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1. Introduction

Throughout this paper we fix a prime number p and an algebraically closed field k of 

characteristic p. A block B of a finite group algebra kG gives rise to three fundamental in-

variants encoding the local structure of B: a defect group S, a saturated fusion system F

on S, and a family α = (αQ)Q∈Fc of second cohomology classes αQ ∈ H2(OutF (Q), k×). 

The αQ are called the Külshammer-Puig classes of the block B. They are defined for 

each F-centric subgroup Q of S, and satisfy a certain compatibility condition (recalled 

in Section 4). The triple (S, F , α) is determined by B uniquely up to G-conjugacy. If B is 

the principal block of kG, then S is a Sylow p-subgroup, F = FS(G), and all the classes 

αQ are trivial. In what follows, we freely use standard notation on fusion systems as in 

[1]. For a finite dimensional k-algebra B, we denote by ℓ(B) the number of isomorphism 

classes of simple B-modules and by z(B) the number of isomorphism classes of simple 

and projective B-modules. If B is a block of a finite group algebra kG, then we denote 

by k(B) the number of ordinary irreducible characters of G associated with B.

The prominent counting conjectures in the block theory of finite groups express nu-

merical invariants of B in terms of (S, F , α). Alperin’s weight conjecture (henceforth 

abbreviated AWC) predicts the equality

ℓ(B) =
∑

Q∈Fc/F

z(kα OutF (Q)) ,

where Fc/F is a set of representatives of the isomorphism classes in F of F-centric sub-

groups of S, and where kα OutF (Q) is the group algebra of OutF (Q) = AutF (Q)/ Inn(Q)

twisted by αQ. The right side in this version of AWC clearly makes sense for arbitrary 

saturated fusion systems and arbitrary choices of second cohomology, classes, and this 

is the starting point of the present paper.

Let (S, F , α) be a triple consisting of a finite p-group S, a saturated fusion system F

on S, and a family α = (αQ)Q∈Fc of classes αQ ∈ H2(OutF (Q); k×), for any F-centric 

subgroup Q of S, such that the family α is F-compatible in the sense of Definition 4.1

below. If α is the family of Külshammer-Puig classes of a fusion system F of a block B

with defect group S, then α is F-compatible by Theorem [19, 8.14.5]; in that case we 

will say that the triple (S, F , α) is block realizable and that it is realized by the block B.

For any F-centric subgroup Q of S and any subgroup H of OutF (Q) or of AutF (Q), 

by kαH we will mean the twisted group algebra of H over k with respect to the restriction 

of αQ to H. Using the notation in [19, Section 8.15], the number of weights of (S, F , α)

is the positive integer w(F , α) defined by

w(F , α) :=
∑

Q∈Fc/F

z(kα OutF (Q)) ,

where the notation Q ∈ Fc/F means that Q runs over a set of representatives of the 

isomorphism classes in F of F-centric subgroups of S. Note that z(kα OutF (Q)) =
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0 unless Q is also F-radical (cf. Lemma 4.11 below), and hence we have w(F , α) =∑

Q∈Fcr/F

z(kα OutF (Q)). By Proposition 4.5 or the above remarks, if (S, F , α) is realized 

by a block B of a finite group algebra, then B satisfies AWC if and only if w(F , α) = ℓ(B).

If x is an element in S such that 〈x〉 is fully F-centralized, then CF (x) is a saturated 

fusion system on CS(x), there is a canonical functor CF(x)c → Fc, and restriction along 

this functor sends the F-compatible family α to a CF (x)-compatible family α(x); see 

Proposition 4.5 below. Denote by [S/F ] a set of F-conjugacy class representatives of 

elements of S such that 〈x〉 fully F-centralized. We set

k(F , α) :=
∑

x∈[S/F ]

w(CF (x), α(x)) .

By Proposition 4.5, if (S, F , α) is realized by a block B of a finite group algebra such 

that B and the B-Brauer pairs satisfy AWC, then k(F , α) = k(B).

For any F-centric subgroup Q of S we define the set NQ to be the set of non-empty 

normal chains σ of p-subgroups of OutF (Q) starting at the trivial subgroup; that is, 

chains of the form

σ = (1 = X0 < X1 < · · · < Xm)

with the property that Xi is normal in Xm for 0 � i � m. We set |σ| = m, and call m

the length of σ. We define the following two sets:

WQ = NQ × Irr(Q) ,

W∗
Q = NQ × Qcl ,

where Irr(Q) is the set of ordinary irreducible characters of Q and where Qcl is the set 

of conjugacy classes of Q. There are obvious actions of the group OutF (Q) on the sets 

NQ, Irr(Q), and Qcl, hence on the sets WQ, W∗
Q. We denote by I(σ, μ) and by I(σ, [x])

the stabilisers in OutF (Q) under these actions, where (σ, μ) ∈ WQ and (σ, [x]) ∈ W∗
Q, 

with [x] the conjugacy class in Q of an element x ∈ Q. For any F-centric subgroup Q of 

S we set

wQ(F , α) =
∑

(σ,μ)∈WQ/ OutF (Q)

(−1)|σ|z(kαI(σ, μ))

w∗
Q(F , α) =

∑

(σ,[x])∈W∗
Q/ OutF (Q)

(−1)|σ|z(kαI(σ, [x])) ,

and we set

m(F , α) =
∑

Q∈Fc/F

wQ(F , α) ,
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m∗(F , α) =
∑

Q∈Fc/F

w∗
Q(F , α) .

There are refinements of the above numbers which take into account defects of ordinary 

irreducible characters and which appear in conjectures of Dade and Robinson. These will 

be considered in Section 2.

Theorem 1.1. Let F be a saturated fusion system on a finite p-group S and let α be an 

F-compatible family. Then

m
∗(F , α) = k(F , α) .

Theorem 1.1 is a cancellation theorem for arbitrary fusion systems inspired by can-

cellation theorems of Robinson such as in [25, Theorem 1.2].

Theorem 1.2. Let F be a saturated fusion system on a finite p-group S and let α be an 

F-compatible family. If AWC holds, then m(F , α) = m
∗(F , α).

Theorem 1.2 shows that AWC implies an equality (for arbitrary fusion systems) of 

two numerical invariants dual to each other in the sense that one is obtained by summing 

over conjugacy classes of p-groups and the other by summing over irreducible characters. 

Given that the numerical invariants m, m∗, k are entirely defined at the ‘local’ level 

of fusion systems and compatible families, it seems surprising that Alperin’s Weight 

Conjecture is needed to obtain the conclusion of Theorem 1.2.

Corollary 1.3. Let F be a saturated fusion system on a finite p-group S and let α be an 

F-compatible family. If AWC holds, then m(F , α) = k(F , α).

If (S, F , α) is block realizable, then Corollary 1.3 follows from work of Robinson and 

expresses the fact that a coarse version of the Ordinary Weight Conjecture is implied by 

AWC (see Theorem 2.4 below).

The paper is organised as follows. Section 2 contains a list of conjectures inspired by 

their block theoretic counter parts. In Section 3 we collect background material, Section 4

contains relevant properties of F-compatible families, Section 5 contains technicalities 

needed for the proofs of Theorems 1.1 and 1.2 in Section 6 and Section 7, respectively. 

In an Appendix, we collect some foundational material from work of Robinson.
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2. Conjectures

We formulate conjectures for fusion systems which are motivated by conjectural or 

known statements in block theory. For each of these conjectures, the link with a block 

theoretic conjecture is made either via AWC or via the Ordinary Weight Conjecture, the 

statement of which will be recalled below. Note that by work of Robinson the Ordinary 

Weight Conjecture implies the AWC.

These conjectures make precise the idea that the gap between various local-global 

block theoretic conjectures is purely local. Proving or disproving any of these is a win-win 

scenario. If one can prove one of these conjectures at the fusion system level, then one 

would get that AWC (or the ordinary weight conjecture) implies the corresponding block 

theoretic version. If on the other hand one could disprove any of these, one would either 

have found a counter example to the corresponding block theoretic conjecture, or one 

would have found a way to distinguish exotic fusion systems from block realizable fusion 

systems. Either outcome would be interesting.

We keep the notation of the previous section. Let F be a saturated fusion system 

on a finite p-group S and let α be an F-compatible family (see Definition 4.1). Recall 

from Proposition 4.5 that if (S, F , α) is realized by a block B which satisfies AWC, 

then w(F , α) = ℓ(B), and if all Brauer correspondents of B also satisfy AWC, then 

k(F , α) = k(B).

Conjecture 2.1. Let F be a saturated fusion system on a finite p-group S and let α be an 

F-compatible family. Then k(F , α) � |S|.

By the above remark, if (S, F , α) is realizable by a block B such that AWC holds 

for all B-Brauer pairs, then Conjecture 2.1 holds if and only if B satisfies Brauer’s 

k(B)-conjecture, which predicts the inequality k(B) � |S|. Also, note that by Theo-

rem 1.1, the inequality of Conjecture 2.1 is equivalent to the inequality m(F , α) � |S|. 

In view of Theorem 1.2 and Corollary 1.3 (see also Conjecture 2.3), one could consider 

versions of the inequality with k(F , α) replaced by m(F , α).

Conjecture 2.2. Let F be a saturated fusion system on a finite p-group S and let α be an 

F-compatible family. Then w(F , α) � ps, where s is the sectional rank of S.

If (S, F , α) is realizable by a block B such that AWC holds for B, then the above is 

equivalent to the statement that B satisfies the conjecture by Malle and Robinson [22]
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predicting the inequality ℓ(B) � ps. Conjecture 2.2 has been shown to hold for the exotic 

Solomon fusion systems by Lynd and Semeraro [20].

Next, we refine the integers w(F , α), m(F , α), m∗(F , α) by taking into account defects 

of characters. For Q a subgroup of S and d a non-negative integer, we set

Irrd
K(Q) := {μ ∈ Irrd

K(Q) | vp(|Q|/μ(1)) = d} ;

this is the set of ordinary irreducible characters of Q of defect d. Note that this set 

is OutF (Q)-stable. As in the previous section, we denote by NQ the set of nonempty 

normal chains of p-subgroups of OutF (Q) starting with the trivial subgroup of OutF (Q). 

Given such a chain σ and an irreducible character μ of Q, we denote by I(σ) and I(σ, μ)

the stabilisers of σ and of the pair (σ, μ) in OutF (Q).

Given a saturated fusion system F on a finite p-group S, an F-compatible family α, 

and a non-negative integer d, following [1, Part IV, Section 5.7], we set

wQ(F , α, d) :=
∑

σ∈NQ/ OutF (Q)

(−1)|σ|
∑

μ∈Irrd
K (Q)/I(σ)

z(kαI(σ, μ)),

and

m(F , α, d) :=
∑

Q∈Fc/F

wQ(F , α, d).

We clearly have

m(F , α) =
∑

d�0

m(F , α, d)

The Ordinary Weight Conjecture (henceforth abbreviated OWC), first stated in [25]

and reformulated in [26], states that if B is a block of the group algebra kG of a finite 

group G with defect group S, fusion system F and family of Külshammer–Puig classes 

α, then for each d � 0, m(F , α, d) equals the number of ordinary irreducible characters 

of defect d associated to the block B (cf. [1, IV.5.49]). As noted above, m(F , α) =∑
d�0 m(F , α, d). Thus, OWC implies the following “summed up version” (henceforth 

abbreviated SOWC): if B is a block of the group algebra kG of a finite group G with defect 

group S, fusion system F and family of Külshammer–Puig classes α, then m(F , α) =

k(B), the number of ordinary irreducible characters of G associated with B. On the other 

hand, AWC predicts that k(F , α) equals k(B). This leads to the following conjecture.

Conjecture 2.3. Let F be a saturated fusion system on a finite p-group S and let α be an 

F-compatible family. We have

k(F , α) = m(F , α).
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Now Corollary 1.3 may be restated as follows.

Theorem 2.4. Suppose that AWC holds for all blocks. Then Conjecture 2.3 holds for all 

(S, F , α), S a finite p-group, F a saturated fusion system on S and α an F-compatible 

family.

By [25], [26], AWC is equivalent to SOWC in the sense that a minimal counter-example 

to AWC is a minimal counter-example to the other. The difficult implication is that 

AWC implies SOWC. Theorem 2.4 may be viewed as an extension of Robinson’s result 

to arbitrary fusion systems.

Conjecture 2.5. Let F be a saturated fusion system on a finite p-group S and let α be an 

F-compatible family. For each positive integer d, we have m(F , α, d) ≥ 0.

Remark 2.6. With the above notation, suppose that d is the integer such that |S| = pd. 

The only chain contributing to the expression for m(F , α, d) is the chain S of length zero 

and the contribution of this chain is a strictly positive integer. This is because OutF (S)

is a p′-group.

We consider next Brauer’s height zero conjecture.

Proposition 2.7. Let F be a saturated fusion system on a finite p-group S and let α be 

an F-compatible family. Suppose that S is abelian of order pd. Then m(F , α, d′) = 0 for 

all d′ �= d.

Proof. Since S is abelian, S is the only F-centric subgroup of S, and all characters of S

are linear, hence of defect d. The result follows. ✷

Conjecture 2.8. Let F be a saturated fusion system on a finite p-group S and let α be an 

F-compatible family. Suppose that S is nonabelian of order pd. Then m(F , α, d′) �= 0 for 

some d′ �= d.

If S is non-abelian and (S, F , α) is realized by a block B satisfying OWC, then the 

above is equivalent to the statement that B satisfies Brauer’s height zero conjecture. 

Note that Navarro and Tiep [23] have proved that the height zero conjecture is a con-

sequence of the Dade projective conjecture and of the fact that the Brauer height zero 

conjecture has been checked for finite quasi-simple groups [12]. Eaton has proved in [6]

that the Dade projective conjecture is equivalent to the OWC in the sense that a mini-

mal counter-example to one is a minimal counter-example to the other. Thus the above 

conjecture for block realizable triples is a consequence of OWC.

Conjecture 2.9. Let F be a saturated fusion system on a finite p-group S and let α be an 

F-compatible family. Suppose that S is nonabelian of order pd. Let r > 0 be the smallest 
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positive integer such that S has a character of degree pr. Then r is the smallest positive 

integer such that m(F , α, d − r) �= 0.

If (S, F , α) is realized by a block B satisfying OWC, then the above is equivalent to 

the statement that B satisfies the conjecture by Eaton and Moreto in [7].

Conjecture 2.10. Let F be a saturated fusion system on a finite p-group S of order pd

and let α be an F-compatible family. Then

(1) k(F , α)/m(F , α, d) is at most the number of conjugacy classes of [S, S].

(2) k(F , α)/w(F , α) is at most the number of conjugacy classes of S.

If (S, F , α) is realized by a block B satisfying OWC, then the above is equivalent 

to the statement that B satisfies the conjecture of Malle and Navarro in [21]. Similar 

to Conjecture 2.1, one could consider versions of the above inequalities with k(F , α)

replaced by m(F , α) or m∗(F , α).

If F is p-solvable (i.e. if F is constrained with p-solvable model) then for any 

F-compatible family α, the triple (S, F , α) is realizable by a block of a p-solvable group 

(see Proposition 4.8). The OWC has been shown to hold for blocks of p-solvable groups 

by Robinson, and AWC for p-solvable groups was proved earlier by Okuyama. The k(B)

conjecture for finite p-solvable groups was proved in [9] and the height zero conjecture 

for p-solvable groups was shown to hold by Gluck and Wolf [8]. Thus Conjectures 2.1, 

2.3, 2.5, 2.8 all hold for solvable fusion systems. If moreover F = NF (S), then for any 

F-compatible family α, the triple (S, F , α) is realizable by a block of a finite group G

containing S as a normal (and Sylow) subgroup, hence Conjecture 2.10 holds by [22, 

Theorem 2] and Conjecture 2.9 holds by [7].

Let F be a saturated fusion system on a non-trivial finite p-group S and let C be the 

full subcategory of F of nontrivial subgroups of S. Following the terminology in [18], 

briefly reviewed at the end of the next section, we denote by S⊳(C) the subcategory of 

the subdivision category S(C) of chains

σ = (Q0 < Q1 < · · · < Qm)

where the Qi are nontrivial subgroups of S which are normal in the maximal term Qm. 

Such a chain σ is called fully F-normalized if Q0 is fully F-normalized, and either m = 0

or σ�1 = (Q1 < · · · < Qm) is fully NF (Q0)-normalized. Denote by S⊳(C)f the set of all 

fully F-normalized chains. For σ ∈ S⊳(C)f , we denote by NF (σ) the saturated fusion 

system on NS(σ) as in [18, 5.2, 5.3]. By Proposition 4.6 below, an F-compatible family 

α induces a canonical NF (σ)-compatible family α(σ), for each fully F-normalised chain 

σ in S⊳(C). The translation to fusion systems of the Knörr-Robinson reformulation of 

Alperin’s Weight Conjecture in [14] reads as follows.
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Conjecture 2.11. Let F be a saturated fusion system on a finite non-trivial p-group S

and let α be an F-compatible family. We have

k(F , α) =
∑

σ

(−1)|σ|
k(NF (σ), α(σ))

where in the sum σ runs over a set of representatives of the isomorphism classes of fully 

normalised normal chains of non-trivial subgroups of S.

Again, one could consider versions of the above replacing k with m or m∗. Taking into 

account defects of characters, we get the following conjecture, which is an analogue of 

Dade’s ordinary conjecture:

Conjecture 2.12. Let F be a saturated fusion system on a finite non-trivial p-group S

and let α be an F-compatible family of F . For each d ≥ 0 we have

m(F , α, d) =
∑

σ

(−1)|σ|
m(NF (σ), α(σ), d) ,

where in the sum σ runs over a set of representatives of the isomorphism classes of fully 

normalised normal chains of non-trivial subgroups of S.

Example 2.13. Let p be an odd prime and let S ∼= p1+2
+ be an extraspecial group of order 

p3 and exponent p. Using the classification of saturated fusion systems on S by Ruiz and 

Viruel [28] (which for p = 7 includes three exotic fusion systems), one can show that 

for any nonconstrained fusion system on S every compatible family α is trivial. Using 

computations in Magma [2] one can show that for any nonconstrained saturated fusion 

system F on S the Conjectures 2.1, 2.2, 2.3, 2.5, 2.8, 2.9 and 2.10 all hold for F . The 

details for the calculations can be found in Section 8 of [13].

3. Background material

Lemma 3.1 (Thompson’s A × B Lemma). Let S be a finite p-group and A × B ≤ Aut(S)

be such that A is a p′-group and B is a p-group. If A centralizes CS(B), then A = 1.

Proof. See [10, Theorem 5.3.4]. ✷

We will use standard terminology on saturated fusion systems, as can be found in 

many sources, including [5], [1]), for instance. We assume familiarity with the notions of 

centralizers and normalizers in fusion systems.

Lemma 3.2. Let F be a saturated fusion system on a finite p-group S. Fix Q ≤ S and 

K ≤ Aut(Q). Assume that Q is fully K-normalized. Then PQ is F-centric for each 

NK
F (Q)-centric subgroup P ≤ NK

S (Q).
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Proof. The argument given in the proof of [3, Lemma 6.2] generalizes: Let P ≤

NK
S (Q) be an NK

F (Q)-centric subgroup and let ϕ ∈ HomF (PQ, S). Then ϕ(PQ) �

NϕKϕ−1

S (ϕ(Q))ϕ(Q). Since Q is fully K-normalized in F , there is a morphism

ψ ∈ HomF (NϕKϕ−1

S (ϕ(Q))ϕ(Q), S)

such that ψϕ(Q) = Q and (ψϕ)|Q ∈ K by [1, Proposition I.5.2(c)]. This means that ψϕ

is a morphism in HomNK
F

(Q)(PQ, S). Since CS(ϕ(PQ)) ≤ NϕKϕ−1

S (ϕ(Q)),

ψ(CS(ϕ(PQ))) ≤ CS(ψϕ(PQ)) ≤ CS(ψϕ(P )) ∩ NK
S (Q) ≤ ψϕ(P ),

where the middle inequality holds because ψϕKϕ−1ψ−1 = K, and where the last in-

equality holds since P is NK
F (Q)-centric. Hence, CS(ϕ(PQ)) ≤ ϕ(P ) � ϕ(PQ). Since ϕ

was chosen arbitrarily, this shows that PQ is F-centric. ✷

Lemma 3.3. Let x ∈ S be such that 〈x〉 is fully F-centralized, and fix Q ≤ CS(x). Then 

Q is CF (x)-centric if and only if Q is F-centric. Moreover, OutCF (x)(Q) = COutF (Q)(x)

under either of these assumptions.

Proof. Suppose first that Q is F-centric and let P be CF (x)-conjugate to Q. Then 

CCS(x)(P ) ≤ CS(P ) ≤ P and hence Q is CF (x)-centric. Conversely if Q is CF (x)-centric, 

then x ∈ Z(CS(x)) ≤ CCS(x)(Q) ≤ Q so Q = Q〈x〉 is F-centric by Lemma 3.2 applied in 

the case K = 1. Since OutF (Q) acts by conjugation on Z(Q), COutF (Q)(x) is well-defined. 

Now AutCF (x)(Q) = CAutF (Q)(x) is exactly the set of F-automorphisms of Q which fix 

x, and this group contains Inn(Q) by assumption. The lemma follows. ✷

Given an isomorphism ϕ in F from Q to Q′, the conjugation map cϕ : AutF (Q) →

AutF (Q′) given by η → ϕηϕ−1 is an isomorphism which maps Inn(Q) onto Inn(Q′). 

Thus, conjugation induces a well-defined isomorphism OutF (Q) → OutF (Q′), which 

we denote by cϕ. The following direct application of the extension axiom is needed in 

Section 5.

Lemma 3.4. Let Q and Q′ be F-centric subgroups of S, and let R be a subgroup of S

containing Q as a normal subgroup. Let ϕ : Q → Q′ be an isomorphism in F . Assume that 

cϕ(AutR(Q)) � AutS(Q′), or, equivalently, that cϕ(OutR(Q)) � OutS(Q′). Let R′ � S

be the inverse image of cϕ(AutR(Q)) under the canonical homomorphism NS(Q′) →

AutS(Q′). Then there exists a morphism R → S in F extending ϕ. Moreover, τ(R) = R′

for any such extension τ .

Proof. Since AutS(Q′) is the full inverse image of OutS(Q′) under the canonical surjec-

tion AutF (Q′) → OutF (Q′), the two conditions on the image of R are indeed equivalent. 

Hence, R � Nϕ in the notation of [1, Definition 2.2]. Since each F-centric subgroup is 

fully F-centralised, the extension axiom of saturation yields the first assertion.
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If τ and τ ′ are two F-morphisms extending ϕ, then one may find z ∈ Z(Q) such that 

τ ′ = τ ◦ cz by [3, Lemma A.8]. Since z ∈ Q � R, this shows the second assertion. ✷

Let C be a full subcategory of F which is closed under isomorphisms and taking super-

groups. Following the notation in [19, Section 8.13], we denote by S(C) the subdivision 

category of C. The objects of C can be regarded as non-empty chains of non-isomorphisms

Q0 → Q1 → · · · → Qm

in F with Qi belonging to C. Any homomorphism in S(C) is a composition of a chain 

preserving isomorphism in F and an inclusion of a chain as a subchain of another chain. 

There is a canonical functor S(C) → C mapping a chain to its maximal term.

By [19, Proposition 8.13.3], any chain in S(C) is isomorphic, in S(C), to a chain of 

proper inclusions

Q0 < Q1 < · · · < Qm

of subgroups Qi of S belonging to C. In other words, the category S(C) is equivalent to 

its full subcategory, denoted S<(C) consisting of non-empty chains of proper inclusions 

of subgroups of S in C. A chain σ above is said to have length m, and we write |σ| = m. 

When convenient, we occasionally write Qσ and Qσ for the smallest and largest subgroups 

in σ, respectively.

A morphism between chains Q0 < · · · < Qm and R0 < · · · < Rn is a pair consisting of 

an injective map β : {0, . . . , m} → {0, . . . , n} together with a collection of isomorphisms 

Qi → Rβ(i) in F for each i ∈ {0, . . . , m} which satisfy the obvious compatibility condi-

tions. Thus, the set of isomorphisms between chains σ, τ in S<(C) can be identified with 

the set of chain-preserving isomorphisms ϕ : Qσ → Qτ in F . Whenever σ ∈ S<(C), let 

AutF (σ) be the subgroup of AutF (Qσ) consisting of those automorphisms which pre-

serve each member of the chain. In other words, AutF (σ) is the automorphism group of 

σ in S<(C).

We denote by S⊳(C) the full subcategory of S<(C) of all chains

Q0 < Q1 < · · · < Qm

in S<(C) satisfying the additional property that the Qi are normal in the maximal term 

Qm, for 0 � i � m.

We denote the set of isomorphism classes of chains in S(C) by [S(C)]. Since C, and 

hence S(C), is an EI-category, the set [S(C)] has a canonical partial order given by 

[σ] � [τ ], whenever [σ], [τ ] are the isomorphism classes of chains σ, τ in S(C) such that 

HomS(C)(σ, τ) is non-empty.

If F = FS(G) for some finite group G having S as a Sylow p-subgroup, then [S<(C)]

is isomorphic to the poset of G-conjugacy classes of chains of subgroups in C. For a more 
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general statement regarding G-conjugacy classes of chains of Brauer pairs of a block, see 

[16, Proposition 4.6].

4. Compatible families of second cohomology classes

We describe properties of Külshammer-Puig classes of blocks which are needed to en-

sure that the conjectures stated for saturated fusion systems do indeed specialize to the 

block theoretic versions from which they are inspired in case the triple (S, F , α) under 

consideration is realized by a block. We briefly review the construction of Külshammer-

Puig classes (see e.g. [19, Theorem 5.3.12, Corollary 8.12.9, Section 8.14] for more details 

and proofs).

Let M be a finite-dimensional simple k-algebra; that is, M is isomorphic to a matrix 

algebra over k. Let G be a finite group acting on M by algebra automorphisms. By the 

Skolem-Noether Theorem, every automorphism of M is inner, and hence for any g ∈ G

there is an element sg ∈ M× such that the action of g is equal to the conjugation action 

of sg on M . Since Z(M) ∼= k, the elements sg are only unique up to scalars in k×. Thus 

for g, h ∈ G we have sgsh = α(g, h)sgh for some α(g, h) ∈ k×. The map α : G × G → k×

is then a 2-cocycle whose class in H2(G, k×) is independent of the choices of the sg. We 

call this class the class determined by the action of G on M . If G acts trivially on M , 

then α is the trivial class.

Suppose now that G has a normal subgroup N such that the action of N on the simple 

algebra M lifts to a G-stable group homomorphism τ : N → M×. Let [G/N ] be a set of 

representatives of G/N in G. For each g ∈ [G/N ] choose some sg as above, and for each 

h ∈ N set sgh = sgτ(h). One checks that the 2-cocycle α determined by this choice has 

the property that its values α(g, h) depend only on the images of g, h in G/N , for all 

g, h ∈ G, and hence α induces a 2-cocycle β on G/N whose class in H2(G/N, k×) does 

not depend on the choices of the sg (but the class of β does depend on the choice of τ

lifting the action of N on M). We call this class the class determined by the action of G

on M together with the group homomorphism τ . Even if G acts trivially on M this does 

not necessarily imply that β is trivial (this depends on whether τ is trivial).

This scenario arises if M is a simple algebra quotient of kN by a G-stable maximal 

ideal in kN . Here the action of G is the conjugation action and the map τ is induced 

by the canonical algebra surjection kN → M . Any such scenario determines a class β in 

H2(G/N, k×) whose restriction to G along the canonical surjection G → G/N is equal to 

the class α determined by the action of G on M . For technical Clifford theoretic reasons 

it is usually more convenient to consider the inverse class.

The Külshammer–Puig classes arise in turn as special cases of this construction. Let 

B be a block of kG with maximal B-Brauer pair (S, e) and associated fusion system F

on S. Let Q be an F-centric subgroup of S. That is, if f is the unique block of kCG(Q)

satisfying (Q, f) � (S, e), then Z(Q) is a defect group of f (which is clearly central), 

and hence kCG(Q)f is a nilpotent block with a unique simple algebra quotient MQ. 

The uniqueness ensures that MQ is NG(Q, f)-stable. By standard facts, MQ is also the 
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unique simple algebra quotient of kQCG(Q)f . Note that QCG(Q) is a normal subgroup 

of NG(Q, f), and that NG(Q, f)/QCG(Q) ∼= OutF (Q). Thus the previous scenario with 

NG(Q, f) and QCG(Q) instead of G and N , respectively, yields a canonical class in 

H2(OutF (Q), k×). The inverse of this class is the Külshammer–Puig class αQ. Using 

NG(Q, f) and CG(Q) would yield the corresponding class, abusively again denoted αQ, 

in H2(AutF (Q), k×).

Let F be a saturated fusion system on a finite p-group S. We denote by Fc the full 

subcategory of F-centric subgroups of S. For any Q ∈ Fc, we may (and will) identify 

without further comment the group H2(OutF (Q), k×) with H2(AutF (Q), k×) via the 

isomorphism induced by the canonical surjection AutF (Q) → OutF (Q). The assignment 

Q �→ H2(OutF (Q), k×) is not functorial on Fc. In order to interpret certain families 

of classes in 
∏

Q∈Fc H2(OutF (Q), k×) as a limit of a functor, we need to pass to the 

subdivision category S(Fc) of Fc. By [17, Theorem 1.1], there is a canonical functor A2
F

from [S(Fc)] to the category of abelian groups which sends an object τ of [S(Fc)] to 

H2(AutS(Fc)(σ), k×) for some σ ∈ S(Fc) such that τ = [σ]. The choice of representative 

σ determines this functor up to unique isomorphism. Let α = (αQ)Q∈Fc be a family of 

classes αQ ∈ H2(OutF (Q), k×). For each τ ∈ [S(Fc)], define the element ατ ∈ A2
F (τ) to 

be the restriction of αQm
to the subgroup AutS(Fc)(σ) of AutF (Qm) where

σ = (Q0 → Q1 → · · · → Qm)

is the representative of τ in S[Fc] as above.

Definition 4.1. Let F be a saturated fusion system on a finite p-group S. An F-compatible 

family is a family α = (αQ)Q∈Fc of classes αQ ∈ H2(OutF (Q), k×) such that the cor-

responding family (ατ )τ∈[S(Fc)] as above belongs to lim
[S(Fc)]

A2
F . In that case, we write 

α ∈ lim
[S(Fc)]

A2
F for short.

The set of F-compatible classes forms a subgroup of the abelian group∏
Q∈Fc H2(OutF (Q), k×).

By [19, Theorem 8.14.5], the family α of Külshammer-Puig classes of a block B of some 

finite group algebra kG with defect group S and fusion system F is F-compatible. By [18, 

Theorem 4.7] the inclusions of categories S⊳(Fc) ⊆ S<(C) ⊆ S(C) induce isomorphisms

lim
[S(Fc)]

A2
F

∼= lim
[S<(Fc)]

A2
F

∼= lim
[S⊳(Fc)]

A2
F

Thus to check F-compatibility it suffices to consider normal chains. In fact, it suffices to 

consider normal chains of length at most 1.

Lemma 4.2 ([19, Theorem 8.14.5] and its proof). Let F be a saturated fusion system on a 

finite p-group S, and let α = (αQ)Q∈Fc with αQ ∈ H2(OutF (Q); k×) for any F-centric 

subgroup Q of S. The following are equivalent.
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(1) The family α is F-compatible.

(2) For any proper normal F-centric subgroup Q of an F-centric subgroup R of S, the 

images of αQ and αR in H2(AutS(Fc)(Q ⊳ R), k×) under the maps induced by the 

canonical group homomorphisms

AutS(Fc)(Q ⊳ R) → AutF (Q)

AutS(Fc)(Q ⊳ R) → AutF (R)

are equal.

We need to follow compatible families through passages to centralizers of elements 

and normalizers of chains of p-subgroups.

Lemma 4.3. [19, Proposition 8.3.7] Let F be a saturated fusion system on a finite p-group 

S, and let Q be a fully F-centralized subgroup of S. If R is a CF (Q)-centric subgroup of 

CS(Q), then QR is an F-centric subgroup of S. The correspondence R �→ QR extends 

to a unique functor

CF (Q)c → Fc

which sends a morphism ϕ : R → R′ in CF (Q)c to the unique morphism ψ : QR → QR′

in Fc which is the identity on Q and coincides with ϕ on R.

This functor extends obviously to a functor between subdivision categories, and hence 

this functor sends an F-compatible family α to a CF (Q)-compatible family α(Q). In 

order to ensure that the conjectures involving this functor specialize to known facts or 

conjectures, we need to check that if α is realized by a block B of kG, then α(Q) is 

realized by the corresponding block of kCG(Q).

Proposition 4.4. Let G be a finite group, B a block of kG, and (S, e) a maximal 

B-Brauer pair. Let F be the fusion system of B on S determined by the choice of e, 

and let α = (αQ)Q∈Fc be the family of Külshammer–Puig classes of B. Denote by eQ

the unique block of kCG(Q) such that (Q, eQ) � (S, e) and by f the unique block of 

CCG(Q)(CS(Q)) = CG(QCS(Q)) satisfying (CS(Q), f) � (S, e). Then (CS(Q), f) is a 

maximal (CG(Q), e)-Brauer pair which determines the fusion system CF(Q) on CS(Q). 

The restriction of α to a family α(Q) along the canonical functor CF (Q)c → Fc is the 

family of Külshammer–Puig classes of the block kCG(Q)eQ with respect to the maximal 

(CG(Q), eQ)-Brauer pair (CS(Q), f).

Proof. The fact that (CS(Q), f) is a maximal (CG(Q), e)-Brauer pair which determines 

the fusion system CF (Q) on CS(Q) is well-known, and proved, for instance, in [19, Propo-

sition 8.5.4]. For the statement on Külshammer–Puig classes, we need the construction
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of these classes as reviewed at the beginning of this Section. Let R be a CF (Q)-centric 

subgroup of CS(Q). By 4.3, QR is F-centric. Note that CCG(Q)(R) = CG(QR). Thus if 

g is the unique block of kCG(QR) such that (QR, g) � (S, e), then g is also the unique 

block of kCCG(Q)(R) such that (R, g) � (CS(Q), f). These blocks have therefore the 

same unique simple quotient (as they are nilpotent blocks), and clearly NCG(Q)(R, f) is 

a subgroup of NG(QR, f). Since the Külshammer–Puig classes of R and QR for CF (Q)F

are determined by the respective actions of the groups NCG(Q)(R, f) and NG(QR, f) on 

that simple quotient, it follows that the class of R in CF (Q) is indeed obtained from 

restricting the class of QR in F along the canonical map AutCF (Q)(R) → AutF (QR). ✷

We apply this for cyclic Q. Let x be an element in S such that 〈x〉 is fully F-centralized. 

For α an F-compatible family, we denote by α(x) the corresponding CF (x)-compatible 

family, obtained from restricting α along the canonical functor

CF (x)c → Fc

from Proposition 4.3 applied with Q = 〈x〉. By Proposition 4.4, if α is a family of 

Külshammer–Puig classes of a block, then α(x) is a family of Külshammer–Puig classes 

of the relevant Brauer correspondent of the block.

Proposition 4.5. Suppose that (S, F , α) is realizable by a block B of a finite group algebra 

kG. Then w(F , α) is the number of weights associated with B. In particular, AWC holds 

for B if and only if w(F , α) = ℓ(B). Moreover, if AWC holds for B and all its Brauer 

pairs, then k(F , α) = k(B), the number of ordinary irreducible characters associated with 

B.

Proof. For the first assertion see for instance [11, Proposition 5.4]. The fusion system F

is determined by a choice of a block e of kCG(S) such that (S, e) is a maximal B-Brauer 

pair (see e.g. [11, Definition 3.8]). Let x ∈ S such that 〈x〉 is fully F-centralized. Let f be 

the block of kCG(x) such that (〈x〉, f) is the unique B-Brauer pair contained in (S, e). 

By Proposition 4.4, the triple (CS(x), CF (x), α(x)) is realized by the block f of kCG(x), 

and hence it follows that w(CF (x), α(x)) = ℓ(kCG(x)f) thanks to the assumption that 

B-Brauer pairs satisfy AWC. A theorem of Brauer (cf. [19, Theorem 6.13.12]) now implies 

the second assertion (see also [1, IV. 5.7]). ✷

For F a saturated fusion system on a finite p-group S, denote by F the associated 

orbit category, obtained from F by taking as morphisms the orbits Inn(R)\ HomF (Q, R)

of morphisms in F from Q to R modulo inner automorphisms of R, for any two subgroups 

Q, R of S. In particular, OutF (Q) ∼= AutF (Q). Recall from [18, Definition 5.1] that a 

normal chain

σ = (Q0 < Q1 < · · · < Qm) ∈ S⊳(F)
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is called fully F-normalized if Q0 is fully F-normalized and if either m = 0 or the chain

σ�1 = (Q1 < · · · < Qm)

is fully NF (Q0)-normalized. Every chain in S⊳(F) is isomorphic to a fully F-normalized 

chain. Note that since σ is a normal chain, we have QmCS(Qm) � NS(σ). We need an 

analogue of Proposition 4.4 for NF (σ).

Proposition 4.6. Let F be a saturated fusion system on a finite p-group S and let α be 

an F-compatible family. Let σ = (Q0 < Q1 < · · · < Qm) ∈ S⊳(F) be fully F-normalized.

(1) For every P ≤ NS(σ), if P is NF (σ)-centric, then QmP is F-centric.

(2) Let P , R be NF (σ)-centric subgroups of NS(σ), let ϕ : P → R a morphism in 

NF (σ), and let ψ, ψ′ : QmP → QmR be morphisms in F extending ϕ and satisfying 

ψ(Qi) = Qi = ψ′(Qi) for 0 � i � m. Then the classes of ψ and ψ′ are conjugate by 

an element in Z(P ). In particular, the correspondence sending ϕ to any choice of ψ

induces a functor

Ψ : NF (σ)c → F
c
.

(3) For any NF (σ)-centric subgroup P of NS(σ), the functor Ψ induces a group homo-

morphism

OutNF (σ)(P ) → OutF (QmP ) ,

and the restriction along these group homomorphisms induces a map from the group 

of F-compatible families to the group of NF(σ)-compatible families.

(4) If (S, F , α) is realized by a block B with respect to a maximal B-Brauer pair 

(S, e), then (NS(σ), NF (σ), α(σ)) is realized by the block em of kNG(σ, em) such 

that (Qm, em) � (S, e), with respect to the maximal (NG(σ, em), em)-Brauer pair 

(NS(σ), f), where f is the unique block of CNG(σ)(NS(σ)) = CG(NS(σ)) satisfying 

(NS(σ), f) � (S, e).

Proof. In order to prove the first statement, we argue by induction over the length m

of the chain σ = Q0 < Q1 < · · · < Qm. Suppose that m = 0, so σ = Q0, and Q0

is fully F-normalised. Let P be an NF (Q0)-centric subgroup of NS(Q0). Then Q0P is 

F-centric by Lemma 3.2. Suppose now that m > 0. Let P � NS(σ) be NF (σ)-centric. Set 

σ′ = Q0 < Q1 < · · · < Qm−1 and F ′ = NF (σ′). By [18, 5.4], σ′ is a fully F-normalized 

chain, and Qm is fully F ′-normalized. By the statement for m = 0 applied to F ′, it 

follows that QmP is F ′-centric. By induction, QmP is F-centric.

For the second statement, note that the two extensions ψ, ψ′ of ϕ are both again mor-

phisms in NF (σ), and their restrictions to the NF(σ)-centric subgroup P coincide. Thus, 

by a standard fact (see e.g. [3, Lemma A.8]) they differ by conjugation with an element 
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in Z(P ). That means that the image of ψ in the orbit category F is uniquely determined 

by ϕ, whence the second statement. The third statement is a formal consequence of the 

second.

For the proof of the fourth statement, note first that this makes sense: we have 

CG(Qm) � NG(σ, em) � NG(Qm, em), and AutS(F)(σ) ∼= NG(σ, em)/CG(Qm). In par-

ticular, by standard block theory, em remains a block of kNG(σ, em). An integrated

application of [19, Proposition 8.5.4] shows that NF (σ) is the fusion system of this block 

with respect to the maximal Brauer pair as stated. The same argument as at the end of 

the proof of Proposition 4.4 shows that restricting α yields the family of Külshammer–

Puig classes of em as a block of kNG(σ, em). ✷

Recall that a saturated fusion system F on a finite p-group S is constrained if 

F = NF (Q) for some normal F-centric subgroup Q of S. In that case, by [4, Propo-

sition C] (see [1, Theorem 4.9]), F is the fusion system of a finite group L with S as 

Sylow p-subgroup, such that Q is normal in L satisfying CL(Q) = Z(Q); that is, L

is p-constrained. In particular, we have canonical isomorphisms L/Q ∼= OutF (Q) and 

L/Z(Q) ∼= AutF (Q). The group L is called a model for F .

Proposition 4.7 ([17, Section 6]). Let F be a saturated fusion system on a finite p-group 

S such that F = NF (Q) for some normal F-centric subgroup Q of S. Let L be a finite 

group such that S is a Sylow p-subgroup of L, such that Q is normal in L satisfying 

CL(Q) = Z(Q), and such that F = FS(L). The restriction from Fc to AutF (Q) and the 

canonical map L → AutF (Q) induce isomorphisms

H2(Fc, k×) ∼= H2(AutF (Q), k×) ∼= H2(L, k×).

In particular, any F-compatible family α is uniquely determined by the component αQ.

Proposition 4.8 (cf. [1, Proposition IV.5.34], [15, 5.3]). Let F be a saturated fusion 

system on a finite p-group S such that F = NF (Q) for some normal F-centric subgroup 

Q of S. Let α be an F-compatible family. Let L be a finite group such that S is a Sylow 

p-subgroup of L, such that Q is normal in L satisfying CL(Q) = Z(Q), and such that 

F = FS(L). Choose a finite cyclic subgroup Y of k× containing all values of a 2-cocycle 

representing the class αQ. Then (S, F , α) is realized by a block of the central extension 

L̂ of L by Y determined by αQ, regarded as a class in H2(L, Y ).

In particular α = 0 if and only if b is the principal block of kL̂ (which is isomorphic to 

the principal block of kL). More generally, the blocks arising in the previous Proposition 

are twisted group algebras of L; we lay out the connection between p′-central extensions 

and twisted group algebras in the next result

Proposition 4.9. Let G be a finite group, and α ∈ H2(G, k×).
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(1) There exists a central extension

1 → Z → G̃ → G → 1

where Z is a cyclic group of order prime to p and a primitive idempotent e of kZ

such for any subgroup L of G, we have an isomorphism kαL ∼= kL̃e, where L̃ is the 

inverse image of L in G̃. In particular ℓ(kαL) = ℓ(kL̃e) and z(kαL) = z(kL̃e).

(2) Suppose that there exists a normal p-subgroup Q of G such that CG(Q) = Z(Q). 

Identify α with the corresponding element of H2(G/Q, k×). Let L be a subgroup of 

G containing Q, S a Sylow p-subgroup of L, and Ŝ the Sylow p-subgroup of the 

inverse image of S in L̃. Denote also by α the FS(L)-compatible family determined 

by the restriction of α to L as in Proposition 4.7. Then, kL̃e is a block of kL̃ realizing 

(S, FS(L), α) through the canonical isomorphism Ŝ ∼= S. Moreover, AWC holds for 

kL̃e if and only if

ℓ(kαL) =
∑

R

z(kαNL/Q(R)/R)

where R runs over a set of representatives of the L/Q-classes of p-subgroups of L/Q.

Proof. Since k is algebraically closed it is well-known that H2(G, k×) is finite, and hence 

α can be represented by a 2-cocycle, abusively still denoted by α, with values in a finite 

subgroup Z of k×. Then Z is cyclic of order prime to p, since k is a field of characteristic 

p. Represent α by a central extension

1 → Z → G̃ → G → 1

and denote, for any x ∈ G, by x̃ an inverse image of x in G̃ satisfying x̃ỹ = α(x, y)x̃y for 

all x, y ∈ G. We regard the elements of Z as elements in the centre of G̃ and not as scalars; 

if we do want to consider the elements of Z as scalars, we denote this via the inclusion 

map ι : Z → k×. Set e = 1
|Z|

∑
z∈Z ι(z−1)z. This is a primitive idempotent in kZ, 

and kZe is 1-dimensional. An easy verification shows that the map sending x̃e ∈ kG̃e

to x induces an algebra isomorphism kG̃e ∼= kαG. This isomorphism restricts to an 

isomorphism kL̃e ∼= kαL, for any subgroup L of G. Statement (1) follows.

Let Q̂ be the Sylow p-subgroup of the inverse image Q̃ of Q in L̃. Then Q̃ = Z×Q̂, and 

hence Q̂ is normal in L̃. Thus all block idempotents of kL̃ lie in kCL̃(Q̂) = k(Z(Q̂) × Z). 

In other words, the block idempotents of kL̃ are precisely the primitive idempotents of 

kZ. In particular, kL̃e is a block of kL̃. One easily checks that this block has defect 

group Ŝ, which is isomorphic to S, and through this isomorphism, F = FS(L) is the 

(in this situation unique) fusion system on S of the block e of L̃. We need to show 

that α is the family of Külshammer–Puig classes of this block. By Proposition 4.7, it 

suffices to show this for the class αQ̂. We write again α instead of αQ, and consider α

as a class of H2(L, k×) whenever appropriate. Note that e remains the unique block of 
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CL̃(Q̂) = Z(Q) × Z such that (Q̂, e) is a (L̃, e)-Brauer pair. So the construction of the 

Külshammer–Puig class at Q̂ is obtained as the special case of the construction described 

at the beginning of this section with L̃ and Z × Q̂ instead of G and N , respectively, and 

with the 1-dimensional quotient M ∼= k of k(Z × Q̂) given by the map ι : Z → k×

extended trivially to Q̂, still denoted by ι. Since any group action on a 1-dimensional 

algebra is trivial, we may choose sx = 1 for x running over a set of representatives of 

L̃/(Q̂ × Z) ∼= L/Q. Then also sx = 1 for x running over a set of representatives of 

L̃/Z ∼= L, because ι is extended trivially to Q̂. Thus, for a general element of the form 

x̃z, with x ∈ L and z ∈ Z, we may choose sx̃z = ι(z); in particular, sx̃ = 1 for x ∈ L. 

We need to show that this determines α−1. Note that α is determined by its restriction 

to L via the map L → L/Q. Let x, y ∈ L. By construction, we have sx̃ = sỹ = sx̃y = 1. 

Since x̃ỹ = x̃yα(x, y), it follows that

sx̃ỹ = sx̃yι(α(x, y)) = ι(α(x, y))

and hence (writing α instead of ι ◦ α) we have

1 = sx̃sỹ = α(x, y)−1sx̃ỹ

This shows that α is the Külshammer–Puig class of this block at Q̂. Note that by the 

first statement we have kL̃e ∼= kαL. The last statement on AWC follows from the fact 

that if P � S is FS(L)-centric radical, then P contains Q and if Q � P � S, then 

NL/Q(P/Q)/(P/Q)) ∼= NL(P )/P = OutFS(L)(P ). ✷

Lemma 4.10. Let G be a finite group with normal subgroup N . Fix a cohomology class 

α ∈ H2(G, k×) and write also α for the restriction to N . If z(kαG) �= 0, then z(kαN) �= 0.

Proof. Using Proposition 4.9, we fix a p′-central extension 1 → Z → Ĝ → G → 1

corresponding to α and a central idempotent e ∈ kZ such that kαG ∼= kĜe. Then the 

restriction α is the class corresponding to the induced central extension N̂ of N , and 

kαN ∼= kN̂e. Assume now that kαG has a projective simple module. Then kĜe, and 

hence kĜ, has a projective simple module, say M . The restriction of M to N̂ is both 

projective and semisimple. Hence, any simple summand of ResĜ
N̂

M is projective. Since e

still acts as the identity on the restriction of M , we see that kN̂e has a projective simple 

module, and hence so does kαN . ✷

Lemma 4.11. Let G be a finite group and α ∈ H2(G, k×). If Op(G) �= 1, then z(kαG) = 0.

Proof. As in the proof of Lemma 4.10, let 1 → Z → Ĝ → G → 1 be a p′-central 

extension of G determined by α, and let e ∈ kZ be a central idempotent in kĜ such that 

kαG ∼= kĜe. Let P = Op(G) and P̂ be the preimage under the quotient map. Since Z

is a p′-group, the restriction of α to P is trivial, and so P̂ = Z × P0 with P0 mapping 

isomorphically to P . Then Op(P̂ ) = P0 �= 1 is a normal p-subgroup of Ĝ. Thus, as kP
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has no projective simple module, neither does kĜ by Lemma 4.10. Hence neither does 

kĜe ∼= kαG. ✷

Fix a finite group G and an abelian group A. Let P be the set of all chains of proper 

inclusions

Q0 = 1 < Q1 · · · < Qm

of p-subgroups of G. This is a G-set with respect to the conjugation action of G on 

chains, and we denote by NG(σ) the stabilizer of σ in G. Let N be the subset of all such 

chains satisfying in addition Qi ✂ Qm for each 0 ≤ i ≤ m. Let E be the set of chains in 

N consisting of elementary abelian subgroups. Both N and E are G-subsets of P. For 

the purpose of calculating alternating sums indexed by chains, we can pass between P, 

N , and E :

Lemma 4.12 ([14, Proposition 3.3]). Let G, A, P, N , and E be as above. Let f be a 

function from the set of subgroups of G to A such that f is constant on conjugacy classes 

of subgroups of G. Then

∑

σ∈P/G

(−1)|σ|
f(NG(σ)) =

∑

σ∈N /G

(−1)|σ|
f(NG(σ)) =

∑

σ∈E/G

(−1)|σ|
f(NG(σ)).

We shall need the following well-known Lemma in Section 5.

Lemma 4.13 ([29, Lemma 2.1], [14, Proposition 3.3]). Let G, A, and N be as above and 

let f be a function from the set of subgroups of G to A such that f is constant on conjugacy 

classes of subgroups of G. If Op(G) �= 1, then

∑

σ∈N /G

(−1)|σ|
f(NG(σ)) = 0.

Proof. We sketch the proof for the convenience of the reader. Set R := Op(G) and 

assume that R > 1. We show that there exists a G-invariant involution η : N → N

where NG(σ) = NG(η(σ)) and |η(σ)| = |σ| ± 1. Given σ = (Q0 < Q1 < · · · < Qm) ∈ N , 

choose i maximal with the property that R � Qi. Since R � 1 = Q0, we see that there is 

such an i. By choice of i, we have Qi < QiR, and we have QiR � Qi+1 if i < m. Define

η(σ) =

⎧
⎪⎪⎨
⎪⎪⎩

Q0 < · · · < Qm < QmR if i = m,

Q0 < · · · < Qi < Qi+2 < · · · < Qm if QiR = Qi+1, and

Q0 < · · · Qi < QiR < Qi+1 < · · · < Qm if QiR < Qi+1.

Then η(σ) ∈ N and NG(σ) = NG(η(σ)) for each σ ∈ N , since R is a normal p-subgroup 

of G. Also, |η(σ)| = |σ| ± 1. It is a momentary exercise to verify that η is an involution 

on N . Hence, the alternating sum vanishes as claimed. ✷
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Remark 4.14. We finish this section with a mention of a recurrent elementary tool for 

reordering sums indexed by two or more sets acted upon by a finite group G, which 

we will use without much further comment. Let X, Y be finite G-sets and denote by 

πX : X × Y → X, πY : Y × X the projection maps. Let A be a G-invariant subset of 

X ×Y under the diagonal action of G on X ×Y . Suppose that for any (x, y) ∈ X ×Y we 

have an element α(x, y) in some abelian group depending only on the G-orbit of (x, y). 

Then

∑

(x,y)∈A/G

α(x, y)

is equal to any of the following double sums

∑

x∈X/G

∑

y∈πY (π−1
X (x)∩A)/Gx

α(x, y)

∑

y∈Y/G

∑

x∈πX (π−1
Y (y)∩A)/Gy

α(x, y).

Note that the two double sums make sense as by the G-invariance of A, for each x ∈ X, 

πY (π−1
X (x) ∩ A) is Gx-invariant and for each y ∈ Y , πX(π−1

Y (y) ∩ A) is Gy-invariant. Let 

X be a set of representatives of the G-orbits of X and for each x ∈ X , let Yx be a set of 

representatives of the Gx-orbits of X and set

U := {(x, y) : x ∈ X , y ∈ Yx}.

Then, U ⊆ A. We will show that U is a set of representatives of the G-orbits of A, and 

this will yield the equality of 
∑

(x,y)∈A/G α(x, y) with the first double sum. Suppose 

that x, x′ ∈ X , y, y′ ∈ Yx are such that (x, y) and (x′, y′) are in the same G-orbit and 

let g ∈ G be such that (x′, y′) = g(x, y). By comparing the first components, it follows 

that x′ and x are in the same G-orbit of X, hence x′ = x and g ∈ Gx. Now comparing 

the second components implies y′ = y. Conversely, let (x0, y0) ∈ A. We will show that 

(x0, y0) is G-conjugate to an element of U . By definition of X , there exists g ∈ G and 

x ∈ X such that x0 = gx, hence by replacing (x0, y0) by g(x0, y0) we may assume that 

x0 ∈ X . Since (x0, y0) ∈ A, y0 ∈ πY (π−1
X (x0) ∩ A). Hence by the definition of Yx0

, y0 is 

Gx0
-conjugate to some element of Yx0

, say z0 = hy0 with h ∈ Gx0
, z0 ∈ Yx0

. Then

h(x0, y0) = ( hx0, hy0) = (x0, z0) ∈ U

as required. The proof of the equality with the second sum is entirely analogous.

5. Towards Theorem 1.1

Throughout this section let F be a saturated fusion system on a finite p-group S, and 

let α be an F-compatible family.
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Our first goal will be to reformulate m∗(F , α) by reindexing the sum over objects 

in the full subcategory S⊳(Fc) of the subdivision category of the category of F-centric 

subgroups. Recall from Section 3 that S⊳(Fc) has as objects chains of proper inclusions

Q0 < Q1 < · · · < Qm

of F-centric subgroups with the property that the Qi are normal in the maximal term 

Qm, for each 0 ≤ i ≤ m. Consider the following sets

M := {(Q, σ, [x]) | Q ∈ Fc, σ ∈ NQ, [x] ∈ Qcl},

M̃ := {(σ, x) | σ ∈ S⊳(Fc), x ∈ Qσ}.

The set M is equipped with the equivalence relation

(Q, σ, [x]) ∼M (R, τ, [y])

whenever there exists an isomorphism ϕ : Q → R in F such that cϕ(σ) = τ and such 

that ϕ([x]) = [y]. Here cϕ is as defined before Lemma 3.4 and we use cϕ(σ) to denote the 

image of σ under the natural extension of cϕ to a map from the set of chains of subgroups 

of OutF (Q) to the set of chains of subgroups of OutF (R). The set M̃ is equipped with 

the equivalence relation

(σ, x) ∼M̃ (τ, y)

whenever there exists an isomorphism ϕ : σ → τ in S⊳(Fc) such that ϕ(x) = y.

Proposition 5.1. We have

m
∗(F , α) =

∑

(σ,x)∈M̃/∼

(−1)|σ|z(kαCAutF (σ)(x) AutQσ
(Qσ)/ AutQσ

(Qσ)).

Proof. This follows from Lemmas 5.4 and 5.5 below. ✷

We rewrite m∗(F , α) in terms of (M, ∼).

Lemma 5.2.

m
∗(F , α) =

∑

(Q,σ,[x])∈M/∼

z(kαCI(σ)([x])).

Proof. Let X be a set of representatives of F-classes in Fc and for each Q ∈ X , let YQ

be a set of OutF (Q) representatives of W∗
Q. Then {(Q, σ, [x]) : Q ∈ X , (σ, [x]) ∈ YQ} is 

a set of representatives of the ∼-equivalence classes of M and the result follows. ✷
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A normal chain σ = (Q0 < · · · < Qm) in S⊳(Fc) induces a normal chain Autσ(Q0) :=

(AutQ0
(Q0) < · · · < AutQm

(Q0)) of p-subgroups in AutF (Q), and a corresponding 

normal chain Outσ(Q0) ∈ NQ0
upon factoring by Inn(Q0). In this context, bars will 

denote quotients by Inn(Q0). That is, we set Qi := OutQi
(Q0) for each 0 ≤ i ≤ m and 

we set

σ := Outσ(Q0) = (Q0 < Q1 < · · · < Qm)

for short. Note that Q0 is trivial.

Lemma 5.3. The map M̃ −→ M which sends (σ, x) to (Qσ, σ, [x]) induces a bijection 

between M̃/ ∼ and M/ ∼.

Proof. We first show that the map is well-defined. Let (σ, x) ∼ (τ, y) in M̃. Fix an 

isomorphism ϕ : σ → τ in S⊳(Fc) such that ϕ(x) = y. Then (Qσ, σ, [x]) ∼ (Qτ , τ , [y]) via 

the restriction of ϕ to Qσ.

Next, suppose (Qσ, σ, [x]), (Qτ , τ , [y]) ∈ M are M-equivalent. Let ψ : Qσ → Qτ be 

an F-isomorphism such that cψ(σ) = τ and ψ([x]) = [y]. By Lemma 3.4, ψ extends to 

a chain isomorphism ψ̂ : σ → τ . Since ψ([x]) = [y], we have ψ(x) = uyu−1 for some 

u ∈ Qτ . Let δ : Qσ → Qτ be the composition of ψ̂ with conjugation by u. Then (σ, x)

and (τ, y) are M̃-equivalent via δ. This proves injectivity.

It remains to show that whenever (R, ρ, [z]) ∈ M, there exists (σ, x) ∈ M̃ such that 

(Qσ, σ, [x]) is M-equivalent to (R, ρ, [z]). Let ρ = (1 < X1 < · · · < Xm) ∈ NR. Let 

α : R → R′ be an F-isomorphism with R′ fully F-normalised, and consider the chain

cα(ρ) = (1 < cα(X1) < · · · < cα(Xm)).

Since R′ is fully F-normalised and F is saturated, OutS(R′) is a Sylow p-subgroup of 

OutF (R′), so by Sylow’s theorem we may fix β ∈ OutF (R′) such that βcα(Xm)β−1 �

OutS(R′). Denote by R′
i the inverse image of βcα(Xi)β

−1 in NS(R′), and set

σ := (R′ < R′
1 < · · · < R′

m) and x := β̂α(z),

where β̂ ∈ AutF (R′) is any lift of β. Then (σ, x) ∈ M̃, and (Qσ, σ, [x]) is M-equivalent 

to (R, ρ, [z]) via β̂α. ✷

The following lemma is now immediate from Lemmas 5.2 and 5.3.

Lemma 5.4. We have

m
∗(F , α) =

∑

(σ,x)∈M̃/∼

(−1)|σ|z(kαCI(σ)([x])).
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To complete the proof of Proposition 5.1, we give an interpretation of z(kαCI(σ)([x])

in terms of the automisers of chains in S⊳(Fc).

Lemma 5.5. Fix σ = (Q0 < · · · < Qm) ∈ S⊳(Fc), and let π be the composite

AutF (σ)
res

−−−−−−→ NAutF (Q0)(Autσ(Q0)) −−−−→ I(σ)
def
= NOutF (Q0)(Outσ(Q0)),

which restricts to Q0 and then factors by AutQ0
(Q0). Then

(1) π is surjective,

(2) ker(π) = AutQ0
(Qm), and

(3) for each x ∈ Q0, the group CAutF (σ)(x) AutQ0
(Qm) is the inverse image of CI(σ)(x)

under π.

Proof. To prove (1), it suffices to show that the restriction map res : AutF (σ) →

NAutF (Q0)(Autσ(Q0)) is surjective. Let α ∈ NAutF (Q0)(Autσ(Q0)). Then cα(AutQi
(Q0)) �

AutQi
(Q0) for all 0 � i � m. The first conclusion of Lemma 3.4 then yields an extension 

α̃ of α to Qm.

Fix i with 0 � i � m, and fix u ∈ Qi. Then since α̃ is defined on u, we have

cα̃(u)|Q0
= α(cu|Q0

)α−1 ∈ AutQi
(Q0)

by assumption. Hence, α̃(u) lies in the full inverse image of AutQi
(Q0) under NS(Q0) →

AutS(Q0), which is Qi because Q0 is centric. This shows that α̃(Qi) = Qi for each i, 

and thus the surjectivity of the restriction map.

That AutQ0
(Qm) � ker(π) is clear. To see the other inclusion in (2), fix ϕ ∈ ker(π). 

Then ϕ|Q0
= cu for some u ∈ Q0, so we may fix z ∈ Z(Q0) such that ϕ = cucz = cuz by 

[3, Lemma A.8]. Thus, ϕ ∈ AutQ0
(Qm), as desired.

Finally, (3) holds because ker(π) = AutQ0
(Qm) acts transitively on the Q0-class 

[x]. ✷

Define the following subsets of M̃:

(1) M̃e is the subset of M̃ consisting of those (σ, x) for which Qσ/Qσ is elementary 

abelian.

(2) M̃◦ is the subset of M̃ consisting of those (σ, x) for which CQσ (x) � Qσ.

(3) M̃e,◦ is the intersection of M̃e and M̃◦.

(4) M̃e,◦,c is the subset of M̃e,◦ consisting of those (σ, x) for which CQσ (x)Φ(Qσ) is 

F-centric.
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Observe that all these subsets are unions of M̃-equivalence classes. Let

me(F , α) :=
∑

(σ,x)∈M̃e/∼

(−1)|σ|z(kαCAutF (σ)(x) AutQσ
(Qσ)/ AutQσ

(Qσ))

and define m◦(F , α), me,◦(F , α), and me,◦,c(F , α) analogously.

Proposition 5.6. The following hold.

(1) m
∗(F , α) = m

e(F , α).

(2) m
∗(F , α) = m

◦(F , α).

(3) m
∗(F , α) = m

e,◦(F , α).

Proof. By Lemma 5.5, Remark 4.14, the obvious analogue of Lemma 5.2 for elementary 

abelian chains, and by restricting the inverse of the bijection of Lemma 5.3 to classes of 

elements of M̃e, we have

me(F , α) =
∑

Q∈Fc

∑

σ∈EQ/ OutF (Q)

(−1)|σ|
∑

[x]∈Qcl/I(σ)

z(kαCI(σ)([x])),

where EQ ⊆ NQ is the set of all elementary abelian chains. Thus (1) follows on applying 

Lemma 4.12 with G = OutF (Q) for each Q ∈ Fc. We next prove (2). Note that if (σ, x) ∈

M̃ and CQσ (x) is not contained in Qσ, then CInn(Qσ)(x) AutQσ
(Qσ)/ AutQσ

(Qσ) ∼=

CQσ (x)/CQσ
(x) is a non-trivial normal subgroup of CAutF (σ)(x) AutQσ

(Qσ)/ AutQσ
(Qσ)

and the result follows from Proposition 5.1(3) and Lemma 4.11. The same argument holds 

with (σ, x) ∈ M̃e, so (3) follows from (1). ✷

Recall that

k(F , α) =
∑

x∈[S/F ]

∑

Q∈CF (x)c/CF (x)

z(kα OutCF (x)(Q)), (5.1)

where [S/F ] ⊆ S is a fixed set of fully F-centralized F-conjugacy class representatives 

of the elements of S. Define

C := {(Q, x) | x ∈ [S/F ], Q ∈ CF (x)c}, and

D := {(Q, x) | x ∈ Z(Q), Q ∈ Fc}

and equivalence relations

(Q, x) ∼C (R, y) ⇐⇒ x = y and IsoCF (x)(Q, R) �= ∅, and

(Q, x) ∼D (R, y) ⇐⇒ there exists ϕ ∈ IsoF (Q, R) such that ϕ(x) = y.

Thus, C/ ∼ may be viewed as an indexing set for k(F , α). Also, x ∈ Z(Q) whenever 

Q ∈ CF (x)c, so that C is a subset of D.
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Lemma 5.7. The inclusion C →֒ D induces a bijection between C/ ∼ and D/ ∼; in partic-

ular,

k(F , α) =
∑

Q∈Fc/F

∑

x∈Z(Q)/ OutF (Q)

z(kαCOutF (Q)(x)). (5.2)

Proof. If (Q, x) ∼C (R, y), then x = y and there is an F-isomorphism from Q to R which 

centralizes x, so that (Q, x) ∼D (R, y). There is indeed a well-defined map on equivalence 

classes induced by the inclusion.

Conversely, assume that (Q, x), (R, y) ∈ C are D-equivalent. Fix an F-isomorphism ϕ

from Q to R with ϕ(x) = y. As x, y ∈ [S/F ] are F-conjugate, we have x = y, and so 

Q and R are CF (x)-conjugate. This shows that (Q, x) ∼C (R, y), so the induced map is 

injective.

To complete the proof of the first assertion, it remains to show that each element 

of D is D-equivalent to a member of C. Fix (R, y) ∈ D. Let x ∈ [S/F ] be the unique 

element which is F-conjugate to y. Since 〈x〉 is fully F-centralized, we may choose a 

morphism α ∈ HomF (CS(〈y〉), CS(〈x〉)) such that α(y) = x by [1, I.2.6(c)]. Set Q =

α(R). Then (R, y) ∼D (Q, x) via α. Since R is F-centric, also Q is F-centric, so that Q

is CF (x)-centric by Lemma 3.3. This yields (Q, x) ∈ C and completes the proof of the 

first assertion.

Now OutCF (x)(Q) = COutF (Q)(x) for each x ∈ Z(Q) by Lemma 3.3. Hence, as C/ ∼

is an indexing set for a single sum computing k(F , α) as in (5.1), and as D/ ∼ is an 

indexing set for a single sum computing the right hand side of (5.2), we have that (5.2)

follows from (5.1). ✷

Proposition 5.8. We have, k(F , α) = m
e,◦,c(F , α).

Proof. Let D′ be the subset of M̃e,◦,c consisting of the pairs (σ, x) such that |σ| = 0

and x ∈ Z(Qσ). Then D′ is a union of M̃-equivalence classes. Regarding an F-centric 

subgroup Q as a chain of length zero yields a canonical bijection D/ ∼D → D′/ ∼M̃, and 

so we may regard k(F , α) as indexed over D′/ ∼
M̃

. We use chain pairing to remove the 

terms from me,◦,c(F , α) not in D′. This will yield

me,◦,c(F , α) =
∑

(σ,x)∈D′/∼

(−1)|σ|z(kαCAutF (σ)(x) AutQσ
(Qσ)/ AutQσ

(Qσ)).

The Proposition then follows from the expression for k(F , α) in Lemma 5.7, along with 

Lemma 5.5(3).

For each σ = (Q0 < · · · < Qm) ∈ S⊳(Fc), we let Q−1 := CQm
(x)Φ(Qm). Define a 

map

η : M̃e,◦,c\D′ −→ M̃e,◦,c\D′

via
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(σ, x) �−→ (η(σ), x),

where

η(σ) =

{
Q−1 < Q0 < · · · < Qm if Q−1 < Q0, and

Q1 < · · · < Qm if Q−1 = Q0.

It is straightforward to see that η is an involution that preserves M̃-equivalence classes 

if well-defined.

To prove that η is well-defined, we assert three points for a given pair (σ, x) /∈ D′

with σ as above. First, observe that η(σ) is a first component of some member of M̃e,◦,c

by definition of Q−1 and the fact that Q−1 ∈ Fc by assumption. In particular, η(σ) is 

never the empty chain: if σ has length zero, then CQ0
(x) = CQm

(x) < Q0 as (σ, x) /∈ D′, 

so also Q−1 = CQ0
(x)Φ(Q0) < Q0, and hence η(σ) has length 1. Second, note that 

x ∈ CQm
(x) � Q−1 in case Q−1 is contained properly in Q0, so that indeed (η(σ), x) ∈

M̃e,◦,c. Lastly, continue to consider a pair (σ, x) not in D′. We claim that (η(σ), x) is 

not in D′, and the only case where this is not immediate has |σ| = 1 and |η(σ)| = 0. In 

this case either x is not in Z(Q0), in which case x is likewise not in Z(Q1) � Z(Q0), or 

x ∈ Z(Q0), in which case CQ1
(x) = CQ0

(x) = Q0 < Q1 so that again x is not in Z(Q1). 

This shows that (η(σ), x) /∈ D′ and completes the proof of the last point.

Having shown that η is a well-defined involution, it remains to prove that it preserves 

the value of each summand appearing in Proposition 5.1. To establish this, it suffices to 

show that

CAutF (σ)(x) = CAutF (η(σ))(x) and AutCQ0 (x)(Qm) = AutCQ−1
(x)(Qm).

As Q−1 is invariant under AutF (σ), one has AutF (σ) � AutF (η(σ)) if η(σ) has length 

one more than σ. Also, one has the same containment if η(σ) has length one less, since 

η(σ) is a subchain of σ in that case. Equality therefore holds in both cases, because η is 

an involution. This completes the proof of the first displayed equality. Finally, the second 

equality holds since CQ0
(x) = CQ−1

(x) for each (σ, x) ∈ M̃e,◦,c. ✷

6. Proof of Theorem 1.1

In light of Propositions 5.8 and 5.6(3), to complete the proof of Theorem 1.1 it suffices 

to establish an equality between me,◦(F , α) and me,◦,c(F , α). We will achieve that in this 

section.

If G is a finite group and σ is a chain of p-subgroups in G such that the first subgroup 

is a normal subgroup of the last subgroup, then we denote by Gσ � NG(Qσ) the stabiliser 

in G of the chain and by AutG(σ) the image of Gσ in NG(Qσ)/CG(Qσ).

Lemma 6.1. Let σ = (Q0 < · · · < Qm) be a chain of proper inclusions of subgroups 

of S such that Qi is normal in Qm for each 0 � i � m, and let x ∈ Q0 be such that 
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CQm
(x) � Q0. Suppose that Qm is F-centric, Q0 is fully F-normalised, and Qm is fully 

NF (Q0)-normalised. Let L be a model of NNF (Q0)(Qm). The following hold:

(1) CLσ
(x)Q0/Q0

∼= CAutF (σ)(x) AutQ0
(Qm)/ AutQ0

(Qm).

(2) If Q0 is not F-centric, then z(kα(CLσ
(x)Q0/Q0)) = 0.

Proof. Set Qσ = Q0 and Qσ = Qm. We have

Lσ/Z(Qm) ∼= AutL(σ) = AutNNF (Q0)(Qm)(σ) = AutNF (Q0)(σ) = AutF (σ).

The quotient map π : Lσ → AutF (σ) sends CLσ
(x) to CAutF (σ)(x). It also sends Qm to 

AutQ0
(Qm), since Z(Qm) ≤ CQm

(x) ≤ Q0 by assumption. Part (1) follows from this.

We now turn to (2), where we first claim that CL(Q0) is a p-group under the given 

assumptions. Let y be an element of CL(Q0) of order prime to p, and let cy be the image 

of y in Aut(Qm). Since CQm
(AutQ0

(Qm)) = CQm
(Q0) � CQm

(x) � Q0, we have

[cy, CQm
(AutQ0

(Qm))] ≤ [cy, Q0] = 1.

Now Lemma 3.1 implies that cy = IdQm
, so that y ∈ CL(Qm) � Qm is of order a power 

of p, since Qm is self-centralising in L. Hence, y = 1.

Assume that z(kα(CLσ
(x)Q0/Q0)) �= 0. As Q0 is normal in Lσ, we know that 

CLσ
(Q0)Q0 is likewise normal in Lσ. But CLσ

(Q0) � CLσ
(x), so CLσ

(Q0)Q0 is nor-

mal in CLσ
(x)Q0. Hence, z(kα(CLσ

(Q0)Q0/Q0)) �= 0 by Lemma 4.10. It was just shown 

that CLσ
(Q0) is a p-group, so we have CLσ

(Q0) � Q0 by Lemma 4.11. In other words, Q0

is NK
F (Q0)-centric, where K � AutF (Q0) is the subgroup consisting of those automor-

phisms which extend to automorphisms of σ. Hence, Q0 is F-centric by Lemma 3.2. ✷

Lemma 6.2. Let (σ, x) ∈ M̃e,◦, with σ = (Q0 < · · · < Qm) as before. If CQm
(x)Φ(Qm)

is not F-centric, then z(kαCAutF (σ)(x) AutQ0
(Qm)/ AutQ0

(Qm)) = 0.

Proof. Write Q−1 = CQm
(x)Φ(Qm), and recall that Q−1 � Q0 by definition of 

M̃e,◦. Using [1, I.2.6(c)], we choose a morphism ϕ ∈ HomF (Qm, S) with ϕ(R) fully 

F-normalized, and then a morphism ψ ∈ HomNF (ϕ(R))(Qm, NS(ϕ(R))) with ψϕ(Qm)

fully NF (ϕ(R))-normalized. Set τ = ψϕ(σ) and y = ψϕ(x). Conjugation by ψϕ yields 

an isomorphism

CAutF (σ)(x) AutQσ
(Qσ)/ AutQσ

(Qσ) ∼= CAutF (τ)(y) AutQτ
(Qτ )/ AutQτ

(Qτ ).

Upon replacing (σ, x) by (τ, y), we may therefore assume Q−1 to be fully F-normalized 

and Qm to be fully NF (Q−1)-normalized.

Assume on the contrary that Q−1
def
= CQm

(x)Φ(Qm) is not F-centric, but that 

z(kαCAutF (σ)(x) AutQ0
(Qm)/ AutQ0

(Qm)) �= 0. As Q0 is F-centric, Q−1 is a proper 

subgroup of Q0. Consider the chain
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σ′ = (Q−1 < Q0 < · · · Qm).

It was shown in the last part of the proof of Lemma 5.8 that

CAutF (σ)(x) AutQ0
(Qm)/ AutQ0

(Qm) = CAutF (σ′)(x) AutQ−1
(Qm)/ AutQ−1

(Qm),

and that argument did not require (σ, x) ∈ M̃c. But then from Lemma 6.1 applied to 

σ′, we conclude that Q−1 is F-centric after all, a contradiction. ✷

Proof of Theorem 1.1. By Proposition 5.1, Proposition 5.6(3), and Lemma 6.2, we have 

m∗(F , α) = me,◦,c(F , α). The result now follows from Proposition 5.8. ✷

7. Proof of Theorem 1.2

Lemma 7.1 (Robinson). Suppose that G is a finite group, Q ✂ G is a p-subgroup and 

α ∈ H2(G/Q, k×). We have

∑

[x]∈Qcl/G

ℓ(kαCG([x])) =
∑

μ∈Irr(Q)/G

ℓ(kαCG(μ)) .

This Lemma is due to Robinson, and it is obtained as a combination of [24], [27] (see 

discussion before Theorem 1.2 of [25]). As a convenience to the reader, the main ideas 

of the proof are presented in the Appendix.

For a finite group H denote by S(H) the poset of p-subgroups of H (including the 

trivial subgroup - so notation is not standard). If Q is a normal p-subgroup of a finite 

group G, then for any [x] ∈ Qcl (respectively μ ∈ Irr(Q)), we denote by I([x]) (respec-

tively I(μ)) the stabiliser in G/Q of [x] (respectively μ) under the action of G/Q and for 

any subgroup R of G/Q, we denote by I([x], R) the intersection of I([x]) with NG/Q(R)

etc.

Lemma 7.2. Suppose that G is a finite group, Q ✂ G is a p-subgroup and α ∈

H2(G/Q, k×). Suppose that CG(Q) � Q. If AWC holds, then

∑

[x]∈Qcl/G

∑

R∈S(I([x]))/I([x])

z(kα(I([x], R)/R)) =
∑

μ∈Irr(Q)/G

∑

R∈S(I(μ))/I(μ)

z(kα(I(μ, R)/R)).

Proof. Let μ ∈ Irr(Q). The full inverse image of I(μ) � G/Q in G is CG(μ) and for any 

p-subgroup R of L/Q = I(μ), I(μ, R) = NL/Q(R). Hence, by AWC and Proposition 4.9

applied with L = CG(μ), we have that

ℓ(kα(kCG(μ)) =
∑

R∈S(I(μ))/I(μ)

z(kα(I(R, μ)/R)).
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Similarly, let x ∈ Qcl. The full inverse image of I([x]) � G/Q in G is CG([x]). Thus, by 

AWC and Proposition 4.9 applied with L = CG([x]), we have that

ℓ(kα(kCG([x]) =
∑

R∈S(I([x]))/I([x])

z(kα(I(R, [x])/R)).

The result follows by Lemma 7.1. ✷

Let F be a saturated fusion system on a finite p-group S and let α be an F-compatible 

family. We recall some earlier notation. For any F-centric Q � S, by Remark 4.14, we 

have

wQ(F , α) =
∑

σ∈NQ/ OutF (Q)

(−1)|σ|
∑

μ∈IrrK (Q)/I(σ)

z(kαQ
CI(σ)(μ)) (7.1)

w∗
Q(F , α) =

∑

σ∈NQ/ OutF (Q)

(−1)|σ|
∑

[x]∈Qcl/I(σ)

z(kαCI(σ)([x])) (7.2)

Also, since OutF (Q) = OutNF (Q)(Q) we have

wQ(F , α) = wQ(NF (Q), α) and w∗
Q(F , α) = w∗

Q(NF (Q), α). (7.3)

Lemma 7.3. Suppose that G is a finite group and Q ✂G is a p-subgroup with CG(Q) ≤ Q. 

Let S be a Sylow p-subgroup of G, F = FS(G), G = G/Q and let PQ denote the set of 

all strictly increasing chains of p-subgroups in OutF (Q) starting at 1. Then,

wQ(F , α) =
∑

σ∈PQ/ OutF (Q)

(−1)|σ|
∑

μ∈Irr(Q)/I(σ)

∑

R∈S(I(σ,μ))/I(σ,μ)

z(kα(I(R, σ, μ)/R))

and

w
∗
Q(F , α) =

∑

σ∈PQ/ OutF (Q)

(−1)|σ|
∑

[x]∈Qcl/I(σ)

∑

R∈S(I(σ,[x]))/I(σ,[x])

z(kα(I(R, σ, [x])/R)).

Proof. By definition

wQ(F , α) =
∑

σ∈NQ/ OutF (Q)

(−1)|σ|
∑

μ∈Irr(Q)/I(σ)

z(kα(I(σ, μ))).

We claim that

wQ(F , α) =
∑

σ∈PQ/ OutF (Q)

(−1)|σ|
∑

μ∈Irr(Q)/I(σ)

z(kα(I(σ, μ))).

Indeed, this follows immediately from Lemma 4.12 (or [14, Proposition 3.3]). Next, in-

terchanging the order of summation on the right hand side of the above equation we 

obtain



R. Kessar et al. / Advances in Mathematics 357 (2019) 106825 31

wQ(F , α) =
∑

μ∈Irr(Q)/ OutF (Q)

∑

σ∈PQ/I(μ)

(−1)|σ|z(kα(I(σ, μ))).

Now we claim that

wQ(F , α) =
∑

μ∈Irr(Q)/ OutF (Q)

∑

σ∈PQ/I(μ)

∑

R∈S(I(σ,μ))/I(σ,μ)

(−1)|σ|z(kα(I(R, σ, μ)/R)).

(7.4)

To prove the claim, let μ ∈ Irr(Q) and for R a p-subgroup of I(μ), let PR
Q be the 

subset of PQ consisting of those chains which are normalised by R, i.e. those chains σ

such that R � I(σ). Then

∑

σ∈PQ/I(μ)

∑

R∈S(I(σ,μ))/I(σ,μ)

(−1)|σ|z(kα(I(R, σ, μ)/R))

is equal to

∑

R∈S(I(μ))/I(μ)

∑

σ∈PR
Q/I(R,μ)

(−1)|σ|z(kα(I(R, σ, μ)/R)) ,

where we use Remark 4.14 with G = I(μ), X = PQ, Y = S(I(μ)) and A equal to the 

subset of X × Y consisting of pairs (σ, R) such that R � I(μ, σ).

Suppose that R �= 1 and let σ = Q0 := 1 < Q1 < · · · < Qn be an element of PR
Q . 

If R is not contained in Qn, let σ′ be the chain obtained from σ by appending QnR. 

Otherwise, let j be the smallest integer such that R is contained in Qj . Note that j �= 0

since R > 1. If Qj−1R = Qj , then let σ′ be the chain obtained from σ by deleting Qj . 

Otherwise, let σ′ be obtained from σ by inserting Qj−1R in between Qj−1 and Qj . Then 

the pairing σ → σ′ kills

∑

R∈S(I(μ))/I(μ)

∑

σ∈PR
Q/I(R,μ)

(−1)|σ|z(kα(I(R, σ, μ)/R)) .

Hence, only the terms with R = 1 survive, and the claim follows. Interchanging the order 

of summation in the outer two terms of Equation (7.4) gives the desired expression for 

wQ(F , α). The proof for w∗
Q(F , α) is entirely similar. ✷

Proposition 7.4. Let F be a saturated fusion system on a finite p-group S and let α be 

an F-compatible family. Suppose that AWC holds. Then wQ(F , α) = w
∗
Q(F , α) for all 

F-centric subgroups Q of S.

Proof. Let Q � S be F-centric. By Equation (7.3) we may assume that F = NF (Q)

and hence by [4, Proposition C] that F = FS(G) for some finite group G with S as 
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a Sylow p-subgroup and containing Q as a normal subgroup with CG(Q) = Z(Q). By 

Lemma 7.3, we have

wQ(F , α) =
∑

σ∈PQ/ OutF (Q)

(−1)|σ|
∑

μ∈Irr(Q)/I(σ)

∑

R∈S(I(σ,μ))/I(σ,μ)

z(kα(I(R, σ, μ)/R))

and

w∗
Q(F , α) =

∑

σ∈PQ/ OutF (Q)

(−1)|σ|
∑

[x]∈Qcl/I(σ)

∑

R∈S(I(σ,[x]))/I(σ,[x])

z(kα(I(R, σ, [x])/ R)).

Let σ ∈ PQ. By applying Lemma 7.2 to the inverse image NG(σ) of I(σ) in G, we 

obtain

∑

μ∈Irr(Q)/I(σ)

∑

R∈S(I(σ,μ))/I(σ,μ)

z(kα(I(R, σ, μ)/R)) =

∑

[x]∈Qcl/I(σ)

∑

R∈S(I(σ,[x]))/I(σ,[x])

z(kα(I(R, σ, [x])/ R)).

The result follows. ✷

Proof of Theorem 1.2. This is immediate from Proposition 7.4. ✷

We present an alternate proof of Theorem 1.2 which is shorter but makes use of 

the fact, due to Robinson [25], that AWC implies SOWC. Let F be a saturated fusion 

system on a finite p-group S, and let α be an F-compatible family. As a consequence of 

Lemma 4.13, the quantities m(F , α), m∗(F , α), and m(F , α, d) remain unchanged under 

restricting the sums over isomorphism classes of F-centric subgroups of S to F-centric 

radical subgroups. We spell this out.

Lemma 7.5. Let Q be an F-centric subgroup of S and let d be a non-negative integer. 

Suppose that Q is not F-radical. Then

wQ(F , α) = w
∗
Q(F , α) = wQ(F , α, d) = 0 .

Proof. Using Remark 4.14, we have

wQ(F , α) =
∑

σ∈NQ/ OutF (Q)

(−1)|σ|
∑

μ∈Irr(Q)/I(σ)

z(kαI(σ, μ))

The quantity in the second sum depends only on I(σ). Since Q is not radical, we have 

Op(OutF (Q)) �= 1. Thus Lemma 4.13, applied to the group G = OutF (Q) and the 

function f on subgroups of G defined by
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f(H) :=

⎧
⎪⎨
⎪⎩

∑

μ∈Irr(Q)/I(σ)

z(kαI(σ, μ)) if H = I(σ) for some σ ∈ NQ

0 otherwise

implies that wQ(F , α) = 0. Similar arguments show that w∗
Q(F , α) = wQ(F , α, d) =

0. ✷

Note that by Lemma 7.5, we have

m(F , α) =
∑

Q∈Fcr/F

wQ(F , α) and m∗(F , α) =
∑

Q∈Fcr/F

w∗
Q(F , α). (7.5)

Lemma 7.6. Suppose that m∗(G, β) = m(G, β) for all pairs (G, β), where G is a saturated 

constrained fusion system and β is a G-compatible family. Then m(F , α) = m
∗(F , α).

Proof. We prove that wQ(F , α) = w∗
Q(F , α) for each fully F-normalized, F-centric, 

F-radical subgroup Q ≤ S. Since F is saturated, there is a fully F-normalized subgroup 

in each F-conjugacy class, and so the result will then follow from (7.5).

Suppose the above assertion is false, so that wQ(F , α) �= w∗
Q(F , α) for some Q. Among 

all such counterexamples F and Q, choose one such that |F| + |S : Q| is minimal, where 

|F| denotes the number of morphisms in F . Note that OutNF (Q)(Q) = OutF (Q), and 

Q is also fully NF (Q)-normalized, NF (Q)-radical, and NF (Q)-centric. Since the sums 

wQ(F , α) and w∗
Q(F , α) depend only on Q and OutF (Q) and not on F , it follows by 

minimality that F = NF (Q).

We have shown that F is constrained with normal centric subgroup Q. In particu-

lar, m(F , α) = m∗(F , α) by assumption, and Q is contained in every F-centric radical 

subgroup (see e.g. [20, Lemma 2.4]). From (7.5), m(F , α) is the sum of wQ(F , α) and 

wR(F , α) as R ranges over the fully F-normalized, F-centric radical subgroups with 

R > Q. The same holds for w∗
Q(F , α). By induction wR(F , α) = w∗

R(F , α) for each such 

R > Q (since NF (R) � F). It follows that wQ(F , α) = w∗
Q(F , α) after all, a contradic-

tion. ✷

It thus suffices by Lemma 7.6 to prove m(F , α) = m∗(F , α) in the case where F is 

constrained.

Proposition 7.7. Suppose AWC holds for all blocks of all finite groups. If F is constrained, 

then k(F , α) = m(F , α).

Proof. Assume that F is constrained. By Proposition 4.8, we may fix a model G for F , 

a p′-central extension Ĝ of G, and a block b of kĜ such that (F , α) is realized by kĜb. 

By Proposition 4.5, since AWC holds for all blocks, we have

k(F , α) = k(B).
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On the other hand, again since AWC holds for all blocks, the results of [25], [26] show 

that m(F , α) = k(B). ✷

Proof of Theorem 1.2. Assume AWC holds for all blocks of finite groups. By Theo-

rem 1.1, we have k(F , α) = m∗(F , α). Hence, m(F , α) = m∗(F , α) whenever F is 

constrained by Proposition 7.7 and assumption. Therefore, m(F , α) = m∗(F , α) by 

Lemma 7.6. ✷

Appendix A. On Lemma 7.1

By Proposition 4.9, Lemma 7.1 is equivalent to the following.

Lemma A.1. Let G be a finite group, Q a normal p-subgroup of G, Z a central p′-subgroup 

of G and e a central idempotent of kZ. Then

∑

[x]∈Qcl/G

ℓ(kCG([x])e) =
∑

μ∈Irr(Q)/G

ℓ(kCG(μ)e). (A.1)

The rest of the section is devoted to a proof of Lemma A.1. The basic idea is that, 

when e = 1kZ , then both sides count the number of p-sections in G of elements of Q, or 

the dimension of the space of ordinary class functions of G vanishing outside p-sections 

of elements of Q.

Notation. Let (K, O, k) be a p-modular system which we assume is big enough for the fi-

nite groups considered in this section. Denote by C(G) the K-vector space of all K-valued 

class functions on G and by Irr(G) ⊂ C(G) the set of ordinary irreducible characters of 

G viewed as K-valued functions.

For X ⊂ G, denote by dX : C(G) → C(G), the K-linear map defined by ϕ →

dX(ϕ), ϕ ∈ C(G) where dX(ϕ)(g) = 0 if gp is not conjugate to an element of X and 

dX(ϕ)(g) = ϕ(g) otherwise. Thus, dX(C(G)) is the subspace of all class functions which 

vanish outside the p-sections of elements of X, that is those class functions ϕ such that 

ϕ(x) = 0 unless xp is conjugate to an element of X.

If X = {x} we write dx for dX . For general X and x ∈ X, dx(C(G)) is a subspace 

of dX(C(G)) and dX(C(G)) = ⊕x dx(C(G)), where x runs over a set of conjugacy class 

representatives of p-elements in X. Note that if X is a normal p-subgroup of G, then 

dXC(G) consists of precisely those functions which take the value zero on elements g

such that gp /∈ Q.

For a central idempotent f of KG denote by Irr(G, f) the subset of ordinary irreducible 

characters of G corresponding to simple KGf modules and by C(G, f) the subspace of 

C(G) consisting of those class functions which are in the K-span of Irr(G, f). Recall 

that the canonical surjection OG → kG induces a bijection between the set of central 

idempotents of OG and of kG. By abuse of notation, if e is a central idempotent of kG

corresponding to the central idempotent ê of OG we write Irr(G, e) for Irr(G, ̂e) and 
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C(G, e) for C(G, ̂e). Thus, if e is a block of kG, then Irr(G, e) is the subset of ordinary 

irreducible characters of G belonging to ê. For N a normal subgroup of G and μ ∈ Irr(N), 

let C(G, μ) denote the subspace of C(G) consisting of those class functions which are in 

the K-span of irreducible characters of G which cover μ and for f a central idempotent 

of KG (or kG) denote by C(G, μ, f) the intersection of C(G, μ) and C(G, f).

The following gives the desired interpretation of the left hand side of Lemma A.1. 

When e = 1kZ , the statement is elementary. Passage to arbitrary e requires an application 

of Brauer’s second main theorem which we now recall. Denote by IBr(G) the set of Brauer 

characters of simple kG-modules viewed as K-valued class functions on Gp′ , the set of 

p-regular elements of G. For x ∈ G a p-element, χ ∈ Irr(G) and ϕ ∈ IBr(CG(x)) denote 

by dx
χ,ϕ the corresponding generalised decomposition number. By Brauer’s second main 

theorem, if b is the block of kG containing χ, then dx
χ,ϕ is zero unless ϕ is the Brauer 

character of a simple kCG(x) module lying in a block c of kCG(x) which is in Brauer 

correspondence with b. In other words, for all y ∈ CG(x)p′ we have that

χ(xy) =
∑

ϕ

dx
χ,ϕϕ(y) ,

where ϕ runs over the set of irreducible Brauer characters of CG(x) lying in Brauer 

correspondents of b.

Lemma A.2. Let x be a p-element of G. Let Z � G be a central p′-subgroup of G and e

a central idempotent of kZ. Then,

dimK dx(C(G, e)) = ℓ(kCG(x)e). (A.2)

If Q is a normal p-subgroup of G, then

dimK dQ(C(G, e)) =
∑

x∈Qcl/G

ℓ(kCG([x])e). (A.3)

Proof. The space dx(C(G)) consists of the class functions on G which vanish outside 

the p-section of x, hence dimK dx(C(G)) equals the number of p′-conjugacy classes of 

CG(x) and this number is in turn equal to the number of isomorphism classes of simple 

kCG(x)-modules. This proves that the first equation holds when e = 1kZ = 1kG. For 

the general case, first note that since Z is central in G, e is a central idempotent of kG

and of kCG(x) and Br〈x〉(e) = e, where Br〈x〉 : (kG)〈x〉 → kCG(x) denotes the Brauer 

homomorphism. We claim that if b is a block of kG such that be = b and c is a block 

of kCG(x) in Brauer correspondence with b, then ce = c. Indeed, by the uniqueness of 

central idempotent decompositions and the primitivity of b, we have be = b. By definition 

of Brauer correspondence, Br〈x〉(b)c = c. Hence

c = Br〈x〉(b)c = Br〈x〉(be)c = Br〈x〉(b)ec = cec = ce ,
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proving the claim. It follows from the claim that all simple kCG(x)c-modules are 

kCG(x)e-modules. Thus by Brauer’s second main theorem (and the linearity of dx), 

if τ ∈ (C(G, e)), then for all y ∈ CG(x)p′ we have

τ(xy) =
∑

ϕ

dx
χ,ϕϕ,

where ϕ runs over the set of Brauer characters of simple kCG(x)e = modules. Since 

dxτ is determined by its restriction to the subset of CG(x) consisting of elements whose 

p-part is x, it follows that dimK dx(C(G, e)) � ℓ(kCG(x)e). By the same considera-

tions, dimK dx(C(G, 1 − e)) � ℓ(kCG(x)(1 − e)). Since C(G) = C(G, e) ⊕ C(G, 1 − e), 

dimK dx(C(G)) � dimK dx(C(G, e)) + dimK dx(C(G, 1 − e)). The first equation now fol-

lows from the case e = 1kZ .

Let e be the image of e under the canonical surjection of kG → k(G/Q). Recall 

that restriction along kG → kG/Q induces a bijection between the set of isomorphism 

classes of simple kG/Q-modules and kG-modules sending simple k(G/Q)e-modules to 

kGe-modules. Also, for any x ∈ Q, e is a central idempotent of kCG(x) and identifying 

CG(x)/CG(x) ∩ Q with CG(x)Q/Q via the isomorphism induced by inclusion of CG(x)

in CG(x)Q, the image of e in k(CG(x)/CG(x) ∩ Q) is e. Hence

ℓ(kCG([x])e) = ℓ(kCG(x)Qe) = ℓ(k(CG(x)Q/Q)e) = ℓ(k(CG(x)/CG(x) ∩ Q)e)

= ℓ(kCG(x)e).

Now the second equation follows from the first since

dQ(C(G, e)) =
⊕

[x]∈Qcl/G

dx(C(G, e)). ✷

Lemma A.3. Let Z be a central p′-subgroup of G and e a central idempotent of kZ. Let 

Q be a normal p-subgroup of G. Then

dQ(C(G, e)) =
⊕

μ∈Irr(Q)/G

dQ(C(G, μ, e)). (A.4)

Proof. Since

C(G) =
⊕

μ∈Irr(Q)/G

C(G, μ),

we have

dQ(C(G)) =
∑

μ∈Irr(Q)/G

dQ(C(G, μ)).
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We show that the sum on the right of the second equation is direct. First note that if ϕ is 

an element of C(G, Q), then dQ(ϕ) = 0 if and only if the restriction of ϕ to all subgroups 

H containing Q as a Sylow p-subgroup equals zero. Now suppose that ϕμ ∈ C(G, μ), 

μ ∈ Irr(Q)/G are such that 
∑

μ∈Irr(Q)/G dQ(ϕμ) = 0 and let H be a subgroup of G

containing Q as a Sylow p-subgroup. Then the restriction of 
∑

μ∈Irr(Q)/G ϕμ = 0. But it 

is easy to see that the restriction of ϕμ to H is in the K-span of irreducible characters of 

H which cover G-conjugates of μ. In particular the restriction of ϕμ and ϕμ′ for μ′ �= μ

are orthogonal class functions on H. Hence the restriction of ϕμ to H equals zero for all 

H and all μ. It follows that dQ(ϕμ) = 0 for all μ. Thus

dQ(C(G)) =
⊕

μ∈Irr(Q)/G

dQ(C(G, μ)). (A.5)

The assertion of the lemma now follows as C(G, e) is the direct sum 
⊕

μ∈Irr(Q)/G C(G,

μ, e). ✷

Given the above Lemma, it remains to analyse dQ(C(G, μ, e)) for each irreducible 

character μ of Q. This is done via standard Clifford theoretic reductions.

Lemma A.4. Let Z be a central p′-subgroup of G and e a central idempotent of kZ. 

Let Q be a normal p-subgroup of G and let μ ∈ Irr(Q). Then dimK dQ(C(G, μ, e)) =

dimK dQ(C(CG(μ), μ, e)).

Proof. Induction from CG(μ) to G induces a bijection between Irr(CG(μ)) and Irr(G). 

Since Z � CG(μ), if χ ∈ Irr(G, μ, e), then IndG
CG(μ)(χ) ∈ Irr(G, μ, e). Hence induction 

induces an isometric isomorphism between C(CG(μ), μ, e) and C(G, μ, e). Further, it is 

easy to check from the induction formula that dQ(IndG
CG(μ)(τ)) = IndG

CG(μ)(d
Q(τ)) for 

all τ in C(CG(μ)). The result follows. ✷

Lemma A.5. Let Q be a normal p-subgroup of G and let μ be a G-stable irreducible 

character of Q. There exist a central extension

1 → Y → G̃
π
→ G → 1,

an irreducible character μ̃ of G̃ and a one dimensional character η of Y such that the 

following holds.

(1) Y is a finite p-group, the inverse image of Q in G̃ is a direct product of Y with a 

normal subgroup Q′ of G̃ such that π maps Q′ isomorphically onto Q.

(2) Identifying Q′ with Q through π, there exists a bijection

Irr(G, μ) → Irr(G̃, η−11Q), χ → χ0

such that for any g ∈ G and g̃ ∈ G̃ lifting g
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χ(g) = μ̃(g̃)χ0(g̃).

(3) Suppose that Z is a central p′-subgroup of G, and e is a central idempotent of kZ. 

Let Z̃ be the inverse image of Z in G̃. Then Z̃ = Y × Z ′, where Z ′ is a central 

p′-subgroup of G̃ mapping isomorphically onto Z by π. Identifying Z ′ with Z the 

bijection χ → χ0 restricts to a bijection between Irr(G, μ, e) and Irr(G̃, η−11Q, e).

Proof. The proof combines elements of standard Clifford theory. We briefly sketch the 

basic constructions. Let m be the dimension of μ and let eμ be the central idempotent of 

KQ corresponding to μ Then S = KQeμ is a matrix algebra of dimension m2. Since μ

is G-stable, the conjugation action of G on KG induces an action of G on S. The group 

G̃ is constructed as a subgroup of G × S×. Let π : G × S× → G and π′ : G × S× be the 

projections onto the first and second components respectively and identify K with the 

scalar matrices in S. Let Ĝ be the subgroup of G × S× consisting of all elements of the 

form (x, s), x ∈ G and s ∈ S× such that sxas−1
x = xax−1 for all a ∈ S. Since the action 

of each element of G on S is by an inner automorphism and K = Z(S), the restriction 

of π to Ĝ is a surjective homomorphism with kernel 1 × K×.

Choose a transversal I for Q in G containing Op′(G). In particular, I contains every 

central p′-element of G. For each x ∈ I, choose sx ∈ S× such that (x, sx) ∈ Ĝ and 

such that the determinant det(sx) of sx equals 1. This can be achieved by replacing K

by a suitable extension containing the m-th roots of det(sx), x ∈ G. Further, if z ∈ I

is a central p′-element of G, we choose sz to be the identity. Extend the map x → sx

to s : G → S× by setting sg = usx if g = ux, u ∈ Q, x ∈ I. For all g, h ∈ G, we 

have sgshs−1
gh ∈ K× is a scalar matrix. Note that since u|Q| = 1 for all y ∈ Q, we have 

that det(sg)|Q| = 1 for all g ∈ G and consequently by taking determinants we see that 

(sgshs−1
gh )m2|Q| = 1 for all g, h ∈ G.

Let G̃ be the subgroup of Ĝ generated by (sg, g), g ∈ G. The restriction π : G̃ → G

of pi to g̃ is surjective. Let Y � 1 × K× be the kernel of π. For g, h ∈ G̃,

(g, sg)(h, sh) = (gh, sgsh) = (1, sgshs−1
gh )(gh, sgh),

(g, sg)−1 = (1, sgsg−1)(g−1, sg−1) = (1, sgsg−1sgg−1)(g−1, sg−1).

It follows that Y = 〈(1, sgshs−1
gh ), g, h ∈ G〉. As noted above, Y has exponent dividing 

m2|Q|. Since Y is isomorphic to a subgroup of the multiplicative group of a field, Y is 

cyclic of order dividing m2|Q|. In particular, Y is a finite p-group. Let Q′ = {(u, su) : u ∈

Q}. Since susv = uv for all u, v ∈ Q, Q′ is a subgroup of G̃ with the required properties. 

This proves (1).

Let η : Y → K× be the irreducible character of Y which sends (1, λ · idS) to λ. 

The map π′ : G̃ → S× defines a representation of G̃ whose restriction to Y Q equals 

ημ. Let μ̃ be the corresponding character. Then μ̃ is irreducible and covers ημ. Let 

τ = 1
|Y ||Q|

∑
y∈Y,u∈Q η−1(y)(uy)−1 be the central idempotent of KY Q corresponding to 

η−11Q. There is a K-algebra isomorphism
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ϕ : KGeμ → S ⊗K KG̃τ (A.6)

satisfying

ϕ(geμ) = sg ⊗ (g, sg)τ, g ∈ G.

Let g ∈ G and let g̃ ∈ G̃ be a lift of g. Then g̃ = y(g, sg) for some y ∈ Y . Since 

ysg = η(y)sg and y(g, sg)τ = η−1(g, sg)τ it follows that sg ⊗ (g, sg)τ = π2(g̃) ⊗ g̃τ . Now 

(2) follows since Irr(G̃, η−11Q) coincides with the set of irreducible KG̃τ characters.

Let Z be a central p′-subgroup of G. By our choices above, sz is the identity matrix 

for all z ∈ Z. Hence Z ′ := {(z, 1) : z ∈ Z} is a central subgroup of G̃ and the inverse 

image Z̃ of Z in G̃ is a direct product Z̃ = Y × Z ′. Identifying Z ′ with Z, the image of 

the idempotent eeμ under the isomorphism (A.6) is idS ⊗ eτ , proving (3). ✷

Lemma A.6. Let Z be a central p′-subgroup of G and e a central idempotent of kZ. Let 

Q be a normal p-subgroup of G and let μ be a G-stable irreducible character of Q. Then

dimK dQ(C(G, μ, e)) = ℓ(kGe). (A.7)

Proof. Let G̃, Y , η and μ̃ be as in Lemma A.5. The bijection χ → χ0 extends by linearity 

to a K-linear isomorphism i : C(G, μ, e) → C(G̃, η−11Q, e) defined by

ϕ(g) = μ̃(g̃)i(ϕ)(g̃), i−1(ψ)(g) = μ̃(g̃)ψ(g̃)

for all ϕ ∈ C(G, μ, e), ψ ∈ C(G̃, η−11Q, e). g ∈ G and g̃ ∈ G̃ lifting g̃. Now gp ∈ Q if and 

only if (g̃)p ∈ Y Q. It follows that

i−1 ◦ dY Q ◦ i = dQ,

hence

dY Q ◦ i = i ◦ dQ,

where by dY Q we mean the relevant map on class functions on G̃. In particular, 

dimK dQ(C(G, μ, e)) = dimK dQ(C(G̃, η−11Q, e).

Let ψ ∈ C(G̃, η−11Q, e). For any u ∈ Q, y ∈ Y , g̃ ∈ G̃, we have ψ(yug̃) = η(y)ψ(g̃)

from which it follows that

dimK dY QC(G̃, η−11Q, e) = dimK d1C(G̃, e) = ℓ(kG̃e) = ℓ(kGe)

where the second equality holds by Lemma A.2 and the last equality holds since every 

simple kG̃e-module has Y in its kernel. ✷

Proof of Lemma A.1. This follows from Lemmas A.2, A.3, A.4 and A.6. ✷
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