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ABSTRACT

Suppose that p is an odd prime and G is a finite group having no normal
non-trivial p’-subgroup. We show that if a is an automorphism of G of
p-power order centralizing a Sylow p-group of G, then a is inner.

1. Introduction

Let p be a prime. There has been quite a lot of interest in the problem of
characterizing automorphisms of order a power of p centralizing a Sylow p-
subgroup of a finite group G.

In particular, Question 14.1 of the Kourovka Notebook [14] which was posed
in 1999 asked whether if G has no non-trivial normal odd order subgroups
(i.e., O (G) = 1), then for any such automorphism a with p = 2, a? is inner.
This had already been answered in the affirmative in Glauberman [4, Corol-
lary 8] in 1968. By taking G = A,, with n > 6 with n =2,3mod4 and g € S,
a transposition, one sees that it is not always true that a is inner.

If p is odd, then under the assumptions that O,(G) = O, (G) = 1, Gross [10]
showed that any such automorphism is inner. Gross used the classification of
finite simple groups while Glauberman did not. In this note, we show how
to extend the result of Gross allowing the possibility of nontrivial O,(G) (and
using the classification of finite simple groups). This was conjectured by Gross
in [10] and a partial result was obtained by Murai [16]. We complete the proof
and show:

THEOREM 1.1: Let p be an odd prime and L a finite group with O (L) = 1.
Suppose that a is an automorphism of L whose order is a power of p and a
centralizes a Sylow p-subgroup of L. Then a is an inner automorphism of L.

It is not hard to see that Theorem 1.1 can fail if O,/ (L) # 1. For example, take
L = Gx Oy (L) and choose a to be a non-inner automorphism of O, (L), viewed
as an automorphism of L acting trivially on G. A consequence of Theorem 1.1
is the following. Recall that F*(G) is the generalized Fitting subgroup of G.

COROLLARY 1.2: Let p be an odd prime, and let G be a finite group with
Oy (G) =1. Let P be a Sylow p-subgroup of G. Then

Z(P) < F*(G).
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If p = 2, the analogous corollary is that if G is a finite group with no odd
normal subgroups, then Z(P)/(Z(P)NF*(G)) is of exponent 2 (and because of
Glauberman’s result, this does not depend upon the classification of finite simple
groups). If G = S, with n = 2mod 4, then each transposition is central in some
Sylow 2-subgroup P and so certainly it is not the case that Z(P) < F*(QG).

We will give two proofs of Theorem 1.1. The first proof uses the Thompson
subgroup and the Z; theorem for p odd (the analogue of Glauberman’s Z*
theorem for p = 2). In contrast to Glauberman’s Z* theorem, the Z theorem
relies on the classification of finite simple groups.

The second proof reduces to the almost simple case (where we use Gross’s
result [10]) and to a more subtle result about automorphisms of quasi-simple
groups. See Theorem 4.2.

We mention that there is a result directly analogous to Theorem 1.1 that
applies to a centric linking system L associated to a saturated fusion system
over a p-group S with p odd. Namely, any automorphism of £ which restricts
to the identity on S, appropriately defined, is “conjugation by” an element
of Z(S) < Aut,(S). This follows by combining [2, Proposition I11.5.12], which
connects automorphisms of £ with limits of the center functor, with [17, The-
orem 3.4] or [6, Theorem 1.1], which show that the center functor is acyclic at
odd primes. Likewise, it is shown in work to appear [7] that there is an analogue
of [4, Corollary 8] for centric linking systems at the prime 2. These purely local
results do not require an appeal to the Classification.

The paper is organized as follows. In the next section we introduce some
notation and prove a few preliminary results. In the following section, we discuss
the Z7 theorem and indicate some connections with Gross’s result and then give
our first proof. In the next section we prove Theorem 4.2 (which is stronger
than the main theorem for quasi-simple groups) and then show how to deduce
Theorem 1.1 from the results about simple and quasi-simple groups. Finally we
deduce the corollary.

We will need to use detailed properties of automorphism groups of simple
groups. Most of these results were first obtained by Steinberg. We refer the
reader to the reference [9, 2.5]. In particular, if p > 3, then the only quasi-simple
groups with nontrivial outer automorphisms of order a power of p are groups
of Lie type. Moreover if p > 5, then only field automorphisms are possible
unless we are in type A, in which case there may be diagonal automorphisms
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of p-power order. If p = 3, there are more cases with diagonal automorphisms
and triality needs to be dealt with as well.

In the final section, we prove Theorem 6.1 on permutation groups, and show
that it is equivalent to the Z theorem.

ACKNOWLEDGMENTS. We thank I. M. Isaacs for collaborating with us on an
earlier version where we gave a new proof of Glauberman’s result and Gross’s
result. We also thank Richard Lyons, Gunter Malle and Ron Solomon for
comments on an earlier version of this paper.

2. Notation and preliminary results

Let G be a finite group and p a prime. We recall some notation (see [13] for more
details). The maximal normal p-subgroup of G is denoted by O,(G) and Oy (G)
is the maximal normal p’-subgroup of G. The Fitting subgroup, F(G), is the
maximal normal nilpotent subgroup of G and is the direct product of the sub-
groups O,(G) where r ranges over all prime divisors of |G|.

A quasi-simple group is a group @ such that Q is perfect (i.e., Q = [Q,Q)])
and Q/Z(Q) is a non-abelian simple group. A component of G is a subnor-
mal quasi-simple subgroup. Then E(QG) is the subgroup of G generated by all
components of G (and is the central product of all the components of G). The
generalized Fitting subgroup F*(G) of G is the central product E(G)F(G). It
has the very important property that Cq(F*(G)) = Z(F*(G)) = Z(F(G)).

LEMMA 2.1: Suppose that a finite group L acts via automorphisms on a finite
abelian group M. Let N be an L-invariant subgroup of M such that L acts
trivially on the p-group M/N. Assume that M = NCy(T) for some Sylow
p-subgroup T' of L. Then M = NCy(L).

Proof. Let m € Cp(T). Thus, X := {m’ | £ € L} is an L-invariant subset of M
of cardinality e with e prime to p. Let

/ ||
m = xX.

zEX
Clearly, m’ € Cpy(L). Using that L acts trivially on M/N, we have
that m’N = m®N. Then m® € Cp(L)N. Since e is prime to p, we have that
the map x — z° is a bijection Cp(T)/Cn(T) = Cp(T)/Cn(T). Therefore
Cu(T) C Cy(L)N, and we deduce that M = Cyp(L)N. |
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The following result handles an easy case of the theorem and gives a reduction
to the case that L = E(L)T where T is a Sylow p-subgroup of L. The next two
results hold without assuming that a has order a power of p, but that is the
important case and the only case we use.

LEMMA 2.2: Let L be a finite group, p prime and Oy (L) = 1. If a is an
automorphism of L of order a power of p which centralizes E(L)T with T a
Sylow p-subgroup of L, then a induces an inner automorphism of L.

Proof. Let G = L{a) be the semidirect product. Notice that if Q) is a component
of G, since @ is perfect and Q/(Q N L) is cyclic, we have that @ C L. Thus the
components of G are the components of L. Hence, we have that F*(G) = E(L)S
where S = F(G) is a p-group.

By hypothesis, a is in the center of the Sylow p-subgroup T{(a) of G and a
centralizes F(L)T. Since F(G) < T'(a), we have that a centralizes

F*(G)=FE(G)F(G) = E(L)F(G).

So a lies in Z(F*(G)) = Z(F(G)) = Z(95).

Note that M := Z(S) is an abelian p-group and M/N is centralized by L
where N = M N L. Now apply the previous lemma to conclude that there exists
z € N < L so that az centralizes L and so a induces conjugation by z~*. |

A special case of the previous result is the following;:

COROLLARY 2.3: Let L be a finite group with F*(L) = O,(L). Ifa is a
nontrivial automorphism of L of order a power of p which centralizes a Sylow
p-subgroup P of L, then a is induced by conjugation by an element of Z(P).

The following result will be used in studying quasi-simple groups. If g € L,
then g* denotes the conjugacy class of g in L.

LEMMA 2.4: Let L be a finite group with Z a central p-subgroup. Let g € L
such that |L : Cr(g)| is not divisible by p. Then g* N gZ = {g}.

Proof. Suppose that g* = gz for some z € Z and u € L. Thus [g,u] = z and so
[g,u"] = 2" for every integer 7.

Note also that u normalizes the centralizer of g. If H = N1(CL(g)), then the
hypotheses of the lemma are satisfied in H, and working by induction on |L|,
we may assume that H = L. Now, L/CL(g) is a p’-group. Let r be the p’-part
of the order of u, and let v = «”. Then v is in Cr(g) and g” = gz". Hence,
z" = 1. Since Z is a p-group, z = 1. |
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3. The Z; theorem and a proof

Let G be a group and z € H for some subgroup H of G. We say z is isolated
or weakly closed in H with respect to G if ¢ N H = {x}.

THEOREM 3.1: Let G be a finite group with a Sylow p-subgroup S. If x € S is
isolated with respect to G, then x is central modulo O, (G).

The result is usually stated for elements of order p but this implies the result
for elements of order p® by Lemma 3.2 below. We also note that it is easy to see
that if z is isolated in a Sylow p-subgroup, then x is isolated in its centralizer
(i.e., it does not commute with any distinct conjugate).

If p = 2 and = is an involution, then this is Glauberman’s Z* theorem [3] and
does not depend on the classification of finite simple groups. So assume that p
is odd.

It was observed by many that this follows from the classification of finite
simple groups (with some effort) and always stated with the extra assumption
that  has order p. It was proved in [1, Thm. 1], [11, Thm. 4.1] and follows
easily by [9, 7.8.2, 7.8.3]. Interestingly, the first two proofs both used [10] to
reduce from the almost simple case (i.e., F*(G) is simple) to the simple case.
The last proof uses a different result about weakly closed subgroups of order p.
The result for any p-element x follows by the result for elements of order p and
Lemma 3.2 below.

We give a quick sketch to indicate the connection with Gross’s result. There is
no loss in assuming O,/ (G) = 1 and then showing = € Z(G). The result is clear
if x € O,(G); so assume this is not the case. By induction we assume that G is
the normal closure (%) of x because otherwise we obtain z € Z((z%)) < O,(G).
If E(G) =1, then F*(G) = O,(G) and z € C(F*(G)) = Z(0,(G)) and the
result holds. Let @ be a component of G. Thus |Q/Z(Q)| has order divisible
by p, whence x normalizes each component and therefore so does G. Note that z
must act non-trivially on @Q/Z(Q) (as G is the normal closure of x).

Clearly xZ(Q) is isolated in G/Z(Q). First assume that Z(Q) = 1 and so
we may assume that G is almost simple. At this point, we can invoke [10] to
conclude that x induces an inner automorphism and so reduce to the simple
case. In order to avoid that, we use [9, 7.8.2, 7.8.3] (see also [8, 4.250]) to
reduce to the simple case and to a short list of possibilities. In all these cases,
there is an involution inverting = and the result follows.
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More generally this shows that ©Z(Q) is central in G/Z(Q) whence z € O, (G),
which contradicts the fact that G = (2).

One can also prove the result more directly after reducing to the case of
simple groups. If G is alternating, one sees that Ng((z)) # Cqg({z)) for any
nontrivial p-element x, whence x is not isolated. One checks the sporadic groups
directly. If G is a finite group of Lie type in characteristic p, the center consists
of root elements (or products of commuting short and long root elements in a
few cases) and it is easy to check. If G is a finite group of Lie type in charac-
teristic r # p, then in most groups, we have —1 in the Weyl group and every
semisimple element of odd order is real, whence not isolated. This leaves the
cases PSL,(¢q), n > 2, PSU,,(¢q), n > 2 and orthogonal groups in dimension 2m
with m > 3 odd, and Eg and 2Es(q). The argument for the classical groups is
an easy linear algebra argument and the group of type Es follows by inspec-
tion of normalizers of maximal tori. See [12] for similar arguments (proving a
somewhat different result).

LEMMA 3.2: Let G be a finite group with Sylow p-subgroup S. If a € S
is weakly closed in S with respect to G, then any power of a has the same

property.

Proof. The hypothesis implies that a € Z(S). Let b be a power of a, and let
g € G with by := b9~ € S. Note that a commutes with b1 and so a9 commutes
with b. So a9 is a p-element in Cg(b) and S is a Sylow p-subgroup of C¢(b).
Thus, a9 € S for some h € Cg(b). Since a is weakly closed in S, a9" = a and
so also b = b. Thus, b9 = b whence by = b and so b is isolated in S. [ |

We can now prove the main theorem.

THEOREM 3.3: Let p be an odd prime, and let G be a finite group with Sy-
low p-subgroup S. Let a be an automorphism of G of p-power order which
centralizes S. If O,/ (G) = 1, then a is inner.

Proof. The argument is similar in part to the proof of [6, Lemma 8.2]. We induct
on the order of a. Let G = G{a) be the semidirect product, and let § = 5(a).
For each subgroup X of S , denote by J(X) the Thompson subgroup of X
generated by the abelian subgroups of X of maximum order. Set D=2 (J (A )
and D = DN S for short. Then S is Sylow in G and (a) < Z(5) < D.

So X = X x (a) for X € {S, D}.
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Let H = N, (J(§)) in which S is Sylow and let n be the index of § in H.
As G/G is abelian and D is normal in H,

[D,H|<GND =D,
$0
(3.1) H centralizes D/D.
Consider the norm/transfer/trace map

N =NZ: 05(8) = C5(H)

IT

he[H/S)

defined by setting

By (3.1),

N(a) =a™ (mod D).
Since |a| is coprime to n, the restriction N,y is injective, and we may choose
m > 1 with N(a™) = a (mod D). Thus we may find z € D such that

az=N(a™) € Cﬁ(ﬁ).
Since az € C5(H H) < Z(5) and a € Z(S), we see that
e Z2(5)NG = Z(5).

Set a; = az; it has order |a|. By construction a; is weakly closed in S with
respect to H. Since p is odd, a; is weakly closed in S with respect to G by [5,
Theorem 14.4].

Let b1 be a power of a; having order p. Lemma 3.2 gives that b; is also
weakly closed in S with respect to G. So the assumption Oy (G) = 1 and
the Z] theorem yield by € Z(G). This shows that conjugation by a1 induces an
automorphism of G of order at most |a|/p centralizing S, and so conjugation
by a; is inner by induction. It follows that a is inner. |

4. Almost simple groups

The following two theorems about simple and quasi-simple groups provide the
key to give a second proof of our main results. The first is a result of Gross
[10], while the other is new and may be of independent interest. Both results
depend upon the classification of finite simple groups.
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THEOREM 4.1: Let p be an odd prime, and suppose L is a finite non-abelian
simple group with order divisible by p. Also, let a be an automorphism of L
that has p-power order, and assume that a centralizes a Sylow p-subgroup of L.
Then a is an inner automorphism of L.

THEOREM 4.2: Let p be an odd prime and suppose that @ is a finite quasi-
simple group with center Z. Let P be a Sylow p-subgroup of @) and
let x € Z(P). Let H be the largest subgroup of Aut(Q) with [H,z] < Z
(i.e., H = Cawy(q)(xZ/Z)). Then there exists y € xZ a p-element such that H
centralizes y.

We prove Theorem 4.2 below. It gives the following corollary, which is used
in the second proof of our main result. The corollary is an immediate conse-
quence of the theorem by noting that an automorphism ¢ of () commutes with
conjugation by z if and only [o, x] € Z.

COROLLARY 4.3: Let @@ be a quasi-simple group with center Z a p-group. Sup-
pose that x € Z(P) with P a Sylow p-subgroup of Q). There exists y € ©Z
such that if o is an automorphism of ) that commutes with conjugation by x,
then o fixes y.

The remainder of this section is devoted to proving Theorem 4.2. We are
assuming that Theorem 4.1 holds.
We first note:

LEMMA 4.4: Let @ be a quasi-simple group. If p does not divide |Z(Q)| or p
does not divide |Out(Q)|, then Theorem 4.2 holds for Q.

Proof. Suppose that Z = Z(Q) is a p’-group. Then (z) is the Sylow p-subgroup
of (z,Z) and so [H,z] < Z implies that [H,z] = 1. Indeed, the same argument
shows that by passing to Q/O,(Z), we may assume that Z is a nontrivial
p-group.

By Lemma 2.1, it suffices to prove the result for a Sylow p-subgroup R of H.
If p does not divide |Out(Q)|, then R induces inner automorphisms on Q. By
Lemma, 2.4, it follows that R centralizes x. |

The previous result shows that Theorem 4.2 holds when Q/Z is an alternating
or sporadic group (since the outer automorphism group has order 1,2 or 4 [9,
5.2.1, Table 5.3]). Thus we may assume that L := Q/Z is a finite group of Lie
type and moreover that Z is a nontrivial p-group.
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If the characteristic of L is prime to p, then almost always the Schur multiplier
has order prime to p. Using [9] it is straightforward to check in the few cases
where p does divide the order of the Schur multiplier, p does not divide the
order of the outer automorphism group, whence Theorem 4.2 holds.

Thus, we may assume that L is a finite group of Lie type in characteristic
r # p. By [9], the only L such that p divides both the order of the Schur
multiplier and the outer automorphism group are:

(i) L =PSL(d,q) and p divides (d,q — 1); or
(i) L =PSU(d, q) and p divides (d,q + 1); or
(ili) p = 3 and L = Fg(q) and 3 divides ¢ — 1 or L = 2Eg(q) and 3
divides g + 1.

Note that in all cases the Schur multiplier of L is cyclic and so Z is cyclic. In
the last case above, Z(P) = Z by [15] whence the theorem holds in that case.

We next prove an elementary result that is the key to proving Theorem 4.2.
The statement of the result is almost as long as the proof.

LEMMA 4.5: Let ¢ and d be positive integers. Let p be an odd prime and let C
be a cyclic group of order p°. Let e be a positive integer with e =1 (mod p).
Set M = C? (the direct sum of d copies of C) and view M as a module
for Sq x (o) where Sq acts on M by permuting the coordinates of M
and o(x) = ex for all x € M. Let e : M — C be the augmentation map
(i.e., the sum of the coordinates) and My = ker(e). Let Z be the group of fixed
points of Sq on M and set Zyg = Z N My. Let Q be a Sylow p-subgroup of Sy.
Let
M1 = {.T e M0|[.T,Q] < Zo}
Then
{z € My|[z,0] € Zo} = Zo + Cu, (0).

Proof. Let ¢ = p® be the largest power of p dividing d. If ¢ = 1, then
M = My @ Z and the result is clear. So assume that ¢ > 1.

Note that if [z, 0] € Z, then x = (21, ...,24) where x; = w+s; with w, s; € C
and (e —1)s; = 0.

First suppose that ¢ # d. Thus, ) has more than one orbit and so we
see that M7 consists of those elements in My in which the coordinates are
constant on each orbit of . Thus, if 2 € M; and [o,2] € Zy, it follows that
x = (x1,...,24) where z; = w + s; and each s; occurs a multiple of ¢ times
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(since the coordinate is constant on each orbit of Q). Thus dw = —qt where t
is in the subgroup generated by the s; and in particular (e — 1)t = 0. Suppose
that dw # 0. Then since ¢ is the largest power of p dividing d, it follows that w
and t generate the same subgroup of C and so (e — 1)w = 0 and w and x are
centralized by o and the result holds. If dw = 0, then

x=(w,...,w)+ (81,...,84) € Zo + Cur, (0).

Finally suppose that ¢ = d. Then @ permutes p blocks of imprimitivity
(possibly ¢ = p) of size ¢/p (we take the blocks to consist of consecutive in-
tegers). Let @1 be the subgroup of index p fixing each block. Let x € M.
Then [z,@1] < Z implies that all coordinates of = on each block are constant.
So write © = (x1,...,zp) where z; is a constant vector corresponding to the ith
block. Let p € @ be of order p permuting the blocks. We assume that p
takes (z1,...,2p) to (z2,...,2p,x1). Then [z, p] € Z implies that

x=(y,...,y)+ 0,u,2u,...,(p—1)u)

with pu =0. Let W = {z € M|[z,Q] < Z}. So we have shown that W = Z@ Z’
where Z' is the subgroup of order p generated by (0, u,2u,...,(p— 1)u) with u
any element of order p. Note that |Z’| = p and moreover Z’ < M; (since p is
odd) and is centralized by o. Thus

M, :WQMOZZO@Z/:ZO—FCMI(O’)
and the result follows. [ |

We now give the proof of Theorem 4.2 in the case that L = PSL(d, ¢) with p
dividing (d,q — 1) and ¢ = r¢. The proof is identical for L = PSU(d, ¢) (with p
dividing (d,q + 1)—using the fact that p is odd). The idea is to reduce to
working in the normalizer of a maximal torus and then the result essentially
follows by Lemma 4.5.

Let R = SL(d, q) with center Z3. Then we can take @ = R/Z; for some
subgroup Z; < Z, such that Z3/Z, = Z is a nontrivial p-group.

We actually prove a bit more than we require by working in R rather
than R/Z;. Let T be the diagonal subgroup of R and let P be a Sylow p-
subgroup of R contained in the normalizer of T'. Note that the normalizer of T’
is just T'Sy and we can take P < TW; with Wy a Sylow p-subgroup of A,.
Let x € P with [P, z] < Z. It is straightforward to see that z € T'.
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Let H be the subgroup of Aut(R) such [H,z] < Z3 and let W be a Sylow
p-subgroup of H. Note that we can take W so that W = S(W; x (o)) where S
is the Sylow p-subgroup of T in PGL4(q) (i.e., the corresponding split torus
in PGL, which in particular centralizes T'), W is as above and o is a standard
Frobenius automorphism (of p-power order).

By Lemma 4.5, we can find y € xZ5 so that ¢ centralizes y and so replacing x
by y we may assume that o centralizes x. Thus, [P, 2] = [W,z]. In particular
if ®Z; is central in P/Z;, then W centralizes ©Z7, whence by an averaging
argument (Lemma 2.1), H centralizes ©Z; as required.

This completes the proof of Theorem 4.2.

5. Second proof of the theorem and proof of the corollary

THEOREM 5.1: Suppose that p is an odd prime and L is a finite group
with Oy (L) = 1. Suppose that a € Aut(L) has order a power of p and a
centralizes a Sylow p-subgroup of L. Then a acts as an inner automorphism
of L.

Proof. By Lemma 2.2 we may assume that L = F(L)S. Thus, the L-orbits of
a component are precisely the S-orbits. Let @ be a component of L. Let t be
the number of conjugates of @ in G. Since O,/ (G) =1, SN Q is not contained
in Z(Q) and since @ centralizes S, a normalizes Q.

Then a induces an inner automorphism on Q/Z(Q) by Theorem 4.1 and
so on @ since it is perfect. Thus, by Corollary 4.3, there exists ¢ € @ such
that aq centralizes () and moreover g centralizes any automorphism of @ that
centralizes ¢Z(Q)/Z(Q) in Q/Z(Q). Since S centralizes a, it follows that Ng(Q)
centralizes ¢Z(Q)/Z(Q) whence Ng(Q) centralizes q. Thus, the set of S-
conjugates of ¢ consists of ¢ elements with one in each of the ¢ conjugates of Q.
In particular, these conjugates commute and their product b is thus centralized
by S. Moreover, since ga centralizes (Q and S centralizes a, it follows that ab
centralizes the central product of the conjugates of Q) as well as S.

Repeating this for each orbit of components of L, we see that there is a
p-element ¢ € E(L) such that ac centralizes SE(L) = L, whence a induces
conjugation by ¢ on L and the result follows. |

Finally we deduce Corollary 1.2 from Theorem 1.1.
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So let G be a finite group with O, (G) =1 and let P be a Sylow p-subgroup
of G, where p is odd. Let € Z(P). Then conjugation by z induces an
automorphism of F*(G) and centralizes a Sylow p-subgroup of F*(G). Thus, x
is inner on F*(G). Thus,

z € F*(G)Cq(F*(G)) = F*(G)

and the result follows.

6. A permutation version of the Z; theorem

Finally we prove a permutation group result that is essentially equivalent to
the Z7 theorem. In particular, for p = 2, the proof does not require the classi-
fication of finite simple groups.

THEOREM 6.1: Suppose p is a prime, G is a transitive subgroup of S, and G
possesses a p-element g that has a unique fixed point w and is central in G,,, the
stabilizer of w. Then N := O, (G) is transitive, G,, = Ca(g) and G = NCgq(g).

Proof. Since g has a unique fixed point w, Ng({g)) also fixes w. By assumption,
Gy < Cg(g), whence Cg(g) = Gy. Let & € G, and assume ¢g* € Cg(g)=Gy.
Then ¢g* fixes the unique point w®, but as g* € Gy, it also fixes w. Thus,

HARS Gw = CG(g)

by uniqueness, so that ¢g* = ¢g. This shows that g is isolated in Cg(g). Since p
divides n — 1, G, contains a Sylow p-subgroup P of G. Thus g is isolated in P.
By the Z theorem, it follows that g is central modulo N.

In particular, M := (N,g) is normal in G and (g) is a Sylow p-subgroup
of M. By the Frattini argument, G = M Ng({g)) = NCs(9) = NG, and the
theorem follows. |

Let us note the previous theorem implies the Z; theorem. By the usual
reductions (as described after Theorem 3.1), it suffices to prove this when G is
almost simple and its socle has order divisible by p. Suppose that g € G is a
nontrivial p-element and g is isolated in a Sylow p-subgroup P. Then g is also
isolated in Cg(g) (for if g* € Cg(g), then g and g® are in a Sylow p-subgroup P°
of Cg(g) and so g“lf1 are both in P, whence g% = ¢g* = g). Let G act on the
left cosets of C'z(g). Since G is almost simple, the action is faithful. Since g is
isolated in Cg(g), g has a unique fixed point in this action. By the theorem,
this implies that O, (G) is transitive and trivial, whence g is central.
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