remain at baseline with probability 0.25. Addition-
ally, if a patient transitions to death prior to the generated initial
observation time, then the patient is not included in this delayed
enrollment study. This is a critical point because it illustrates
a root cause of the bias: the delayed enrollment study is less
likely to include patients with immediate adverse reactions to
heart transplant. If the sample were truly representative, then all
2000 patients would be represented. However, studies typically
only sample from the living. The average sample size of the 100
synthetic datasets for the delayed enrollment study is 1686.

In Section 3.2, the procedure for accounting for the delayed
enrollment bias in the likelihood function was described. It
amounts to evaluating the transition rate matrix, Q, (here, annu-
ally) from baseline to initial observation, and then computing
the conditional probabilities for the initial states of enrollment.
This conditioning feature is not available in the msm package
which was not designed for a delayed enrollment study. Figure 6
illustrates the effect of ignoring this feature and estimating as
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though enrollment is not conditional on being alive, that is,
MLE (msm). The estimates from Bayes and MLE are analogous
to those in Figure 5, however, they do explicitly account for
the initial probability according to (13). Without accounting for
the delayed enrollment effect in the likelihood function certain
estimates are significantly biased downward, suggesting slower
rates of transition. The biases become more extreme as fewer
patients are observed at baseline; recall that about 25% of the
patients are still observed at baseline in this example.

The bias also filters into other HMM parameter estimates; see
the supplementary materials for the full results of these two sim-
ulation setups. The objective of this synthetic delayed enrollment
study example is to demonstrate one of the crucial reasons why
the analysis of the MCSA data requires methodological develop-
ments which are not readily available in standard software. The
msm package, as well as other similar software, are not flawed,
rather they were simply not designed for this type of application.

4. Synthetic Mayo Clinic Study of Aging Data

Section 3.3 presented the results of the proposed estimation pro-
cedure in a simple idealized simulation example. In this section,
a more realistic simulation is presented which is intended to
closely replicate the MCSA data generating process with respect
to sample size, the frequency of clinical visits, and the propor-
tion of biomarker measurements available. The three objectives
are to (i) provide evidence that the synthetic data reasonably
resembles the real data in an effort to verify that the data gener-
ating mechanisms of the real data are sufficiently understood,
(ii) validate the estimation procedure by demonstrating that
credible regions concentrate around the true parameter values,
and (iii) demonstrate the reliability of the estimates with respect
to the true parameter values.

The standard R package for estimating an HMM with
arbitrary continuous-time observations is msm (Jackson 2011).
While msm is a well written and powerful package, it does not
offer Bayesian estimation options, and as discussed previously
it cannot correct for the biases on the transition rates that arise
from a delayed enrollment sample.

The same techniques used to generate data resembling the
CAV dataset are applied here, just with more features to simulate
such as the additional response functions and a death rate bias.
See the supplementary materials for the particulars of how
the synthetic data was generated. Before diving right into the
estimation results, a few estimation details are discussed, mainly
relating to prior information.

In the state space of Figure 1, there are a number of assump-
tions which can reasonably be made about the biology of this
process. For instance, the rate of transition to the N+ state
with high amyloid burden should be at least as fast as with low
amyloid burden. That is, the rate parameter from Q for transi-
tioning from A+N— to A+N+ should be at least as big as the
rate parameter for transitioning from A—N— to A—N+. Similar
constraints should be true for transitioning from low to high
amyloid burden with respect to high/low neurodegeneration
burden (i.e., having N+ cannot lower the rate of transitioning
to A+), and those with dementia die at a rate no less than
those without dementia. These constraints are a mathematical
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Figure 5. Intercept coefficient estimates for a traditional study in which all subjects are enrolled at a common baseline time. “Bayes” corresponds to the Bayesian posterior
mean estimates, and “MLE (msm)” corresponds to maximum likelihood estimates computed from the “msm” function. Green dashed lines represent the true values.
Coverage is the proportion of 0.95 probability credible intervals (confidence intervals for the MLE) which contain the true parameter value.

formulation of the assumption that having a larger burden may
not escalate disease progression, but it certainly cannot help.
A table with the full list of rate constraints is given in the
supplementary materials.

In addition to these constraints, it is reasonable to assume
that all of the age coefficients on the rate parameters (see Equa-
tion (5)) are nonnegative. That is, becoming older will not
slow down an individual’s rates of progression. Next, constraints
are placed on the response variable parameters to help with
identifiability. The mean log(PIB — 1) measurement associated
with the low amyloid burden state should not exceed that of
the high amyloid burden state. Analogously, the mean thickness
measurement associated with high neurodegeneration burden
should be less than or equal to that for low neurodegeneration
burden (low thickness is associated with high burden). Lastly,
the mean MMSE scores should be monotone non-increasing in
the state ordering {4, 5, 6}, the mean MMSE score for state 1
should be no smaller than that for states 2 and 3, and the mean
MMSE score for states 2 and 3 should be no smaller than that
for state 4. No constraint is placed between the mean scores for
states 2 and 3.

One of the advantages of the Bayesian approach of estimation
is that imposing this long list of important constraints in the
model can be easily handled through specification of the priors,
and the priors have a natural ability to accommodate other
known information about the model parameters. In particular,
the MCSA sampled subjects are from the greater Rochester, MN

area, and Minnesota death rates for women and men of all ages
(from 1970 to 2004) are made available in the US Decennial
Census, which are captured in the “survexp.mn” dataset in
the survival package in R (Therneau 2015). These gender-
specific rates are used to set the prior means placed on the
baseline and gender coefficients for the log death transition
rate (Equation (12)), see Table 2. It is assumed that all non-
dementia to death rates are the same (and hence share the same
coefficients in Equation (12)). The fact that the A and N states do
not have obvious external manifestations makes this assumption
reasonable.

A multivariate normal prior is placed on the vector of HMM
parameters, and multivariate normal proposals are used. The
full table of prior distribution specifications for each of the 81
parameters in the model is provided in Table 2. For parameters
which are nonnegative, such as the variance parameters for
the response functions, the Gaussian priors are placed (and
Gaussian proposals are made) on the natural logarithm of the
parameter. For parameters which are constrained to be between
0 and 1, such as the dementia misclassification parameters and
the baseline state probability parameters, the logit transforma-
tion of the parameters is used. For example, the baseline state
probability vector is re-expressed as

1
1-}-@51-}-@52_}_@53)

Ty = [l,eél,esz,e&,0,0,0]/ (15)

where &1, &>, and &3 are assigned Gaussian priors and proposals.
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Figure 6. Intercept coefficient estimates for a delayed enrollment study. “Bayes” corresponds to the Bayesian posterior mean estimates, “MLE” corresponds to the MLE
obtained via optimizing the likelihood function from Section 2.4 using the “optim”function in R, and “MLE (msm)” corresponds to maximum likelihood estimates computed
from the “msm”function. Green dashed lines represent the true values. Coverage is the proportion of 0.95 probability credible intervals (confidence intervals for the MLE)

which contain the true parameter value.

Although commonly done in the literature (mostly due
to conjugacy), we hesitate to use inverse-gamma priors on
variances for reasons discussed in Gelman (2006); namely,
the inverse-gammal(e,e) family of priors is very sensitive to
the choice of ¢, which does not naturally lend itself as weakly
informative nor uninformative. Moreover, we view our priors
in general as weakly informative in the sense of Gelman (2006).
That is, they are set intentionally weaker than what we believe
the expert domain knowledge warrants, with the exception of
the priors for parameters associated with the non-dementia
to death rate and the death rate bias. Further, without having
more knowledge about the shape of the prior distributions,
the symmetry, exponential tails, and mathematical simplicity
of Gaussian priors make them a natural choice. They allow us
to be as diffuse as we believe appropriate without affording a
questionably large amount of mass at the extreme values of
the distributions. We investigate/discuss sensitivities of our
posterior estimates to specifications of our priors in Section 5.1.

The simulation study consisted of simulating 50 synthetic
datasets resembling the MCSA data. The synthetic datasets were
simulated to contain similar amounts of information to the real
dataset. That is, 4742 subjects were simulated starting from
random ages and assigned covariate values randomly from the
empirical distribution of the MCSA data. The simulated subjects
are “observed” at times which are determined by sampling from
the actual inter-observation times in the MCSA data.

The maximum length of time in the study for subjects in the
MCSA is not much longer than 12 years. Thus, for reasonable
comparison, subjects in the synthetic datasets are observed for
a maximum of 12 years or until time of death, whichever comes
first. To simulate attrition in the study, for each generated clinical
visit there is a 0.9125 probability that the given subject remains
in the study. The probability of 0.9125 was chosen because it
yields a comparable distribution of number of clinical visits
and observed deaths in the synthetic data to that of the real
MCSA data, as discussed shortly. Exactly 2718 (approximately
57%) of subjects in the MCSA dataset have at least one observed
biomarker measurement, and both biomarkers were observed
for 1740 subjects. Of the 2718 subjects, the proportions of
observed biomarkers over all visits is presented in the following
table,

PIB
‘ measured not measured
. measured 0.227 0.231
Thickness not measured 0.002 0.540

To keep consistent with this feature, ~43% of the syntheti-
cally generated subjects were given no biomarker data for any
of their visits, while the remaining ~57% were randomly given
observed PIB or thickness measurements, at each clinical visit,
according to the above distribution.
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Table 2. Displayed are the means and SDs of the (independent) normal priors placed on the 81 model parameters.

Prior means and SDs

State transition parameters (see (5) and (12))

Transition ﬁé’) /51“) ﬁél) 53(1) 52/) ct+d

non-dem—7 —4.41(0.1) 0.094 (0.01) 0.47 (0.05) 0(0.1) 0(1) —0.75(0.375) —0.60 (0.3)

5—7and 6—7 —4(1) 0.1 (0.05) 0(m 0(0.1) 0(1)

all others —=3(1) 0.1 (0.05) 0(1) 0(0.1) 0(1)
Cubic spline parameters for state 1 to state 2 as a function of age

Q Q [&] C4 C5 Co 7 g

=5 —4(2) -3(2 -2(2) =102 0(3) 13) 2(3)
log(PIB — 1) response (see (7)) Thickness response (see (8))

HA— AL |09(0§ib) HUN— N |09(0t2hick)

—1.3(0.2) —0.5(0.2) log ((0.4/3)%) (2) 3.14(0.2) 2.34(0.2) log ((0.4/3)?) (2)
MMSE response (see (9))

a1-og o506 ay ag o9 a0 o log(0mse)

—0.28 (0.75) —73(3) 0(1) 0(1) 0(1) 0(1) 0(1) —0.7 (2)
Dem misclass (see (10)) Baseline probabilities (see (15))

logit(po) logit(p1) & & &

—=3(1) —=3(1) —3.5(0.25) —6(1) —6(1)

NOTE: SDs are in parentheses, and these priors assume that the data have been centered. The parameterscy, . .

for the state 1 to state 2 transition (for baseline and age), as discussed at the end of Section 2.3.
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Figure 7. Intercept and death rate bias coefficient estimates for the synthetic MCSA data, see (5) and (12). Note that the covariates in the data are centered. Presented are
boxplots of posterior means of the labeled parameters, from 50 synthetic MCSA datasets. Green dashed lines represent the true values. Coverage is the proportion of 0.95
probability credible intervals which contain the true parameter value.
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Figure 8. Evolution of transition probabilities. The curves represent the probability of transitioning to the respective state for each given age, computed using the posterior
mean estimates of the HMM parameters. The probabilities are conditional on not transitioning to state 7 (Dead), and correspond to an individual in state 1 (A—N—) at the
baseline age of 50. The label “apoe4 negative” corresponds to an individual with no APOE-¢4 alleles, and “apoe4 positive” corresponds to an individual with at least one
APOE-¢4 allele. The curve labeled “Alzheimer’s” depicts the probability of making the transition from state 4 (A+N+) to state 6 (A+Dem), given not dead.

Death was observed for just over 28% of the actual MCSA
study subjects, and the number of clinical visits for study sub-
jects varied between 1 and 10 visits, with a median of 4. The
synthetic datasets observe death for ~31% of subjects on aver-
age, and the number of clinical visits for synthetic study subjects
varies between 1 and 11 visits, with a median of around 6.

Figure 7 provides a summary of the results in the form of
boxplots of the posterior mean estimates, and coverage for
95% credible intervals, for 11 of the more interesting model
parameters. The supplementary materials contains a more
detailed summary of the results, including boxplots, coverages,
histograms, and MCMC trace plots for all 81 model parameters.
Opverall, this simulation exercise lends some confidence to the
results of the actual MCSA analysis presented next.

5. Analysis of the Mayo Clinic Study of Aging Data

This section presents analysis and interpretation of the HMM
parameter estimates of the actual MCSA data. Since there are 81
HMM parameters, some playing very different roles, presenting
the output in a concise manner is challenging and depends on

the question being asked. We present a targeted summary of a
few important questions here. See the supplementary materials
for estimates of all 81 HMM parameters, including the MCMC
trace plots, histograms, and 95% credible intervals. We paral-
lelize our likelihood computation (within each MCMC step)
over 30 threads on a computing cluster, and for 10 unique
random number generator seeds we run the MCMC algorithm
(i.e., using a total of 300 threads) for about 3 days on the real
MCSA dataset.

The state space as it is defined in Figure 1 allows for the
computation of transition probabilities broken down for par-
ticular types of dementia. Most notably, the development of
Alzheimer’s disease as defined here corresponds to a transition
from state 4 (A+N+) to state 6 (A+Dem), that is, there was
Amyloid build up prior to the neurodegeneration leading to
Dementia. See Figure 8 for the estimates of how these transition
probabilities evolve over time. While Alzheimer’s disease is
slightly more prominent among females of a given age versus
males of the same age, it is interesting that the likelihood of
dementia (of any kind) is nearly the same, that is, males are more
likely to develop non-Alzheimer’s related dementia.
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Figure 9. Posterior mean estimate of the death rate bias (12). Values are interpreted
as the proportion of the population death rate that is experienced by subjects in the
MCSA, for each integer year a subject is enrolled in the study. For example, subjects
just enrolled in the study experience a death rate which is 31% of the population
death rate. The dotted lines are 95% credible bands.

The estimated death rate bias for this study is also of interest,
particularly due to the novel approach taken to account for it. It
is observed that individuals just enrolled in the study experience
a death rate which is ~31% (posterior mean) of the population
death rate and it remains lower than the rest of the population
for several years after enrollment; see Figure 9. This suggests that
the death rate bias cannot be ignored.

Another feature of the analysis is that it is cut-point agnos-
tic, by design. Instead of hardwiring cut-points, the suggested
cut-points in the medical literature have been used as prior
information for the response distributions from high/low amy-
loid burden and high/low cortical thickness loss burden in the
log(PIB — 1) and thickness measurements, respectively. Recall,
Figure 2 displayed the estimated distribution of these response
biomarkers for high/low burden states.

Table 3 shows the estimated dementia misclassification prob-
abilities. These estimates indicate that physicians tend to be
conservative in diagnosing dementia. That is, they very sel-
dom diagnose an individual without dementia as demented, but
about 1 out of 10 individuals that truly have dementia is not
diagnosed as such.

Finally, Figures 10 and 11 provide heat maps of the state
space corresponding to individual specific estimated transition
intensities (posterior mean estimates). These depictions of the
state space in relation to the estimated parameters capture a
holistic picture of the model as a physical system. With these
plots, it is easy to identify which transition rates are most intense
at different ages, and to get a general sense of when rates begin to
“heat up.” In fact, these plots can be created for every integer age
greater than or equal to 50, and they are presented as a movie in
the supplementary materials.

Table 3. Posterior mean estimates of the dementia diagnosis response parameters.

Observed status

Diagnosed not demented  Diagnosed demented

0.008 [0.007, 0.009]
0.893

0.992
0.107 [0.072, 0.152]

Not demented

True status Demented

NOTE: The components are probabilities. Note that each row corresponds to only
one parameter, but both columns have been filled in for ease of interpretability
(rows must sum to one). The brackets represent 95% credible intervals (for the
components directly corresponding to the parameters which were estimated).

There are many variables whose effect is known medically
that could be used to validate some of the results. For example,
it is observed that the rates are relatively dormant for the first
two decades starting from 50 years old. After that, transition
rates among the first four states seem to increase slower than the
transition rates to more advanced states. Transitions particularly
to A+Dem from A+N+ or from A—Dem are the most intense
over almost all ages. APOE-¢4 is known to increase risk of A+
by a factor of 2-3. Based on this, the model should yield a
higher rate estimate of A—N— (state 1) to A+N— (state 2) and
A—N+ (state 3) to A+N+ (state 4) among APOE-¢4 carriers
than noncarriers. Examination of Figures 10 and 11 illustrates
that at both ages and for both men and women, the relationship
between both of these transition rates and APOE-¢4 in the
model output is exactly as would be expected. Additionally, the
rate of A+N+ to A+Dem should be greater in APOE-¢4 carriers
than noncarriers. This is the case in the model for both ages
shown and for both men and women as would be predicted from
the known biology.

5.1. Sensitivity to Prior Densities

As with any Bayesian analysis one must consider the sensitivity
of the resulting posterior estimates with respect to the prior
specifications. Since the non-dementia to death rate is known
to not deviate far from the overall Minnesota death rate, tight
priors serve to untangle ambiguity between the death rate and
other parameters in a broad sense, or “on average.” It should be
noted that the non-demented to death rate and death rate bias
parameters are quite sensitive to the variances placed on their
respective priors. We remark once more that the methodology
we propose in Section 3.1 for estimating/correcting the death
rate bias relies on strong prior information available for the
overall population death rate. In investigating the sensitivity
of the HMM parameter estimates to the priors for the non-
dementia to death rate parameters we find that the only unstable
parameter estimates are those associated with the rate itself and
the death rate bias, due to a lack of identifiability.

To study sensitivities to the specification of all priors other
than those related to the non-dementia to death rate, we
increased all other prior SDs by a factor of 10 and recomputed
the HMM parameter estimates. See the supplementary materials
to compare the posterior estimates between the more and
less diffuse prior specifications. It was observed that the
estimated posterior distributions of each parameter were
largely unchanged, with the exception of the log-cubic spline
parameters for the transition from state 1 to state 2, and the
baseline state probabilities. This can most likely be attributed
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Figure 10. Posterior mean estimates of the reciprocal transition rate components of Q at age 60. The numerical values can be interpreted as the estimated mean times (in
years) to transition, conditional on age. These plots correspond to an individual with a college degree. Recall that transitions to dead from states 1-4 are constrained to be

equal, and so for ease of presentation only one transition arrow is shown.

to the large amount of flexibility afforded by a cubic spline,
and a degree of un-identifiability between the cubic spline and
baseline state parameters because all other parameter estimates
are unaffected. Moreover, the original tighter priors set in
Table 2 for the baseline state probabilities are well-informed
and reasonable, according to population data.

6. Conclusions and Future Work

A continuous-time HMM was developed for the analysis of the
MCSA data. Much care was taken to make this model as realistic
of an approximation to the actual data generating process as
possible, including the treatment of important features such as
delayed enrollment and death rate bias. A Bayesian computa-
tional framework was developed to facilitate computation and
quantification of uncertainty, as well as allow for essential prior
information on many of the parameters. The model and its
estimation performance were validated via simulation studies,

prior to presenting the results of its application to the MCSA
data. Several important findings were that (i) the delayed enroll-
ment and death rate bias play a significant role in this study, (ii)
females of a given age are more prone to Alzheimer’s related
dementia than male counterparts, but they are less prone to non-
Alzheimer’s related dementia, and (iii) individuals with at least
one APOE-¢4 allele are more than twice as likely to develop
Alzheimer’s than those with no alleles.

Our work builds on the simpler Markov model of the MCSA
from Jack et al. (2016), and could be viewed as a compet-
ing model. We include the additional covariates for gender,
education, and presence of an APOE-¢4 allele on the state
transition rates, and introduce the emitted response variables
associated with amyloid and cortical thickness to allow for
agnostic biomarker cut-points. Additionally, we consider the
emitted response variables for MMSE scores and physician diag-
nosis misclassification of dementia, as well as provide method-
ology for estimating/correcting the death rate bias. The model
from Jack et al. (2016) used fixed death rates from Minnesota



30 J.P.WILLIAMS ET AL.

80 year old female, apeo4 negative

45.5
30.3 3
28.6

37 7.5

20.8

80 year old female, apeo4 positive

23.3

80 year old male, apeo4 negative

13.9

52.6

27 5
345
323 74

6.8

18.9

80 year old male, apeo4 positive

175 208
208 Yo7 18.9 >
T 1
14.3 175
26.3 55 227 152
6.3 6.4
13 11.9
[ - |
I T T T T T T T
0 50 100 150 200 250 300 350

Figure 11. Posterior mean estimates of the reciprocal transition rate components of Q at age 80.

population data. These added features of our model allow for
greater flexibility in the theorized data generating model, and
deeper understanding of the biology. Admittedly, though, if the
proposed model became much more complex with additional
covariates (or other features) it would require some decisions
about which covariates to include in which equations. Stochastic
search variable selection is a viable option as it has been used
successfully on event rate models (Storlie et al. 2013; George and
McCulloch 1993). Other options include spike and slab priors
(Ishwaran and Rao 2005), or computing competing models
and comparing them with some criterion such as the widely
applicable information criterion (WAIC, see Watanabe 2010).

One limitation of the proposed approach is that it does not
allow for rates to vary depending on the extent of Amyloid
(or cortical thickness) burden. It is known that once there is
sufficient Amyloid build up, then the rate of neurodegeneration
is elevated, however, this effect may not be constant across all
levels of Amyloid build up. This could be tested by allowing for
multiple discrete Amyloid states (e.g., low, medium, high). How-
ever, this feature would be best addressed with a continuous-
state space for both Amyloid and cortical thickness burden. This
is a subject of future work.

An additional remark is that the various constraints placed
within our model such as on the transition rates and on the
response function parameters are rather stringent, but they
reflect expert domain knowledge. Moreover, constraints such
as those on the PIB and thickness mean parameters simply
make the parameters identifiable. Nonetheless, imposition of
such constraints should not be decided ad hoc. And when
concerns arise as to the reasonability of various constraints,
sensitivity tests should be performed to more fully understand
the implications. A similar remark applies to prior speci-
fications, and as we noted in Section 5.1 we find that our
estimated model, particularly for parameters associated with
the death rate and death rate bias, are heavily reliant on the
availability of strong prior information for population death
rates.

Finally, it is likely the case that our computations could
be made more efficient by implementing Hamiltonian Monte
Carlo methods. This article lends credibility to and provides
verification for our theorized model and features of the MCSA
data. Accordingly, a natural next step is to sharpen our compu-
tational strategies which would facilitate deeper explorations of
the features of the data.



Supplementary Materials

The online supplementary materials contain details of the computations,
the code for reproducing all the results of the article, and further analysis
of the presented simulation studies and MCSA data results.
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