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Summary

Since the introduction of fiducial inference by Fisher in the 1930s, its application has been
largely confined to relatively simple, parametric problems. In this paper, we present what might
be the first time fiducial inference is systematically applied to estimation of a nonparametric
survival function under right censoring. We find that the resulting fiducial distribution gives rise
to surprisingly good statistical procedures applicable to both one-sample and two-sample prob-
lems. In particular, we use the fiducial distribution of a survival function to construct pointwise
and curvewise confidence intervals for the survival function, and propose tests based on the
curvewise confidence interval. We establish a functional Bernstein–von Mises theorem, and per-
form thorough simulation studies in scenarios with different levels of censoring. The proposed
fiducial-based confidence intervals maintain coverage in situations where asymptotic methods
often have substantial coverage problems. Furthermore, the average length of the proposed con-
fidence intervals is often shorter than the length of confidence intervals for competing methods
that maintain coverage. Finally, the proposed fiducial test is more powerful than various types of
log-rank tests and sup log-rank tests in some scenarios. We illustrate the proposed fiducial test
by comparing chemotherapy against chemotherapy combined with radiotherapy, using data from
the treatment of locally unresectable gastric cancer.

Some key words: Coverage; Generalized fiducial inference; Nonparametric model; Right-censored data; Testing.

1. Introduction

Fiducial inference can be traced back to a series of articles by (R. A. Fisher, 1925, 1930,
1933, 1935), who introduced the concept as a potential replacement for the Bayesian posterior
distribution. A systematic development of the idea has been hampered by ambiguity, as Brillinger
(1962) describes: ‘The reason for this lack of agreement and the resulting controversy is possibly
due to the fact that the fiducial method has been put forward as a general logical principle, but
yet has been illustrated mainly by means of particular examples rather than broad requirements.’
Indeed, we contend that until recently fiducial inference has been applied to a relatively small
class of parametric problems only.
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502 Y. Cui AND J. Hannig

Since the mid 2000s, there has been a renewed interest in modifications of fiducial inference.
Hannig (2009, 2013) brings forward a mathematical definition of what he calls the generalized
fiducial distribution. Having a formal definition allowed fiducial inference to be applied to a wide
variety of statistical settings (Wang & Iyer, 2005, 2006a,b; Hannig et al., 2007; Hannig & Lee,
2009; Cisewski & Hannig, 2012; Wandler & Hannig, 2012; Wang et al., 2012; Lai et al., 2015;
Liu & Hannig, 2017; Hannig et al., 2018).

Other related approaches include the Dempster–Shafer theory (Dempster, 2008; Edlefsen et al.,
2009), inferential models (Martin & Liu, 2015), and confidence distributions (Xie & Singh, 2013;
Schweder & Hjort, 2016; Hjort & Schweder, 2018). Objective Bayesian inference, which aims
at finding non-subjective model-based priors, can also be seen as addressing the same basic
question. Examples of recent breakthroughs related to reference prior and model selection are
Bayarri et al. (2012) and Berger et al. (2009, 2012); see the review article Hannig et al. (2016)
for more references.

In this paper, we apply the fiducial approach in the context of survival analysis. To our
knowledge, this is the first time fiducial inference has been systematically applied to an infinite-
dimensional statistical problem. However, for the use of confidence distributions to address some
basic nonparametric problems see Chapter 11 of Schweder & Hjort (2016). In this article, we pro-
pose a computationally efficient algorithm to sample from the generalized fiducial distribution,
and use the samples from the generalized fiducial distribution to construct statistical proce-
dures. The median of the generalized fiducial distribution could be considered a substitute for the
Kaplan–Meier estimator (Kaplan & Meier, 1958), which is a classical estimator in survival analy-
sis.Appropriate quantiles of the generalized fiducial distribution evaluated at a given time provide
pointwise confidence intervals for the survival function. Similarly, the confidence intervals for
quantiles of survival functions can be obtained by inverting the generalized fiducial distribution.

The proposed pointwise confidence intervals maintain coverage in situations where classical
confidence intervals often have coverage problems (Fay et al., 2013). Fay et al. (2013) and
Fay & Brittain (2016) construct solutions to avoid these coverage problems. The conservative
version of the proposed pointwise fiducial confidence interval is equivalent to the beta product
confidence procedure of Fay et al. (2013). The other fiducial confidence interval proposed in
this paper is based on log-linear interpolation and has the shortest length among all existing
methods which maintain coverage. We also construct curvewise confidence intervals for survival
functions. Based on the curvewise confidence intervals, we propose a two-sample test for testing
whether two survival functions are equal.

We establish an asymptotic theory which verifies the frequentist validity of the proposed
fiducial approach. In particular, we prove a functional Bernstein–von Mises theorem for the gen-
eralized fiducial distribution in Skorokhod’s D[0, t] space. Because randomness in generalized
fiducial distributions comes from two distinct sources, the proof of this result is different from
the usual proof of asymptotic normality for the Kaplan–Meier estimator. As a consequence of
the functional Bernstein–von Mises theorem, the proposed pointwise and curvewise confidence
intervals provide asymptotically correct coverage, and the proposed survival function estimator
is asymptotically equivalent to the Kaplan–Meier estimator.

The proposed fiducial approach provides competitive, and in some cases superior, performance
to many methods in the literature and also appears to be an alternative to the log-rank test and sup
log-rank test, which are valid for goodness-of-fit testing within the class of stochastically ordered
alternatives as shown in the 1980 PhD thesis by R. D. Gill, Mathematical Centre, Amsterdam.
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Nonparametric generalized fiducial inference 503

2. Methodology

2.1. Fiducial approach explained

We explain the definition of a generalized fiducial distribution and start by expressing the
relationship between the data Z and the parameter θ using

Z = G(W , θ), (1)

where G(·, ·) is a deterministic function termed the data-generating function and W is a collection
of random variables whose joint distribution is independent of θ and completely known.

In the case of no censoring, Z = Y and W = U , where Y = (Y1, . . . , Yn) are observed
data and U = (U1, . . . , Un) are independent and identically distributed Un(0, 1). The inverse
cumulative distribution function method for generating random variables provides a common
data-generating equation for a nonparametric independent and identically distributed model:

Yi = G(Ui, F) = F−1(Ui) (i = 1, . . . , n), (2)

where F−1(u) = inf {y ∈ R : F(y) � u} is the usual inverse of the distribution function F(y)
(Casella & Berger, 2002). The distribution function F itself is the parameter θ in this infinite-
dimensional model. The actual observed data are generated using the true distribution function
F0.

Roughly speaking, a generalized fiducial distribution is obtained by inverting a well-chosen
data-generating equation, and Hannig et al. (2016) propose a very general definition of a gener-
alized fiducial distribution. However, in order to simplify the presentation, we will use an earlier,
less general version found in Hannig (2009). The two definitions are equivalent for the models
considered here.

We start by denoting the inverse image of the data-generating equation (1) by

Q(y, u) = {θ : y = G(u, θ)}.
For the special case (2) the inverse image is

Q(y, u) =
n⋂

i=1

{F : F(yi) � ui, F(yi − ε) < ui for any ε > 0}. (3)

If y is the set of observed data and u0 the value of the random vector U that was used to
generate it, then we are guaranteed that the true parameter value θ0 belongs to Q(y, u0). However,
we only know a distribution of U and not the actual value u0. Notice that y = G(u0, θ0) and
therefore only values of u for which Q(y, u) |= ∅ should be considered. Let U ∗ be another random
variable independent of and having the same distribution as U . Since the conditional distribution
of U ∗ | {Q(y, U ∗) |= ∅} can be viewed as summarizing our knowledge about u0, the conditional
distribution of

Q(y, U ∗) | {Q(y, U ∗) |= ∅} (4)

can be viewed as summarizing our knowledge about θ0.
The set Q(y, u) can contain more than one element. We deal with this by selecting a repre-

sentative from the closure of Q(y, u). The distribution of a representative selected from (4) is a
generalized fiducial distribution. Based on the theoretical results presented, the nonuniqueness
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504 Y. Cui AND J. Hannig

caused by this somewhat arbitrary choice disappears asymptotically.A possible conservative alter-
native to selecting a single representative from Q(y, u) would use the theory of belief functions
(Dempster, 2008; Shafer, 1976).

To describe the generalized fiducial distribution in the particular case of (2) we define, for
all s � 0, FL

(y,u)(s) = inf {F(s) : F ∈ Q(y, u)} and FU
(y,u)(s) = sup{F(s) : F ∈ Q(y, u)}. The

closure of the inverse image (3) is the set of all distribution functions F that stay between FL
(y,u)

and FU
(y,u). Also notice that Q(y, u) is not empty if and only if the order of u matches the order of

y componentwise, with the understanding that in the case of ties in y, the ui corresponding to the
ties could be in any order.

By exchangeability, the conditional distribution U ∗ | {Q(y, U ∗) |= ∅} is the same as the
distribution of U ∗[y], where U ∗[y] is independent and identically distributed Un(0,1), reordered to
match the order of y componentwise. Next define random distribution functions by inserting the
random vector U ∗[y] for u: FL(s) = FL

(y,U∗[y])
(s) and FU(s) = FU

(y,U∗[y])
(s). For simplicity of notation

we omit the subindex (y, U ∗[y]). The random distribution functions FL and FU provide stochastic
lower and upper bounds on the generalized fiducial distribution.

We consider two main options in using the generalized fiducial distribution for inference. The
first option is to construct conservative confidence sets. For example, when designing pointwise
confidence intervals for the survival function at time s, we use quantiles of the random survival
functions SL(s) = 1 − FU(s) for lower bounds and quantiles of SU (s) = 1 − FL(s) for upper
bounds. We will call SL(s) and SU (s) the lower and upper fiducial survival functions, respectively.

The second option is to select a suitable representative of Q(y, U ∗[y]). When there are no
ties present in the data, we propose to fit a continuous distribution function by using linear
interpolation for the survival function on the log scale, i.e., the distribution function F I

(y,u)(s) = 1−
exp{L(s)}, where L(s) is the linear interpolation between (0, 0), (y(1), log u(1)), . . . , (y(n), log u(n)),
and on the interval (y(n), ∞) we extrapolate by extending the line between (y(n−1), log u(n−1)) and
(y(n), log u(n)). We will call this the log-linear interpolation and call the corresponding random
survival function SI (s) = 1 − F I

(y,U∗[y])
(s) the log-linear interpolation fiducial survival function.

In the rest of this paper we will denote Monte Carlo realizations of the lower, the upper, and the
log-linear interpolation fiducial survival functions by SL

i , SU
i , and SI

i (i = 1, . . . , m), respectively.
To demonstrate the fiducial distribution of this section, we draw 300 observations from

Wei(20, 10). Based on these data, we plot a sample of the fiducial survival functions SI
i (i =

1, . . . , 1000) and the empirical survival function in Fig. 1(a).

2.2. Fiducial approach in the survival setting

We now derive the generalized fiducial distribution using a particular choice of data-generating
equation generalizing (2) in a natural way for right-censored data. We treat the situation where
failure and censoring times are independent and unknown.

Let the failure times Xi (i = 1, . . . , n) follow the true distribution function F0 and let the
censoring times Ci (i = 1, . . . , n) have the distribution function R0. We observe partially censored
data {yi, δi} (i = 1, . . . n), where yi = xi ∧ ci is the minimum of xi and ci, and δi = I {xi � ci}
denotes the censoring indicator.

We consider the following data-generating equation:

Yi = F−1(Ui) ∧ R−1(Vi), �i = I {F−1(Ui) � R−1(Vi)} (i = 1, . . . n), (5)

where Ui and Vi are independent and identically distributed Un(0, 1) and the actual observed
data were generated using F = F0 and R = R0. Notice that Z in (1) is (Y , �) in (5) and that W
in (1) is (U , V ) in (5).
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Fig. 1. A plot of Monte Carlo realizations SI
i (i = 1, . . . , 1000) sampled from the generalized fiducial distribution

based on either a sample of 300 uncensored Wei(20, 10) observations, shown as grey curves in (a), or the same 300
Wei(20, 10) observations censored by Ex(20), shown as grey curves in (b). The black curve in (a) is the empirical
survival function and in (b) it is the Kaplan–Meier estimator. As expected, we observe higher uncertainty in the fiducial

sample under censoring.

For a failure event δi = 1, we have full information about the failure time xi, i.e., xi = yi, and
partial information about the censoring time ci, i.e., ci � yi. In this case, just as in the previous
section, F−1(ui) = yi if and only if F(yi) � ui and F(yi − ε) < ui for any ε > 0.

For a censored event δi = 0, we know only partial information about xi, i.e., xi > yi, and full
information on ci, i.e., ci = yi. Similarly, F−1(ui) > yi if and only if F(yi) < ui; R−1(vi) = yi if
and only if R(yi) � vi and R(yi − ε) < vi for any ε > 0.

To obtain the inverse map, we start by inverting a single observation. If δi = 1, the inverse
map for this datum is

QF, R
1 (yi, ui, vi) = {F : F(yi) � ui, F(yi − ε) < ui for any ε > 0} × {R : R−1(vi) � yi}.

If δi = 0, the inverse map is

QF, R
0 (yi, ui, vi) = {F : F(yi) < ui} × {R : R(yi) � vi, R(yi − ε) < vi for any ε > 0}.

Combining these we obtain the complete inverse map

QF, R(y, δ, u, v) =
⋂

i

QF, R
δi

(yi, ui, vi) = QF(y, δ, u) × QR(y, δ, v), (6)

where

QF(y, δ, u) =
{

F :

{
F(yi) � ui, F(yi − ε) < ui for any ε > 0 for all i such that δi = 1,
F(yj) < uj for all j such that δj = 0

}

(7)

and QR(y, δ, v) is analogous. The inverse of QF, R in (6) is in the form of a Cartesian product.
This is a direct consequence of our choice of data-generating equation, and it greatly simplifies
the calculation of the marginal fiducial distribution for failure times.
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Fig. 2. Two realizations of fiducial curves for a sample of size 8 from Wei(20, 10) censored by Ex(20). Here fiducial
curves refer to Monte Carlo samples SL

i , SU
i , and SI

i (i = 1, 2) from the generalized fiducial distribution. The red
and black curves are corresponding realizations of the upper and fiducial survival functions. The green curve is the
log-linear interpolation. The circles represent failure observations. The triangles represent censored observations. The
dashed blue curve is the true survival function of Wei(20, 10). Since the fiducial distribution reflects uncertainty,

we do not expect every fiducial curve to be close to the true survival function.

Figure 2 demonstrates the survival function representation of QF(y, δ, u), as defined in (7),
for one dataset with n = 8 observations of X following Wei(20, 10) censored by Z following
Ex(20). Each of the panels corresponds to a different value of u, where each u is a realization
of U ∗. Any survival function lying between the upper red and the lower black fiducial survival
functions corresponds to an element of the closure of QF(y, δ, u). In particular, we plot in green
the log-linear interpolation going through the failure observations as described in § 2.1 with a
modification to ensure it stays in QF(y, δ, u). The details of the modification are given in Step 5.3
of Algorithm 1.

Algorithm 1.
Step 1. Generate n independent Un(0, 1) data items and sort them. Denote the sorted vector as

preU = (u1, . . . , un).

Step 2. Sort the pairs {yi, δi} by the value of yi. Relabel the sorted data as (y1, . . . , yn) and
(δ1, . . . , δn).

Step 3. Initialize LowerFid = (0)n+1, UpperFid = (1)n+1, where the subindex refers to the
vector length.

Step 4. For i = 1 to n:
Let UpperFid(i) = preU (1), where preU (1) is the first and also the smallest element left in

preU and UpperFid(i) is the ith element of the vector UpperFid.
If δ = 1, set LowerFid(i + 1) = preU (1), and delete preU (1).
If δ = 0, randomly pick one u from preU , set LowerFid(i + 1) = LowerFid(i), and delete the

selected u from preU .
In either case, deleting an entry decreases the dimension of preU by 1.

Step 5. Output three survival functions that are needed for the conservative and log-linear
interpolation methods.
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Nonparametric generalized fiducial inference 507

5.1. Lower fiducial bound: using LowerFid as a fiducial curve.
5.2. Upper fiducial bound: using UpperFid as a fiducial curve.
5.3. Log-linear interpolation: Fit a continuous fiducial distribution by linear interpolation

based on failure observations as described in § 2.1. Then correct the linear interpolation at the
censoring observations so that the upper fiducial bound on the continuous distribution function,
or the lower fiducial bound for the survival function, is satisfied. Let yn−k (k = 0, 1, . . . , n − 1)

denote the last failure observation. Fit a single line after the last uncensored observation and
take the maximum of s0, s1, . . . , sk as the slope, where s1 is the slope between (yn−k , log un−k)

and (yn−k+1, log un−k+1), . . . , sk is the slope between (yn−k , log un−k) and (yn, log un), and s0 is
the slope between (ỹ, log ũ) and (yn−k , log un−k), with ỹ being the second last uncensored
observation. If there is only one failure time, ỹ and log ũ are 0.

Step 6. From steps 1–5 we get one curve of the fiducial distribution. Repeat steps 1–5 to get one
fiducial sample with m curves.

When defining the generalized fiducial distribution, let (U ∗, V ∗) be independent of and have
the same distribution as (U , V ). Because the inverse (6) separates into a Cartesian product, and
by the fact that U ∗ and V ∗ are independent, the marginal fiducial distribution for the failure
distribution function F is

QF(y, δ, U ∗) | {QF(y, δ, U ∗) |= ∅}. (8)

As proved in the Supplementary Material, the conditional distribution in (8) can be sampled
efficiently using Algorithm 1. Other choices of data-generating equations might lead to different
fiducial distributions, but in the rest of this paper we only study the generalized fiducial distribution
sampled from Algorithm 1.

Following § 2.1, let u be such that QF(y, δ, u) |= ∅ and define

FL
(y,δ,u)(s) = inf {F(s) : F ∈ QF(y, δ, u)}, FU

(y,δ,u)(s) = sup{F(s) : F ∈ QF(y, δ, u)}. (9)

Next we define a random distribution function FL(s) = FL
(y,δ,U∗

Q)
(s), where U ∗

Q = (U ∗
1 , . . . , U ∗

n )

is distributed as independent Un(0, 1) conditioned on the event {QF(y, δ, U ∗
Q) |= ∅}. We will refer

to the random survival function SU (s) = 1−FL(s) as the upper fiducial survival function and its
distribution as the upper fiducial distribution. The lower SL(s) and log-linear interpolated SI (s)
fiducial survival functions are defined analogously. The closure of the inverse image (8) is the
set of all distribution functions F that stay between FL and FU.

To illustrate the fiducial distribution in the right-censoring case, let the failure time X follow
Wei(20, 10) and censoring time Z follow Ex(20) with sample size 300. The censoring percentage
is about 60%. We plot a sample of the fiducial survival function SI

i (i = 1, . . . , 1000) and the
Kaplan–Meier estimator in Fig. 1(b). As expected, we see a wider spread of fiducial curves in
the censoring case, indicating higher uncertainty.

Remark 1. The same marginal generalized fiducial distribution sampled from Algorithm 1
can also be derived for some explicit models in which failure and censoring times are dependent,
as shown in the 2018 PhD dissertation by Y. Cui, University of North Carolina at Chapel Hill.

2.3. Inference based on fiducial distribution

We now describe how to use generalized fiducial distributions for inference, specifically,
point estimation, pointwise confidence intervals for survival functions and quantiles, curvewise
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508 Y. Cui AND J. Hannig

confidence intervals, and testing. The actual numerical implementation will be based on a sample
of the fiducial survival functions SL

i , SU
i , and SI

i (i = 1, . . . , m), i.e., the lower bound, the upper
bound, and the log-linear interpolation respectively, obtained from Algorithm 1 for generating
Monte Carlo samples from the generalized fiducial distribution. We will call these samples of
fiducial survival functions fiducial samples.

As shown in the Supplementary Material, the Kaplan–Meier estimator falls into the interval
given by the expectation of the lower and upper fiducial bounds at any failure time t. How-
ever, instead of using the Kaplan–Meier estimator we propose to use the pointwise median of
the log-linear interpolation fiducial distribution as a point estimator of the survival function. It
follows from § 3 that the proposed estimator is asymptotically equivalent to the Kaplan–Meier
estimator. Numerically, we estimate the median of the generalized fiducial distribution at time x
by computing a pointwise median of the fiducial sample SI

i (x) (i = 1, . . . , m).
As explained at the end of § 2.1 we use two types of pointwise confidence intervals, conservative

and log-linear interpolation, using quantiles of appropriate parts of the fiducial samples. For
example, a 95% confidence log-linear interpolation confidence interval for S(x) is formed by
using the empirical 0.025 and 0.975 quantiles of SI

i (x). Similarly, a 95% conservative confidence
interval is formed by taking the empirical 0.025 quantile of SL

i (x) as a lower limit and the
empirical 0.975 quantile of SU

i (x) as an upper limit. Simulation results in § 4.1 show that the
proposed confidence intervals match or outperform their main competitors in terms of coverage
and length. In order to save space, in the rest of this section we present procedures based on the
log-linear interpolation sample only. A conservative version can be obtained analogously.

In survival analysis, we are also interested in confidence intervals for quantile q of the survival
function, where 0 < q < 1. We obtain such a confidence interval by inverting the procedure of
computing the pointwise confidence interval. Specifically, a 95% confidence interval is obtained
by taking empirical 0.025 and 0.975 quantiles of the inverse of fiducial sample SI

i evaluated at q.
Next, we discuss the use of the generalized fiducial distribution to obtain simultaneous curve-

wise confidence bands. In particular, for a 1 − α curvewise confidence set we propose using a
band {S : ‖S − M‖ � c} of fiducial probability 1 −α, where M denotes the pointwise median of
the generalized fiducial distribution and ‖·‖ is the L∞-norm, i.e., ‖S −M‖ = max

x
|S(x)−M (x)|.

Numerically we implement this by using a fiducial sample. Let

lj = ‖SI
j − M̂‖ = max

x
|SI

j (x) − M̂ (x)| (j = 1, . . . , m),

where M̂ is the estimated pointwise median of the generalized fiducial distribution. Then we form
the 95% curvewise confidence band {S : ‖S − M̂‖ � ĉ}, where ĉ is the 0.95 quantile of lj.

Remark 2. The L∞-norm determines the shape of the confidence band. Other choices, such
as L2-norm, are possible as long as the resulting confidence bands satisfy Corollary 1 in § 3.

The curvewise confidence set could be inverted for testing. The resulting test is different from
the log-rank test (Mantel, 1966) and its modifications. Based on our definition of the 1−α fiducial
band, the fiducial p-value for the test

H0 : S(t) = S0(t) for all t versus H1 : S(t) |= S0(t) for some t

is pr∗y,δ(‖SI − M‖ � ‖S0 − M‖), where pr∗y,δ stands for a fiducial probability computed for

observed data (y, δ), SI stands for a random survival function following the log-linear interpo-
lation generalized fiducial distribution, and as before M is the pointwise median of the fiducial
distribution.
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Nonparametric generalized fiducial inference 509

We estimate this p-value from a fiducial sample by finding the largest α for which the 1 − α

curvewise confidence set contains S0. In particular, let

l0 = max
x

|S0(x) − M̂ (x)|, lj = max
x

|SI
j (x) − M̂ (x)| (j = 1, . . . , m). (10)

Numerically, we approximate the p-value by the proportion of the fiducial sample satisfying
lj � l0.

Finally, let us consider two-sample testing. For each sample, we have observed values yi

and censoring indicators δi (i = 1, 2). The two independent log-linear interpolation generalized
fiducial distributions are denoted by SI

(yi ,δi)
(i = 1, 2). When testing H0 : S1 −S2 = �0 we define

a fiducial p-value as the fiducial probability pr∗y,δ(‖SI
(y1,δ1)

−SI
(y2,δ2)

−MD‖ � ‖�0−MD‖), where
MD is the median of the difference of the two generalized fiducial distributions. Numerically,
we evaluate the p-value in the same fashion as in (10). We will compare the performance of the
proposed fiducial test with the log-rank test and sup log-rank test with different weights for the
two-sample setting by simulation in § 4.2.

3. Theoretical results

In this section we study theoretical properties of the generalized fiducial distribution with
respect to a specific data-generating equation that leads to the distribution of failure times gener-
ated by Algorithm 1. Recall that the generalized fiducial distribution is a probability distribution
pr∗y,δ that is defined for every fixed dataset (y, δ). It can be made into a random measure pr∗Y ,� in
the same way as one defines the usual conditional distribution, i.e., by substituting random vari-
ables (Y , �) for the observed dataset (y, δ). In this section, we establish a Bernstein–von Mises
theorem for this random measure assuming the observed data contain no ties with probability 1.

Praestgaard & Wellner (1993) prove a Bernstein–von Mises theorem for the exchangeably
weighted bootstrap, of which the Bayesian bootstrap (Rubin, 1981) is an example. However, the
result of Praestgaard & Wellner (1993) is not applicable in the survival setting due to the fact that
the jump sizes of FL or FU are not exchangeable. Here, we study the theoretical properties of the
generalized fiducial distribution in the survival setting. For simplicity, we state the results in this
section using upper fiducial survival functions SU , i.e., the lower fiducial bound of the cumulative
distribution functions FL. In the Supplementary Material we prove that the same results hold for
SL and SI .

First we introduce some notation: Xi is the failure time, Ci is the censoring time, Yi is the
observed minimum of failure and censoring times, and �i = I {Xi � Ci} is the censoring
indicator. We define the counting process

Ni(t) = I {Yi � t}�i, N̄ (t) =
n∑

i=1

Ni(t)

and the at-risk process

Ki(t) = I {Yi � t}, K̄(t) =
n∑

i=1

Ki(t).

The following lemma provides a useful alternative expression for the upper fiducial sur-
vival function, as defined immediately below (9). All proofs in this section are deferred to the
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510 Y. Cui AND J. Hannig

Supplementary Material. When the data (y, δ) are assumed fixed and known, the ordered failure
times si and the functions N̄ (t) and K̄(t) are nonrandom.

Lemma 1. For any fixed dataset without ties, the upper fiducial survival function is

SU (t) =
∏
si�t

{1 − Bi}, (11)

where si are ordered failure times and Bi are independent random variables following
Be{1, K̄(si)}. Furthermore, its expectation is

Ŝ(t) = E{SU (t)} =
∏
si�t

{
1 − 1

1 + K̄(si)

}
. (12)

As our first major result, we prove a concentration inequality for SU (t).

Theorem 1. The following bound holds for any fixed dataset with no ties, any 0 < t < ∞
such that K̄(t) � 1, and any ε > 0:

pr∗y,δ

{
sup
s�t

|SU (s)−Ŝ(s)|�3ε2/n1/2+N̄ (t)/K̄(t)−2

}

� N̄ (t)
[
(1−ε/n3/4)K̄(t)+0.4K̄(t)+n/

{
ε2K̄(t)

}2
]

. (13)

Next we list all conditions needed for Theorem 2. The following two assumptions are also
needed for theoretical study of the Kaplan–Meier estimator (Fleming & Harrington, 2011).

Assumption 1. There exists a function π such that as n → ∞,

sup
0�t<∞

∣∣K̄(t)/n − π(t)
∣∣ → 0 almost surely.

This assumption is very mild. For example if Yi are independent and identically distributed, it
is implied by the Glivenko–Cantelli theorem; see the discussion following Assumption 6.2.1 in
Fleming & Harrington (2011) for more details.

Assumption 2. The distribution function of failure times F0 is absolutely continuous.

Remark 3. Theorem 1 and Assumption 1 imply that the fiducial distribution is uniformly
consistent on finite time intervals. In particular, provided that we have a sequence of data such
that K̄(t)/n → π(t) > 0, the right-hand side of (13) is O(n−1) whenever ε2 = n−1/2.

Let S̃(t) = ∏
s�t{1 − �N̄ (s)/K̄(s)} be the Kaplan–Meier estimator. It is well known (see for

example Theorem 6.3.1 of Fleming & Harrington, 2011) that for any t satisfying π(t) > 0,

√
n{F̃(·) − F0(·)} → {1 − F0(·)}W {γ (·)} in distribution on D[0, t], (14)

where F̃(t) = 1− S̃(t), γ (t) = ∫ t
0 π−1(s) d
(s), W is Brownian motion, and 
 is the cumulative

hazard function. Similarly, (12) provides us with a modification of the Kaplan–Meier estimator
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Nonparametric generalized fiducial inference 511

that also satisfies (14). We will use this modification throughout this section and in all the proofs
that can be found in the Supplementary Material. Next we state two additional assumptions
specific to the Bernstein–von Mises theorem for generalized fiducial distributions.

Assumption 3. Let
∫ t

0 fn(s)/K̄(s) dN̄ (s) → ∫ t
0 λ(s)/π(s) ds almost surely for any t ∈ I =

{t : π(t) > 0} and any sequence of functions fn → π−1 uniformly, where π is defined in
Assumption 1.

Assumption 3 is reasonable since the probability of failure and censoring both happening in
[t, t + �t) is of a higher order, O{(�t)2}.

Assumption 4. Let sup0�s�t |F̃(s)−F0(s)| → 0 almost surely for any t ∈ I = {t : π(t) > 0},
where F̃ = 1 − S̃, with S̃ the Kaplan–Meier estimator.

Remark 4. The strong consistency result of Assumption 4 has been proved for the model
described in § 2.2 by Gill (1994) and Stute & Wang (1993). Moreover, Assumption 4 is only
needed for establishing a strong version of Theorem 2, i.e., convergence in distribution almost
surely. If the Kaplan–Meier estimator only converges in probability, then the convergence mode
in Theorem 2 is in distribution in probability.

The following theorem establishes a Bernstein–von Mises theorem for the fiducial distribution.
In particular, we will show that the fiducial distribution of n1/2{FL(·) − F̂(·)}, where F̂(·) =
1 − Ŝ(·) and FL(·) = 1 − SU (·), converges in distribution on D[0, t] almost surely to the same
Gaussian process as in (14). To understand the somewhat unusual mode of convergence used
here, notice that there are two sources of randomness present. One is the randomness of the
fiducial distribution defined for each fixed dataset. The other is the usual randomness of the data.
The mode of convergence here is in distribution almost surely, i.e., the centred and scaled fiducial
distribution viewed as a random probability measure on D[0, t] converges almost surely to the
Gaussian process described in the right-hand side of (14) using the weak topology on the space
of probability measures.

Theorem 2. Based on Assumptions 1–4, for any t ∈ I = {t : π(t) > 0},
n1/2{FL(·) − F̂(·)} → {1 − F0(·)}W {γ (·)}

in distribution on D[0, t] almost surely, where γ (t) = ∫ t
0 π−1(s) d
(s).

Theorem 2 implies that the pointwise fiducial confidence intervals are equivalent to the asymp-
totic confidence intervals based on the Kaplan–Meier estimator. This fact can be also seen from
Theorem 2 of Fay et al. (2013). The following corollary shows that Theorem 2 also implies that all
the pointwise and curvewise confidence intervals described in § 2.3 have asymptotically correct
coverage. Consequently, the tests described in § 2.3 also have asymptotically correct Type I error.

Corollary 1. Let �{φ(·)} be a map D[0, t] → R with the properties that there exists a
function ψ such that

�{φ(·)} = �{−φ(·)}, �{aφ(·)} = ψ(a)�{φ(·)} (15)

for all φ ∈ D[0, t] and a > 0, and that the distribution of the random variable �[{1 −
F0(·)}W {γ (·)}] is continuous and the (1 − α)th quantile of this distribution is unique.

Then, under the assumptions in Theorem 2, any set Cn,α = {F : �{F(·) − F̂(·)} � εn,α} with
pr∗y,δ(Cn,α) = 1 − α is a 1 − α asymptotic confidence set for F0.

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/106/3/501/5513103 by guest on 12 O
ctober 2020



512 Y. Cui AND J. Hannig

4. Simulation study

4.1. Coverage of pointwise confidence intervals and mean square error of point estimators

We present comparisons of frequentist properties of the proposed fiducial confidence intervals
with a number of competing methods. We will consider two basic groups of settings, one with
heavy censoring from Fay et al. (2013) and another with a moderate level of censoring from
Barber & Jennison (1999). In both cases the proposed generalized fiducial distribution intervals
perform comparably to or better than the other methods.

First we reproduce the settings in Fay et al. (2013) that have a very high level of censoring.
Fay et al. (2013) compared their proposed beta product confidence procedure methods with a
number of asymptotic methods. These include: the method of Greenwood by logarithmic trans-
formation; the confidence interval on the Kaplan–Meier estimator using Greenwood’s variance
by logarithmic transformation (Therneau, 2015); modified Greenwood by logarithmic transfor-
mation, which modifies the estimator of variance for the lower limit by multiplying Greenwood’s
variance estimator by K(yi)/K(t) at t, where yi is the largest observed survival less than or equal
to t (Therneau, 2015); Borkowf’s method by logarithmic transformation, which gives wider
intervals with more censoring and assumes normality on log{S̃(t)}, where S̃(t) is the Kaplan–
Meier estimator (Borkowf, 2005); shrinkage Borkowf by logarithmic transformation, which uses
a shrinkage estimator of the Kaplan–Meier estimator with a hybrid variance estimator (Borkowf,
2005), the Strawderman–Wells method, which uses the Edgeworth expansion for the distri-
bution of the studentized Nelson–Aalen estimator (Strawderman et al., 1997; Strawderman &
Wells, 1997); the Thomas–Grunkemeier method, a likelihood ratio method which depends on
a constrained product-limit estimator of the survival function (Thomas & Grunkemeier, 1975);
constrained beta, which refers the distribution of S̃(t) to a beta distribution subject to some con-
straints (Barber & Jennison, 1999); nonparametric bootstrap (Efron, 1981; Akritas, 1986); and
constrained bootstrap, an improved bootstrap approximation subject to some constraints (Barber
& Jennison, 1999).

Simulation studies reported in Fay et al. (2013) show that the above asymptotic methods have a
coverage problem, i.e., the error rate of 95% confidence intervals of all these methods is larger than
5% in their high-censoring scenarios. Therefore in this section we focus on comparing the fiducial
methods with our main competing methods, which are the beta product confidence procedure (Fay
et al., 2013), mid-p beta product confidence procedure (Fay & Brittain, 2016); see also Chapter
11 of (Schweder & Hjort, 2016), and the binomial procedure (Clopper & Pearson, 1934), which
maintain the coverage. Additionally, we include the Thomas & Grunkemeier (1975) confidence
interval, which can be viewed as the empirical likelihood applied to the survival distribution for
right-censored data; see pages 144–5 of Owen (2001). For each of the methods, we report the
error rates of coverage and the average width of 95% confidence intervals.

In particular, we consider the following two scenarios in Fay et al. (2013). In the first scenario,
the failure time is Ex(10) and the censoring time is Un(0, 5). The censoring percentage is approx-
imately 80%. We simulate 100 000 independent datasets of size 30 and apply our methods with
fiducial sample size 1000. In the second scenario, we reproduce the setting using a mixture of
exponentials to mimic the pilot study of treatment in severe systemic sclerosis (Nash et al., 2007).
In particular, the failure time is a mixture of Ex(0.227) with probability 0.187 and Ex(22.44) with
probability 0.813, and the censoring time is Un(2, 8). The censoring percentage is about 65%.
We simulate 100 000 independent datasets of size 34 and apply our methods with fiducial sample
size 1000.
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Nonparametric generalized fiducial inference 513

Table 1. Error rates in percentages and average width of 95% confidence intervals for Scenario 1.
Failure time is Ex(10). Censoring time is Un(0, 5). The censoring percentage is about 80%

t = 1 t = 2 t = 3 t = 4
L U W L U W L U W L U W

FD-I 1.9 2.7 0.21 1.5 2.8 0.29 1.4 3.0 0.37 1.8 3.1 0.45
FD-C 0.0 1.4 0.26 0.3 1.6 0.36 0.1 1.5 0.46 0.0 1.4 0.63
BPCP-MM 0.0 1.3 0.26 0.3 1.4 0.35 0.1 1.3 0.46 0.0 1.0 0.62
BPCP-MC 0.0 1.3 0.25 0.4 1.5 0.35 0.1 1.5 0.46 0.0 1.4 0.63
BPCP-MP 0.0 2.2 0.23 0.8 2.3 0.32 0.4 2.2 0.41 0.0 2.0 0.57
BN 0.0 1.4 0.26 0.7 1.3 0.38 0.6 1.3 0.51 0.1 0.9 0.70
TG 6.7 2.1 0.20 3.8 2.3 0.29 4.0 2.4 0.37 5.5 2.4 0.43

FD-I, the proposed fiducial confidence interval using log-linear interpolation; FD-C, the proposed fiducial conservative
confidence interval; BPCP-MM, beta product confidence procedure using method of moments; BPCP-MC, beta product
confidence procedure using Monte Carlo; BPCP-MP, mid-p beta product confidence procedure; BN, Clopper–Pearson
binomial confidence interval; TG, Thomas–Grunkemeier confidence interval; L, error rate that the true parameter is
less than the lower confidence limit; U, error rate that the true parameter is greater than the upper confidence limit;
two-sided error rate is obtained by adding the values in columns L and U; values less than 2.5% in individual columns,
or 5% in aggregate, indicate good performance; W, average width of the confidence interval.

Table 2. Error rates in percentages and average width of 95% confidence intervals for Sce-
nario 2. Failure time is a mixture of Ex(0.227) and Ex(22.44) with probability 0.187 and 0.813,

respectively. Censoring time is Un(0, 5). The censoring percentage is about 65%
t = 3 t = 4 t = 5 t = 6

L U W L U W L U W L U W

FD-I 2.2 2.7 0.29 1.9 2.9 0.31 1.7 3.0 0.33 1.5 3.2 0.36
FD-C 1.2 1.7 0.33 0.7 1.8 0.36 0.4 1.8 0.40 0.1 1.7 0.46
BPCP-MM 1.3 1.7 0.33 0.7 1.7 0.35 0.4 1.6 0.39 0.1 1.4 0.46
BPCP-MC 1.2 1.8 0.32 0.7 2.0 0.35 0.4 1.9 0.39 0.1 1.9 0.46
BPCP-MP 1.8 2.1 0.30 1.6 2.4 0.32 0.9 2.5 0.36 0.4 2.3 0.41
BN 1.4 1.5 0.35 1.5 1.6 0.40 1.5 1.7 0.46 1.0 1.5 0.56
TG 1.8 2.1 0.29 2.4 2.4 0.31 2.8 2.5 0.33 3.6 2.5 0.35

See Table 1 for description of abbreviations.

The simulation results are presented in Tables 1 and 2. We see that our confidence intervals
using log-linear interpolation maintain the aggregate coverage, are much shorter than the other
conservative methods, but may be slightly biased to the left. Not surprisingly, the performance
of the proposed conservative confidence interval is similar to that of the beta product confidence
procedure method. The Thomas–Grunkemeier confidence intervals have coverage problems in
these high-censoring scenarios and are only slightly shorter than the fiducial confidence intervals
using log-linear interpolation.

Our second simulation study setting comes from Barber & Jennison (1999), where the censor-
ing rate is relatively low. In the third scenario, the failure time follows Ex(10), and the censoring
time is Ex(25). The sample size n = 50 and the censoring percentage is about 30%. In the fourth
scenario, the failure time follows Ex(10), and the censoring time is Ex(50). The sample size n =
100 and the censoring percentage is about 15%.The empirical error rates and average width of con-
fidence intervals from 5000 simulations are presented in Tables 3 and 4. We see that the proposed
fiducial confidence intervals using log-linear interpolation do as well as the Thomas–Grunkemeier
confidence intervals in terms of both coverage and average length in these settings.
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Table 3. Error rates in percentages and average width of 95% confidence intervals for Scenario 3.
Failure time is Ex(10). Censoring time is Ex(25). The censoring percentage is about 30%

S(t) = 0.8 S(t) = 0.6 S(t) = 0.4 S(t) = 0.2
L U W L U W L U W L U W

FD-I 2.4 2.3 0.22 2.6 2.4 0.27 1.8 2.8 0.29 2.0 3.1 0.25
FD-C 1.4 1.8 0.24 1.5 1.8 0.30 1.1 1.9 0.32 0.9 1.4 0.29
BPCP-MM 1.6 1.8 0.24 1.6 1.6 0.30 1.3 1.8 0.32 1.1 1.3 0.29
BPCP-MC 1.7 1.9 0.24 1.8 1.7 0.30 1.3 1.6 0.32 1.2 1.3 0.29
BPCP-MP 2.4 2.3 0.22 2.4 2.2 0.28 1.9 2.5 0.30 1.9 2.3 0.27
BN 1.7 1.9 0.24 1.7 1.5 0.31 1.5 1.8 0.34 1.2 1.3 0.32
TG 2.6 2.3 0.22 2.8 2.3 0.28 2.2 2.9 0.29 3.0 0.0 0.26

See Table 1 for description of abbreviations.

Table 4. Error rates in percentages and average width of 95% confidence intervals for Scenario 4.
Failure time is Ex(10). Censoring time is Ex(50). The censoring percentage is about 15%

S(t) = 0.8 S(t) = 0.6 S(t) = 0.4 S(t) = 0.2
L U W L U W L U W L U W

FD-I 3.0 2.4 0.16 2.2 2.2 0.19 2.5 2.4 0.20 2.1 2.3 0.17
FD-C 2.0 2.0 0.17 1.7 1.6 0.20 1.9 1.8 0.21 1.6 1.4 0.18
BPCP-MM 2.0 1.8 0.17 1.6 1.6 0.20 1.9 1.7 0.21 1.6 1.4 0.18
BPCP-MC 2.1 1.8 0.17 2.0 1.6 0.20 1.9 1.7 0.21 1.5 1.5 0.18
BPCP-MP 3.0 2.4 0.16 2.1 1.9 0.20 2.5 2.2 0.20 2.0 2.1 0.17
BN 2.1 1.9 0.17 1.6 1.5 0.21 2.3 1.9 0.22 1.6 1.6 0.19
TG 3.3 2.4 0.16 2.1 1.9 0.19 2.5 2.3 0.20 2.0 2.3 0.17

See Table 1 for description of abbreviations.

Table 5. Pointwise root mean square error of survival function estimators multiplied by 100.
Failure time is Ex(1). Censoring time is Un(0, 5). The censoring percentage is about 20%

S(t) = 0.99 S(t) = 0.9 S(t) = 0.75 S(t) = 0.5 S(t) = 0.25 S(t) = 0.1 S(t) = 0.01

FD-I 1.7 5.6 8.4 10.0 9.1 6.6 3.5
BPCP-MM 2.1 5.9 8.7 10.3 9.4 6.6 3.9
BPCP-MP 2.2 6.0 8.7 10.3 9.5 7.6 1.6
KML 2.0 6.0 8.8 10.5 9.7 7.9 1.7
KMM 2.0 6.0 8.8 10.5 9.7 7.6 2.8
KMH 2.0 6.0 8.8 10.5 9.7 7.5 5.4

FD-I, method using the pointwise median of SI as a point estimator of the survival function; BPCP-MM and BPCP-
MP, associated median unbiased estimators defined in Fay et al. (2013); KML, KMH, and KMM, three variants of
the Kaplan–Meier estimator (Fay et al., 2013); if the largest observation is censored, KML is defined as 0, KMH is
defined as the Kaplan–Meier at the last value, and KMM = 0.5 × KML + 0.5 × KMH for arguments beyond the
largest observation.

We also perform a simulation for the root mean square error of survival functions, adopting
a setting in Fay et al. (2013). Here, the failure time is Ex(1) and the censoring time is Un(0, 5).
The censoring percentage is about 20%. We simulate 100 000 independent datasets of size 25 and
apply our fiducial methods with fiducial sample size 10 000. Since the Kaplan–Meier estimator
is not defined after the largest observation if it is censored, we follow Fay et al. (2013) and define
it in three ways. We evaluate root mean square error at t, where S(t) = 0.99, 0.9, 0.75, 0.5, 0.25,
0.1, 0.01. We report the results in Table 5. We see that the proposed fiducial approach has the
smallest root mean square error for S(t) = 0.99, 0.9, 0.75, 0.5, 0.25, 0.1.
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Table 6. Estimated power/ Type I error, in percentage, of level-0.05 tests
Scenario FD LR GW TW PP MPP FH SLR SGW STW SPP SMPP SFH

1 87.0 94.0 87.8 91.4 89.8 89.4 88.8 89.8 81.4 87.0 85.0 84.4 85.8
2 99.4 90.2 29.0 60.8 52.2 51.4 100 84.2 48.2 61.8 58.2 57.4 100
3 49.4 6.6 16.0 8.0 10.6 10.8 37.6 30.2 56.2 46.6 51.4 51.4 30.6
4 89.2 30.6 86.8 70.2 76.4 77.8 7.0 88.0 96.8 94.8 95.8 95.8 36.2
5 4.8 6.4 6.2 6.4 6.2 6.2 6.6 5.4 4.4 5.0 5.0 5.0 4.6

FD, the proposed fiducial test; LR, the original log-rank test with weight 1 (Mantel, 1966); GW, Gehan–Breslow
generalized Wilcoxon test, i.e., log-rank test weighted by the number at risk overall (Gehan, 1965); TW, log-rank test
weighted by the square root of the number at risk overall (Tarone & Ware, 1977); PP, log-rank test with Peto and
Peto’s modified survival estimate (Peto & Peto, 1972); MPP, log-rank test with modified Peto–Peto survival estimate
(Andersen & Gill, 1982); FH, Fleming–Harrington weighted log-rank test (Harrington & Fleming, 1982); the last six
tests are sup versions of LR, GW, TW, PP, MPP, and FH, respectively.

4.2. Comparison of the proposed fiducial test and log-rank tests for two-sample testing

We compare the performance of the proposed fiducial approach with different types of tests
for testing the equality of two survival functions (Dardis, 2016). A common approach to testing
the difference of two survival curves is the log-rank test. There are several modifications of the
log-rank tests and sup log-rank tests that consist of reweighting (Gehan, 1965; Mantel, 1966;
Peto & Peto, 1972; Tarone & Ware, 1977; Andersen & Gill, 1982; Harrington & Fleming, 1982;
Fleming et al., 1987; Eng & Kosorok, 2005).

Five simulation settings from Li et al. (2015) are considered here. Survival configurations, i.e.,
the survival functions of failure times, are plotted in Figure 1 in Li et al. (2015). The censoring
times are generated from uniform distributions Un(0, a) and Un(0, b), where the values of a and
b are chosen so that the censoring rates are approximately 40%. For each scenario, we simulated
500 independent datasets of size 50 and applied the proposed fiducial test with fiducial sample
size 1000 as well as the 12 existing methods mentioned above. The power or Type I error of the
tests at the α = 0.05 level, i.e., the percentage of p-values less than 0.05, for all of the scenarios
described below are shown in Table 6. The reported powers of the log-rank test, Gehan–Breslow
generalized Wilcoxon test, and Tarone–Ware test are consistent with Tables 1–5 in Li et al. (2015).

In the first scenario, two survival curves have proportional hazard functions. For the first group,
the failure time follows Ex(2), and the censoring time is Un(0, 6). For the second group, let Ex(5)

be the distribution of the failure time and Un(0, 11) the distribution of the censoring time. We
see that the log-rank test has the highest power, and the proposed fiducial test is comparable to
other types of tests in this case.

The second scenario is a setting with an early crossing of the survival curves. For the first
group, the failure time follows Wei(2.5, 30), and the censoring time is Un(0, 65). For the second
group, the failure time has the hazard rate λ =0.125I {t �1}+0.01I {t �1}, and the censoring
time follows Un(0, 160). The proposed fiducial test performs better than other types of log-rank
tests except for the Fleming–Harrington weighted log-rank test and the sup Fleming–Harrington
weighted log-rank test. Fleming–Harrington weighted log-rank tests; may use better weights than
other log-rank tests: however, the proposed fiducial test does not need to specify any weight.

The third scenario is a setting with a middle crossing of the survival curves. For the first group,
the failure time follows Ex(12), and the censoring time is Un(0, 28). For the second group, the
failure time has the hazard rate λ =1/4I {t �2}+1/35I {t �2}, and the censoring time follows
Un(0, 33). We can see that overall, the proposed fiducial test and sup log-rank tests perform better
than other types of log-rank tests.

The fourth scenario is a setting with a late crossing of the survival curves. For the first group,
the failure time follows Wei(1.5, 5), and the censoring time follows Un(0, 11). For the second
group, the failure time has the hazard rate λ =0.5I {t �1.5}+0.1I {t �1.5}, and the censoring
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Fig. 3. (a) Kaplan–Meier estimators for two treatment groups. (b) Difference of two-sample fiducial distributions using
log-linear interpolation.

Table 7. p-values in percentages for testing the difference between chemotherapy and
chemotherapy combined with radiotherapy

FD LR GW TW PP MPP FH SLR SGW STW SPP SMPP SFH
p-value 0.2 63.5 4.6 16.8 4.6 4.3 90.6 5.6 0.6 1.5 0.6 0.6 22.8

See Table 6 for description of abbreviations.

time follows Un(0, 10). Again, the proposed fiducial test and sup log-rank tests perform better
than other types of log-rank tests.

To investigate Type I errors, in the fifth scenario two samples are independently generated
from an exponential distribution with a hazard rate of 0.25. The censoring time is Un(0, 9) for
both groups. We observe that the p-values of all methods follow a uniform distribution under H0.
The percentages of p-values less than 0.05 for all methods are about 0.05, indicating good Type
I error performance.

The overall conclusion is that the proposed fiducial test has good power against all of the alter-
native hypotheses considered in Li et al. (2015). The Supplementary Material contains simulation
results for additional scenarios, also showing the good power of the fiducial test.

5. Gastric tumour study

In this section, we analyse the following dataset presented in Klein & Moeschberger (2005).
A clinical trial of chemotherapy against chemotherapy combined with radiotherapy in the treat-
ment of locally unresectable gastric cancer was conducted by the Gastrointestinal Tumor Study
Group (Schein, 1982). In this trial, 45 patients were randomized to each of the two groups and
followed for several years. The censoring percentage is 13.3% for the combined therapy group,
and 4.4% for the chemotherapy group. We are interested in testing whether the two treatment
groups have the same survival functions.

We draw the Kaplan–Meier curves for these two datasets in Fig. 3(a). We notice that the two
hazards appear to be crossing, which could pose a problem for some log-rank tests. Table 7 reports
p-values obtained using the same 13 tests described in § 4.2.

To explain why the fiducial approach gives a small p-value on this dataset, we plot the sample
of the difference of two fiducial distributions in Fig. 3(b). If these two datasets are from the same
distribution, 0 should be well within the sample curves. However, from the picture, we can see
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that the majority of curves are very far away from 0 on the interval [0.5, 1]. This indicates that
the group with combined therapy has significantly worse early survival outcomes.
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