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1. Introduction

Throughout this paper we fix a prime number p and an algebraically closed field k of
characteristic p. A block B of a finite group algebra kG gives rise to three fundamental in-
variants encoding the local structure of B: a defect group S, a saturated fusion system F
on S, and a family a = (ag)ger- of second cohomology classes ag € H?(Out+(Q), k>).
The «q are called the Kiilshammer-Puig classes of the block B. They are defined for
each F-centric subgroup @ of S, and satisfy a certain compatibility condition (recalled
in Section 4). The triple (S, F, «) is determined by B uniquely up to G-conjugacy. If B is
the principal block of kG, then S is a Sylow p-subgroup, F = Fs(G), and all the classes
aq are trivial. In what follows, we freely use standard notation on fusion systems as in
[1]. For a finite dimensional k-algebra B, we denote by £(B) the number of isomorphism
classes of simple B-modules and by z(B) the number of isomorphism classes of simple
and projective B-modules. If B is a block of a finite group algebra kG, then we denote
by k(B) the number of ordinary irreducible characters of G associated with B.

The prominent counting conjectures in the block theory of finite groups express nu-
merical invariants of B in terms of (S, F,«). Alperin’s weight conjecture (henceforth
abbreviated AWC) predicts the equality

(B)= Y 2k Outz(Q)),

QeFe/F

where F¢/F is a set of representatives of the isomorphism classes in F of F-centric sub-
groups of S, and where k., Out #(Q) is the group algebra of Out #(Q) = Aut#(Q)/ Inn(Q)
twisted by ag. The right side in this version of AWC clearly makes sense for arbitrary
saturated fusion systems and arbitrary choices of second cohomology, classes, and this
is the starting point of the present paper.

Let (S, F,a) be a triple consisting of a finite p-group S, a saturated fusion system F
on S, and a family a = (ag)ger- of classes ag € H*(Out#(Q); k), for any F-centric
subgroup @ of S, such that the family « is F-compatible in the sense of Definition 4.1
below. If « is the family of Kiilshammer-Puig classes of a fusion system F of a block B
with defect group S, then a is F-compatible by Theorem [19, 8.14.5]; in that case we
will say that the triple (S, F, «) is block realizable and that it is realized by the block B.

For any F-centric subgroup @ of S and any subgroup H of Outz(Q) or of Autz(Q),
by ko H we will mean the twisted group algebra of H over k with respect to the restriction
of ag to H. Using the notation in [19, Section 8.15], the number of weights of (S, F, )
is the positive integer w(F, a) defined by

w(F,a) = Z z2(ko Out£(Q)) ,

QeFe/F

where the notation @ € F¢/F means that @ runs over a set of representatives of the
isomorphism classes in F of F-centric subgroups of S. Note that z(k, Outz(Q)) =
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0 unless @ is also F-radical (cf. Lemma 4.11 below), and hence we have w(F,«a) =
Z z(ko Out£(Q)). By Proposition 4.5 or the above remarks, if (S, F, «) is realized

QEFer | F

by a block B of a finite group algebra, then B satisfies AWC if and only if w(F, ) = ¢(B).

If = is an element in S such that (z) is fully F-centralized, then Cz(z) is a saturated
fusion system on Cs(x), there is a canonical functor C'x(z)¢ — F°¢, and restriction along
this functor sends the F-compatible family « to a Cr(x)-compatible family a(z); see
Proposition 4.5 below. Denote by [S/F] a set of F-conjugacy class representatives of
elements of S such that (z) fully F-centralized. We set

k(F,a):= Z w(Cr(x),a(z)) .

x€[S/F]

By Proposition 4.5, if (S, F,a) is realized by a block B of a finite group algebra such
that B and the B-Brauer pairs satisfy AWC, then k(F, a) = k(B).

For any F-centric subgroup @ of S we define the set N to be the set of non-empty
normal chains o of p-subgroups of Outxz(Q) starting at the trivial subgroup; that is,
chains of the form

0:(1=X0<X1<"'<Xm)

with the property that X; is normal in X, for 0 <7 < m. We set |o| = m, and call m
the length of 0. We define the following two sets:

Wq =N x Irr(Q)
W =Ng x Q%

where Irr(Q) is the set of ordinary irreducible characters of @ and where Q! is the set
of conjugacy classes of Q). There are obvious actions of the group Outx(Q) on the sets
No, Irr(Q), and Q°!, hence on the sets Wy, W§. We denote by I(o, i) and by (o, [2])
the stabilisers in Outz(Q) under these actions, where (o, 1) € Wq and (o, [2]) € W,
with [z] the conjugacy class in @ of an element z € Q. For any F-centric subgroup @ of

S we set
wo(F, @) = > (1) z(kaI(0, 1))
(o,u)EWq/ Out #(Q)
wo(F.a) = > (1) z(ka (0, [2]))
(o,[z])eWy / Out#(Q)
and we set

m(f704) = Z WQ(]:,Oé) ;
QEFe/F
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m*(F,a) = Z wo(F,a) .
QEF°/F

There are refinements of the above numbers which take into account defects of ordinary
irreducible characters and which appear in conjectures of Dade and Robinson. These will
be considered in Section 2.

Theorem 1.1. Let F be a saturated fusion system on a finite p-group S and let o be an
F-compatible family. Then

m*(F,a) =k(F,a).

Theorem 1.1 is a cancellation theorem for arbitrary fusion systems inspired by can-
cellation theorems of Robinson such as in [25, Theorem 1.2].

Theorem 1.2. Let F be a saturated fusion system on a finite p-group S and let o be an
F-compatible family. If AWC holds, then m(F,«) = m*(F, ).

Theorem 1.2 shows that AWC implies an equality (for arbitrary fusion systems) of
two numerical invariants dual to each other in the sense that one is obtained by summing
over conjugacy classes of p-groups and the other by summing over irreducible characters.
Given that the numerical invariants m, m*, k are entirely defined at the ‘local’ level
of fusion systems and compatible families, it seems surprising that Alperin’s Weight
Conjecture is needed to obtain the conclusion of Theorem 1.2.

Corollary 1.3. Let F be a saturated fusion system on a finite p-group S and let « be an
F-compatible family. If AWC holds, then m(F,a) = k(F, a).

If (S, F,«) is block realizable, then Corollary 1.3 follows from work of Robinson and
expresses the fact that a coarse version of the Ordinary Weight Conjecture is implied by
AWC (see Theorem 2.4 below).

The paper is organised as follows. Section 2 contains a list of conjectures inspired by
their block theoretic counter parts. In Section 3 we collect background material, Section 4
contains relevant properties of F-compatible families, Section 5 contains technicalities
needed for the proofs of Theorems 1.1 and 1.2 in Section 6 and Section 7, respectively.
In an Appendix, we collect some foundational material from work of Robinson.
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2. Conjectures

We formulate conjectures for fusion systems which are motivated by conjectural or
known statements in block theory. For each of these conjectures, the link with a block
theoretic conjecture is made either via AWC or via the Ordinary Weight Conjecture, the
statement of which will be recalled below. Note that by work of Robinson the Ordinary
Weight Conjecture implies the AWC.

These conjectures make precise the idea that the gap between various local-global
block theoretic conjectures is purely local. Proving or disproving any of these is a win-win
scenario. If one can prove one of these conjectures at the fusion system level, then one
would get that AWC (or the ordinary weight conjecture) implies the corresponding block
theoretic version. If on the other hand one could disprove any of these, one would either
have found a counter example to the corresponding block theoretic conjecture, or one
would have found a way to distinguish exotic fusion systems from block realizable fusion
systems. Either outcome would be interesting.

We keep the notation of the previous section. Let F be a saturated fusion system
on a finite p-group S and let a be an F-compatible family (see Definition 4.1). Recall
from Proposition 4.5 that if (S, F,«) is realized by a block B which satisfies AWC,
then w(F,a) = ¢(B), and if all Brauer correspondents of B also satisfy AWC, then
k(F,a) =k(B).

Conjecture 2.1. Let F be a saturated fusion system on a finite p-group S and let « be an
F-compatible family. Then k(F,a) < |S|.

By the above remark, if (S, F,«) is realizable by a block B such that AWC holds
for all B-Brauer pairs, then Conjecture 2.1 holds if and only if B satisfies Brauer’s
k(B)-conjecture, which predicts the inequality k(B) < |S|. Also, note that by Theo-
rem 1.1, the inequality of Conjecture 2.1 is equivalent to the inequality m(F, ) < |S].
In view of Theorem 1.2 and Corollary 1.3 (see also Conjecture 2.3), one could consider
versions of the inequality with k(F, «) replaced by m(F, «).

Conjecture 2.2. Let F be a saturated fusion system on a finite p-group S and let a be an
F-compatible family. Then w(F,a) < p°, where s is the sectional rank of S.

If (S, F,a) is realizable by a block B such that AWC holds for B, then the above is
equivalent to the statement that B satisfies the conjecture by Malle and Robinson [22]
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predicting the inequality ¢(B) < p®. Conjecture 2.2 has been shown to hold for the exotic
Solomon fusion systems by Lynd and Semeraro [20].

Next, we refine the integers w(F, ), m(F, ), m*(F, ) by taking into account defects
of characters. For @) a subgroup of S and d a non-negative integer, we set

I3 (Q) = {p € I3 (Q) | vp(1QI/n(1)) = d} ;

this is the set of ordinary irreducible characters of @) of defect d. Note that this set
is Outz(Q)-stable. As in the previous section, we denote by N the set of nonempty
normal chains of p-subgroups of Outz(Q) starting with the trivial subgroup of Outz(Q).
Given such a chain ¢ and an irreducible character u of @, we denote by I(o) and I (o, )
the stabilisers of o and of the pair (o, ) in Out #(Q).

Given a saturated fusion system F on a finite p-group S, an F-compatible family «,
and a non-negative integer d, following [1, Part IV, Section 5.7], we set

wo(F, o, d) == Z (71)IU| Z z(kol (o, 1)),

o€NG/ Out#(Q) pelrrd (Q)/I(o)

and

m(F,a,d) = Z wo(F,a,d).
QEFc/F

We clearly have

m(F,«a) = Zm(}",a,d)

d>0

The Ordinary Weight Conjecture (henceforth abbreviated OWC), first stated in [25]
and reformulated in [26], states that if B is a block of the group algebra kG of a finite
group G with defect group S, fusion system F and family of Kiilshammer—Puig classes
a, then for each d > 0, m(F, o, d) equals the number of ordinary irreducible characters
of defect d associated to the block B (cf. [1, IV.5.49]). As noted above, m(F,«a) =
> asom(F, a,d). Thus, OWC implies the following “summed up version” (henceforth
abbreviated SOWC): if B is a block of the group algebra kG of a finite group G with defect
group S, fusion system F and family of Kiilshammer—Puig classes «, then m(F, o) =
k(B), the number of ordinary irreducible characters of G associated with B. On the other
hand, AWC predicts that k(F, ) equals k(B). This leads to the following conjecture.

Conjecture 2.3. Let F be a saturated fusion system on a finite p-group S and let a be an
F-compatible family. We have

k(F,a) = m(F,«).
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Now Corollary 1.3 may be restated as follows.

Theorem 2.4. Suppose that AWC holds for all blocks. Then Conjecture 2.3 holds for all
(S, F,«), S a finite p-group, F a saturated fusion system on S and « an F-compatible
family.

By [25], [26], AWC is equivalent to SOWC in the sense that a minimal counter-example
to AWC is a minimal counter-example to the other. The difficult implication is that
AWC implies SOWC. Theorem 2.4 may be viewed as an extension of Robinson’s result
to arbitrary fusion systems.

Conjecture 2.5. Let F be a saturated fusion system on a finite p-group S and let a be an
F-compatible family. For each positive integer d, we have m(F, a,d) > 0.

Remark 2.6. With the above notation, suppose that d is the integer such that |S| = p?.
The only chain contributing to the expression for m(F, «, d) is the chain S of length zero
and the contribution of this chain is a strictly positive integer. This is because Outx(.S)
is a p’-group.

We consider next Brauer’s height zero conjecture.

Proposition 2.7. Let F be a saturated fusion system on a finite p-group S and let o be
an F-compatible family. Suppose that S is abelian of order p?. Then m(F, o, d’) =0 for
all d' #d.

Proof. Since S is abelian, S is the only F-centric subgroup of S, and all characters of S
are linear, hence of defect d. The result follows. O

Conjecture 2.8. Let F be a saturated fusion system on a finite p-group S and let « be an
F-compatible family. Suppose that S is nonabelian of order p®. Then m(F,a,d’) # 0 for
some d' # d.

If S is non-abelian and (S, F, ) is realized by a block B satisfying OWC, then the
above is equivalent to the statement that B satisfies Brauer’s height zero conjecture.
Note that Navarro and Tiep [23] have proved that the height zero conjecture is a con-
sequence of the Dade projective conjecture and of the fact that the Brauer height zero
conjecture has been checked for finite quasi-simple groups [12]. Eaton has proved in [6]
that the Dade projective conjecture is equivalent to the OWC in the sense that a mini-
mal counter-example to one is a minimal counter-example to the other. Thus the above
conjecture for block realizable triples is a consequence of OWC.

Conjecture 2.9. Let F be a saturated fusion system on a finite p-group S and let a be an
F-compatible family. Suppose that S is nonabelian of order p*. Let r > 0 be the smallest
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positive integer such that S has a character of degree p”. Then r is the smallest positive
integer such that m(F,a,d —r) # 0.

If (S, F,«) is realized by a block B satisfying OWC, then the above is equivalent to
the statement that B satisfies the conjecture by Eaton and Moreto in [7].

Conjecture 2.10. Let F be a saturated fusion system on a finite p-group S of order p?
and let o be an F-compatible family. Then

(1) k(F,o)/m(F,«,d) is at most the number of conjugacy classes of S, S].
(2) k(F,a)/w(F,a) is at most the number of conjugacy classes of S.

If (S, F,«) is realized by a block B satisfying OWC, then the above is equivalent
to the statement that B satisfies the conjecture of Malle and Navarro in [21]. Similar
to Conjecture 2.1, one could consider versions of the above inequalities with k(F, «)
replaced by m(F, «) or m*(F, ).

If F is p-solvable (i.e. if F is constrained with p-solvable model) then for any
F-compatible family «, the triple (S, F, ) is realizable by a block of a p-solvable group
(see Proposition 4.8). The OWC has been shown to hold for blocks of p-solvable groups
by Robinson, and AWC for p-solvable groups was proved earlier by Okuyama. The k(B)
conjecture for finite p-solvable groups was proved in [9] and the height zero conjecture
for p-solvable groups was shown to hold by Gluck and Wolf [8]. Thus Conjectures 2.1,
2.3, 2.5, 2.8 all hold for solvable fusion systems. If moreover F = Nz(S), then for any
F-compatible family «, the triple (S, F, ) is realizable by a block of a finite group G
containing S as a normal (and Sylow) subgroup, hence Conjecture 2.10 holds by [22,
Theorem 2] and Conjecture 2.9 holds by [7].

Let F be a saturated fusion system on a non-trivial finite p-group S and let C be the
full subcategory of F of nontrivial subgroups of S. Following the terminology in [18],
briefly reviewed at the end of the next section, we denote by S4(C) the subcategory of
the subdivision category S(C) of chains

0=(Qo< Q1< <Qn)

where the @); are nontrivial subgroups of S which are normal in the maximal term Q.
Such a chain ¢ is called fully F-normalized if Qg is fully F-normalized, and either m = 0
or os1 = (Q1 < -+ < Q) is fully Nx(Qp)-normalized. Denote by S4(C)? the set of all
fully F-normalized chains. For o € S4(C)/, we denote by Nx(c) the saturated fusion
system on Ng(o) as in [18, 5.2, 5.3]. By Proposition 4.6 below, an F-compatible family
« induces a canonical Nz (o)-compatible family a(o), for each fully F-normalised chain
o in S4(C). The translation to fusion systems of the Knorr-Robinson reformulation of
Alperin’s Weight Conjecture in [14] reads as follows.
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Conjecture 2.11. Let F be a saturated fusion system on a finite non-trivial p-group S
and let o be an F-compatible family. We have

k(F,a) = Z (—1)'0‘1((]\7]:(0'),04(0'))

g

where in the sum o runs over a set of representatives of the isomorphism classes of fully
normalised normal chains of non-trivial subgroups of S.

Again, one could consider versions of the above replacing k with m or m*. Taking into
account defects of characters, we get the following conjecture, which is an analogue of
Dade’s ordinary conjecture:

Conjecture 2.12. Let F be a saturated fusion system on a finite non-trivial p-group S
and let o be an F-compatible family of F. For each d > 0 we have

m(]:vo‘ad) = Z(—l)‘glm(N}-((r),a(o),d) )

lea

where in the sum o runs over a set of representatives of the isomorphism classes of fully
normalised normal chains of non-trivial subgroups of S.

Example 2.13. Let p be an odd prime and let S = pl;r2 be an extraspecial group of order

p? and exponent p. Using the classification of saturated fusion systems on S by Ruiz and
Viruel [28] (which for p = 7 includes three exotic fusion systems), one can show that
for any nonconstrained fusion system on S every compatible family « is trivial. Using
computations in Magma [2] one can show that for any nonconstrained saturated fusion
system F on S the Conjectures 2.1, 2.2, 2.3, 2.5, 2.8, 2.9 and 2.10 all hold for F. The
details for the calculations can be found in Section 8 of [13].

3. Background material

Lemma 3.1 (Thompson’s A x B Lemma). Let S be a finite p-group and A x B < Aut(S)
be such that A is a p'-group and B is a p-group. If A centralizes Cs(B), then A =1.

Proof. See [10, Theorem 5.3.4]. O

We will use standard terminology on saturated fusion systems, as can be found in
many sources, including [5], [1]), for instance. We assume familiarity with the notions of
centralizers and normalizers in fusion systems.

Lemma 3.2. Let F be a saturated fusion system on a finite p-group S. Fiz @ < S and
K < Aut(Q). Assume that Q is fully K-normalized. Then PQ is F-centric for each
NE(Q)-centric subgroup P < NE(Q).
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Proof. The argument given in the proof of [3, Lemma 6.2] generalizes: Let P <
NE(Q) be an NE(Q)-centric subgroup and let ¢ € Homz(PQ,S). Then ¢(PQ) <
Ng’K‘Pil (p(@)e(Q). Since Q is fully K-normalized in F, there is a morphism

¥ € Homz(NE"¢ ™ (0(Q))2(Q), S)

such that ¥p(Q) = Q and (Y¢)|g € K by [1, Proposition 1.5.2(c)]. This means that ¢
is a morphism in HomNJg(Q)(PQ, S). Since Cs(p(PQ)) < NgK“’il(ap(Q)),

W(Cs(p(PQ))) < Cs(¥p(PQ)) < Cs(vp(P)) N NE(Q) < yp(P),

where the middle inequality holds because ¥¢oKp~19~! = K, and where the last in-
equality holds since P is NX(Q)-centric. Hence, Cs(p(PQ)) < ¢(P) < p(PQ). Since ¢
was chosen arbitrarily, this shows that PQ is F-centric. O

Lemma 3.3. Let © € S be such that (x) is fully F-centralized, and fix Q@ < Cs(x). Then
Q is Cx(x)-centric if and only if Q is F-centric. Moreover, Outc,. (2)(Q) = Cout - (@) ()
under either of these assumptions.

Proof. Suppose first that @ is F-centric and let P be Cx(z)-conjugate to Q. Then
Ces(x)(P) < Cs(P) < P and hence Q is Cx(x)-centric. Conversely if @ is Cx(z)-centric,
then z € Z(Cs(z)) < Cog(2)(Q) < @ 50 Q = Q(w) is F-centric by Lemma 3.2 applied in
the case K = 1. Since Out £ (Q) acts by conjugation on Z(Q), Cous () () is well-defined.
Now Aute, (2)(Q) = Cautr(0)(x) is exactly the set of F-automorphisms of  which fix
x, and this group contains Inn(Q) by assumption. The lemma follows. O

Given an isomorphism ¢ in F from @ to @', the conjugation map c,: Autz(Q) —

Aut#(Q’) given by n — pnp~!
Thus, conjugation induces a well-defined isomorphism Outrz(Q) — Outx(Q’), which

is an isomorphism which maps Inn(Q@) onto Inn(Q").

we denote by ¢,. The following direct application of the extension axiom is needed in
Section 5.

Lemma 3.4. Let Q and Q' be F-centric subgroups of S, and let R be a subgroup of S
containing QQ as a normal subgroup. Let p : Q — Q' be an isomorphism in F. Assume that
co(Autr(Q)) < Autg(Q'), or, equivalently, that ¢,(Outr(Q)) < Outs(Q'). Let R < S
be the inverse image of c,(Autr(Q)) under the canonical homomorphism Ng(Q') —
Auts(Q'). Then there exists a morphism R — S in F extending ¢. Moreover, T(R) = R’
for any such extension T.

Proof. Since Auts(Q’) is the full inverse image of Outg(Q’) under the canonical surjec-
tion Autz(Q’) — Out£(Q’), the two conditions on the image of R are indeed equivalent.
Hence, R < N, in the notation of [1, Definition 2.2]. Since each F-centric subgroup is
fully F-centralised, the extension axiom of saturation yields the first assertion.
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If 7 and 7’ are two F-morphisms extending ¢, then one may find z € Z(Q) such that
7 =7o0¢, by [3, Lemma A.8]. Since z € @ < R, this shows the second assertion. 0O

Let C be a full subcategory of F which is closed under isomorphisms and taking super-
groups. Following the notation in [19, Section 8.13], we denote by S(C) the subdivision
category of C. The objects of C can be regarded as non-empty chains of non-isomorphisms

Qo= Q1= = Qm

in F with @; belonging to C. Any homomorphism in S(C) is a composition of a chain
preserving isomorphism in F and an inclusion of a chain as a subchain of another chain.
There is a canonical functor S(C) — C mapping a chain to its maximal term.

By [19, Proposition 8.13.3], any chain in S(C) is isomorphic, in S(C), to a chain of
proper inclusions

Qo <Q1 << Qn

of subgroups Q; of S belonging to C. In other words, the category S(C) is equivalent to
its full subcategory, denoted S<(C) consisting of non-empty chains of proper inclusions
of subgroups of S in C. A chain o above is said to have length m, and we write |o| = m.
When convenient, we occasionally write (), and Q7 for the smallest and largest subgroups
in o, respectively.

A morphism between chains Qp < -+ < @, and Ry < --- < R,, is a pair consisting of
an injective map 8: {0,...,m} — {0,...,n} together with a collection of isomorphisms
Qi — Rpy in F for each i € {0,...,m} which satisfy the obvious compatibility condi-
tions. Thus, the set of isomorphisms between chains o, 7 in S<(C) can be identified with
the set of chain-preserving isomorphisms ¢ : Q% — Q7 in F. Whenever o € S.(C), let
Autx (o) be the subgroup of Autx(Q?) consisting of those automorphisms which pre-
serve each member of the chain. In other words, Autz(o) is the automorphism group of
o in S<(C).

We denote by Sq(C) the full subcategory of S<(C) of all chains

Qo< <--<Qnm

in S<(C) satisfying the additional property that the @); are normal in the maximal term
Qm, for 0 < i < m.

We denote the set of isomorphism classes of chains in S(C) by [S(C)]. Since C, and
hence S(C), is an El-category, the set [S(C)] has a canonical partial order given by
[0] < [7], whenever [o], [7] are the isomorphism classes of chains o, 7 in S(C) such that
Homgc)(o, 7) is non-empty.

If F = Fs(G) for some finite group G having S as a Sylow p-subgroup, then [S<(C)]
is isomorphic to the poset of G-conjugacy classes of chains of subgroups in C. For a more
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general statement regarding G-conjugacy classes of chains of Brauer pairs of a block, see
[16, Proposition 4.6].

4. Compatible families of second cohomology classes

We describe properties of Kiillshammer-Puig classes of blocks which are needed to en-
sure that the conjectures stated for saturated fusion systems do indeed specialize to the
block theoretic versions from which they are inspired in case the triple (S, F, ) under
consideration is realized by a block. We briefly review the construction of Kiilshammer-
Puig classes (see e.g. [19, Theorem 5.3.12, Corollary 8.12.9, Section 8.14] for more details
and proofs).

Let M be a finite-dimensional simple k-algebra; that is, M is isomorphic to a matrix
algebra over k. Let G be a finite group acting on M by algebra automorphisms. By the
Skolem-Noether Theorem, every automorphism of M is inner, and hence for any g € G
there is an element s, € M such that the action of g is equal to the conjugation action
of s, on M. Since Z(M) = k, the elements s, are only unique up to scalars in k*. Thus
for g, h € G we have s¢s;, = (g, h)sgp for some a(g, h) € k*. The map a: G x G — k*
is then a 2-cocycle whose class in H?(G, k*) is independent of the choices of the s,. We
call this class the class determined by the action of G on M. If G acts trivially on M,
then « is the trivial class.

Suppose now that G has a normal subgroup N such that the action of N on the simple
algebra M lifts to a G-stable group homomorphism 7 : N — M*. Let [G/N] be a set of
representatives of G/N in G. For each g € [G/N] choose some s, as above, and for each
h € N set sgn = s47(h). One checks that the 2-cocycle a determined by this choice has
the property that its values a(g, h) depend only on the images of g, h in G/N, for all
g, h € G, and hence « induces a 2-cocycle 3 on G/N whose class in H?(G/N, k*) does
not depend on the choices of the s, (but the class of 5 does depend on the choice of 7
lifting the action of N on M). We call this class the class determined by the action of G
on M together with the group homomorphism 7. Even if G acts trivially on M this does
not necessarily imply that § is trivial (this depends on whether 7 is trivial).

This scenario arises if M is a simple algebra quotient of kN by a G-stable maximal
ideal in kN. Here the action of G is the conjugation action and the map 7 is induced
by the canonical algebra surjection kN — M. Any such scenario determines a class 3 in
H?(G/N, k*) whose restriction to G along the canonical surjection G — G/N is equal to
the class a determined by the action of G on M. For technical Clifford theoretic reasons
it is usually more convenient to consider the inverse class.

The Kiilshammer—Puig classes arise in turn as special cases of this construction. Let
B be a block of kG with maximal B-Brauer pair (S, e) and associated fusion system F
on S. Let @ be an F-centric subgroup of S. That is, if f is the unique block of kCq(Q)
satisfying (@, f) < (S,e), then Z(Q) is a defect group of f (which is clearly central),
and hence kCq(Q)f is a nilpotent block with a unique simple algebra quotient M.
The uniqueness ensures that Mg is Ng(Q, f)-stable. By standard facts, Mg is also the
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unique simple algebra quotient of kQCq(Q)f. Note that QCq(Q) is a normal subgroup
of Ng(Q, f), and that Ng(Q, f)/QCq(Q) = Outx(Q). Thus the previous scenario with
Ng(Q, f) and QCq(Q) instead of G and N, respectively, yields a canonical class in
H?(Outz(Q),k*). The inverse of this class is the Kiilshammer-Puig class ag. Using
Nea(Q, f) and Ce(Q) would yield the corresponding class, abusively again denoted «,
in H2(Aut£(Q), k>).

Let F be a saturated fusion system on a finite p-group S. We denote by F¢ the full
subcategory of F-centric subgroups of S. For any @ € F¢, we may (and will) identify
without further comment the group H?(Outz(Q),k*) with H?(Autz(Q), k) via the
isomorphism induced by the canonical surjection Autz(Q) — Outz(Q). The assignment
Q — H?*(Outz(Q), k) is not functorial on F¢. In order to interpret certain families
of classes in [[o¢ H?(Outz(Q),k*) as a limit of a functor, we need to pass to the
subdivision category S(F¢) of F¢. By [17, Theorem 1.1], there is a canonical functor A%
from [S(F°)] to the category of abelian groups which sends an object 7 of [S(F¢)] to
H?*(Autg(re)(0), k™) for some o € S(F¢) such that 7 = [o]. The choice of representative
o determines this functor up to unique isomorphism. Let oo = (ag)gere be a family of
classes ag € H?(Outx(Q), k™). For each 7 € [S(F°)], define the element o, € A%(7) to
be the restriction of aq,, to the subgroup Autg(rey(o) of Autz(Q.,) where

o=(Qo—= Q1= = Qm)
is the representative of 7 in S[F°] as above.

Definition 4.1. Let F be a saturated fusion system on a finite p-group S. An F-compatible
family is a family o = (ag)ger- of classes ag € H*(Outz(Q), k) such that the cor-
responding family (o ),cis(Fe) as above belongs to [Sl(irfn)] A%. In that case, we write

a € lim A% for short.
[S(Fe)]

The set of JF-compatible classes forms a subgroup of the abelian group
[oer H2(Outr(Q), k).

By [19, Theorem 8.14.5], the family « of Kiilshammer-Puig classes of a block B of some
finite group algebra kG with defect group S and fusion system F is F-compatible. By [18,
Theorem 4.7] the inclusions of categories Sq(F¢) C S-(C) C S(C) induce isomorphisms

lim A%~ lim A% 2~ lim A2
sFN T s FT T saFen”
Thus to check F-compatibility it suffices to consider normal chains. In fact, it suffices to

consider normal chains of length at most 1.

Lemma 4.2 ([19, Theorem 8.14.5] and its proof). Let F be a saturated fusion system on a
finite p-group S, and let a = (ag)gere with ag € H*(Out£(Q); k*) for any F-centric
subgroup @ of S. The following are equivalent.
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(1) The family o is F-compatible.

(2) For any proper normal F-centric subgroup @ of an F-centric subgroup R of S, the
images of ag and agr in Hz(AutS(].‘c)(Q <4 R), k™) under the maps induced by the
canonical group homomorphisms

Auts(]:c)(Q 4R) = Aut£(Q)
Auts(]_-c)(Q 4R) — Autz(R)

are equal.

We need to follow compatible families through passages to centralizers of elements
and normalizers of chains of p-subgroups.

Lemma 4.3. [19, Proposition 8.5.7] Let F be a saturated fusion system on a finite p-group
S, and let Q be a fully F-centralized subgroup of S. If R is a Cx(Q)-centric subgroup of
Cs(Q), then QR is an F-centric subgroup of S. The correspondence R — QR extends
to a unique functor

Cr(Q)° = F*

which sends a morphism ¢ : R — R’ in Cx(Q)° to the unique morphism 1 : QR — QR/
in F¢ which is the identity on Q and coincides with ¢ on R.

This functor extends obviously to a functor between subdivision categories, and hence
this functor sends an F-compatible family « to a Cr(Q)-compatible family «(Q). In
order to ensure that the conjectures involving this functor specialize to known facts or
conjectures, we need to check that if « is realized by a block B of kG, then a(Q) is
realized by the corresponding block of kCs(Q).

Proposition 4.4. Let G be a finite group, B a block of kG, and (S,e) a mazximal
B-Brauer pair. Let F be the fusion system of B on S determined by the choice of e,
and let o = (ag)gere be the family of Kilshammer—Puig classes of B. Denote by eqg
the unique block of kCq(Q) such that (Q,eq) < (S,e) and by f the unique block of
Cew@(Cs(Q)) = Ca(QCs(Q)) satisfying (Cs(Q), f) < (S,¢). Then (Cs(Q), f) s a
mazimal (Ce(Q), €)-Brauer pair which determines the fusion system Cx(Q) on Cs(Q).
The restriction of a to a family a(Q) along the canonical functor Cx(Q)° — F° is the
family of Kilshammer—Puig classes of the block kCq(Q)eq with respect to the mazimal

(Ca(Q), eq)-Brauver pair (Cs(Q), f).

Proof. The fact that (Cs(Q), f) is a maximal (Cg(Q), e)-Brauer pair which determines
the fusion system C'z(Q) on Cs(Q) is well-known, and proved, for instance, in [19, Propo-
sition 8.5.4]. For the statement on Kiilshammer—Puig classes, we need the construction
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of these classes as reviewed at the beginning of this Section. Let R be a Cx(Q)-centric
subgroup of Cs(Q). By 4.3, QR is F-centric. Note that Cc,(g)(R) = Cq(QR). Thus if
g is the unique block of kCq(QR) such that (QR, g) < (S,e), then g is also the unique
block of kCc () (R) such that (R,g) < (Cs(Q), f). These blocks have therefore the
same unique simple quotient (as they are nilpotent blocks), and clearly Ne(g)(R, f) is
a subgroup of Ng(QR, f). Since the Kiilshammer—Puig classes of R and QR for Cr(Q)F
are determined by the respective actions of the groups Ne,(@)(R, f) and Ng(QR, f) on
that simple quotient, it follows that the class of R in Cx(Q) is indeed obtained from
restricting the class of QR in F along the canonical map Autc, (g)(R) — Autz(QR). O

We apply this for cyclic Q. Let x be an element in S such that (x) is fully F-centralized.
For a an F-compatible family, we denote by a(x) the corresponding Cx(z)-compatible
family, obtained from restricting o along the canonical functor

C]:(LU)C — F€

from Proposition 4.3 applied with @ = (x). By Proposition 4.4, if a is a family of
Kiilshammer—Puig classes of a block, then «(z) is a family of Kiilshammer—Puig classes
of the relevant Brauer correspondent of the block.

Proposition 4.5. Suppose that (S, F,«) is realizable by a block B of a finite group algebra
kG. Then w(F, ) is the number of weights associated with B. In particular, AWC holds
for B if and only if w(F,«a) = €(B). Moreover, if AWC holds for B and all its Brauer
pairs, then k(F, a) = k(B), the number of ordinary irreducible characters associated with
B.

Proof. For the first assertion see for instance [11, Proposition 5.4]. The fusion system F
is determined by a choice of a block e of kC¢(S) such that (S, e) is a maximal B-Brauer
pair (see e.g. [11, Definition 3.8]). Let « € S such that (z) is fully F-centralized. Let f be
the block of kCq(x) such that ((x), f) is the unique B-Brauer pair contained in (5, e).
By Proposition 4.4, the triple (Cs(x), Cr(x), a(z)) is realized by the block f of kCq(x),
and hence it follows that w(Cr(x), a(x)) = £(kCg(x)f) thanks to the assumption that
B-Brauer pairs satisfy AWC. A theorem of Brauer (cf. [19, Theorem 6.13.12]) now implies
the second assertion (see also [1, IV. 5.7]). O

For F a saturated fusion system on a finite p-group S, denote by F the associated
orbit category, obtained from F by taking as morphisms the orbits Inn(R)\ Hom £(Q, R)
of morphisms in F from @ to R modulo inner automorphisms of R, for any two subgroups
Q, R of S. In particular, Out7(Q) = Aut=(Q). Recall from [18, Definition 5.1] that a
normal chain

0=(Qo< Q1< <Qn) € SqF)
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is called fully F-normalized if Qg is fully F-normalized and if either m = 0 or the chain

021 =(Q1 << Qn)

is fully Nx(Qp)-normalized. Every chain in Sq(F) is isomorphic to a fully F-normalized
chain. Note that since o is a normal chain, we have Q,,Cs(Qm) < Ng(o). We need an
analogue of Proposition 4.4 for Nx(o).

Proposition 4.6. Let F be a saturated fusion system on a finite p-group S and let a be
an F-compatible family. Let 0 = (Qo < Q1 < -+ < Qm) € Sa(F) be fully F-normalized.

(1) For every P < Ng(o), if P is Nz(o)-centric, then QP is F-centric.

(2) Let P, R be Nx(o)-centric subgroups of Ng(o), let ¢ : P — R a morphism in
Nz(o), and let ,¢" : QP — QR be morphisms in F extending ¢ and satisfying
V(Q;) = Qi = V' (Q;) for 0 < i < m. Then the classes of ¥ and ¢’ are conjugate by
an element in Z(P). In particular, the correspondence sending ¢ to any choice of ¥
induces a functor

U : Nr(o) = F.

(3) For any Nx(o)-centric subgroup P of Ng(o), the functor ¥ induces a group homo-
morphism

OutN}.(g)(P) = Owtz(QmP) ,

and the restriction along these group homomorphisms induces a map from the group
of F-compatible families to the group of Nx(o)-compatible families.

(4) If (S, F,a) is realized by a block B with respect to a mazximal B-Brauer pair
(S,e), then (Ng(o), Nr(o),a(0)) is realized by the block €., of kNg(o,em) such
that (Qm,em) < (S,e), with respect to the maximal (Ng(o,em),em)-Brauer pair
(Ns(0), f), where f is the unique block of Cng(o)(Ns(o)) = Cq(Ns(o)) satisfying
(Ns(o), f) < (S,e).

Proof. In order to prove the first statement, we argue by induction over the length m
of the chain 0 = Qp < @1 < -+ < Q.. Suppose that m = 0, so ¢ = Qp, and Qg
is fully F-normalised. Let P be an Nz(Qp)-centric subgroup of Ng(Qo). Then QP is
F-centric by Lemma 3.2. Suppose now that m > 0. Let P < Ng(o) be Nz (o)-centric. Set
o' =Qu< Q1 < < Qnm-1 and F' = Nx(c¢'). By [18, 5.4], ¢ is a fully F-normalized
chain, and @, is fully F'-normalized. By the statement for m = 0 applied to F’, it
follows that Q,, P is F'-centric. By induction, @Q,, P is F-centric.

For the second statement, note that the two extensions v, ¢’ of ¢ are both again mor-
phisms in Nz (o), and their restrictions to the Nz(o)-centric subgroup P coincide. Thus,
by a standard fact (see e.g. [3, Lemma A.8]) they differ by conjugation with an element
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in Z(P). That means that the image of ¢ in the orbit category F is uniquely determined
by ¢, whence the second statement. The third statement is a formal consequence of the
second.

For the proof of the fourth statement, note first that this makes sense: we have
Cc(@m) < Ne(o,em) < Na(Qm,em), and Autg(r)(0) = Ng(o,em)/Ca(Qn). In par-
ticular, by standard block theory, e, remains a block of kNg(o,e,,). An integrated
application of [19, Proposition 8.5.4] shows that Nz (o) is the fusion system of this block
with respect to the maximal Brauer pair as stated. The same argument as at the end of
the proof of Proposition 4.4 shows that restricting « yields the family of Kilshammer—
Puig classes of e, as a block of kNg(o,ep,). O

Recall that a saturated fusion system F on a finite p-group S is constrained if
F = Nx(Q) for some normal F-centric subgroup @ of S. In that case, by [4, Propo-
sition C] (see [1, Theorem 4.9]), F is the fusion system of a finite group L with S as
Sylow p-subgroup, such that @ is normal in L satisfying Cp(Q) = Z(Q); that is, L
is p-constrained. In particular, we have canonical isomorphisms L/Q = Outx(Q) and
L/Z(Q) = Autz(Q). The group L is called a model for F.

Proposition 4.7 (/17, Section 6]). Let F be a saturated fusion system on a finite p-group
S such that F = Nx(Q) for some normal F-centric subgroup Q of S. Let L be a finite
group such that S is a Sylow p-subgroup of L, such that @ is normal in L satisfying
CL(Q) = Z(Q), and such that F = Fg(L). The restriction from F¢ to Autz(Q) and the
canonical map L — Autz(Q) induce isomorphisms

H2(F*, k) 2= HX(Aut#(Q), k) = H(L, k).
In particular, any F-compatible family o is uniquely determined by the component aq.

Proposition 4.8 (c¢f. [1, Proposition IV.5.34], [15, 5.3]). Let F be a saturated fusion
system on a finite p-group S such that F = Nz(Q) for some normal F-centric subgroup
Q of S. Let a be an F-compatible family. Let L be a finite group such that S is a Sylow
p-subgroup of L, such that Q is normal in L satisfying Cr(Q) = Z(Q), and such that
F = Fs(L). Choose a finite cyclic subgroup Y of k* containing all values of a 2-cocycle
representing the class ag. Then (S,F,a) is realized by a block of the central extension
L of L by Y determined by ag, regarded as a class in H*(L,Y).

In particular @ = 0 if and only if b is the principal block of kL (which is isomorphic to
the principal block of kL). More generally, the blocks arising in the previous Proposition
are twisted group algebras of L; we lay out the connection between p’-central extensions
and twisted group algebras in the next result

Proposition 4.9. Let G be a finite group, and o € H*(G, k>).
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(1) There exists a central extension
152Z-5G—>G—1

where Z is a cyclic group of order prime to p and a primitive idempotent e of kZ
such for any subgroup L of G, we have an zsomorphzsm koL = kLe where L is the
inverse image of L in G. In particular {(koL) = ((kLe) and z(koL) = z(kLe).

(2) Suppose that there exists a normal p-subgroup Q of G such that Cq(Q) = Z(Q).
Identify o with the corresponding element of H*(G/Q,k*). Let L be a subgroup of
G containing Q, S a Sylow p-subgroup of L, and S the Sylow p-subgroup of the
inverse image of S in L. Denote also by « the Fs(L)- compatzble family determined
by the restriction of o to L as in Proposition J.7. Then, kLe is a block of kL realizing
(S, Fs(L),c) through the canonical isomorphism S = §. Moreover, AWC holds for
kLe if and only if

ko L) = Z 2(kaNL/g(R)/R)

R

where R runs over a set of representatives of the L/Q-classes of p-subgroups of L/Q.

Proof. Since k is algebraically closed it is well-known that H?(G, k*) is finite, and hence
« can be represented by a 2-cocycle, abusively still denoted by «, with values in a finite
subgroup Z of k*. Then Z is cyclic of order prime to p, since k is a field of characteristic
p. Represent o by a central extension

152Z—-5G—>G—=1

and denote, for any z € G, by # an inverse image of z in G satisfying #§ = a(x, y)zy for
all z, y € G. We regard the elements of Z as elements in the centre of G and not as scalars;
if we do want to consider the elements of Z as scalars, we denote this via the inclusion
map ¢t : Z — k*. Set e = \Zl > ez t(z71)z. This is a primitive idempotent in kZ,

and kZe is 1-dimensional. An easy verification shows that the map sending Ze € kGe
to x induces an algebra isomorphism kGe = koG. This isomorphism restricts to an
isomorphism kLe = koL, for any subgroup L of G. Statement (1) follows.

Let @ be the Sylow p-subgroup of the inverse image @ of Q in L. Then @ =ZX @, and
hence @ is normal in L. Thus all block idempotents of kL lie in kC’E(@) = k(Z(Q) x Z).
In other words, the block idempotents of kL are precisely the primitive idempotents of
kZ. In particular, kLe is a block of kL. One easily checks that this block has defect
group S , which is isomorphic to S, and through this isomorphism, F = Fg(L) is the
(in this situation unique) fusion system on S of the block e of L. We need to show
that « is the family of Kiilshammer—Puig classes of this block. By Proposition 4.7, it
suffices to show this for the class g We write again « instead of ag, and consider «
as a class of H2(L,k*) whenever appropriate. Note that e remains the unique block of
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CZ(@) = Z(Q) x Z such that (Q,e) is a (L, e)-Brauer pair. So the construction of the
Kiilshammer—Puig class at CAQ is obtained as the special case of the construction described
at the beginning of this section with L and Z x @ instead of G and NV, respectively, and
with the 1-dimensional quotient M = k of k(Z x Cj) given by the map ¢ : Z — kX
extended trivially to @, still denoted by ¢. Since any group action on a 1-dimensional
algebra is trivial, we may choose s, = 1 for x running over a set of representatives of
L/(Q x Z) = L/Q. Then also s, = 1 for = running over a set of representatives of
E/Z = L, because ¢ is extended trivially to @ Thus, for a general element of the form
Zz, with x € L and z € Z, we may choose sz, = i(2); in particular, sz = 1 for x € L.
We need to show that this determines a~!. Note that « is determined by its restriction
to L via the map L — L/Q. Let x, y € L. By construction, we have sz = s5 = sz = 1.
Since g = zya(x,y), it follows that

szg = sayt((@,y)) = t(a(z,y))
and hence (writing « instead of ¢ o @) we have
1 =szs5 = a(r,y) ‘sz

This shows that « is the Kiilshammer—Puig class of this block at @ Note that by the
first statement we have kLe = k,L. The last statement on AWC follows from the fact
that if P < S is Fg(L)-centric radical, then P contains @ and if @ < P < S, then

Nijo(P/Q)/(P/Q)) = NL(P)/P = Outzyr)(P). O

Lemma 4.10. Let G be a finite group with normal subgroup N. Fiz a cohomology class
a € H?(G,k*) and write also o for the restriction to N. If z(koG) # 0, then 2(koN) # 0.

Proof. Using Proposition 4.9, we fix a p’-central extension 1 — Z — G—G—>1
corresponding to a and a central idempotent e € kZ such that k,G = kGe. Then the
restriction « is the class corresponding to the induced central extension N of N , and
ko N = kNe. Assume now that koG has a projective simple module. Then k@e, and
hence k@, has a projective simple module, say M. The restriction of M to N is both
projective and semisimple. Hence, any simple summand of Res]%M is projective. Since e
still acts as the identity on the restriction of M, we see that kNe has a projective simple
module, and hence so does k,N. 0O

Lemma 4.11. Let G be a finite group and o € H*(G,k*). If O,(G) # 1, then z(k,G) = 0.

Proof. As in the proof of Lemma 4.10, let 1 — Z — G — G — 1bea p’-central
extension of G determined by «, and let e € kZ be a central idempotent in kG such that
koG = kGe. Let P = 0,(G) and P be the preimage under the quotient map. Since Z
is a p’-group, the restriction of a to P is trivial, and so P=27x Py with Py mapping
isomorphically to P. Then Op(lg) = Py # 1 is a normal p-subgroup of G. Thus, as kP
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has no projective simple module, neither does kG by Lemma 4.10. Hence neither does
kGe = k,G. O

Fix a finite group G and an abelian group A. Let P be the set of all chains of proper

inclusions

Qo=1<Q1---<Qn

of p-subgroups of G. This is a G-set with respect to the conjugation action of G on
chains, and we denote by Ng(o) the stabilizer of o in G. Let N be the subset of all such
chains satisfying in addition Q; < @, for each 0 < i < m. Let &£ be the set of chains in
N consisting of elementary abelian subgroups. Both A" and £ are G-subsets of P. For
the purpose of calculating alternating sums indexed by chains, we can pass between P,

N, and &:

Lemma 4.12 ([1/, Proposition 3.3]). Let G, A, P, N, and £ be as above. Let f be a
function from the set of subgroups of G to A such that fis constant on conjugacy classes
of subgroups of G. Then

Y DANa(e) = Y (FDIIENG(0) = Y (~DIIANG(0)).

c€P/G ceN/G cel/G

We shall need the following well-known Lemma in Section 5.

Lemma 4.13 (/29, Lemma 2.1], [1/, Proposition 3.3]). Let G, A, and N be as above and
let £ be a function from the set of subgroups of G to A such that fis constant on conjugacy
classes of subgroups of G. If O,(G) # 1, then

> (=)FIANG(0)) = 0.

ceN/G

Proof. We sketch the proof for the convenience of the reader. Set R := O,(G) and
assume that B > 1. We show that there exists a G-invariant involution n: N' — N
where Ng (o) = Ng(n(e)) and |n(o)| =lo| £ 1. Given 0 = (Qp < Q1 < -+ < Q) EN,
choose i maximal with the property that R £ Q;. Since R £ 1 = Qo, we see that there is
such an i. By choice of i, we have @Q); < @; R, and we have Q; R < Q;+1 if i < m. Define

Qo< <Qm<QunR if i = m,
No)={Qo<-<Qi<Qiy2<--<Qnm if QiR = Qi41, and
Qo< Qi <QR<Qiy1 < - <Qm HQR<Qiy1.
Then (o) € N and Ng(o) = Ng(n(o)) for each o € N, since R is a normal p-subgroup

of G. Also, |n(o)| = |o| £ 1. It is a momentary exercise to verify that » is an involution
on N. Hence, the alternating sum vanishes as claimed. O
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Remark 4.14. We finish this section with a mention of a recurrent elementary tool for
reordering sums indexed by two or more sets acted upon by a finite group G, which
we will use without much further comment. Let X, Y be finite G-sets and denote by
nx : X XY — X, my : Y x X the projection maps. Let A be a G-invariant subset of
X XY under the diagonal action of G on X x Y. Suppose that for any (z,y) € X XY we
have an element a(z,y) in some abelian group depending only on the G-orbit of (z,y).
Then

> alxy)

(z,y)€EA/G

is equal to any of the following double sums

> > a(z,y)

T€X/G  yemy (nxt(z)NA)/Gy

> > a(z,y).

YEY/G  zenmx(ny'(y)NA)/Gy

Note that the two double sums make sense as by the G-invariance of A, for each x € X,
Ty (nx!(x) N A) is Gy-invariant and for each y € Y, mx (my' (y) N A) is G, -invariant. Let
X be a set of representatives of the G-orbits of X and for each x € X, let ), be a set of
representatives of the G -orbits of X and set

U:={(z,y) : € X,y €V}

Then, U C A. We will show that U is a set of representatives of the G-orbits of A, and
this will yield the equality of Z(w’y) e a(z,y) with the first double sum. Suppose
that z,2’ € X, y,y’ € Y, are such that (z,y) and (z/,3’) are in the same G-orbit and
let g € G be such that (2/,y') = 9(x,y). By comparing the first components, it follows
that 2’ and x are in the same G-orbit of X, hence 2’ = x and g € G,. Now comparing
the second components implies ' = y. Conversely, let (zo,y0) € A. We will show that
(z0,y0) is G-conjugate to an element of U. By definition of X, there exists g € G and
x € X such that xg = 9z, hence by replacing (xg,y0) by 9(zo,yo) we may assume that
2o € X. Since (xg,y0) € A, yo € Wy(ﬂ;(l(a?o) N A). Hence by the definition of Y,,, yo is
G,-conjugate to some element of YV, , say zp = hyo with h € Gy 20 € Vao- Then

" (o, y0) = ("xo, "yo) = (x0,20) €U
as required. The proof of the equality with the second sum is entirely analogous.

5. Towards Theorem 1.1

Throughout this section let F be a saturated fusion system on a finite p-group S, and
let o be an F-compatible family.
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Our first goal will be to reformulate m*(F,«) by reindexing the sum over objects
in the full subcategory Sq(F¢) of the subdivision category of the category of F-centric
subgroups. Recall from Section 3 that Sq(F€) has as objects chains of proper inclusions

Qo <@ << Qn

of F-centric subgroups with the property that the ); are normal in the maximal term
Qm, for each 0 < i < m. Consider the following sets

M ={@Qoz)|QeF o€ N, [z] € Q7},
M = {(0,2) | 0 € So(FC),z € Qo).

The set M is equipped with the equivalence relation

(Qa g, [l‘]) ~M (R7 T, [y])

whenever there exists an isomorphism ¢ : @ — R in F such that ¢,(0) = 7 and such
that o([z]) = [y]. Here €, is as defined before Lemma 3.4 and we use ¢,(¢) to denote the
image of o under the natural extension of ¢, to a map from the set of chains of subgroups
of Outz(Q) to the set of chains of subgroups of Outz(R). The set M is equipped with
the equivalence relation

(o,2) ~M (1,9)
whenever there exists an isomorphism ¢ : 0 — 7 in S4q(F¢) such that p(z) = y.

Proposition 5.1. We have

m'(Fa)= Y (1) 2(kaChutyr o) (z) Autg, (Q7)/ Autq, (Q7)).
(O‘,I)Gﬂ/’\‘

Proof. This follows from Lemmas 5.4 and 5.5 below. O
We rewrite m*(F, «) in terms of (M, ~).

Lemma 5.2.

IH*(]:, a) = Z Z(kacl(a)([x]))

(Q,0,[z])eM/~

Proof. Let X be a set of representatives of F-classes in F¢ and for each @) € &, let Vg
be a set of Outx(Q) representatives of W¢. Then {(Q,0,[z]) : Q € X, (0,[z]) € Vq} is
a set of representatives of the ~-equivalence classes of M and the result follows. O
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A normal chain 0 = (Qp < -+ < Q) In Sq(F€) induces a normal chain Aut,(Qo) :=
(Autg,(Qo) < -+ < Autg,,(Qo)) of p-subgroups in Autr(Q), and a corresponding
normal chain Out,(Qo) € Ng, upon factoring by Inn(Qo). In this context, bars will
denote quotients by Inn(Qp). That is, we set @, := Outg,(Qo) for each 0 < i < m and
we set

o= OUtU(QO) = (@0 < @1 < < Qm)
for short. Note that @Q, is trivial.

Lemma 5.3. The map M —s M which sends (0,z) to (Qo,5,[z]) induces a bijection
between M/~ and M /~.

Proof. We first show that the map is well-defined. Let (o,2) ~ (7,9) in M. Fix an
isomorphism ¢: o — 7 in Sq(F°) such that p(z) = y. Then (Qo, 7, [z]) ~ (Q+,T, [y]) via
the restriction of ¢ to Q.

Next, suppose (Q,,7, [z]), (Q-, T, [y]) € M are M-equivalent. Let ¢: Q, — @, be
an F-isomorphism such that ¢,(a) = 7 and 9([z]) = [y]. By Lemma 3.4, ¢ extends to
a chain isomorphism ¢: o — 7. Since 1([z]) = [y], we have ¥ (z) = uyu~' for some
u € @Qr. Let §: Q7 — Q7 be the composition of 15 with conjugation by u. Then (o, z)
and (7,y) are M-equivalent via §. This proves injectivity.

It remains to show that whenever (R, p,[z]) € M, there exists (o,z) € M such that
(Qs,7, [x]) is M-equivalent to (R,p,[z]). Let p = (1 < X3 < -+ < X,5,) € Ng. Let
a: R — R’ be an F-isomorphism with R’ fully F-normalised, and consider the chain

Ca(p) = (1 <Co(X1) <+ <Ca(Xm))-
Since R’ is fully F-normalised and F is saturated, Outs(R’) is a Sylow p-subgroup of
Outz(R'), so by Sylow’s theorem we may fix 8 € Outz(R’) such that 5é,(X,,)57 ! <
Outg(R’). Denote by R’ the inverse image of 8¢, (X;)37! in Ng(R’), and set

c:=(R <R,<---<R.,) and x:=fBa(z),

where B € Autx(R') is any lift of 8. Then (o,z) € Mv, and (Q,,7, [z]) is M-equivalent
to (R, p,[2]) via fa. O

The following lemma is now immediate from Lemmas 5.2 and 5.3.

Lemma 5.4. We have

m*(}—aa) = Z (_1)|U|Z(kacl(5)([x]>)'

(U,z)EM/N
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To complete the proof of Proposition 5.1, we give an interpretation of z(koCr)([2])
in terms of the automisers of chains in Sq(F°).

Lemma 5.5. Fiz 0 = (Qo < -+ < Q) € Sq(F°), and let m be the composite

res __ def
Aut]:(a) _— NAutF(QD)(AutU(QQ)) e [(0’) = Nout]:(QO)(OutU<QO)),

which restricts to Qo and then factors by Autg,(Qo). Then

(1) m is surjective,

(2) ker(m) = Autg,(Qm), and

(3) for each x € Qq, the group Caye, (o) () Autq,(Qm) is the inverse image of Cre)(x)
under .

Proof. To prove (1), it suffices to show that the restriction map res: Autr(c) —
Naut(Qo) (Auty(Qo)) is surjective. Let @ € Nayg - (Qq) (Aute (Qo)). Then cq (Autg, (Qo)) <
Autg, (Qo) for all 0 < ¢ < m. The first conclusion of Lemma 3.4 then yields an extension
a of a to Q.

Fix ¢ with 0 < ¢ < m, and fix u € @;. Then since « is defined on u, we have

cﬁ(“)'@o = Oé(Cu|QO)Oé_1 € Athi (QO)

by assumption. Hence, a(u) lies in the full inverse image of Autg, (Qo) under Ng(Qo) —
Auts(Qo), which is @; because @ is centric. This shows that a(Q;) = Q; for each i,
and thus the surjectivity of the restriction map.

That Autg,(@m) < ker(w) is clear. To see the other inclusion in (2), fix ¢ € ker(m).
Then ¢|g, = ¢, for some u € Qq, so we may fix z € Z(Qo) such that ¢ = ¢,c, = ¢y, by
[3, Lemma A.8]. Thus, ¢ € Autg,(Qn), as desired.

Finally, (3) holds because ker(m) = Autg,(Qm) acts transitively on the Qo-class
[z]. O

Define the following subsets of M:

(1) M is the subset of M consisting of those (o,2) for which Q7/Q, is elementary
abelian.

(2) M is the subset of M consisting of those (o, ) for which Cgr(z) < Qo

(3) M®° is the intersection of M® and M°.

(4) M?e¢ is the subset of M®° consisting of those (o, ) for which Cge (z)®(Q7) is
F-centric.
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Observe that all these subsets are unions of ﬂ—equivalence classes. Let

me(F,a) = Y (=1 2(kaChutr (o) (¥) Autq, (Q7)/ Autg, (Q7))
(U,.’[)E.Af;l/e/’\/

and define m°(F, ), m*°(F, a), and m**°(F, a) analogously.
Proposition 5.6. The following hold.

*(}—,Oé) = me(]:,a)'
*(F,a) =m®(F,a).
(F,a) =m*°(F,a).

~ —~
W N =
O —
5 BB

Proof. By Lemma 5.5, Remark 4.14, the obvious analogue of Lemma 5.2 for elementary
abelian chains, and by restricting the inverse of the bijection of Lemma 5.3 to classes of
elements of M€, we have

m*(F,a) = ) Yoo Dl YT w(kaCry ([2])),

QEFeoelq/ Outr(Q) [z]€Q<!/I(o)

where £g C N is the set of all elementary abelian chains. Thus (1) follows on applying
Lemma 4.12 with G = Outz(Q) for each € F°. We next prove (2). Note that if (o, z) €
M and Cq-(z) is not contained in Qg, then Cryygr)(z)Autg, (Q7)/ Autg, (Q7) =
Cq-(x)/Cq, () is a non-trivial normal subgroup of Cays (o) (7) Autg, (Q7)/ Autg, (Q7)
and the result follows from Proposition 5.1(3) and Lemma 4.11. The same argument holds
with (o,2) € M, so (3) follows from (1). O

Recall that

k(fa a) = Z Z Z(koz OutC]:(ac)(Q))’ (51)

z€[S/F] QeCr(2)¢/Cr(x)

where [S/F] C S is a fixed set of fully F-centralized F-conjugacy class representatives
of the elements of S. Define

C :={(Q,z)|ze[S/F],Q € Cr(x)°}, and
D :={(Q )|z e Z(Q),Q € F}

and equivalence relations

(Q,x) ~c (R,y) <= x =y and Isoc, (,)(Q, R) # &, and
(Q,z) ~p (R,y) <= there exists ¢ € Isor(Q, R) such that p(z) = y.

Thus, C/~ may be viewed as an indexing set for k(F, a). Also, x € Z(Q) whenever
Q € Cr(x)°, so that C is a subset of D.
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Lemma 5.7. The inclusion C — D induces a bijection between C/~ and D/~; in partic-
ular,

k(fv a) = Z Z Z(kaCOHtF(Q) (‘r)) (5'2)

QEF/FxeZ(Q)/ Outx(Q)

Proof. If (Q,x) ~¢ (R,y), then z = y and there is an F-isomorphism from @ to R which
centralizes z, so that (@, z) ~p (R,y). There is indeed a well-defined map on equivalence
classes induced by the inclusion.

Conversely, assume that (Q, z), (R, y) € C are D-equivalent. Fix an F-isomorphism ¢
from @ to R with p(x) = y. As z,y € [S/F] are F-conjugate, we have x = y, and so
Q@ and R are Cz(x)-conjugate. This shows that (Q,z) ~¢ (R,y), so the induced map is
injective.

To complete the proof of the first assertion, it remains to show that each element
of D is D-equivalent to a member of C. Fix (R,y) € D. Let « € [S/F] be the unique
element which is F-conjugate to y. Since (z) is fully F-centralized, we may choose a
morphism « € Homx(Cs({(y)), Cs({x))) such that a(y) = = by [1, 1.2.6(c)]. Set Q =
a(R). Then (R,y) ~p (Q,z) via . Since R is F-centric, also Q is F-centric, so that Q
is Cx(x)-centric by Lemma 3.3. This yields (Q,z) € C and completes the proof of the
first assertion.

Now Outc, (2)(Q) = Coutr(@)(x) for each x € Z(Q) by Lemma 3.3. Hence, as C/~
is an indexing set for a single sum computing k(F,«) as in (5.1), and as D/~ is an
indexing set for a single sum computing the right hand side of (5.2), we have that (5.2)
follows from (5.1). O

Proposition 5.8. We have, k(F,a) = m®*¢(F,a).

Proof. Let D’ be the subset of M®®€¢ consisting of the pairs (o, ) such that |o| = 0
and x € Z(Qy). Then D’ is a union of Mv—equivalence classes. Regarding an F-centric
subgroup @ as a chain of length zero yields a canonical bijection D/~p — D'/~ ~, and
so we may regard k(F,a) as indexed over D'/~ ;. We use chain pairing to remove the
terms from m®*¢(F, «) not in D’. This will yield

meee(Fra) = 3 (—1) s Caner o) () Aut, (Q7)/ Autg, (Q7)).

(o,2)eED’ [~

The Proposition then follows from the expression for k(F, «) in Lemma 5.7, along with
Lemma 5.5(3).

For each 0 = (Qo < -+ < Qm) € Sqo(F°), we let Q_1 = Cq,, ()P(Qm). Define a
map

,’7' M@,O,C\D/ _) Me,o,C\D/

via
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(0,2) — (n(0), ),

where

(O_):{Q_1<Qo<-~~<@m if Q_1 < Qo, and
! Qi< <Qn if Q1 = Q.

It is straightforward to see that 7 is an involution that preserves Mv—equivalence classes
if well-defined.

To prove that n is well-defined, we assert three points for a given pair (o,z) ¢ D’
with o as above. First, observe that n(c) is a first component of some member of Me-oe
by definition of _; and the fact that @_; € F° by assumption. In particular, n(o) is
never the empty chain: if ¢ has length zero, then Cg,(x) = Cqg,,(z) < Qo as (o,z) ¢ D',
so also Q-1 = Cg,(2)®(Qo) < Qo, and hence n(o) has length 1. Second, note that
x € Cg,, (x) < Q_1 in case Q_; is contained properly in Qg, so that indeed (n(0),z) €
Me°<. Lastly, continue to consider a pair (o,x) not in D’. We claim that (n(c),z) is
not in D', and the only case where this is not immediate has |o| = 1 and |n(o)] = 0. In
this case either x is not in Z(Qp), in which case z is likewise not in Z(Q1) < Z(Qo), or
x € Z(Qo), in which case Cq, (z) = Co, () = Qo < Q1 so that again z is not in Z(Q1).
This shows that (n(c),z) ¢ D' and completes the proof of the last point.

Having shown that 7 is a well-defined involution, it remains to prove that it preserves
the value of each summand appearing in Proposition 5.1. To establish this, it suffices to
show that

CAutf(a) (,T) = CAUt}'("](O'))(:I:) and AUtCQO(m) (Qm) = AutCQ71($)<Qm)'

As Q_; is invariant under Autz(c), one has Autx(o) < Autz(n(o)) if n(o) has length
one more than o. Also, one has the same containment if 7(c) has length one less, since
n(o) is a subchain of o in that case. Equality therefore holds in both cases, because 7 is
an involution. This completes the proof of the first displayed equality. Finally, the second
equality holds since Cq,(z) = Cq_, (z) for each (o, z) € Moo g

6. Proof of Theorem 1.1

In light of Propositions 5.8 and 5.6(3), to complete the proof of Theorem 1.1 it suffices
to establish an equality between m®°(F, a) and m®*°(F, ). We will achieve that in this
section.

If G is a finite group and o is a chain of p-subgroups in G such that the first subgroup
is a normal subgroup of the last subgroup, then we denote by G, < Ng(Q?) the stabiliser
in G of the chain and by Autg(o) the image of G, in Ng(Q7)/Ca(Q7).

Lemma 6.1. Let 0 = (Qp < -+ < Qm) be a chain of proper inclusions of subgroups
of S such that Q; is normal in Q., for each 0 < i < m, and let x € Qg be such that
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Cq,, (x) < Qo. Suppose that Q,, is F-centric, Qo is fully F-normalised, and Q, is fully
Nz (Qo)-normalised. Let L be a model of N, (0,)(@Qm). The following hold:

(1) Cr, (2)Q0/Qo = Cautr (o) (€) Autq, (Qm)/ Autg, (Qm)-
(2) If Qo is not F-centric, then z(kq(CL, (x)Q0/Q0)) = 0.

Proof. Set Q, = Qo and Q7 = @Q,,. We have

Ly/Z(Qm) = Autp (o) = AutNNF(QO)(Qm)(U) = Auty, (@, (o) = Autz(0).

The quotient map 7: L, — Autz(o) sends Cr_ (x) to Cpy (o) (). It also sends @, to
Autg, (Qm), since Z(Q.,) < Cq,, () < Qo by assumption. Part (1) follows from this.

We now turn to (2), where we first claim that CL(Qp) is a p-group under the given
assumptions. Let y be an element of C,(Qo) of order prime to p, and let ¢, be the image
of y in Aut(Q,,). Since Cq,, (Autg, (@m)) = Co,, (Qo) < Cg,, (z) < Qo, we have

ey, Cq,,, (Autq, (Qm))] < [y, Qo] = 1.

Now Lemma 3.1 implies that ¢, = Idg,,, so that y € Cp(Qm) < @, is of order a power
of p, since @, is self-centralising in L. Hence, y = 1.

Assume that z(ka(Cr,(2)Qo/Qo)) # 0. As Qo is normal in L,, we know that
Cr,(Qo0)Qo is likewise normal in L,. But Cr_(Qo) < Cr,(z), so Cr_(Qo)Qo is nor-
mal in Cr_ (2)Qo. Hence, z(ko(CL, (Q0)Q0/Qo)) # 0 by Lemma 4.10. It was just shown
that Cp,_ (Qo) is a p-group, so we have C,_(Qo) < Qo by Lemma 4.11. In other words, Qg
is NE(Qo)-centric, where K < Autz(Qo) is the subgroup consisting of those automor-
phisms which extend to automorphisms of o. Hence, Qg is F-centric by Lemma 3.2. O

Lemma 6.2. Let (o,z) € Me°, with o = (Qo < -+ < Q) as before. If Cq,, ()P(Qm)
is not F-centric, then z(kaCaut (o) (7) Autq, (Qm)/ Autg, (Qm)) = 0.

Proof. Write Q—1 = Cq,, (2)®(Qm), and recall that Q_1 < Qo by definition of
Me°. Using [1, L.2.6(c)], we choose a morphism ¢ € Homz(Qm,S) with o(R) fully
F-normalized, and then a morphism ¢ € Homy, (,(r))(@m, Ns(@(R))) with o(Qm)
fully Nz(p(R))-normalized. Set 7 = (o) and y = p(z). Conjugation by ¢ yields

an isomorphism

Cautr (o) (7) Autq, (Q7)/ Autg, (Q7) = Crux(r) (y) Autg, (Q7)/ Autg, (Q7).

Upon replacing (o, x) by (7,y), we may therefore assume Q_; to be fully F-normalized

and @, to be fully Nz(Q_1)-normalized.

Assume on the contrary that Q_; def Cq,, (2)®(Q.,) is not F-centric, but that

2(kaCaut 5 (o) (7) Autq, (Qm)/ Autg, (Qm)) # 0. As Qo is F-centric, Q_1 is a proper
subgroup of ()y. Consider the chain
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o' =(Q-1<Qo<-Qn)

It was shown in the last part of the proof of Lemma 5.8 that

Caut (o) () Autq, (Qm)/ Autq, (Qm) = Caut (o) () Autg_, (Qm)/ Autg_, (Qm),

and that argument did not require (o, x) € Me. But then from Lemma 6.1 applied to
o', we conclude that QQ_; is F-centric after all, a contradiction. O

Proof of Theorem 1.1. By Proposition 5.1, Proposition 5.6(3), and Lemma 6.2, we have
m*(F,a) = m**°(F, «). The result now follows from Proposition 5.8. O

7. Proof of Theorem 1.2

Lemma 7.1 (Robinson). Suppose that G is a finite group, Q < G is a p-subgroup and
a € H*(G/Q,k*). We have

Z U(kaCc([z]) = Z U(kaCc(p)) -

[z]leQ</G uelrr(Q)/G

This Lemma is due to Robinson, and it is obtained as a combination of [24], [27] (see
discussion before Theorem 1.2 of [25]). As a convenience to the reader, the main ideas
of the proof are presented in the Appendix.

For a finite group H denote by S(H) the poset of p-subgroups of H (including the
trivial subgroup - so notation is not standard). If @ is a normal p-subgroup of a finite
group G, then for any [z] € Q% (respectively pu € Irr(Q)), we denote by I([x]) (respec-
tively I(u)) the stabiliser in G/Q of [z] (respectively p) under the action of G/Q and for
any subgroup R of G/Q, we denote by I([z], R) the intersection of I([z]) with Ng,o(R)
ete.

Lemma 7.2. Suppose that G is a finite group, @ < G is a p-subgroup and o €
H?(G/Q,k*). Suppose that Ca(Q) < Q. If AWC holds, then

3 3 2(ka(I([z], R)/R) = > z(ka(I(11, R)/R)).

[z]€eQ<!/G ReS(I([=]))/1([=]) nelrr(Q)/G ReS(I(1))/1(1)

Proof. Let pu € Irr(Q). The full inverse image of I(u) < G/Q in G is Cg(p) and for any
p-subgroup R of L/Q = I(u), I(, R) = N /o(R). Hence, by AWC and Proposition 4.9
applied with L = C¢(1), we have that

(ka(kCa(w) = > z(ka(I(R,pn)/R)).

ReS(I())/1(1)
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Similarly, let 2 € Q. The full inverse image of I([z]) < G/Q in G is Cg([z]). Thus, by
AWC and Proposition 4.9 applied with L = Cg([x]), we have that

(ko (kCq([z]) = > 2(ka(I(R, [z])/R)).
ReS(I([«]))/1(la])

The result follows by Lemma 7.1. O

Let F be a saturated fusion system on a finite p-group S and let a be an F-compatible
family. We recall some earlier notation. For any F-centric @ < S, by Remark 4.14, we
have

wo(F,a)= > (=Dl 3" (ke Criy (1) (7.1)

o€NG/ Out(Q) pelr (Q)/1(0)
wo(F,a) = S =Dl YT 2(kaCroy([2])) (7.2)
0ENG/ Outx(Q) [2]€Q"/1(o)

Also, since Out#(Q) = Outy, (0)(Q) we have
wo(F,a) =wo(Nr(Q),«) and WZ?(]:,a) = wzg(N}-(Q),a). (7.3)

Lemma 7.3. Suppose that G is a finite group and Q<G is a p-subgroup with C(Q) < Q.
Let S be a Sylow p-subgroup of G, F = Fs(G), G = G/Q and let Pg denote the set of
all strictly increasing chains of p-subgroups in Outx(Q) starting at 1. Then,

wo(F,a) = > =yt Y > 2(ka(I(R, 0, 1)/ R))

0€Pq/ Out+(Q) pelrr(Q)/1(o)  ReSI(o,1))/ (o)

and

wo(F,a) = > LY > z(ka(I(R,0,[2])/R)).
0€Pq/ Out+(Q) [z]€eQ°/I(o) ReS(I(o,[z]))/I(o,[z])

Proof. By definition
wo(F,a) = Yoo =Dl YT (ka0 ).
o€Ng/ Outx(Q) pelrr(Q)/I(o)
We claim that
wo(F,a) = SooEnlt N 2 kaI(o, ).
0€Pq/ Out+(Q) pelrr(Q)/1(o)

Indeed, this follows immediately from Lemma 4.12 (or [14, Proposition 3.3]). Next, in-
terchanging the order of summation on the right hand side of the above equation we
obtain
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wo(F, o) = > Y F(ka(I(o, 1)

pelrr(Q)/ Out#(Q) o€Pq/I(1)

Now we claim that

wo(F, @) = > > > (1) z(ka(I(R, 0, 1)/ R)).
p€lr(Q)/ Outx(Q) oc€Pq/I(1) RES(I(o,1))/I(o,1)
(7.4)

To prove the claim, let g € Irr(Q) and for R a p-subgroup of I(u), let 735' be the
subset of Pg consisting of those chains which are normalised by R, i.e. those chains o
such that R < I(o). Then

Z Z (_1)|U|z(ka(I(Rﬂ U7M)/R))

o€PQ/I(n) RES(I(a,1))/1(o,p1)

is equal to

> > (—Dz(ka(I(R 0. 1) /R)) |

RES(I(1)/1(1) 0€PE /1(Ropr)

where we use Remark 4.14 with G = I(n), X = Pg, Y = S(I(n)) and A equal to the
subset of X X Y consisting of pairs (o, R) such that R < I(u,0).

Suppose that R # 1l and let 0 = Qg :=1 < @1 < -+ < @, be an element of ’PS”.
If R is not contained in @, let ¢’ be the chain obtained from ¢ by appending @, R.
Otherwise, let j be the smallest integer such that R is contained in @);. Note that j # 0
since R > 1. If Q;_1 R = @Qj, then let ¢’ be the chain obtained from o by deleting Q;.
Otherwise, let ¢’ be obtained from o by inserting ;1 R in between Q;_1 and @;. Then
the pairing o — o’ kills

> Y. (D(ka(I(R,0,m)/R)) -

ReS(I(p)/1(1) c€PE /I(R,p)

Hence, only the terms with R = 1 survive, and the claim follows. Interchanging the order
of summation in the outer two terms of Equation (7.4) gives the desired expression for
wq(F, ). The proof for wp)(F, a) is entirely similar. O

Proposition 7.4. Let F be a saturated fusion system on a finite p-group S and let « be
an JF-compatible family. Suppose that AWC holds. Then wq(F,a) = wi(F,a) for all
F-centric subgroups @ of S.

Proof. Let Q < S be F-centric. By Equation (7.3) we may assume that 7 = Nz (Q)
and hence by [4, Proposition C] that F = Fg(G) for some finite group G with S as
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a Sylow p-subgroup and containing @ as a normal subgroup with Cg(Q) = Z(Q). By
Lemma 7.3, we have

wo(F,a) = > ety > z(ka(I(R, 0, 1)/ R))

0€Pq/ Out#(Q) peler(Q)/1(o)  ReS(I(a,p))/ (o)

and

wo(F,a) = PN C LAY > z(ka(I(R, 0, [2])/ R)).

0€Pq/ Out#(Q) [x]€eQ<!/I(o) ReS(I(o,[z]))/1(a,[x])

Let 0 € Pg. By applying Lemma 7.2 to the inverse image N¢(o) of I(o) in G, we
obtain

Z Z Z(ka(I(R’O-7M)/R)) =

pEE(Q)/1(0)  RES(I(o1))/1(o.p)

) Y (ka((Roo[a])/ R)).

[z]€Q!/I(0) ReSI(o,[z]))/1(0,[z])

The result follows. 0O
Proof of Theorem 1.2. This is immediate from Proposition 7.4. O

We present an alternate proof of Theorem 1.2 which is shorter but makes use of
the fact, due to Robinson [25], that AWC implies SOWC. Let F be a saturated fusion
system on a finite p-group S, and let « be an F-compatible family. As a consequence of
Lemma 4.13, the quantities m(F, ), m*(F, ), and m(F, v, d) remain unchanged under
restricting the sums over isomorphism classes of F-centric subgroups of S to F-centric
radical subgroups. We spell this out.

Lemma 7.5. Let @ be an F-centric subgroup of S and let d be a non-negative integer.
Suppose that Q is not F-radical. Then

wo(F, o) = W*Q(}",a) =wo(F,a,d)=0.
Proof. Using Remark 4.14, we have

wo(F, o) = > o (=P 2(kal(o, 1))

0€NG/ Outx(Q) HELE(Q)/1(o)

The quantity in the second sum depends only on I(c). Since @ is not radical, we have
0,(Outx(Q)) # 1. Thus Lemma 4.13, applied to the group G = Outz(Q) and the
function f on subgroups of G defined by
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Z 2(kol(o,p)) if H=1(0o) for some o € Ny
f(H) := { netr(Q)/1(o)
0 otherwise

implies that wo(F, ) = 0. Similar arguments show that w§(F,a) = wo(F,a,d) =
0. O

Note that by Lemma 7.5, we have

m(F,0)= Y wo(F,a) and m*(Fa)= >  wh(F,a) (7.5)
QeFer|F QeFer|F

Lemma 7.6. Suppose that m*(G, 3) = m(G, 8) for all pairs (G, 8), where G is a saturated
constrained fusion system and 8 is a G-compatible family. Then m(F, ) = m*(F, «).

Proof. We prove that wqo(F,a) = w(F,a) for each fully F-normalized, F-centric,
F-radical subgroup @ < S. Since F is saturated, there is a fully F-normalized subgroup
in each F-conjugacy class, and so the result will then follow from (7.5).

Suppose the above assertion is false, so that wq (F, a) # wp)(F, @) for some Q. Among
all such counterexamples F and @, choose one such that |F|+ ]S : Q| is minimal, where
|F| denotes the number of morphisms in F. Note that Outy, (0)(Q) = Outz(Q), and
Q is also fully Nx(Q)-normalized, Nx(Q)-radical, and Nx(Q)-centric. Since the sums
wq(F,a) and wi)(F,a) depend only on @ and Outz(Q) and not on F, it follows by
minimality that F = Nz(Q).

We have shown that F is constrained with normal centric subgroup . In particu-
lar, m(F, o) = m*(F,«) by assumption, and @ is contained in every F-centric radical
subgroup (see e.g. [20, Lemma 2.4]). From (7.5), m(F, «) is the sum of wg(F, ) and
wgr(F,a) as R ranges over the fully F-normalized, F-centric radical subgroups with
R > Q. The same holds for w;,(F, a). By induction wr(F, a) = wi(F, @) for each such
R > Q (since Nx(R) € F). It follows that wo(F,a) = w§(F, ) after all, a contradic-
tion. O

It thus suffices by Lemma 7.6 to prove m(F,«) = m*(F, «) in the case where F is
constrained.

Proposition 7.7. Suppose AWC holds for all blocks of all finite groups. If F is constrained,
then k(F,a) = m(F,a).

Proof. Assume that F is constrained. By Proposition 4.8, we may fix a model G for F,
a p’-central extension G of G, and a block b of kG such that (F, ) is realized by kGb.
By Proposition 4.5, since AWC holds for all blocks, we have

k(F,a) =k(B).
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On the other hand, again since AWC holds for all blocks, the results of [25], [26] show
that m(F,a) =k(B). O

Proof of Theorem 1.2. Assume AWC holds for all blocks of finite groups. By Theo-
rem 1.1, we have k(F,a) = m*(F,«a). Hence, m(F, @) = m*(F,«) whenever F is
constrained by Proposition 7.7 and assumption. Therefore, m(F,«a) = m*(F,«a) by
Lemma 7.6. O

Appendix A. On Lemma 7.1

By Proposition 4.9, Lemma 7.1 is equivalent to the following.

Lemma A.1. Let G be a finite group, Q a normal p-subgroup of G, Z a central p’-subgroup
of G and e a central idempotent of kZ. Then

Y. UkCo(z)e) = Y UkCo(pe). (A.1)

[e]eQ /G neln(Q)/G

The rest of the section is devoted to a proof of Lemma A.1. The basic idea is that,
when e = 1z, then both sides count the number of p-sections in G of elements of @, or
the dimension of the space of ordinary class functions of G vanishing outside p-sections
of elements of Q.

Notation. Let (K, O, k) be a p-modular system which we assume is big enough for the fi-
nite groups considered in this section. Denote by C(G) the K-vector space of all K-valued
class functions on G and by Irr(G) C C(G) the set of ordinary irreducible characters of
G viewed as K-valued functions.

For X C @G, denote by d¥ : C(G) — C(G), the K-linear map defined by ¢ —
dX(¢),¢ € C(G) where d*(p)(g) = 0 if g, is not conjugate to an element of X and
dX (p)(g9) = ¢(g) otherwise. Thus, d* (C(G)) is the subspace of all class functions which
vanish outside the p-sections of elements of X, that is those class functions ¢ such that
¢(x) = 0 unless z,, is conjugate to an element of X.

If X = {x} we write d® for d*. For general X and z € X, d®(C(G)) is a subspace
of dX(C(G)) and d* (C(G)) = @, d*(C(G)), where x runs over a set of conjugacy class
representatives of p-elements in X. Note that if X is a normal p-subgroup of G, then
dXC(G) consists of precisely those functions which take the value zero on elements g
such that g, ¢ Q.

For a central idempotent f of KG denote by Irr(G, f) the subset of ordinary irreducible
characters of G corresponding to simple KGf modules and by C(G, f) the subspace of
C(QG) consisting of those class functions which are in the K-span of Irr(G, f). Recall
that the canonical surjection OG — kG induces a bijection between the set of central
idempotents of OG and of kG. By abuse of notation, if e is a central idempotent of kG
corresponding to the central idempotent € of OG we write Irr(G,e) for Irr(G,e) and
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C(G,e) for C(G,e). Thus, if e is a block of kG, then Irr(G,e) is the subset of ordinary
irreducible characters of G belonging to €. For N a normal subgroup of G and p € Irr(N),
let C(G, 1) denote the subspace of C(G) consisting of those class functions which are in
the K-span of irreducible characters of G which cover p and for f a central idempotent
of KG (or kG) denote by C(G, p, f) the intersection of C(G, 1) and C(G, f).

The following gives the desired interpretation of the left hand side of Lemma A.1.
When e = 1; 7, the statement is elementary. Passage to arbitrary e requires an application
of Brauer’s second main theorem which we now recall. Denote by IBr(G) the set of Brauer
characters of simple kG-modules viewed as K-valued class functions on G/, the set of
p-regular elements of G. For x € G a p-element, x € Irr(G) and ¢ € IBr(Cg(z)) denote
by df , the corresponding generalised decomposition number. By Brauer’s second main
theorem, if b is the block of kG containing X, then df , is zero unless ¢ is the Brauer
character of a simple kCg(z) module lying in a block ¢ of kCg(x) which is in Brauer
correspondence with b. In other words, for all y € Cg(x), we have that

de 2Py

where ¢ runs over the set of irreducible Brauer characters of Cg(z) lying in Brauer
correspondents of b.

Lemma A.2. Let x be a p-element of G. Let Z < G be a central p’-subgroup of G and e
a central idempotent of kZ. Then,

dimg d*(C(G,e)) = L(kCq(x)e). (A.2)
If Q is a normal p-subgroup of G, then

dimg d?(C(G,e)) = > UkCg([z])e). (A.3)
z€Q /G

Proof. The space d*(C(G)) consists of the class functions on G which vanish outside
the p-section of x, hence dimg d*(C(G)) equals the number of p’-conjugacy classes of
C¢(x) and this number is in turn equal to the number of isomorphism classes of simple
kCg(x)-modules. This proves that the first equation holds when e = 1z = 1ig. For
the general case, first note that since Z is central in G, e is a central idempotent of kG
and of kCg(z) and Bry,y(e) = e, where Br(, : (kG)* — kCg(x) denotes the Brauer
homomorphism. We claim that if b is a block of kG such that be = b and c¢ is a block
of kCq(x) in Brauer correspondence with b, then ce = c¢. Indeed, by the uniqueness of
central idempotent decompositions and the primitivity of b, we have be = b. By definition
of Brauer correspondence, Br ;) (b)c = c. Hence

¢ = Br)(b)c = Br(yy(be)c = Br,(b)ec = cec = ce
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proving the claim. It follows from the claim that all simple kCq(x)c-modules are
kCq(x)e-modules. Thus by Brauer’s second main theorem (and the linearity of d%),
if 7 € (C(G,e)), then for all y € Cg(z), we have

T(zy) = Z dy o #5
©

where ¢ runs over the set of Brauer characters of simple kCg(x)e = modules. Since
d*r is determined by its restriction to the subset of Cg(x) consisting of elements whose
p-part is z, it follows that dimg d*(C(G,e)) < £(kCg(z)e). By the same considera-
tions, dimg d*(C(G,1 — e)) < £(kCq(z)(1 — €)). Since C(G) = C(G,e) ® C(G,1 — e),
dimg d*(C(R)) < dimg d*(C(G, e)) + dimg d*(C(G, 1 — e)). The first equation now fol-
lows from the case e = 1,7.

Let & be the image of e under the canonical surjection of kG — k(G/Q). Recall
that restriction along kG — kG/Q induces a bijection between the set of isomorphism
classes of simple kG/Q-modules and kG-modules sending simple k(G/Q)e-modules to
kGe-modules. Also, for any « € Q, e is a central idempotent of kC¢g(z) and identifying
Ca(z)/Cq(x) N Q with Cq(x)Q/Q via the isomorphism induced by inclusion of Cg(z)
in Cg(2)Q, the image of e in k(Cg(x)/Cq(x) N Q) is . Hence

((kCa([x))e) = £(kCa(x)Qe) = L(k(Cal(x)Q/Q)) = £(k(Ca(x)/Calz) N Q)

1
U(kCg(z)e).

Now the second equation follows from the first since

d?(C(G.e))= P d"(C(G,e). D

[aleQt/G

Lemma A.3. Let Z be a central p'-subgroup of G and e a central idempotent of kZ. Let
Q be a normal p-subgroup of G. Then

°CG.e)= @ @G pe) (A4)
peEIr(Q)/G

Proof. Since

pel(Q)/G

we have
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We show that the sum on the right of the second equation is direct. First note that if ¢ is
an element of C(G,Q), then d9(y) = 0 if and only if the restriction of ¢ to all subgroups
H containing @ as a Sylow p-subgroup equals zero. Now suppose that ¢, € C(G, p),
p € Irr(Q)/G are such that 3 1.0/ d?(¢,) = 0 and let H be a subgroup of G
containing ) as a Sylow p-subgroup. Then the restriction of Z“Em(Q)/G ¢, = 0. But it
is easy to see that the restriction of ¢, to H is in the K-span of irreducible characters of
H which cover G-conjugates of p. In particular the restriction of ¢, and ¢, for p/ # p
are orthogonal class functions on H. Hence the restriction of ¢, to H equals zero for all
H and all p. It follows that d?(¢,) = 0 for all y. Thus

“CG) = @ UG ). (A.5)
p€lrr(Q)/G

The assertion of the lemma now follows as C(G,e) is the direct sum @, ¢y, ()¢ C(G,
w,e). O

Given the above Lemma, it remains to analyse d?(C(G,pu,e)) for each irreducible
character p of Q. This is done via standard Clifford theoretic reductions.

Lemma A.4. Let Z be a central p'-subgroup of G and e a central idempotent of kZ.
Let Q be a normal p-subgroup of G and let p € Trr(Q). Then dimg d?(C(G, u,e)) =
dimg d?(C(Ca (i), p1, €)).

Proof. Induction from Cg(u) to G induces a bijection between Irr(Cq(p)) and Irr(G).
Since Z < Cg(u), if x € Irr(G, p, e), then Indgc(u) (x) € Irr(G, p, e). Hence induction
induces an isometric isomorphism between C(Cga(p), p,e) and C(G, i, e). Further, it is
easy to check from the induction formula that dQ(IndgG(H)(T)) = Indgc(ﬂ)(dQ(T)) for
all 7 in C(Cg(i)). The result follows. O

Lemma A.5. Let @Q be a normal p-subgroup of G and let p be a G-stable irreducible
character of Q. There exist a central extension

1Y G5 G —1,

an irreducible character i of G and a one dimensional character n of Y such that the
following holds.

(1) Y is a finite p-group, the inverse image of @ in G is a direct product of Y with a
normal subgroup Q' of G such that m maps Q' isomorphically onto Q.
(2) Identifying Q' with Q through m, there exists a bijection
Irr(G, p) — Irr(é,nfllQ), X — Xo

such that for any g € G and g € G lifting g
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x(9) = 1(9)x0(9)-

(3) Suppose that Z is a central p'-subgroup of G, and e is a central idempotent of kZ.
Let Z be the inverse image of Z in G. Then Z = Y x Z', where Z' is a central
p’-subgroup of G mapping isomorphically onto Z by w. Identifying Z' with Z the
bijection x — xo restricts to a bijection between Irr(G, u,e) and Ilfr(é’,?y_llQ7 e).

Proof. The proof combines elements of standard Clifford theory. We briefly sketch the
basic constructions. Let m be the dimension of 1 and let e,, be the central idempotent of
KQ corresponding to 1 Then S = KQe,, is a matrix algebra of dimension m?. Since u
is G-stable, the conjugation action of G on K G induces an action of G on S. The group
G is constructed as a subgroup of G x §*. Let 7 : G x 8% — G and 7’ : G x S* be the
projections onto the first and second components respectively and identify K with the
scalar matrices in S. Let G be the subgroup of G x S* consisting of all elements of the
form (z,s), z € G and s € S* such that s,as;! = zax~! for all a € S. Since the action
of each element of G on S is by an inner automorphism and K = Z(.5), the restriction
of mto G is a surjective homomorphism with kernel 1 x K *.

Choose a transversal I for () in G containing O,/ (G). In particular, I contains every
central p’-element of G. For each z € I, choose s, € S* such that (z,s,) € G and
such that the determinant det(s,) of s, equals 1. This can be achieved by replacing K
by a suitable extension containing the m-th roots of det(s;), x € G. Further, if z € I
is a central p’-element of G, we choose s, to be the identity. Extend the map z — s,
tos: G — S* by setting s, = us, if g = vz, v € Q, v € I. For all g,h € G, we
have sgshsg_hl € K* is a scalar matrix. Note that since u/?l = 1 for all y € Q, we have
that det(s,)!?l =1 for all g € G and consequently by taking determinants we see that
(sgshs;,f)m2‘Q‘ =1forall g,h € G.

Let G be the subgroup of G generated by (sg,9), g € G. The restriction 7 : G- a
of pi to § is surjective. Let Y < 1 x K* be the kernel of 7. For ¢,h € G,

(9,89)(h, 5n) = (gh, sgsn) = (Lsgshsg_hl)(gh,sgh),
(g,sg)_1 = (1,595971)(9_175971) = (1,sgsg713ggfl)(g_1, Sg-1).

It follows that ¥ = <(1,898h8;]3),g, h € G). As noted above, Y has exponent dividing
m?2|@Q|. Since Y is isomorphic to a subgroup of the multiplicative group of a field, Y is
cyclic of order dividing m?|Q|. In particular, Y is a finite p-group. Let Q' = {(u,s,) : u €
Q}. Since sy,8, = uv for all u,v € Q, Q' is a subgroup of G with the required properties.
This proves (1).

Let n : Y — K* be the irreducible character of Y which sends (1, - idg) to A.
The map 7’ : G — S defines a representation of G whose restriction to Y Q equals
nu. Let @ be the corresponding character. Then i is irreducible and covers nu. Let
T= WllQl D evueQ 7~ (y)(uy)~! be the central idempotent of K'Y corresponding to
n~'1q. There is a K-algebra isomorphism
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¢: KGe, —» S ox KGt (A.6)
satisfying

p(gen) = 84 @ (g,54)T, g €G.

Let g € G and let § € G be a lift of g. Then § = y(g,sq) for some y € Y. Since
ysg = n(y)sy and y(g, s4)T =1~ (g, s4)7 it follows that s, ® (g, s4)7 = m2(9) @ g7. Now
(2) follows since Irr(G, n~'1¢g) coincides with the set of irreducible K Gt characters.

Let Z be a central p’-subgroup of G. By our choices above, s, is the identity matrix
for all z € Z. Hence Z' := {(z,1) : z € Z} is a central subgroup of G and the inverse
image Z of Z in G is a direct product Z=YxZ. Identifying Z’ with Z, the image of
the idempotent ee,, under the isomorphism (A.6) is idg ® er, proving (3). O

Lemma A.6. Let Z be a central p'-subgroup of G and e a central idempotent of kZ. Let
Q be a normal p-subgroup of G and let v be a G-stable irreducible character of Q). Then

dimg d2(C(G, p,e)) = L(kGe). (A7)

Proof. Let é, Y, nand p be as in Lemma A.5. The bijection xy — xo extends by linearity
to a K-linear isomorphism i : C(G, u,e) — C(G,n" 1g, e) defined by

for all p € C(G, u,e), ¥ € C(é,n’llQ,e). g € G and § € G lifting §. Now gp € Q if and
only if (9), € Y Q. It follows that

itod"Qoi=4dO,
hence
d¥Roi=1io0d?,

where by d¥? we mean the relevant map on class functions on G. In particular,
dimg d2(C(G, p,e)) = dimg d?(C(G,n " 1g,€).

Let ¢ € C(é,n_llQ,e). For any u € Q, y € Y, § € G, we have Y(yug) = n(y)v(q)
from which it follows that

dimg d¥9C(G,n g, e) = dimg d'C(G, e) = £(kGe) = ((kGe)

where the second equality holds by Lemma A.2 and the last equality holds since every
simple kGe-module has Y in its kernel. O

Proof of Lemma A.1. This follows from Lemmas A.2, A.3, A4 and A.6. O
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