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ABSTRACT

Suppose that p is an odd prime and G is a finite group having no normal

non-trivial p′-subgroup. We show that if a is an automorphism of G of

p-power order centralizing a Sylow p-group of G, then a is inner.

1. Introduction

Let p be a prime. There has been quite a lot of interest in the problem of

characterizing automorphisms of order a power of p centralizing a Sylow p-

subgroup of a finite group G.

In particular, Question 14.1 of the Kourovka Notebook [14] which was posed

in 1999 asked whether if G has no non-trivial normal odd order subgroups

(i.e., O2′(G) = 1), then for any such automorphism a with p = 2, a2 is inner.

This had already been answered in the affirmative in Glauberman [4, Corol-

lary 8] in 1968. By taking G = An with n ≥ 6 with n ≡ 2, 3mod4 and g ∈ Sn

a transposition, one sees that it is not always true that a is inner.

If p is odd, then under the assumptions that Op(G) = Op′(G) = 1, Gross [10]

showed that any such automorphism is inner. Gross used the classification of

finite simple groups while Glauberman did not. In this note, we show how

to extend the result of Gross allowing the possibility of nontrivial Op(G) (and

using the classification of finite simple groups). This was conjectured by Gross

in [10] and a partial result was obtained by Murai [16]. We complete the proof

and show:

Theorem 1.1: Let p be an odd prime and L a finite group with Op′(L) = 1.

Suppose that a is an automorphism of L whose order is a power of p and a

centralizes a Sylow p-subgroup of L. Then a is an inner automorphism of L.

It is not hard to see that Theorem 1.1 can fail ifOp′(L) �= 1. For example, take

L = G×Op′(L) and choose a to be a non-inner automorphism of Op′(L), viewed

as an automorphism of L acting trivially on G. A consequence of Theorem 1.1

is the following. Recall that F ∗(G) is the generalized Fitting subgroup of G.

Corollary 1.2: Let p be an odd prime, and let G be a finite group with

Op′(G) = 1. Let P be a Sylow p-subgroup of G. Then

Z(P ) ≤ F ∗(G).
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If p = 2, the analogous corollary is that if G is a finite group with no odd

normal subgroups, then Z(P )/(Z(P )∩F ∗(G)) is of exponent 2 (and because of

Glauberman’s result, this does not depend upon the classification of finite simple

groups). If G = Sn with n ≡ 2mod4 , then each transposition is central in some

Sylow 2-subgroup P and so certainly it is not the case that Z(P ) ≤ F ∗(G).

We will give two proofs of Theorem 1.1. The first proof uses the Thompson

subgroup and the Z∗
p theorem for p odd (the analogue of Glauberman’s Z∗

theorem for p = 2). In contrast to Glauberman’s Z∗ theorem, the Z∗
p theorem

relies on the classification of finite simple groups.

The second proof reduces to the almost simple case (where we use Gross’s

result [10]) and to a more subtle result about automorphisms of quasi-simple

groups. See Theorem 4.2.

We mention that there is a result directly analogous to Theorem 1.1 that

applies to a centric linking system L associated to a saturated fusion system

over a p-group S with p odd. Namely, any automorphism of L which restricts

to the identity on S, appropriately defined, is “conjugation by” an element

of Z(S) ≤ AutL(S). This follows by combining [2, Proposition III.5.12], which

connects automorphisms of L with limits of the center functor, with [17, The-

orem 3.4] or [6, Theorem 1.1], which show that the center functor is acyclic at

odd primes. Likewise, it is shown in work to appear [7] that there is an analogue

of [4, Corollary 8] for centric linking systems at the prime 2. These purely local

results do not require an appeal to the Classification.

The paper is organized as follows. In the next section we introduce some

notation and prove a few preliminary results. In the following section, we discuss

the Z∗
p theorem and indicate some connections with Gross’s result and then give

our first proof. In the next section we prove Theorem 4.2 (which is stronger

than the main theorem for quasi-simple groups) and then show how to deduce

Theorem 1.1 from the results about simple and quasi-simple groups. Finally we

deduce the corollary.

We will need to use detailed properties of automorphism groups of simple

groups. Most of these results were first obtained by Steinberg. We refer the

reader to the reference [9, 2.5]. In particular, if p ≥ 3, then the only quasi-simple

groups with nontrivial outer automorphisms of order a power of p are groups

of Lie type. Moreover if p ≥ 5, then only field automorphisms are possible

unless we are in type A, in which case there may be diagonal automorphisms
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of p-power order. If p = 3, there are more cases with diagonal automorphisms

and triality needs to be dealt with as well.

In the final section, we prove Theorem 6.1 on permutation groups, and show

that it is equivalent to the Z∗
p theorem.

Acknowledgments. We thank I. M. Isaacs for collaborating with us on an

earlier version where we gave a new proof of Glauberman’s result and Gross’s

result. We also thank Richard Lyons, Gunter Malle and Ron Solomon for

comments on an earlier version of this paper.

2. Notation and preliminary results

Let G be a finite group and p a prime. We recall some notation (see [13] for more

details). The maximal normal p-subgroup of G is denoted by Op(G) and Op′(G)

is the maximal normal p′-subgroup of G. The Fitting subgroup, F (G), is the

maximal normal nilpotent subgroup of G and is the direct product of the sub-

groups Or(G) where r ranges over all prime divisors of |G|.

A quasi-simple group is a group Q such that Q is perfect (i.e., Q = [Q,Q])

and Q/Z(Q) is a non-abelian simple group. A component of G is a subnor-

mal quasi-simple subgroup. Then E(G) is the subgroup of G generated by all

components of G (and is the central product of all the components of G). The

generalized Fitting subgroup F ∗(G) of G is the central product E(G)F (G). It

has the very important property that CG(F
∗(G)) = Z(F ∗(G)) = Z(F (G)).

Lemma 2.1: Suppose that a finite group L acts via automorphisms on a finite

abelian group M . Let N be an L-invariant subgroup of M such that L acts

trivially on the p-group M/N . Assume that M = NCM (T ) for some Sylow

p-subgroup T of L. Then M = NCM (L).

Proof. Let m ∈ CM (T ). Thus, X := {mℓ | ℓ ∈ L} is an L-invariant subset of M

of cardinality e with e prime to p. Let

m′ =
∏

x∈X

x.

Clearly, m′ ∈ CM (L). Using that L acts trivially on M/N , we have

that m′N = meN . Then me ∈ CM (L)N . Since e is prime to p, we have that

the map x �→ xe is a bijection CM (T )/CN(T ) → CM (T )/CN(T ). Therefore

CM (T ) ⊆ CM (L)N , and we deduce that M = CM (L)N .
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The following result handles an easy case of the theorem and gives a reduction

to the case that L = E(L)T where T is a Sylow p-subgroup of L. The next two

results hold without assuming that a has order a power of p, but that is the

important case and the only case we use.

Lemma 2.2: Let L be a finite group, p prime and Op′(L) = 1. If a is an

automorphism of L of order a power of p which centralizes E(L)T with T a

Sylow p-subgroup of L, then a induces an inner automorphism of L.

Proof. Let G = L〈a〉 be the semidirect product. Notice that if Q is a component

of G, since Q is perfect and Q/(Q∩L) is cyclic, we have that Q ⊆ L. Thus the

components ofG are the components of L. Hence, we have that F ∗(G) = E(L)S

where S = F (G) is a p-group.

By hypothesis, a is in the center of the Sylow p-subgroup T 〈a〉 of G and a

centralizes E(L)T . Since F (G) ≤ T 〈a〉, we have that a centralizes

F ∗(G) = E(G)F (G) = E(L)F (G).

So a lies in Z(F ∗(G)) = Z(F (G)) = Z(S).

Note that M := Z(S) is an abelian p-group and M/N is centralized by L

where N = M ∩L. Now apply the previous lemma to conclude that there exists

z ∈ N ≤ L so that az centralizes L and so a induces conjugation by z−1.

A special case of the previous result is the following:

Corollary 2.3: Let L be a finite group with F ∗(L) = Op(L). If a is a

nontrivial automorphism of L of order a power of p which centralizes a Sylow

p-subgroup P of L, then a is induced by conjugation by an element of Z(P ).

The following result will be used in studying quasi-simple groups. If g ∈ L,

then gL denotes the conjugacy class of g in L.

Lemma 2.4: Let L be a finite group with Z a central p-subgroup. Let g ∈ L

such that |L : CL(g)| is not divisible by p. Then gL ∩ gZ = {g}.

Proof. Suppose that gu = gz for some z ∈ Z and u ∈ L. Thus [g, u] = z and so

[g, ur] = zr for every integer r.

Note also that u normalizes the centralizer of g. If H = NL(CL(g)), then the

hypotheses of the lemma are satisfied in H , and working by induction on |L|,

we may assume that H = L. Now, L/CL(g) is a p′-group. Let r be the p′-part

of the order of u, and let v = ur. Then v is in CL(g) and gv = gzr. Hence,

zr = 1. Since Z is a p-group, z = 1.
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3. The Z∗
p theorem and a proof

Let G be a group and x ∈ H for some subgroup H of G. We say x is isolated

or weakly closed in H with respect to G if xG ∩H = {x}.

Theorem 3.1: Let G be a finite group with a Sylow p-subgroup S. If x ∈ S is

isolated with respect to G, then x is central modulo Op′(G).

The result is usually stated for elements of order p but this implies the result

for elements of order pa by Lemma 3.2 below. We also note that it is easy to see

that if x is isolated in a Sylow p-subgroup, then x is isolated in its centralizer

(i.e., it does not commute with any distinct conjugate).

If p = 2 and x is an involution, then this is Glauberman’s Z∗ theorem [3] and

does not depend on the classification of finite simple groups. So assume that p

is odd.

It was observed by many that this follows from the classification of finite

simple groups (with some effort) and always stated with the extra assumption

that x has order p. It was proved in [1, Thm. 1], [11, Thm. 4.1] and follows

easily by [9, 7.8.2, 7.8.3]. Interestingly, the first two proofs both used [10] to

reduce from the almost simple case (i.e., F ∗(G) is simple) to the simple case.

The last proof uses a different result about weakly closed subgroups of order p.

The result for any p-element x follows by the result for elements of order p and

Lemma 3.2 below.

We give a quick sketch to indicate the connection with Gross’s result. There is

no loss in assuming Op′(G) = 1 and then showing x ∈ Z(G). The result is clear

if x ∈ Op(G); so assume this is not the case. By induction we assume that G is

the normal closure 〈xG〉 of x because otherwise we obtain x ∈ Z(〈xG〉) ≤ Op(G).

If E(G) = 1, then F ∗(G) = Op(G) and x ∈ CG(F
∗(G)) = Z(Op(G)) and the

result holds. Let Q be a component of G. Thus |Q/Z(Q)| has order divisible

by p, whence x normalizes each component and therefore so does G. Note that x

must act non-trivially on Q/Z(Q) (as G is the normal closure of x).

Clearly xZ(Q) is isolated in G/Z(Q). First assume that Z(Q) = 1 and so

we may assume that G is almost simple. At this point, we can invoke [10] to

conclude that x induces an inner automorphism and so reduce to the simple

case. In order to avoid that, we use [9, 7.8.2, 7.8.3] (see also [8, 4.250]) to

reduce to the simple case and to a short list of possibilities. In all these cases,

there is an involution inverting x and the result follows.
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More generally this shows that xZ(Q) is central in G/Z(Q) whence x∈Op(G),

which contradicts the fact that G = 〈xG〉.

One can also prove the result more directly after reducing to the case of

simple groups. If G is alternating, one sees that NG(〈x〉) �= CG(〈x〉) for any

nontrivial p-element x, whence x is not isolated. One checks the sporadic groups

directly. If G is a finite group of Lie type in characteristic p, the center consists

of root elements (or products of commuting short and long root elements in a

few cases) and it is easy to check. If G is a finite group of Lie type in charac-

teristic r �= p, then in most groups, we have −1 in the Weyl group and every

semisimple element of odd order is real, whence not isolated. This leaves the

cases PSLn(q), n > 2, PSUn(q), n > 2 and orthogonal groups in dimension 2m

with m > 3 odd, and E6 and 2E6(q). The argument for the classical groups is

an easy linear algebra argument and the group of type E6 follows by inspec-

tion of normalizers of maximal tori. See [12] for similar arguments (proving a

somewhat different result).

Lemma 3.2: Let G be a finite group with Sylow p-subgroup S. If a ∈ S

is weakly closed in S with respect to G, then any power of a has the same

property.

Proof. The hypothesis implies that a ∈ Z(S). Let b be a power of a, and let

g ∈ G with b1 := bg
−1

∈ S. Note that a commutes with b1 and so ag commutes

with b. So ag is a p-element in CG(b) and S is a Sylow p-subgroup of CG(b).

Thus, agh ∈ S for some h ∈ CG(b). Since a is weakly closed in S, agh = a and

so also bgh = b. Thus, bg = b whence b1 = b and so b is isolated in S.

We can now prove the main theorem.

Theorem 3.3: Let p be an odd prime, and let G be a finite group with Sy-

low p-subgroup S. Let a be an automorphism of G of p-power order which

centralizes S. If Op′(G) = 1, then a is inner.

Proof. The argument is similar in part to the proof of [6, Lemma 8.2]. We induct

on the order of a. Let Ĝ = G〈a〉 be the semidirect product, and let Ŝ = S〈a〉.

For each subgroup X of Ŝ, denote by J(X) the Thompson subgroup of X

generated by the abelian subgroups of X of maximum order. Set D̂ = Z(J(Ŝ))

and D = D̂ ∩ S for short. Then Ŝ is Sylow in Ĝ and 〈a〉 ≤ Z(Ŝ) ≤ D̂.

So X̂ = X × 〈a〉 for X ∈ {S,D}.
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Let Ĥ = NĜ(J(Ŝ)) in which Ŝ is Sylow, and let n be the index of Ŝ in Ĥ .

As Ĝ/G is abelian and D̂ is normal in Ĥ,

[D̂, Ĥ ] ≤ G ∩ D̂ = D,

so

(3.1) Ĥ centralizes D̂/D.

Consider the norm/transfer/trace map

N = NĤ
Ŝ
: CD̂(Ŝ) → CD̂(Ĥ)

defined by setting

N(d) =
∏

h∈[Ĥ/Ŝ]

dh.

By (3.1),

N(a) ≡ an (mod D).

Since |a| is coprime to n, the restriction N〈a〉 is injective, and we may choose

m ≥ 1 with N(am) ≡ a (mod D). Thus we may find z ∈ D such that

az = N(am) ∈ CD̂(Ĥ).

Since az ∈ CD̂(Ĥ) ≤ Z(Ŝ) and a ∈ Z(Ŝ), we see that

z ∈ Z(Ŝ) ∩G = Z(S).

Set a1 = az; it has order |a|. By construction a1 is weakly closed in Ŝ with

respect to Ĥ. Since p is odd, a1 is weakly closed in Ŝ with respect to Ĝ by [5,

Theorem 14.4].

Let b1 be a power of a1 having order p. Lemma 3.2 gives that b1 is also

weakly closed in Ŝ with respect to Ĝ. So the assumption Op′(G) = 1 and

the Z∗
p theorem yield b1 ∈ Z(Ĝ). This shows that conjugation by a1 induces an

automorphism of G of order at most |a|/p centralizing S, and so conjugation

by a1 is inner by induction. It follows that a is inner.

4. Almost simple groups

The following two theorems about simple and quasi-simple groups provide the

key to give a second proof of our main results. The first is a result of Gross

[10], while the other is new and may be of independent interest. Both results

depend upon the classification of finite simple groups.
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Theorem 4.1: Let p be an odd prime, and suppose L is a finite non-abelian

simple group with order divisible by p. Also, let a be an automorphism of L

that has p-power order, and assume that a centralizes a Sylow p-subgroup of L.

Then a is an inner automorphism of L.

Theorem 4.2: Let p be an odd prime and suppose that Q is a finite quasi-

simple group with center Z. Let P be a Sylow p-subgroup of Q and

let x ∈ Z(P ). Let H be the largest subgroup of Aut(Q) with [H,x] ≤ Z

(i.e., H = CAut(Q)(xZ/Z)). Then there exists y ∈ xZ a p-element such that H

centralizes y.

We prove Theorem 4.2 below. It gives the following corollary, which is used

in the second proof of our main result. The corollary is an immediate conse-

quence of the theorem by noting that an automorphism σ of Q commutes with

conjugation by x if and only [σ, x] ∈ Z.

Corollary 4.3: Let Q be a quasi-simple group with center Z a p-group. Sup-

pose that x ∈ Z(P ) with P a Sylow p-subgroup of Q. There exists y ∈ xZ

such that if σ is an automorphism of Q that commutes with conjugation by x,

then σ fixes y.

The remainder of this section is devoted to proving Theorem 4.2. We are

assuming that Theorem 4.1 holds.

We first note:

Lemma 4.4: Let Q be a quasi-simple group. If p does not divide |Z(Q)| or p

does not divide |Out(Q)|, then Theorem 4.2 holds for Q.

Proof. Suppose that Z = Z(Q) is a p′-group. Then 〈x〉 is the Sylow p-subgroup

of 〈x, Z〉 and so [H,x] ≤ Z implies that [H,x] = 1. Indeed, the same argument

shows that by passing to Q/Op′(Z), we may assume that Z is a nontrivial

p-group.

By Lemma 2.1, it suffices to prove the result for a Sylow p-subgroup R of H .

If p does not divide |Out(Q)|, then R induces inner automorphisms on Q. By

Lemma 2.4, it follows that R centralizes x.

The previous result shows that Theorem 4.2 holds when Q/Z is an alternating

or sporadic group (since the outer automorphism group has order 1, 2 or 4 [9,

5.2.1, Table 5.3]). Thus we may assume that L := Q/Z is a finite group of Lie

type and moreover that Z is a nontrivial p-group.
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If the characteristic of L is prime to p, then almost always the Schur multiplier

has order prime to p. Using [9] it is straightforward to check in the few cases

where p does divide the order of the Schur multiplier, p does not divide the

order of the outer automorphism group, whence Theorem 4.2 holds.

Thus, we may assume that L is a finite group of Lie type in characteristic

r �= p. By [9], the only L such that p divides both the order of the Schur

multiplier and the outer automorphism group are:

(i) L = PSL(d, q) and p divides (d, q − 1); or

(ii) L = PSU(d, q) and p divides (d, q + 1); or

(iii) p = 3 and L = E6(q) and 3 divides q − 1 or L = 2E6(q) and 3

divides q + 1.

Note that in all cases the Schur multiplier of L is cyclic and so Z is cyclic. In

the last case above, Z(P ) = Z by [15] whence the theorem holds in that case.

We next prove an elementary result that is the key to proving Theorem 4.2.

The statement of the result is almost as long as the proof.

Lemma 4.5: Let c and d be positive integers. Let p be an odd prime and let C

be a cyclic group of order pc. Let e be a positive integer with e ≡ 1 (mod p).

Set M = Cd (the direct sum of d copies of C) and view M as a module

for Sd × 〈σ〉 where Sd acts on M by permuting the coordinates of M

and σ(x) = ex for all x ∈ M . Let ǫ : M → C be the augmentation map

(i.e., the sum of the coordinates) and M0 = ker(ǫ). Let Z be the group of fixed

points of Sd on M and set Z0 = Z ∩M0. Let Q be a Sylow p-subgroup of Sd.

Let

M1 = {x ∈ M0|[x,Q] ≤ Z0}.

Then

{x ∈ M1|[x, σ] ∈ Z0} = Z0 + CM1
(σ).

Proof. Let q = pb be the largest power of p dividing d. If q = 1, then

M = M0 ⊕ Z and the result is clear. So assume that q > 1.

Note that if [x, σ] ∈ Z, then x = (x1, . . . , xd) where xi = w+si with w, si ∈ C

and (e− 1)si = 0.

First suppose that q �= d. Thus, Q has more than one orbit and so we

see that M1 consists of those elements in M0 in which the coordinates are

constant on each orbit of Q. Thus, if x ∈ M1 and [σ, x] ∈ Z0, it follows that

x = (x1, . . . , xd) where xi = w + si and each si occurs a multiple of q times
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(since the coordinate is constant on each orbit of Q). Thus dw = −qt where t

is in the subgroup generated by the si and in particular (e− 1)t = 0. Suppose

that dw �= 0. Then since q is the largest power of p dividing d, it follows that w

and t generate the same subgroup of C and so (e − 1)w = 0 and w and x are

centralized by σ and the result holds. If dw = 0, then

x = (w, . . . , w) + (s1, . . . , sd) ∈ Z0 + CM1
(σ).

Finally suppose that q = d. Then Q permutes p blocks of imprimitivity

(possibly q = p) of size q/p (we take the blocks to consist of consecutive in-

tegers). Let Q1 be the subgroup of index p fixing each block. Let x ∈ M .

Then [x,Q1] ≤ Z implies that all coordinates of x on each block are constant.

So write x = (x1, . . . , xp) where xi is a constant vector corresponding to the ith

block. Let ρ ∈ Q be of order p permuting the blocks. We assume that ρ

takes (x1, . . . , xp) to (x2, . . . , xp, x1). Then [x, ρ] ∈ Z implies that

x = (y, . . . , y) + (0, u, 2u, . . . , (p− 1)u)

with pu = 0. Let W = {x ∈ M |[x,Q] ≤ Z}. So we have shown that W = Z⊕Z ′

where Z ′ is the subgroup of order p generated by (0, u, 2u, . . . , (p− 1)u) with u

any element of order p. Note that |Z ′| = p and moreover Z ′ ≤ M0 (since p is

odd) and is centralized by σ. Thus

M1 = W ∩M0 = Z0 ⊕ Z ′ = Z0 + CM1
(σ)

and the result follows.

We now give the proof of Theorem 4.2 in the case that L = PSL(d, q) with p

dividing (d, q − 1) and q = re. The proof is identical for L = PSU(d, q) (with p

dividing (d, q + 1)—using the fact that p is odd). The idea is to reduce to

working in the normalizer of a maximal torus and then the result essentially

follows by Lemma 4.5.

Let R = SL(d, q) with center Z2. Then we can take Q = R/Z1 for some

subgroup Z1 ≤ Z2 such that Z2/Z1 = Z is a nontrivial p-group.

We actually prove a bit more than we require by working in R rather

than R/Z1. Let T be the diagonal subgroup of R and let P be a Sylow p-

subgroup of R contained in the normalizer of T . Note that the normalizer of T

is just TSd and we can take P ≤ TW1 with W1 a Sylow p-subgroup of Ad.

Let x ∈ P with [P, x] ≤ Z2. It is straightforward to see that x ∈ T .
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Let H be the subgroup of Aut(R) such [H,x] ≤ Z2 and let W be a Sylow

p-subgroup of H . Note that we can take W so that W = S(W1 × 〈σ〉) where S

is the Sylow p-subgroup of T in PGLd(q) (i.e., the corresponding split torus

in PGL, which in particular centralizes T ), W1 is as above and σ is a standard

Frobenius automorphism (of p-power order).

By Lemma 4.5, we can find y ∈ xZ2 so that σ centralizes y and so replacing x

by y we may assume that σ centralizes x. Thus, [P, x] = [W,x]. In particular

if xZ1 is central in P/Z1, then W centralizes xZ1, whence by an averaging

argument (Lemma 2.1), H centralizes xZ1 as required.

This completes the proof of Theorem 4.2.

5. Second proof of the theorem and proof of the corollary

Theorem 5.1: Suppose that p is an odd prime and L is a finite group

with Op′(L) = 1. Suppose that a ∈ Aut(L) has order a power of p and a

centralizes a Sylow p-subgroup of L. Then a acts as an inner automorphism

of L.

Proof. By Lemma 2.2 we may assume that L = E(L)S. Thus, the L-orbits of

a component are precisely the S-orbits. Let Q be a component of L. Let t be

the number of conjugates of Q in G. Since Op′ (G) = 1, S ∩Q is not contained

in Z(Q) and since a centralizes S, a normalizes Q.

Then a induces an inner automorphism on Q/Z(Q) by Theorem 4.1 and

so on Q since it is perfect. Thus, by Corollary 4.3, there exists q ∈ Q such

that aq centralizes Q and moreover q centralizes any automorphism of Q that

centralizes qZ(Q)/Z(Q) in Q/Z(Q). Since S centralizes a, it follows that NS(Q)

centralizes qZ(Q)/Z(Q) whence NS(Q) centralizes q. Thus, the set of S-

conjugates of q consists of t elements with one in each of the t conjugates of Q.

In particular, these conjugates commute and their product b is thus centralized

by S. Moreover, since qa centralizes Q and S centralizes a, it follows that ab

centralizes the central product of the conjugates of Q as well as S.

Repeating this for each orbit of components of L, we see that there is a

p-element c ∈ E(L) such that ac centralizes SE(L) = L, whence a induces

conjugation by c on L and the result follows.

Finally we deduce Corollary 1.2 from Theorem 1.1.
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So let G be a finite group with Op′(G) = 1 and let P be a Sylow p-subgroup

of G, where p is odd. Let x ∈ Z(P ). Then conjugation by x induces an

automorphism of F ∗(G) and centralizes a Sylow p-subgroup of F ∗(G). Thus, x

is inner on F ∗(G). Thus,

x ∈ F ∗(G)CG(F
∗(G)) = F ∗(G)

and the result follows.

6. A permutation version of the Z∗
p theorem

Finally we prove a permutation group result that is essentially equivalent to

the Z∗
p theorem. In particular, for p = 2, the proof does not require the classi-

fication of finite simple groups.

Theorem 6.1: Suppose p is a prime, G is a transitive subgroup of Sn, and G

possesses a p-element g that has a unique fixed point w and is central in Gw, the

stabilizer of w. Then N := Op′(G) is transitive, Gw = CG(g) and G = NCG(g).

Proof. Since g has a unique fixed point w, NG(〈g〉) also fixes w. By assumption,

Gw ≤ CG(g), whence CG(g) = Gw. Let x ∈ G, and assume gx∈CG(g)=Gw.

Then gx fixes the unique point wx, but as gx ∈ Gw, it also fixes w. Thus,

x ∈ Gw = CG(g)

by uniqueness, so that gx = g. This shows that g is isolated in CG(g). Since p

divides n− 1, Gw contains a Sylow p-subgroup P of G. Thus g is isolated in P .

By the Z∗
p theorem, it follows that g is central modulo N .

In particular, M := 〈N, g〉 is normal in G and 〈g〉 is a Sylow p-subgroup

of M . By the Frattini argument, G = MNG(〈g〉) = NCG(g) = NGw and the

theorem follows.

Let us note the previous theorem implies the Z∗
p theorem. By the usual

reductions (as described after Theorem 3.1), it suffices to prove this when G is

almost simple and its socle has order divisible by p. Suppose that g ∈ G is a

nontrivial p-element and g is isolated in a Sylow p-subgroup P . Then g is also

isolated in CG(g) (for if g
a ∈ CG(g), then g and ga are in a Sylow p-subgroup P b

of CG(g) and so gab
−1

are both in P , whence ga = gb = g). Let G act on the

left cosets of CG(g). Since G is almost simple, the action is faithful. Since g is

isolated in CG(g), g has a unique fixed point in this action. By the theorem,

this implies that Op′(G) is transitive and trivial, whence g is central.
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